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Abstract: This paper investigates whether remote sensingotraaspiration estimates can
be integrated by means of data assimilation intdisaributed hydrological model for
improving the predictions of spatial water disttibn over a large river basin with an area
of 317,800 kr. A series of available MODIS satellite images otrer Haihe River basin
in China are used for the year 2005. Evapotranspiras retrieved from these 1x1 km
resolution images using the SEBS (Surface EnerghariBa System) algorithm. The
physically-based distributed model WEP-L (Water &mkergy transfer Process in Large
river basins) is used to compute the water balafidhe Haihe River basin in the same
year. Comparison between model-derived and rementsirsgy retrieval basin-averaged
evapotranspiration estimates shows a good piecdimisar relationship, but their spatial
distribution within the Haihe basin is different. h& remote sensing derived
evapotranspiration shows variability at finer ssalkn extended Kalman filter (EKF) data
assimilation algorithm, suitable for non-linear Iplems, is used. Assimilation results
indicate that remote sensing observations havetenpally important role in providing
spatial information to the assimilation system tte spatially optical hydrological
parameterization of the model. This is especiattpartant for large basins, such as the
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Haihe River basin in this study. Combining and gnéting the capabilities of and
information from model simulation and remote segdiechniques may provide the best
spatial and temporal characteristics for hydrolafistates/fluxes, and would be both
appealing and necessary for improving our knowledgefundamental hydrological

processes and for addressing important water resenanagement problems.

Keywords. Evapotranspiration; Distributed hydrological modehgta assimilation; WEP;
SEBS; Extended Kalman Filter.

1. Introduction

Because water is becoming the limiting factor fevelopment in many parts of the world, more
systematic approaches are needed to analyze tls depletion, and productivity of water. An
improved knowledge of the land surface hydrologites and fluxes, and of their spatial and temporal
variability across different scales, is urgentheded in many hydrologic studies and water resources
management [1-2]. At present many tools can hetpwlater budget analysis, including distributed
models, geographic information systems (GIS) antbte sensing techniques.

A great variety of distributed hydrological moddiave been developed, ranging from simple
empirical equations, to complex systems of padiékrential equations, which can incorporate the
spatial distribution of various inputs and boundaonditions, such as topography, vegetation, land
use, soil characteristics, rainfall, and evaporgtend produce spatially detailed outputs suchods s
moisture, water table, groundwater fluxes, and am@fsaturation patterns. However, distributed
modeling of hydrological processes has its limitasi. The major problems are over-parameterization
and uncertainty, in the sense that most models havdéeen validated in all their details. New data
sources for observation of hydrological processas alleviate some of the problems facing the
validation and operational use of hydrological med&atellite, airborne and ground-based remote
sensing has begun to fulfill some of its poterftalhydrological applications, allowing monitorigd
measurement of rainfall, snow, soil moisture, vatien, surface temperature, energy fluxes, and land
cover over large areas. The main reason is thatteesensing data can provide large-scale, systemati
land surface observations consistently over thgelacale [3].

The integration of data and models is referredstdata assimilations (DA) which provides a means
of integrating data in a consistent manner with ehquedictions and merge measurements of different
types, accuracies, and resolutions into spatiadiyiduted models [4-5]. For example, remotely sehs
observations and land surface modeling have betgrated in both NASA’s Global Water and
Energy Cycle (GWEC) program, and the World ClimRe&search Cycle (GWEC) program, and the
World Climate Research Programme’s (WCRP) Globa&rgnand Water Experiment (GEWEX).

The fundamental operative unit for water resoum@smagement is the catchment or river basin.
Combining and integrating the capabilities and rimfation within an integrated framework from
simulation and remote sensing techniques is thuk bBppealing and necessary for improving our
knowledge of fundamental hydrological processesfandupporting water resources management in
the catchment or basin scale. Therefore, it's urdeninvestigate appropriate DA and modeling
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approaches at the catchment/river basin scalemaméd case studies should be conducted to reakze th
operational potential of DA for a broad range otevaesources management problems. Therefore, the
work presented in this paper is motivated by thedrte develop an improved data assimilation system
that use remote sensed ET to improve the predip@vormance of a distributed hydrological model
in a large river basin.

Many studies in hydrological modeling of DA havegbe to appear in recent years [e.g. 6-22],
spurred by the success of DA in other fields. Mafsthese studies focus on the assimilation of soil
moisture data in land surface models, and relyymthetic datasets to assess the performance of the
DA algorithms. Much less work has been publishedssimilating remote sensed evapotranspiration
(ET)/latent flux (LE) into hydrological models abe regional/basin scale. Schuurmans et al. [23]
address the question of whether remotely sensedtldteat flux estimates from Surface Energy
Balance Algorithm for Land (SEBAL) over a catchmerdn be used to improve distributed
hydrological model computations using a constamt galman filter data assimilation algorithm in the
Drentse Aa catchment with an drainage area of 388 Ran et al. [3] proposed and tested a data
assimilation system that consisted of a combinadiotwo filters - a particle filter (PF) [24-25] dran
ensemble Kalman filter (EnKF) [26-27] to estimdie tvater budget using a MODIS based estimate of
surface evapotranspiration (ET) over the spatiad@io of Red-Arkansas river basin.

2. A data assimilation system for water budget predictions
2.1 Overview

The scheme of the data assimilation system is s&dtm Figure 1. In this paper a series of MODIS
satellite images available for the Haihe basintiieryear 2005 are used. Evapotraspiration is vettie
from these 1x1 km resolution images using the SERSface Energy Balance System) algorithm [28].
The physically-based distributed model WEP-L (Waad Energy transfer Process in Large river
basins) [29] is used to compute the water balariche Haihe River basin in the same year. An
extended Kalman filter (EKF) data assimilation aiton, suitable for non-linear problems, is used.

In order to attain the water budgets for water ueses assessment and planning, the specific setup
of the WEP-L model is made to provide an accuratémate of the magnitude of the different
components of the hydrologic cycle in large badike Haihe River basin. ET is an important
component for water budget analysis, because ETbearegard as the net consumption of water.
Remote sensing algorithm (e.g. SEBS) can providéaly distributed estimates of evapotranspiration
although continuous time series with time stepsdéfecult. It is expected that the WEP-L model can
benefit by assimilating the spatial distributed &Stimates provided by the SEBS, and give a better
understanding about how the availability of acteaikapotranspiration varies both spatially and
temporally. The physical models, remote sensingeretl tool, data assimilation techniques and data
sources are further discussed below.
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Figurel. Data assimilation system scheme
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2.2 Description of the WEP-L model

With the computational resources available todaytst modelers, it has become feasible to build
and apply highly complex distributed hydrologicabaels that represent many different processes and
consist of many model elements. The distributedrdlgdical model WEP-L was developed in a
national key basic research project of China [2P-Bhe WEP-L model is based on the WEP model
[32-34] which has been successfully applied in sdwwatersheds in Japan, Korean and China with
different climate and geographic conditions [32;3%}. The WEP-L model adopts the contour bands
as the calculation units to fit for large river lssand has been applied in the Yellow river basin
China. For details one is referred to Jia et &:-32].

The vertical structure of WEP-L within a contoumdas shown in Figure 2(a), and the horizontal
structure of WEP-L within a sub-watershed is shawrigure 2(b). Land use is divided into five
groups within a contour band, namely Soil Vegeta{i®V) group, Non-irrigated farmland (NF) group,
Irrigated Farmland (IF) group, Water Body (WB) gooand Impervious Area (lA) group. The SV
group is further classified into bare soil land|, ¥agetation (forest or urban trees) and shoretaipn
(grassland). The IA group consists of imperviousanr cover, urban canopy and rocky mountain. The
areal average of water and heat fluxes from alll lages in a contour band produces the averaged
fluxes in the contour band. For pervious groupsSwf NF and IF, nine vertical layers, namely an
interception layer, a depression layer, three ugp#érayers, a transition layer, an unconfinedifegu
an aquitard and a confined aquifer, are includatiénmodel structure.
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Figure 2. Schematic illustration of WEP-L model structura @t al., 2006)(a) vertical
structure within a contour band, afij horizontal structure within a sub-watershed.
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The simulated hydrological processes include sn@iing, evapotranspiration, infiltration, surface
runoff, subsurface runoff, groundwater flow, ovadaflow, river flow, and water use. The simulated
energy transfer processes include short-wave radjdbng-wave radiation, latent heat flux, sersibl
heat flux, and soil heat flux. Adopted modeling @@ehes for hydrological and energy processes are
referred to in Jia et al. [34](2001b) except snoelting and water use processes.

WEP-L integrates the merits of distributed hydradeyy models with those of SVATS (Soil-
Vegetation-Atmosphere Transfer Schemes) model, lesupe simulation of water cycle and energy
processes, and calculates evapotranspiration femin land use separately. Evapotranspiration censist
of interception of vegetation canopies (evaporafiem the wet part of leaves), evaporation from
water bodies, soil, urban cover and urban canogytr@amspiration from the dry fraction of leavestwit
the source from the three upper soil layers. Thaperation from water bodies or ponded water in the
depression storage is calculated with the Penmaatieqp. The evaporation from the impervious area
is taken as the smaller one of current depresstorage and the potential evaporation. The
computation of interception is referred to the Nait and Planton [40] model that is an interception
reservoir method. The evaporation from soil is asmill to come only from the topsoil layer. The
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Penman equation is adopted to compute potentigogation from which actual evaporation of soil is
computed using a wetness function suggested byabeePielke [41]. The actual transpiration is
calculated using the Penman-Monteith equation 2] the canopy resistance [40] which is related to
the soil moisture condition. The average evapopiaagon in a contour band is obtained by areally
averaging those from each land use.

2.3 Description of the SEBS algorithm

With the rapid development and increased applinatiof remote sensing technology,
evapotranspiration calculation methods using rersetssing techniques have become a major trend for
hydrological research in recent years. The dataiodd from visible, near-infrared and thermal band
can reflect the spatial and temporal distributidbrsurface features, which have a great importance i
simulating the energy balance. The SEBAL (Surfagerg§y Balance Algorithm for Land) proposed by
Bastiaanssen et al. [43], which is based on lanths® parameters acquired with remote sensing
techniques. It is a semi-empirical model applieccahculating the evapotranspiration and the main
difficulty is to determine the “hot” pixel and tHeold” pixel which has a great effect on the final
results. Norman and Kustas [44] proposed the TSEBo{Source Energy Balance) algorithm to
calculate the evaporation from bare soil and trmagpn from vegetation separately based on remote
sensing data.

The Surface Energy Balance System (SEBS) was desetlby Su [28] to estimate the atmospheric
turbulent fluxes and evaporative fraction usingeliaeé earth observation data, in combination with
meteorological information at proper scales. Thetey retrieves evapotranspiration (ET) using
measurements of incoming surface radiation, surfdde temperature, surface meteorology, and
surface and vegetation properties [45]. One ofaitieantages in this algorithm is applying both Bulk
Atmospheric Similarity (BAS) and the Monin-Obukotmspheric surface layer (ASL) similarity in
the model, which can be used for regional and |scales respectively to determine the turbulent
fluxes. Another important merit of SEBS is the usibn of a physical model which takes surface
heterogeneity into account in the estimation of tbeghness height for heat transfer. The SEBS
algorithm has been successfully applied for mangliegtions of evaporation estimations in many
different places with different scale [46-51].

For the purpose of this study, only basic equationsET retrieval will be briefly described, full
details are given by Su [28]. The surface energgrua is commonly written as

R, =G, +H +AE 1)

WhereR, is the net radiationG, is the soil heat fluxH is the turbulent sensible heat flux, and

AE is the turbulent latent heat fluxA(is the latent heat of vaporization amfd is the actual
evapotranspiration).

To determine the evaporative fraction (to be defifelow), use is made of energy balance
considerations at limiting cases. Under the drytlithe latent heat (or the evaporation) becomes ze
due to the limitation of soil moisture and the slelesheat flux is at its maximum value.

From Eqgn. (1), it follows,
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AE,, =R, =G, —H,, =0, or

®)
Hay =R, -G,

Under the wet-limit, where the evaporation takexelat potential ratelE ., (i.e. the evaporation

wet !

is limited only by the energy available under theeg surface and atmospheric conditions), the
sensible heat flux takes its minimum valle,,, , i.e.

AEwet = Rn _GO - Hwet' or
(3)
Hwet = Rn _GO _AEwet
The relative evaporation then can be evaluated as
/\r :1_ H _Hwet (4)
H dry -H wet
The evaporative fraction is finally given by:
AE N\, AE,,
N = — = - t (5)
R, -G R, -G

By inverting Eqgn. (5), the actual latent heat fld can be obtained.

The actual sensible heat flik is determined with the bulk atmospheric similaggproach and is
constrained in the range set by the sensible heatat the wet limitH ., and that at the dry limit

H H,, is given by Eqgn. (2) an#l,., can be derived by a combination equation [52] lsimd the

Penman—Monteith combination equation with the agdiom of a completely wet situation. Other
details are given in Su [28].

dry * wet

2.4 The extended Kalman filter

Data assimilation techniques can be used to impmoyeel performance either by optimizing model
parameters or by correcting the state producetéyriodel, both through a variational or a sequkentia
approach. For operational purposes the combinatigrarameters optimization and state estimation is
most promising. Nevertheless, in this paper wera@sburselves to state estimation via a sequential
approach, which provides a general framework tolieig incorporate input, model and remote
sensing observation errors. Among sequential dssamdation techniques, the Kalman filter (KF)
introduced by Kalman [53] and originally devised fimear models, is the most widely used method.
In order to perform DA on non-linear models, seleiierent implementations of the KF have been
devised: the Extended version (EKF) proposed byidaki [54], the Ensemble version (EnKF)
proposed by Evensen [27] and the Singular Evolufixeended version (SEEK) proposed by Pham et
al. [55].

A significant benefit of the Kalman filter is thahmeasured process states may be estimated based
on limited, noisy process measurements. In thigpaphe EKF is used for nonlinear systems that are
linearized around the current process state, Waiké into account the estimated errors on the model
and on the observations to determine the corredtiome applied to the states and calculates a new
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estimation of these errors every time step. Thus,more accurate the observations the closer the a
posteriori state of the model will be to them.
In order to use EKF to perform parameter estimatparameters are treated as process variables

. , X :
with a rate of change=0. We can define the stattov%gj and observation vector z:

X\ (f(x8,t)
o5 o ®

z=h(x,t) +v(t) (7

The evolution of the process state, is a function of the state, time, t, and system parameters,

6. w andv are subject to zero mean Gaussian white noisdifunsc Their error covariance matrices
represent the error), for the uncertainties on the model aRj for the uncertainties on the

observationsQ, represents the errors generated by the model glume time step, and does not

account for the total uncertainties of the moddijolv also include the propagation of uncertainties
from k -1 to time k. Therefore, a matriB, is defined to include the propagation of the foreors.

The heart of the Kalman filter is the gain matrlk, which is calculated in two phases: the

adjustment phase and the propagation phase.
During the first phase, the Kalman gain matiix is derived by the following formula:

Ky =R Hg (R)H (X)P H (X)) +R]™ (8)

Here H is the Jacobian matrix df with respect to the observation vector. Eqn. (8)dates that,

for each state, the correction factor will be aggldue to each observation and its calculationstake
into account the error matricé, and P, .

Then the state vector is updated: the a postesiaté vectorx, is equal to the a priori state vector
X, plus the difference between the observation aaig stectors multiplied by the Kalman gain:

X =X + K[z, =h (X)] (9)
The a posteriori error covariance matfx is also updated as follows:

P =[1 = K H ()R (20)

During the second phase, the new error covariaratexP,,, is calculated by adding the error at
time k P, propagated via the tangent linear and the e@ogenerated during this time step, where
F is the Jacobian matrix of with respect to the state vector.

Pea = F(X)RFT (%) +Q (12)

Calculation of the correction factor (Kalman gaiman important step of the method: if this factor
is too small, the assimilation procedure will haneeffect, if it is too large, the model would fetgts
original evolution. The magnitude of the correctisndominated by the ratio of the errors on the
observations and the model. If the uncertaintieshenobservations are very small (i®,/R,| = 0),

the Kalman gain will be almost equal to 1 and ttagées will set to the observations. Alternativety,
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the observations have a large uncertainty, the Ealgain will be almost equal to 0 and the correctio
will be almost null. The above expressions show, i, is assumed to be zero, the magnitude of
the error covariance will decrease and close talaevof zero. This would be true, only if the moudel

a perfect representation of reality, and the olz@ns are perfect. However, we know that these
assumptions cannot be made. So a certain levelnoértainties must be retained in the data
assimilation process. A methodology to determine éptimal value forR, and Q, should be the

focus of a further study, but falls outside thepsof this paper.
3. Description of study area

The Haihe River basin is located between 35°~43fAW 412°~120E°. It neighbors the Inner
Mongolian Plateau in the north, and the Yellow Riigethe borderline in the south. It faces the Boha
Sea to the east and borders Shanxi Plateau indgbe Whe Haihe basin belongs to the warm temperate
zone with a semi-humid and semi-arid climate. Tletevs are dry and cold, with low rainfall in the
spring and heavy rainfall in the summer. The aver@gual precipitation is 548 mm, about 80 percent
of which falls during June to September. Its asea17,800 square kilometers, of which 189,006 km
is mountainous and the remainder is plain, andddibiinto 15 level-3 water resources areas (WRA3)
(Figure 3). The Haihe River valley starts from thestern Taihang Mountain and reaches the eastern
Bohai Sea, running across Beijing City, TianjinyCiHebei Province, Shanxi Province, Shandong
Province, Henan Province, Liaoning Province andriher Mongolia Autonomous Region.

Figure 3. Map of Haihe River basin and name list of WRA3s.

Name of WRA3s

WRA3-1 Luanhe mountainous area

WRA3-2 Luanhe plain & other rivers
in Jidong

WRA3-3 Beisanhe mountainous area

WRA3-4 Upstream of Cetian reservoir
at Yongding river

WRA3-56 Cetian reservoir to Sanjiadian
at Yongding river

WRA3-6 Downstream plain of Beisi
river

WRA3-7 Daginghe mountainous area

WRA3-8 Dianxi plain of Daginghe

WRAZS3-9 Diandong plain of Daginghe

WRA3-10 Ziyahe mountainous area

WRAZ3-11 Ziyahe plain

WRA3-12 Zhangweihe mountainous

area

'/ @ Gaugingstation WRA3-13 Zhangweihe plain

[ Basin boundary  \WWRA3-14 Heilonggang & Yundong
i._._! WRA3 boundary plain

Rivernetwork  \WRA3-15 Tuhai Majia river sub-basin
0 50 100 200 SQG

Kilometers
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The main land use patterns in the Haihe River baseén dominated by dryland, forest land,
shrubbery, grassland, paddy field, wetland, bupdatea, bare soil, water body and bottomland (Eigur
4).

Figure 4. Land use patterns in the Haihe basin.

Sl [ Dryland
) s B Forest land

£ e »1 Huj = [ shrubbary
e [ | Grassland
gt I Paddy field
L B ietland

B Euildup area
0 50 100 200 300 | Boil soi

Filometers [ I'aterbody

B Ecttomiland

4. Data preparation and assimilation results, discussion
4.1 WEP-L application to the Haihe basin

The whole drainage basin of the Haihe basin in VW ERedel is divided into 3067 sub-watersheds
(Figure 5(a)), each of which is assigned with afdtédter code [56]. Each sub-watershed in hilly and
tableland areas is further divided into 1-10 contmands, but no further division is performed fobs
watersheds in plain areas because of little togagcaeffects, i.e., one sub-watershed is takennas o
contour band. According to the contour band, theleiHaihe basin is further discretized into 11,752
hydrologic response units (HRU) (Figure 5(b)). Tdetails of the basin subdivision and coding are
described in Luo et al. [57].
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Figure 5. Subdivision of hydrological response uni@) Subdivision of sub-basins; and
(b) Subdivision of contour bands in mountainous area
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Table 1 shows a list of the main collected basta @a which the WEP-L input data are based. The
data include the following categories: (1) hydroteoeology; (2) land cover information including
land use, vegetation, soil and water conservatmop patterns, etc.; (3) topography, soil and
hydrogeology; and (4) river network; etc. For dateparation and processing, it is referred to tel.e
[29].

Model parameterization and sensitivity analysis. There are four categories of parameters in the
WEP-L model: (1) parameters of land surface andrrchannel system; (2) parameters of vegetation;
(3) parameters of soil and aquifer; and (4) paramsedf snow melting. All of parameters are inigall
estimated according to land cover information, obm#on data, and remote sensing data. An
explanation of estimation about some main parammaiéithese four categories referred to Jia et al.
[29]. The disturbance analysis, a simple commorhowebdf sensitivity analysis, is used to analyze the
sensitivities of main parameters and input datthefWEP-L model on the annual averages of model
outputs. This method is that, when the model coeguine of the system parameter has an exiguity of
change, while the other parameters are kept unelgiarihen the ratio of output change rate to the
parameter change rate can be got, called as tsdigiy The sensitivity analysis results indicatthat
the high sensitive include maximum depression gmwraf land surface, maximum soil moisture
content (soil porosity), conductivity of river bedaterials as well as thickness of soil layers. The
middle sensitive include the conductivity and sger&oefficient of aquifers, root depth and satutate
conductivity of soils, etc. The low sensitive indiuvegetation parameters, manning roughness af rive
and lateral section shapes of river, etc.
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Table 1. List of collected basic data on which the modelinbased

Category

Item

Content

Meteorological
and hydrology

Daily rain/snow

Hourly rain/snow
Wind speed

Air temperature
Sunshine hours
Humidity
Monthly runoff

Data of 1502 rain stations, andwgteorological stations
from 1956 to 2005

Data of 47 rain stations from @96 2005

Daily data of 47 meteorological statifrom 1956 to 2005

Daily data of 47 meteorologicaltisins from 1956 to 2005

Daily data of 47 meteorologicalata from 1956 to 2005

Daily data of 47 meteorological statidnem 1956 to 2005
Data of 23 hydrologic stations frdt56 to 2005

Remote sensing
and land use

Landsat TM and
deduces land use

1:100,000 map in 1986, 1996 and 2000

NOAA-AVHRR Monthly data between 1982 and 2000

GMS Monthly data between 1998 and 2002

MODIS Monthly data between 2002 and 2005
Vegetation Vegetation fractional Deduced from NOAA-AVHRR from 1982 t02000 and

coverage MODIS from 2001 to 2005

Leaf area index Deduced from NOAA-AVHRR from 1982000 and

MODIS from 2001 to 2005

Crop patterns Data of 3rd level WRA districts 880, 1990 and 2000
Topography, Topography USGS GTOPO30 (1km by 1km DEM)
soil and Sall 1:1000,000 and 1:100,000 soil classificaticapsiin China
geohydrology =~ Geohydrology Parameters of geohydrology, distrioubf lithology and

thickness of aquifers

River network

River network

River network map

Water use

Reservoir operation
Water use in irrigation
areas
Water use in
administrative areas
Water diversion

Reservoir operatitormation of 44 reservoirs
Water use data in 75 irrigation area larger thahth@usand
mu
Monthly water use data at the county level from@ 852005

Water diversion processes in igprative districts

Model calibration and validation: Sensitivity of parameters is analyzed, and theaarpaters with
high sensitivity are calibrated on a basis of “ajyd error”. 11 years (1990-2000) is selected as
calibration period. The calibration parameters udel maximum depression storage depth of land
surface, soil saturated hydraulic conductivity, taydic conductivity of unconfined aquifer,
permeability of riverbed material, Manning roughsiesnow melting coefficient, and critical air
temperature for snow melting. After the model aailon, all parameters are kept unchanged,
continuous simulations from 1980 to 2000 are pemfat to verify the model by using observed
monthly discharges at 23 main gage stations inbten. Simulation results of model indicate that
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average errors of annually runoff are less than ,1R#sh-Sutcliffe efficiency of monthly runoff at
main gage stations is over 60%, and correlatiotfficaants between simulated and observed monthly
runoff exceed 80%. A validation example at fourtistes is shown in Figure 6. Nash-Sutcliffe
efficiency and multi-yearly errors of simulated ntidyg runoff at Guangtai, Huangbizhuang, Chengde
and Daiying station are 0.4 and 6.5%, 0.68 and 5@B%2 and -0.6%, 0.66 and -3.0%, respectively.

Figure 6. Validation of simulated monthly discharges (@ Guantai stationy(b)
Huangbizhuang statiofg) Chengde station, ar{d) Daiying station.
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4.2 SEBS application to the Haihe basin

In order to use SEBS algorithms, primary inputsunegl in this study are basically two folds: (1)
Meteorological variables, such as, wind speedtemperature, surface pressure, humidity and solar
radiation; and (2) Remote sensing physical paramederived from MODIS (Moderate-resolution
Imaging Spectroradiometer) data onboard the Teatfopm. The relevant parameters for this study are
given in Table 2.

Table 2. Input parameters for SEBS.

Parameters Estimation from

Surface temperature (°C) MODIS derivative

Surface albedo (-) MODIS derivative

NDVI (-) MODIS derivative

DEM MODIS derivative

PBL depth (m) 1000

Air temperature (°C) 50 meteorological stations
Relative humidity (kg/kg) 50 meteorological stagon
Wind speed (m'§ 50 meteorological stations
Surface pressure (Pa) 50 meteorological stations

In this study the radiation, surface temperatuné, surface vegetation properties are estimated from
MODIS-Terra products [45, 51] for a detailed dgsitoin of the input sources.. The MODIS sensors
have a temporal resolution of a spatial resolutbrix1 km. It is chosen because of its short réevisi
period and therefore higher chances to obtain cfoeglimages in the Haihe basin. The frequency of
the MODIS-Terra data availability is once a dait i cloud free, and the time of the satellite pag
over the study area is around 11:00 a.m. local.tbwging the year 2005, totally 20 observationsever
available for the study area. Data preparationpandessing are referred to in Shan [58].

The meteorological datasets were collected from @menese National Meteorological Center
(NMC), which includes the standard meteorologidaservations over 50 meteorological stations in
the Haihe River Basin on daily basis. Among thesgewrological observations, relative humidity,
wind speed, air temperature are measured on ayhbasis and are recorded every 6 hours at 2:00,
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8:00, 14:00 and 20:00, while precipitation and $ims hours are stored as daily values. A linear
interpolation model is used to obtain the meteaiclal items at the satellite over passing time. The
data is interpolated by ILWIS software to obtaie g8patial meteorological items for the whole Haihe
river basin.

SEBS first computes the net radiation flux using M8-L1B products and then estimates the
ground heat flux following the empirical approachMonteith [42] and Kustas and Daughtry [59].
Remote sensed estimates of surface thermal infram@dsivity and the reflectance of red and near
infrared bands are used to compute spatial vanatio reflected short-wave and emitted long-wave
radiation away from the land surface. A combinatidrthe short and long-wave radiation yields the
possibility to compute the net radiation absorbedha surface for every pixel. It is a key step to
compute the sensible heat flux using turbulent rexpiations by considering both the effective
roughness height and aerodynamic resistance cutiace layer as well as the atmospheric statufity
the boundary layer. For the latter, SEBS solvessihslarity stability equations on momentum and
potential temperature [45]. The latent heat fluxequivalently the evapotranspiration, is then ta&s
the residual of the surface energy budget foundubstracting the ground heat flux and sensible heat
flux from the net radiation. Figure 7(a) shows araraple of the distributions of daily actual
evapotranspiration (ETa) calculated by SEBS fort&aper 17, 2005.

Figure 7. ETa distribution in September 17, 2005 as retdelyye the SEBS algorithm:
(a) 1x1 km grid mode; an(b) Converted into 11752 HRUSs.
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4.3 Results and discussion of DA

The boundaries of the HRUs in WEP-L often diffemfr the boundaries of the satellite grids. In this
study, pixel-to-pixel SEBS estimates are 1x1 knd griode, whereas WEP-L predictions are given
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based on the 11752 HRUs. SEBS estimates are atgplegto 11752 HRUs (see Figure 7(b)) in order
to make the data series matching for data assionlaflthough some spatial variability information
could be missed in the process of data format asiore SEBS ET distribution remains more spatially
variable than model derived ET distribution. To apdthe WEP-L model simulated evapotranspiration,
the model predicted actual evapotranspirationtierday with satellite coverage is used. Some olsviou
spatial differences between the simulated ET antbte sensing ET are found in Figs. 7(b) and 10 (a).
This confirms the gap between the WEP-L model aBBSretrievals. Although there is no definitive
evidence to verify that the SEBS algorithm can mewetter ET estimation than the WEP-L model,
some studies on WEP-L show that its performancebeaimpacted due to the interferences of water
diversions and reservoir regulations. This impaould be more obvious in the Haihe River basin,
because over than 90% of water resources haveexgdoited in this region. ET simulation would be
highly relative to water use information. So it aupe difficult to attain the precise daily ET valu
with good spatial characteristics due to the ditfic to acquire the detailed water use process. data
This would suggest that the assimilation of SEBShAS the potential to improve the ET estimation.

Different assimilation techniques existing corrda inputs, the internal states or the outputhef t
models. The assimilation method used in our apprima sequential method: the output states (ET) of
the model are corrected using a weight-adaptivengbtinterpolation algorithm based on the extended
Kalman filter mentioned above. This methodologysists of locally correcting the value of the actual
evapotranspiration of the WEP-L model when an olzgeam is available. Figure 8 shows a time series
plot of simulated ET with and without DA in a poiHRU No. 610 (Sub-basin No.327, Contour band
No0.05). At the time stefx, an observation is available. The difference betwthe observed (SEBS)
and a priori simulated (WEP-L) values is partiatiyrrected and an a posteriori value of the state,
closer to the observed value is obtained. Theniid-L model continues and evolves freely until
new observations are available. In order to avb&l water balance errors when correcting the states
produced by the model, the assimilated ET woulctdrestrained equal to the available water in the
model (force mode) if the attained ET is still heglthan the available water in the model after data
assimilation.

Figure 8. Time series plot of simulated ET with and with@4 in a point HRU No. 610.

HRU No. 610 ¢ SEBSET —WEP-LET ~------- Assimilated ET

Daily ET (mm)
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A comparison between the area averaged daily aetwsgbotranspiration in the case of available
MODIS spectral data by the WEP-L model and the SBER®rithm is given in Figure 9. As can be
seen from the figure, there is a good correlatRB=0.60) between the daily ET estimated by SEBS
and WEP-L. Although the basin averaged daily evapspiration show a good piecewise linear
relationship between SEBS retrieval and WEP-L estia® in the basin level, their spatial distribution
within the Haihe basin is different. Analyzing t8&BS and WEP-L results for 2005 (e.g., Figure 7(a)
and Figure 10(a)), it is found that the remote sgneesults contain more information about the igpat
variability of the evapotranspiration estimatesefgiore, it is expected that above data assimilatio
system could lead to an improvement of the spai@ér balance analysis using the WEP-L model.

Figure 9. Scatter plot of the area averaged daily actugb@vanspiration in the case of
available spectral data calculated by WEP-L and SHBim]. The dashed line
represents the 1 to 1 line, and the solid linerétegtionship between the data points from
the WEP-L and SEBS.
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Table 3 summarizes the results of the SEBS, WEReLassimilation respectively when averaged at
the basin scale for the available day. Their spatan, standard deviation and RMSE are given is thi
table. This RMSE between the observations and sithouls is calculated as:

RMSE= \/nii(ﬁo,i -6, (12)

n, is the number of data point, the observed (SEBS) actual evapotranspiration, &nthe

simulated actual evapotranspiration. The RMSE cfier @ measure of the “potential” from data
assimilation. If the RMSE simulation with DA is lewthan that of simulation without DA, this would
means that the assimilation impact is positive.tBy comparison of the RMSE of WEP-L derived
actual evapotranspiration with and without DA, t@clusion is that data assimilation in this study
leads to a positive impact on the WEP-L model. Heveone must keep in mind that this is not
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sufficient for a definitive conclusion. This is lzese the SEBS derived actual evapotranspiratian als
contains errors.

Table 3. Comparison of spatial mean, standard deviationRM&E of SEBS, WEP-L
and assimilated actual evapotranspiration for tlalable day.

Julian  stq. SEBS WEP-L without DA WEP-L with DA

date date Mean  St.dev Mean St.dev RMSE Mean St.dev RMSE
84 3/25 1.350 0.599 0.828 0.870 1.229 1.146 0.496 0.489
93 4/3 1.464 0.524 1.004 0.778 1.023 1.287 0.479 0.411
103 4/13 0.886 0.466 1.700 0.880 1.190 1.206 0.460 0.483
111 4/21 1.390 0.800 1.523 0.829 1.238 1.442 0.549 0.500
114 4/24 1.291 0.745 1.330 0.645 1.018 1.305 0.509 0.410
123 5/3 2.102 1.175 1.574 0.694 1.827 1.892 0.684 0.722
129 5/9 1.661 0.802 1.733 0.908 1.421 1.686 0.478 0.566
143 5/23 2.337 0.787 3.058 1.052 1.339 2.620 0.593 0.560
144 5/24 2.370 1.001 2.806 1.071 1.575 2.536 0.660 0.638
153 6/2 2.270 1.087 2.672 1.210 1.981 2.428 0.676 0.801
154 6/3 2.819 0.820 2.550 1.046 1.605 2.713 0.540 0.659
166 6/15 2.738 1.262 2.474 1.173 1.884 2.628 0.834 0.758
173 6/22 3.704 1.113 3.209 1.085 1.884 3.507 0.725 0.776
237 8/25 2.184 0.810 2.952 0.885 1.437 2.485 0.496 0.590
249 9/6 2.125 0.882 2.050 1.055 1.622 2.097 0.566 0.654
260 9/17 1.910 0.572 1.819 0.996 1.243 1.872 0.494 0.504
277 10/4 1.925 0.619 1.538 0.690 1.228 1.775 0.378 0.493
278 10/5 2.009 0.678 1.628 0.739 1.163 1.858 0.507 0.472
281 10/8 1.910 0.580 1.361 0.671 1.246 1.695 0.340 0.498
289 10/16 2.193 0.382 1.422 0.890 1.330 1.890 0.413 0.532

Mean 2.032 0.785 1.962 0.908 1.424 2003 0.544 0.576

Figure 10(a) and (b) show an example about compan$ ETa distribution in September 17, 2005
as calculated by the WEP-L model without and wigltadassimilation. As can be seen in these figures,
the assimilation procedure results contain mordiapeaariability than the WEP-L derived results
without data assimilation. Figure 11(a) and (b)vshbe spatially distributed difference in annual
evapotranspiration as calculated by the WEP-L madilout and with data assimilation at the HRU
and WRABS level, respectively. Negative values igldia and b mean that the actual evapotranspiration
calculated by the model with data assimilationowdr than the actual evapotranspiration calculated
without data assimilation. Figure 11(a) impliesttB&BS estimates with limited daily remote sensing
images yet clear spatial patterns appear in thendated ET distribution at the HRU level. The dpht
differences of 11752 HRUs range from -48 to 32mnal the largest relative difference can reach 16%.
Figure 11(b) indicates that at the WRAS level, B technique does not bring an obvious change to
the yearly ET. Besides the WRA3-4 and WRA3-5, thatisl differences of most WRAS3s range from -
10 to 10mm, and the largest relative differencdess than +1.5%. The spatial differences at the
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WRA3-4 and WRA3-5 are 16.6 and 13.6mm, and thetiveladifferences are 4.2% and 3.7%,
respectively.

Figure 10. Comparison of ETa distribution in September 1Q38s calculated by the
WEP-L model without and with data assimilatiga) WEP-L ET; andb) Assimilated
ET.
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Above analysis show that the assimilated ET dodsdifter much from the WEP-L ET at the
WRAS level, whereas the assimilated system makeag mlovious spatial difference at the HRU-level.
It is suggested that data assimilation system cauldast remain its original accuracies of the \WEP
model at the higher scale, whereas more detailedrigtion for spatial water balance can be given at
the lower scale. Can we interpret these results® @rssible reason is that the lack of detail in the
database used to parameterize the hydrologicaéséflaixes is very likely to contribute to the
incompatibility of the spatially distributed hydoglical parameterization of the WEP-L model.
Because although the whole basin is divided int@521hydrological response units in the model
formulation, some parameters are given at a higt@le due to limited spatial information. This mean
that remote sensing observations have a potentrafprtant role in providing spatial information to
the assimilation system for the spatially opticaditmlogical parameterization of the model.
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Figure 11. Spatially distributed difference in yearly evapoispiration [mm] as

calculated by the WEP-L model without and with dassimilation at the HRU level
and WRAZ3 level, respectivelfa) HRU-level; and(b) WRAS level. Negative values
mean that the actual evapotranspiration calculayettie model with data assimilation is
lower than that without data assimilation.
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5. Conclusion and remarks

The paper has demonstrated the potential of res®tsing observations for updating the spatial
water balance of distributed hydrological model. Méee used an extended Kalman filter (EKF) as our
data assimilation algorithm to handle this typespétial information in the WEP-L model. By means
of this data assimilation technique, estimates afydevapotranspiration derived from MODIS-L1B
products using the SEBS algorithm are combined wittistributed hydrological model (WEP-L) to
understand the spatial distribution of water batairca large basin with an area of 317,800° km
China. Assimilation results indicate that remotesseg observations have a potentially importang rol
in providing spatial information to the assimilaticystem for the spatially optical hydrological
parameterization of the model. This is especiatiportant for large basins, such as the Haihe River
basin in this study.

Both WEP-L and SEBS used in this study have ropuagsical mechanisms and their respective
features. The WEP-L model is based on both watdrearergy balance and can provide temporally
continuous hydrological simulation, whereas the SEdBgorithm is based on surface energy balance
and can give more spatially variable information surface energy fluxes. Assimilation of a
combination of distributed hydrological model watailable remote sensing data may provide the best
spatial and temporal characteristics for hydrolagstates/fluxes. Therefore, combining and integgat
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the capabilities of and information from model slation and remote sensing techniques would be
both appealing and necessary for improving our Kadge of fundamental hydrological processes and
for addressing important water resource manageprebtems.

In the data assimilation experiment reported is gtudy, the benefits on the prediction precisibn o
the model by assimilating MODIS-based ET need biaéu investigated, although RMSE results show
data assimilation have a positive impact on the ehodUnlike “synthetic” data assimilation
experiments, there are no assumed “true” hydrolesites or fluxes for the DA system in this study.
So it is difficult to evaluate to what extent theE®-L prediction accuracy for the water balance lwan
improved by the integration of MODIS-based ET. Scaeg question, should be further investigated, is
whether an energy balance model (such as SEBSpreamde better ET estimates than a distributed
hydrological model (e.g. WEP-L).

A second key issue is whether more reliable spatifrmation can be achieved from remote
sensing observations. For example, in this study 2@ cloud free MODIS images in the year 2005
can be attained for evapotranspiration retrietalemains challenging to retrieve energy fluxesarmnd
cloud cover. Another challenge is that the perforoeaof the assimilation system for the combination
of parameters optimization and state estimatiorulshbe further tested for the purpose of operationa
application.

Acknowledgements

The research is got financial supports from theegatoof the National 973 Program of China
(2006CB403404), the NSFC (the National ScientifauRdation of China) Projects (50721006), the
GEF Haihe KM Application System at Basin Level (H\WW7), the Dragon 2 Project (2608) of both
MOST (the Ministry of Science and Technology of &)i and ESA (European Space Agency). The
authors acknowledge the help received from Praf. Y of China Institute of Water Resources and
Hydropower Research, Prof. Yangdawen of Tsinghuavedsity and Dr. He Yanbo of the Chinese
National Meteorological Center for providing me lwielative data for the research work. Thanks are
extended to the Haihe River Conservancy Commisaiahthe Hebei Hydrological Agency for kind
provision of fundamental data. The comments anii@v suggestions by the reviewers and editors on
the manuscript are also appreciated.

References and Notes

1. Maurer, E.P.; O'Donnell, G.M.; Lettenmaier, D.P.od&ls, J.O. Evaluation of the land surface
water budget in NCEP/NCAR and NCEP/DOE reanalysisigian off-line hydrologic model.
Journal of Geophysical Resear2801, 106(D16), 17841-17862.

2. Roads, J.; Lawford, R.; Bainto, E.; Berbery, E.;e@hS.; Fekete, B. Evaluation of the North
American Land Data Assimilation System over thetlsern Great Plains during the warm season.
Journal of Geophysical Resear2003, 108,D22.

3. Pan, M.; Wood, E.F.; Wéjcik, R.; McCabe, M.F. Estiion of regional terrestrial water cycle
using multi-sensor remote sensing observations daih assimilation.Remote Sensing of
Environmen®007, doi:10.1016/j.rse. 2007.02.039



Sensors008, 8 4462

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

McLaughlin, D.B. Recent developments in hydrologata assimilationRev. Geohpysl995, 33
(suppl.),American Geophysical Union.

McLaughlin, D.B. An integrated approach to hydratoglata assimilation: Interpoliation,
smoothing, and filteringddvances in Water Resour@802, 25,1275-1286.

Callies, U.; Rhodin, A.; Eppel, D.P. A case study \ariational soil moisture analysis from
atmospheric observation¥ournal of Hydrologyl998, 212-213 95-108.

Houser, P.R.; Shuttleworth, W.J.; Famiglietti, J.Gupta, H.V.; Syed, K.H.; Goodrich, D.C.
Integration of soil moisture remote sensing andrblgdjic modeling using data assimilation.
Water Resource Researd®98, 34(12), 3405-3420.

Galantowicz, J.F.; Entekhabi, D.; Njoku, E.G. Teksequential data assimilation for retrieving
profile soil moisture and temperature from observdzhnd radiobrightnes$£EEE Trans. Geosci.
Remote Sensint$99, 37(4), 1860-1870.

Wigneron, J.P.; Olioso, A.; Calvet, J.C.; BertuzRi, Estimating root zone soil moisture from
surface soil moisture data and soil-vegetation—gpere transfer modelingVater Resource
Research999, 35(12), 3735-3745.

Hoeben, R.; Troch, P.A. Assimilation of active no@ave observation data for soil moisture
profile estimationWater Resource Resear2®00, 36(10), 2805-2819.

Lakshmi, V. A simple surface temperature assinglatscheme for use in land surface models.
Water Resource Resear2®00, 36(12), 3687-3700.

Reichle, R.; Entekhabi, D.; McLaughlin, D.B. Dowabng of radio brightness measurements for
soil moisture estimation: A fourdimensional vawmaal data assimilation approackvater
Resource Resear@®01, 37(9), 2353-2364.

Reichle, R.; McLaughlin D.B.; Entekhabi, D. Var@ial data assimilation of microwave
radiobrightness observations for land surface HgdgoapplicationsIEEE Trans. Geosci. Remote
Sensing001, 39(8), 1708-1718.

Reichle, R.; McLaughlin, D.B.; Entekhabi, D. Hydsgic data assimilation with the Ensemble
Kalman filter.Monthly Weather Revie2002, 130(1), 103-114.

Boni, G.; Entekhabi D.; Castelli, F. Land data amskition with satellite measurements for the
estimation of surface energy balance componentssamfhice control on evaporatioWater
Resource Research001, 37(6), 1713-1722.

Walker, J.P.; Willgoose, G.R.; Kalma, J.D. One-dasienal soil moisture profile retrieval by
assimilation of near-surface measurements: a diegblsoil moisture model and field application.
J. HydrometeoroP001, 2 (4), 356-373.

Walker, J.P.; Willgoose, G.R.; Kalma, J.D. One-dasienal soil moisture profile retrieval by
assimilation of near-surface observations: a corsparof retrieval algorithmsAdv Water Resour
2001, 24(6), 631-650.

Walker, J.P.; Houser, P.R. A methodology for ititiag soil moisture in a global climate model:
assimilation of near-surface soil moisture obséowat J. Geophys Res—Atm2801, 106(D11),
11761-74.

Van Loon, E.E.; Troch, P.A. Tikhonov regularizatias a tool for assimilating soil moisture data
in distributed hydrological modelblydrol. Process2002, 16 (2), 531-556.



Sensors008, 8 4463

20. Crow, W.T.; Kustas W.P.; Prueger J.H. Monitoringotr@aone soil moisture through the
assimilation of a thermal remote sensing-basedmsoikture proxy into a water balance model.
Remote Sensing of Environm2608, 112,1268-1281.

21. Das, N.N.; Mohanty, B.P.; Cosh, M.H.; Jackson, Mddeling and assimilation of root zone soil
moisture using remote sensing observations in Wa&hulch Watershed during SMEXORemote
Sensing of EnvironmeR008, 112,415-429.

22. Kumar, S.V.; Rolf, R.H.; Peters-Lidard, C.D.; KastR.D.; Zhan, X.; Crow, W.T.; Eylander, J.B.;
Houser, P.R. A land surface data assimilation fraomk using the land information system:
Description and applicationsAdvances in Water Resourc@908, doi:10.1016/j.advwatres.
2008.01.013.

23. Schuurmans, J.M.; Troch, P.A.; Veldhuizen, A.A. Benssen, W.G.M., Bierkens, M.F.P.
Assimilation of remotely sensed latent heat flwaidistributed hydrological modehdvances in
Water Resource2003, 26,151-159.

24. Arulampalam, M. S.; Maskell, S.; Gordon, N.; Clagp,A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian trackilbgzE Transactions on Signal Process@p2, 50 (2),
174-188.

25. Kitagawa, G. Monte Carlo filter and smoother fomr®aussian nonlinear state space models.
Journal of Computational and Graphical Statistk996, 5 (1), 1-25.

26. Burgers, G.; van Leeuwen, P. J.; Evensen, G. Arsalsheme in the ensemble Kalman filter.
Monthly Weather Review998, 126,1719-1724.

27. Evensen, G. Sequential data assimilation with dimesar quasi-geostrohic model using Monte
Carlo methods to forecast error statistidsurnal of Geophysical Researd994, 99, 10143-
10162.

28. Su, Z. The Surface Energy Balance System (SEBS)e$timation of turbulent heat fluxes.
Hydrology and Earth System Scien2662, 6 (1), 85-99.

29. Jia, Y.; Wang, H.; Zhou, Z.; Qiu, Y.; Luo, X.; Wang.; Yan, D.; Qin, D. Development of the
WEP-L distributed hydrological and dynamic assesgnoé water resources in the Yellow River
basin.Journal of Hydrology2006, 331,606-629.

30. Jia, Y.W.; Wang, H.; Ni, G.H.; Yang, D.W.; WangHJ,. Qin, D.Y. Theory and Practices of
Distributed Watershed Hydrological ModelShina Water Resources and Hydropower Publishing,
Beijing, 2005.

31. Jia, Y.W.; Wang, H.; Wang, J.H.; Luo, X.Y.; ZhouHz; Yan, D.H.; Qin, D.Y. Development and
verification of distributed hydrological model ime Yellow River BasinJournal of Natural
Resource®005, 20(2), 157-162.

32. Jia, Y.; Tamai, N. Integrated analysis of water dngdht balance in Tokyo metropolis with a
distributed modelJ. Japan Soc. Hydrol. Water Resoi®98, 11(1), 150-163.

33. Jia, Y.; Ni, G.; Kinouchi, T.; Yoshitani, J.; Kawata, Y.; Suetsugi, T. Assessing the effects of
infiltration and storm-water detention facilitie® ian urban watershed using a distributed
hydrological model.Proceedings of 29 Congress of International Association of Hydraulic
Research (IAHR), Theme &79-384, Beijing, China, Sef001.



Sensors008, 8 4464

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44,

45.

46.

47.

48.

49.

Jia, Y.; Ni, G.; Kawahara, Y.; Suetsugi, T. Devetegnt of WEP model and its application to an
urban watershedHydrol. Process2001, 15(11), 2175-2194.

Jia, Y.; Ni, G.; Yoshitani, J.; Kawahara, Y.; Kingu, T. Coupling simulation of water and
energy budgets and analysis of urban developmepadtn]. Hydrol. Eng. ASCR002, 7 (4),
302-311.

Jia, Y.; Wang, H.; Wang, J.; Qin, D. Distributeddhglogic modeling and river flow forecast for
water allocation in a large-scaled inland basitNofthwest Chinaln: Proceedings of ® APHW
ConferenceSingapore, vol. 2, Jul2004, pp. 285-292.

Jia, Y.; Kinouchi, T.; Yoshitani, J. Distributed dmplogic modeling in a partially urbanized
agricultural watershed using WEP modklHydrol. Eng. ASC2005, 10(4), 253-263.

Kim, H.; Noh, S.; Jang, C.; Kim, D.; Hong, |. Moaitng and analysis of hydrological cycle of the
Cheonggyecheon watershed in Seoul, Korka. Paper C4-03 in Kachitvichyanukul, V.,
Purintrapiban U., Utayopas (Eds.). International i@erence on Simulation and Modelirig—19
Januan2005, Nakornpathom, Thailand.

Qiu, Y.; Wang, S.; Jia, Y.; Wang, H. Preliminaryalysis of hydrological and water resources
effects under the impacts of water and soil coreg@m engineering in the Fenhe river basin.
Nat. Resour. China Soc. Nat. Resd@@06, 1000-3037121), 24-30.

Noilhan, J.; Planton, S.A. Simple parameterizatbbiand surface processes for meteorological
models.Mon. Wea. Red4989, 117,536-549.

Lee, T.J.; Pielke; R.A. Estimating the soil surfapecific humidity.J. Appl. Meteorol1992, 31,
480-484.

Monteith, J.L.Principle of Environmental PhysicEdward Arnold Pres4973, pp.241.
Bastiaanssen, W.G.M.; Menenti M. A remote sensungase energy balance algorithm for land
(SEBAL) 1. Formulation.Journal of Hydrologyl998, 212-213 198-212.

Norman, J.M.; Kustas W.P. A two-source approachestimating soil and vegetation energy
fluxes from observations of directional radiomesigaface temperaturdgricultural and Forest
Meteorologyl995, 77,263-293.

Su, H.; MaCabe, M.F.; Su, Z.; Prueger, J.H. Modglavapotranspiration during SMACEX:
Comparing two approaches for local and regionalespeediction.Journal of Hydrometeorology
2005, 6 (6), 910-922.

Su, Z.; Jacobs, C. Advanced earth observation: samthce climate final report. BCRSeport
2001: USP-2 Report 2001, 01-@elft, Beleidscommissie Remote Sensing (BCRS): §.1

Su, Z.; Jacobs, C. ENVISAT: actual evaporatiB@RS Report 2001: USP-2 Report 2001, 01-02
Delft, Beleidscommissie Remote Sensing (BCRS): pp.5

Su, Z.; Wen, J. A methodology for the retrievalarid physical parameter and actual evaporation
using NOAA/AVHRR dataJournal of Jilin University (Earth Science EditioB03, 33, 106-
108.

Su, Z.; Yacob, A. Assessing relative soil moistwith remote sensing data:theory, experimental
validation, and application to drought monitoringeo the North China PlainPhysics and
Chemistry of the EartB003, 28,89-101.



Sensors008, 8 4465

50.

51.

52.

53.

54.
55.

56.

57.

58.

59.

Timmermans, W.J.; van der Kwast, J. Intercomparisbrenergy flux models using ASTER
imagery at the SPARC 2004 site (Barrax, SpalEfpA proceedings WPP-250: SPARC final
workshop Enschede2005.

McCabe, M.F.; Wood, E.F. Scale influences on tmeate estimation of evapotranspiration using
multiple satellite sensorRemote Sensing of Environme@06, 105(4), 271-285.

Menenti, M. Physical aspects and determination of evaporationdeserts applying remote
sensing techniques Report 10 (Special isdusjitute for Land and Water Management Research
(ICW), The Netherland€,984, pp.202.

Kalman, R.E. A new approach to linear filtering gmebdiction problemsTransaction of the
ASME - Journal of Basic Engineeri§60, 82,13-45.

Jaswinski, A.HStochastic Processes and Filtering Thedkgademic Pres4,970.

Pham, D.T.; Verron, J.; Roubaud, M.C. A singulaoktive Kalman filter for data assimilation
in oceanographylournal of Marine Systeni®998, 16 (3-4), 323-340.

Verdin, K.L.; Verdin, J.P. A topological system fdelineation and codification of the Earth’s
river basinsJournal of Hydrologyl999, 218,1-12.

Luo, X.; Jia., Y.; Wang, J.; Wang, H. System fopdtogical coding river basins and its
application. Advances in water scien@)03. Chin. Hydraul. Eng. Soc., ISSN 1000-6791, 14
(Suppl.) 89-93.

Shan, X. Regional evaptranspiration over arid idlateihe river basin in Northwest Chirds.c
thesis ITC, Enschede, the Netherlan@807.

Kustas, W.P.; Daughtry, C.S.T. Estimation of thé keat flux net radiation ratio from spectral
data.Agricultural and Forest Meteorologi990, 49,205-223.

© 2008 by the authors; licensee Molecular Divers$trgservation International, Basel, Switzerland.
This article is an open-access article distributedier the terms and conditions of the Creative
Commons Attribution license (http://creativecommong/licenses/by/3.0/).



