5,837 research outputs found

    Gate-Voltage Control of Chemical Potential and Weak Anti-localization in Bismuth Selenide

    Full text link
    We report that Bi2_2Se3_3 thin films can be epitaxially grown on SrTiO3_{3} substrates, which allow for very large tunablity in carrier density with a back-gate. The observed low field magnetoconductivity due to weak anti-localization (WAL) has a very weak gate-voltage dependence unless the electron density is reduced to very low values. Such a transition in WAL is correlated with unusual changes in longitudinal and Hall resistivities. Our results suggest much suppressed bulk conductivity at large negative gate-voltages and a possible role of surface states in the WAL phenomena. This work may pave a way for realizing three-dimensional topological insulators at ambient conditions.Comment: 5 pages, 4 figures

    Drug susceptibility profile and pathogenicity of H7N9 influenza virus (Anhui1 lineage) with R292K substitution

    Get PDF
    Neuraminidase inhibitors (NAIs) are the only available licensed therapeutics against human H7N9 influenza virus infections. The emergence of NAI-resistant variants of H7N9viruses with an NA R292K mutation poses a therapeutic challenge. A comprehensive understanding of the susceptibility of these viruses to clinically available NAIs, non-NAIs and their combinations is crucial for effective treatment. In this study, by using limited serial passage and plaque purification, an R292K variant of the Anhui1 lineage was isolated from a patient with clinical evidence of resistance to oseltamivir. In vitro and cell-based assays confirmed a high level of resistance conferred by the R292K mutation to oseltamivir carboxylate and a moderate level of resistance to zanamivir and peramivir. Non-NAI antivirals, such as T-705, ribavirin and NT-300, efficiently inhibited both the variant and the wild-type in cell-based assays. A combination of NAIs and non-NAIs did not exhibit a marked synergistic effect against the R292K variant. However, the combination of two non-NAIs (T-705 and ribavirin) exhibited significant synergism against the mutant virus. In experimentally infected mice, the variant showed delayed onset of symptoms, a reduced viral load and attenuated lethality compared with the wild-type. Our study suggested non-NAIs should be tested clinically for H7N9 patients with a sustained high viral load. Possible drug combination regimens, such as T-705 plus ribavirin, should be further tested in animal models. The pathogenicity and transmissibility of the R292K H7N9 variant should be further assessed with genetically well-characterized pairs of viruses and, most-desirably, with competitive fitness experiments.published_or_final_versio

    An 852 nm Faraday laser with 8 kHz linewidth based on corner-cube retroreflector

    Full text link
    A single-mode Cs atom 852 nm Faraday laser based on the corner-cube reflector feedback is first demonstrated to our best knowledge. Using the corner-cube reflector as external cavity feedback in Faraday laser, the robustness can be greatly improved. This Faraday laser can always achieve laser oscillation unless the angle between incident light and the optical axis of corner-cube retroreflector is beyond the plus or minus 3{\deg} range. Furthermore, the Faraday laser achieves single-mode operation within the current range of 100 mA , and its output wavelength is automatically limited to the vicinity of the Cs atomic transition lines. The wavelength fluctuation range is limited to plus or minus 1.2 pm within 9 hours under +3{\deg} rotation angle. Moreover, the most probable linewidth is 7.97 kHz measured by heterodyne beating. The Faraday laser with high robustness as well as narrow linewidth can be widely used in quantum precision measurement fields including quantum optics, atomic clocks, atomic magnetometers, cold atoms, and atomic gravimeters, etc

    Measurement of proton electromagnetic form factors in e+eppˉe^+e^- \to p\bar{p} in the energy region 2.00-3.08 GeV

    Full text link
    The process of e+eppˉe^+e^- \rightarrow p\bar{p} is studied at 22 center-of-mass energy points (s\sqrt{s}) from 2.00 to 3.08 GeV, exploiting 688.5~pb1^{-1} of data collected with the BESIII detector operating at the BEPCII collider. The Born cross section~(σppˉ\sigma_{p\bar{p}}) of e+eppˉe^+e^- \rightarrow p\bar{p} is measured with the energy-scan technique and it is found to be consistent with previously published data, but with much improved accuracy. In addition, the electromagnetic form-factor ratio (GE/GM|G_{E}/G_{M}|) and the value of the effective (Geff|G_{\rm{eff}}|), electric (GE|G_E|) and magnetic (GM|G_M|) form factors are measured by studying the helicity angle of the proton at 16 center-of-mass energy points. GE/GM|G_{E}/G_{M}| and GM|G_M| are determined with high accuracy, providing uncertainties comparable to data in the space-like region, and GE|G_E| is measured for the first time. We reach unprecedented accuracy, and precision results in the time-like region provide information to improve our understanding of the proton inner structure and to test theoretical models which depend on non-perturbative Quantum Chromodynamics

    Search for the decay J/ψγ+invisibleJ/\psi\to\gamma + \rm {invisible}

    Full text link
    We search for J/ψJ/\psi radiative decays into a weakly interacting neutral particle, namely an invisible particle, using the J/ψJ/\psi produced through the process ψ(3686)π+πJ/ψ\psi(3686)\to\pi^+\pi^-J/\psi in a data sample of (448.1±2.9)×106(448.1\pm2.9)\times 10^6 ψ(3686)\psi(3686) decays collected by the BESIII detector at BEPCII. No significant signal is observed. Using a modified frequentist method, upper limits on the branching fractions are set under different assumptions of invisible particle masses up to 1.2  GeV/c2\mathrm{\ Ge\kern -0.1em V}/c^2. The upper limit corresponding to an invisible particle with zero mass is 7.0×107\times 10^{-7} at the 90\% confidence level

    JUNO Conceptual Design Report

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine the neutrino mass hierarchy using an underground liquid scintillator detector. It is located 53 km away from both Yangjiang and Taishan Nuclear Power Plants in Guangdong, China. The experimental hall, spanning more than 50 meters, is under a granite mountain of over 700 m overburden. Within six years of running, the detection of reactor antineutrinos can resolve the neutrino mass hierarchy at a confidence level of 3-4σ\sigma, and determine neutrino oscillation parameters sin2θ12\sin^2\theta_{12}, Δm212\Delta m^2_{21}, and Δmee2|\Delta m^2_{ee}| to an accuracy of better than 1%. The JUNO detector can be also used to study terrestrial and extra-terrestrial neutrinos and new physics beyond the Standard Model. The central detector contains 20,000 tons liquid scintillator with an acrylic sphere of 35 m in diameter. \sim17,000 508-mm diameter PMTs with high quantum efficiency provide \sim75% optical coverage. The current choice of the liquid scintillator is: linear alkyl benzene (LAB) as the solvent, plus PPO as the scintillation fluor and a wavelength-shifter (Bis-MSB). The number of detected photoelectrons per MeV is larger than 1,100 and the energy resolution is expected to be 3% at 1 MeV. The calibration system is designed to deploy multiple sources to cover the entire energy range of reactor antineutrinos, and to achieve a full-volume position coverage inside the detector. The veto system is used for muon detection, muon induced background study and reduction. It consists of a Water Cherenkov detector and a Top Tracker system. The readout system, the detector control system and the offline system insure efficient and stable data acquisition and processing.Comment: 328 pages, 211 figure

    Confirmation of a charged charmoniumlike state Zc(3885)Z_c(3885)^{\mp} in e+eπ±(DDˉ)e^+e^-\to\pi^{\pm}(D\bar{D}^*)^\mp with double DD tag

    Full text link
    We present a study of the process e+eπ±(DDˉ)e^+e^-\to\pi^{\pm}(D\bar{D}^*)^{\mp} using data samples of 1092~pb1^{-1} at s=4.23\sqrt{s}=4.23~GeV and 826~pb1^{-1} at s=4.26\sqrt{s}=4.26~GeV collected with the BESIII detector at the BEPCII storage ring. With full reconstruction of the DD meson pair and the bachelor π±\pi^{\pm} in the final state, we confirm the existence of the charged structure Zc(3885)Z_c(3885)^{\mp} in the (DDˉ)(D\bar{D}^*)^{\mp} system in the two isospin processes e+eπ+D0De^+e^-\to\pi^+D^0D^{*-} and e+eπ+DD0e^+e^-\to\pi^+D^-D^{*0}. By performing a simultaneous fit, the statistical significance of Zc(3885)Zc(3885)^{\mp} signal is determined to be greater than 10σ\sigma, and its pole mass and width are measured to be MpoleM_{\rm{pole}}=(3881.7±\pm1.6(stat.)±\pm1.6(syst.))~MeV/c2c^2 and Γpole\Gamma_{\rm{pole}}=(26.6±\pm2.0(stat.)±\pm2.1(syst.))~MeV, respectively. The Born cross section times the (DDˉ)(D\bar{D}^*)^{\mp} branching fraction (σ(e+eπ±Zc(3885))×Br(Zc(3885)(DDˉ))\sigma(e^+e^-\to\pi^{\pm}Z_{c}(3885)^{\mp}) \times Br(Z_{c}(3885)^{\mp}\to(D\bar{D}^*)^{\mp})) is measured to be (141.6±7.9(stat.)±12.3(syst.)) pb(141.6\pm7.9(\text{stat.})\pm12.3(\text{syst.}))~\text{pb} at s=4.23\sqrt{s}=4.23~GeV and (108.4±6.9(stat.)±8.8(syst.)) pb(108.4\pm6.9(\text{stat.})\pm8.8(\text{syst.}))~\text{pb} at s=4.26\sqrt{s}=4.26~GeV. The polar angular distribution of the π±\pi^{\pm}-Zc(3885)Z_c(3885)^{\mp} system is consistent with the expectation of a quantum number assignment of JP=1+J^P=1^+ for Zc(3885)Z_c(3885)^{\mp}

    Faraday laser pumped cesium beam clock

    Full text link
    We realize a high-performance compact optically pumped cesium beam clock using Faraday laser simultaneously as pumping and detection lasers. The Faraday laser, which is frequency stabilized by modulation transfer spectroscopy (MTS) technique, has narrow linewidth and superior frequency stability. Measured by optical heterodyne method between two identical systems, the linewidth of the Faraday laser is 2.5 kHz after MTS locking, and the fractional frequency stability of the Faraday laser is optimized to 1.8×1012/τ1.8\times{10}^{-12}/\sqrt{\tau}. Based on this high-performance Faraday laser, the cesium beam clock realizes a signal-to-noise ratio (SNR) in 1 Hz bandwidth of 3960039600 when the cesium oven temperature is 130{\deg}C. Frequency-compared with Hydrogen maser, the fractional frequency stability of the Faraday laser pumped cesium beam clock can reach 1.3×1012/τ1.3\times{10}^{-12}/\sqrt{\tau} and drops to 1.4×10141.4\times{10}^{-14} at 10000 s when the cesium oven temperature is 110{\deg}C. %, which is the best reported result compared with other cesium beam clocks. This Faraday laser pumped cesium beam clock demonstrates its excellent performance, and its great potential in the fields of timekeeping, navigation, and communication. Meanwhile, the Faraday laser, as a high-performance optical frequency standard, can also contribute to the development of other applications in quantum metrology, precision measurement and atomic physics

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore