34 research outputs found

    Integrating remote sensing information into a distributed hydrological model for improved water budget predictions in large - scale basins through data assimilation

    Get PDF
    This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1Ă—1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems

    Hydrologic data assimilation of multi-resolution microwave radiometer and radar measurements using ensemble smoothing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2006.Includes bibliographical references (leaves 197-208).Previously, the ensemble Kalman filter (EnKF) has been used to estimate soil moisture and related fluxes by merging noisy low frequency microwave observations with forecasts from a conventional though uncertain land surface model (LSM). Here it is argued that soil moisture estimation is a reanalysis-type problem and thus smoothingis more appropriate than filtering. An ensemble moving batch smoother, an extension of the EnKF in which the state vector is distributed in time, is used to merge synthetic ESTAR observations with modeled soil moisture. Results demonstrate that smoothing can improve over filtering. However, augmentation of the state vector increases the computational cost significantly, rendering this approach unsuitable for spatially distributed problems. The ensemble Kalman smoother (EnKS) is an inexpensive alternative as the costly computations are already performed in the EnKF which provides the initial guess. It is used to assimilate observed L-band radiobrightness temperatures during the Southern Great Plains Experiment 1997. Estimated surface and root zone soil moisture is evaluated using gravimetric measurements and flux tower observations. It is shown that the EnKS can be implemented as a fixed-lag smoother with the required lag determined by the memory in subsurface soil moisture. In a synthetic experiment over the Arkansas-Red river basin, "true" soil moisture from the TOPLATS model is used to generate synthetic Hydros observations which are subsequently merged with modeled soil moisture from the Noah LSM using the EnKS.(cont.) It is shown that the EnKS can be used in a large problem, with a spatially distributed state vector, and spatially-distributed multi-resolution observations. This EnKS-based framework is used to study the synergy between passive and active observations, which have different resolutions and error distributions.by Susan Catherin Dunne.Ph.D

    Application of a Hillslope-Scale Soil Moisture Data Assimilation System to Military Trafficability Assessment

    Get PDF
    Soil moisture is an important environmental variable that impacts military operations and weapons systems. Accurate and timely forecasts of soil moisture at appropriate spatial scales, therefore, are important for mission planning. We present an application of a soil moisture data assimilation system to military trafficability assessment. The data assimilation system combines hillslope-scale (e.g., 10s to 100s of m) estimates of soil moisture from a hydrologic model with synthetic L-band microwave radar observations broadly consistent with the planned NASA Soil Moisture Active–Passive (SMAP) mission. Soil moisture outputs from the data assimilation system are input to a simple index-based model for vehicle trafficability. Since the data assimilation system uses the ensemble Kalman Filter, the risks of impaired trafficability due to uncertainties in the observations and model inputs can be quantified. Assimilating the remote sensing observations leads to significantly different predictions of trafficability conditions and associated risk of impaired trafficability, compared to an approach that propagates forward uncertainties in model inputs without assimilation. Specifically, assimilating the observations is associated with an increase in the risk of “slow go” conditions in approximately two-thirds of the watershed, and an increase in the risk of “no go” conditions in approximately 40% of the watershed. Despite the simplicity of the trafficability assessment tool, results suggest that ensemble-based data assimilation can potentially improve trafficability assessment by constraining predictions to observations and facilitating quantitative assessment of the risk of impaired trafficability

    Hydrologic Remote Sensing and Land Surface Data Assimilation

    Get PDF
    Accurate, reliable and skillful forecasting of key environmental variables such as soil moisture and snow are of paramount importance due to their strong influence on many water resources applications including flood control, agricultural production and effective water resources management which collectively control the behavior of the climate system. Soil moisture is a key state variable in land surface?atmosphere interactions affecting surface energy fluxes, runoff and the radiation balance. Snow processes also have a large influence on land-atmosphere energy exchanges due to snow high albedo, low thermal conductivity and considerable spatial and temporal variability resulting in the dramatic change on surface and ground temperature. Measurement of these two variables is possible through variety of methods using ground-based and remote sensing procedures. Remote sensing, however, holds great promise for soil moisture and snow measurements which have considerable spatial and temporal variability. Merging these measurements with hydrologic model outputs in a systematic and effective way results in an improvement of land surface model prediction. Data Assimilation provides a mechanism to combine these two sources of estimation. Much success has been attained in recent years in using data from passive microwave sensors and assimilating them into the models. This paper provides an overview of the remote sensing measurement techniques for soil moisture and snow data and describes the advances in data assimilation techniques through the ensemble filtering, mainly Ensemble Kalman filter (EnKF) and Particle filter (PF), for improving the model prediction and reducing the uncertainties involved in prediction process. It is believed that PF provides a complete representation of the probability distribution of state variables of interests (according to sequential Bayes law) and could be a strong alternative to EnKF which is subject to some limitations including the linear updating rule and assumption of jointly normal distribution of errors in state variables and observation

    Multi-sensor large scale land surface data assimilation using ensemble approaches

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2006.Includes bibliographical references (p. 223-234).One of the ensemble Kalman filter's (EnKF) attractive features in land surface applications is its ability to provide distributional information. The EnKF relies on normality approximations that improve its efficiency but can also compromise the accuracy of its distributional estimates. The effects of these approximations are evaluated by comparing the conditional marginal distributions and moments estimated by the EnKF to those obtained from an SIR particle filter, which gives exact solutions for large ensemble sizes. The results show that overall the EnKF appears to provide a good approximation for nonlinear, non-normal land surface problems. A difficulty in land data assimilation problems results from the high dimensionality of states created by spatial discretization over large computational grids. The high dimensionality can be reduced by exploiting the fact that soil moisture field may have significant spatial correlation structure especially after extensive rainfall while it may have local structure determined by soil and vegetation variability after prolonged drydown. This is confirmed by SVD of the replicate matrix produced in an ensemble forecasting experiment. Local EnKF's are suitable for problems during dry periods but give less accurate results after rainfall.(cont.) The most promising option is to develop a generalized method that reflects structural changes in the ensemble. A highly efficient ensemble multiscale filter (EnMSF) is then proposed to solve large scale nonlinear estimation problems with arbitrary uncertainties. At each prediction step realizations of the state variables are propagated. At update times, joint Gaussian distribution of states and measurements are assumed and the Predictive Efficiency method is used to identify a multiscale tree to approximate statistics of the propagated ensemble. Then a two-sweep update is performed to estimate the state variables using all the data. By controlling the tree parameters, the EnMSF can reduce sampling error while keep long range correlation in the ensemble. Applications of the EnMSF to Navier-Stokes equation and a nonlinear diffusion problem are demonstrated. Finally, the EnMSF is successfully applied to soil moisture and surface fluxes estimation over the Great Plains using synthetic multiresolution L-band passive and active microwave soil moisture measurements following HYDROS specifications.by Yuhua Zhou.Ph.D

    Variational assimilation of remote sensing data for land surface hydrologic applications

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2000.Includes bibliographical references (p. 283-192).Soil moisture plays a major role in the global hydrologic cycle. Most importantly, soil moisture controls the partitioning of available energy at the land surface into latent and sensible heat fluxes. We investigate the feasibility of estimating large-scale soil moisture profiles and related land surface variables from low-frequency (L-band) passive microwave remote sensing observations using weak-constraint variational data assimilation. We extend the iterated indirect representer method, which is based on the adjoint of the hydrologic model, to suit our application. The four-dimensional (space and time) data assimilation algorithm takes into account model and measurement uncertainties and provides optimal estimates by implicitly propagating the full error covariances. Explicit expressions for the posterior error covariances are also derived. We achieve a dynamically consistent interpolation and extrapolation of the remote sensing data in space and time, or equivalently, a continuous update of the model predictions from the data. Our hydrologic model of water and energy exchange at the land surface is expressly designed for data assimilation. It captures the key physical processes while remaining computationally efficient. The assimilation algorithm is tested with a series of experiments using synthetically generated system and measurement noise. In a realistic environment based on the Southern Great Plains 1997 (SGP97) hydrology experiment, we assess the performance of the algorithm under ideal and non ideal assimilation conditions. Specifically, we address five topics which are crucial to the design of an operational soil moisture assimilation system. (1) We show that soil moisture can be satisfactorily estimated at scales finer than the resolution of the brightness images (downscaling), provided sufficiently accurate fine-scale model inputs are available. (2) The satellite repeat cycle should be shorter than the average interstorm period. (3) The loss of optimality by using shorter assimilation intervals is offset by a substantial gain in computational efficiency. (4) Soil moisture can be satisfactorily estimated even if quantitative precipitation data are not available. (5) The assimilation algorithm is only weakly sensitive to inaccurate specification of the soil hydraulic properties. In summary, we demonstrate the feasibility of large-scale land surface data assimilation from passive microwave observations.by Rolf H. Reichle.Ph.D

    On the value of soil moisture measurements in vadose zone hydrology: A review

    Full text link

    Monitoring of water and carbon fluxes using a land data assimilation system: a case study for southwestern France

    Get PDF
    International audienceA Land Data Assimilation System (LDAS) able to ingest surface soil moisture (SSM) and Leaf Area Index (LAI) observations is tested at local scale to increase prediction accuracy for water and carbon fluxes. The ISBAA-gs Land Surface Model (LSM) is used together with LAI and the soil water content observations of a grassland at the SMOSREX experimental site in southwestern France for a seven-year period (2001-2007). Three configurations corresponding to contrasted model errors are considered: (1) best case (BC) simulation with locally observed atmospheric variables and model parameters, and locally observed SSM and LAI used in the assimilation, (2) same as (1) but with the precipitation forcing set to zero, (3) real case (RC)simulation with atmospheric variables and model parameters derived from regional atmospheric analyses and from climatological soil and vegetation properties, respectively. In configuration (3) two SSM time series are considered: the observed SSM using Thetaprobes, and SSM derived from the LEWIS L-band radiometer located 15m above the ground. Performance of the LDAS is examined in the three configurations described above with either one variable (either SSM or LAI) or two variables (both SSM and LAI) assimilated. The joint assimilation of SSM and LAI has a positive impact on the carbon, water, and heat fluxes. It represents a greater impact than assimilating one variable (either LAI or SSM). Moreover, the LDAS is able to counterbalance large errors in the precipitation forcing given as input to the model
    corecore