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Abstract

Soil moisture plays a major role in the global hydrologic cycle. Most importantly, soil mois-
ture controls the partitioning of available energy at the land surface into latent and sensible
heat fluxes. We investigate the feasibility of estimating large-scale soil moisture profiles
and related land surface variables from low-frequency (L-band) passive microwave remote
sensing observations using weak-constraint variational data assimilation. We extend the
iterated indirect representer method, which is based on the adjoint of the hydrologic model,
to suit our application. The four-dimensional (space and time) data assimilation algorithm
takes into account model and measurement uncertainties and provides optimal estimates
by implicitly propagating the full error covariances. Explicit expressions for the posterior
error covariances are also derived. We achieve a dynamically consistent interpolation and
extrapolation of the remote sensing data in space and time, or equivalently, a continuous
update of the model predictions from the data. Our hydrologic model of water and energy
exchange at the land surface is expressly designed for data assimilation. It captures the key
physical processes while remaining computationally efficient.

The assimilation algorithm is tested with a series of experiments using synthetically
generated system and measurement noise. In a realistic environment based on the Southern
Great Plains 1997 (SGP97) hydrology experiment, we assess the performance of the algo-
rithm under ideal and nonideal assimilation conditions. Specifically, we address five topics
which are crucial to the design of an operational soil moisture assimilation system. (1)
We show that soil moisture can be satisfactorily estimated at scales finer than the resolu-
tion of the brightness images (downscaling), provided sufficiently accurate fine-scale model
inputs are available. (2) The satellite repeat cycle should be shorter than the average in-
terstorm period. (3) The loss of optimality by using shorter assimilation intervals is offset
by a substantial gain in computational efficiency. (4) Soil moisture can be satisfactorily
estimated even if quantitative precipitation data are not available. (5) The assimilation al-
gorithm is only weakly sensitive to inaccurate specification of the soil hydraulic properties.
In summary, we demonstrate the feasibility of large-scale land surface data assimilation
from passive microwave observations.
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Chapter 1

Introduction

1.1 Motivation

In recent years, understanding and quantifying the global hydrologic cycle has become a
priority research topic. Soil moisture, in particular, has gained a lot of attention as it con-
stitutes a key variable in the global hydrologic cycle. Land-atmosphere processes critically
depend on the state of soil moisture, as soil moisture partitions the energy fluxes available

at the land surface into latent and sensible heat fluxes. In addition, soil moisture conditions

are important in determining the amount of infiltration and groundwater recharge.

Improving our understanding of soil moisture and temperature conditions will help us in

many ways. Global circulation models are now routinely used in weather and climate pre-

dictions, but they usually contain only inadequate representations of the physical processes

at the land-atmosphere interface. A better understanding of soil moisture and temperature

dynamics will therefore help us with the assessment and prediction of global change and
improve our ability to produce reliable short-term weather forecasts.

Sustainable management of water resources for agricultural and urban use will be feasible
if we are able to more accurately quantify soil moisture conditions and the corresponding

recharge into groundwater aquifers. Predicting floods is not only a question of knowing

how much precipitation will reach the ground. An accurate flood forecast also depends on a
good knowledge of the prevalent soil moisture conditions. Moreover, there is a feedback of

soil moisture onto precipitation [Eltahir, 1998]. But to usefully incorporate such feedback
mechanism into hydrologic and meteorologic predictions, including the forecast of droughts,
it is again necessary to know the prevalent state of soil moisture.

Traditionally, improving models of large-scale soil moisture dynamics has been difficult

due to the lack of corresponding large-scale observations. However, the advent of remote

sensing data has now made it possible to study land-atmosphere processes on large spatial

scales. Ideally, the satellite data are used in conjunction with the existing land-surface

models to extract the valuable information contained in both the data and the models.

Such optimal merging of data and models is generally termed data assimilation. In a

variational assimilation scheme, the estimates are determined by minimizing a measure of

fit between the land-surface states and both prior information and new data. The measure
of fit is formulated using weights that depend on the corresponding uncertainties.

The observations that are available for assimilation are not always direct measurements
of the land surface variables of interest. This is especially true for satellite remote sensing
data. Satellites, for instance, cannot observe soil moisture directly, and only satellite-
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observed radiances may be used to infer soil moisture conditions. In this case, the model
consists not only of a component for soil moisture dynamics, but also of a forward Radia-
tive Transfer scheme relating the soil moisture fields to the remotely sensed radiances (or
brightness temperatures). Alternatively, off-line soil moisture retrievals could be obtained
by inverting the Radiative Transfer model. It is preferable, however, to assimilate satellite
radiances directly. It is much easier to specify appropriate weights for radiances in the
objective function than to estimate covariance structures for soil moisture retrievals. More-
over, the off-line inversion of the Radiative Transfer model presents an unnecessary source
of error.

Unlike sparse and infrequent observations, which can only be related to particular fields
at particular times and locations, estimates produced by an assimilation scheme can provide
a complete description in time and in space of the entire land-surface state, including soil
moisture, soil temperature, and canopy temperature. This is achieved by using a dynamic
model as part of the data assimilation algorithm. The data are effectively interpolated in
time and extrapolated in space by respecting the dynamical and physical constraints. From
such a complete picture, land-surface processes can be examined in detail. In meteorology,
the number of investigators using such estimated "data sets" is probably much greater than
those using any individual data type [Errico, 1999].

It is important to emphasize the fact that data assimilation reaches beyond mere model
calibration. An optimal data assimilation algorithm will consider all the useful information
and the errors contained in the model and the data along with the corresponding error
statistics. In addition to the consideration of measurement error, a modern assimilation
scheme usually involves the assumption of imperfect models, which is reflected in parameter
and model error (or process noise) terms in the model equations. Moreover, posterior error
covariances can be inferred.

Whereas model calibration is typically implemented to estimate a set of parameters
once and for all, data assimilation algorithms are designed to run in an operational mode,
continuously estimating state variables of interest. An additional feature of modern data
assimilation algorithms is the possibility to test scientific hypotheses by formulating the
model together with the statistical assumptions for the errors as a null hypothesis. If the
hypothesis is rejected, the data are not statistically consistent with the underlying assump-
tions on the model and the errors. In this case, the estimates are of little meaning, but
we would have learned something about land-surface dynamics. Finally, data assimilation
provides a valuable tool for assessing and validating observation systems.

Data assimilation techniques have been successfully used meteorology and oceanography.
In meteorology in particular, data assimilation has led to considerable improvements in the
quality of short-term weather forecasts over the past few decades. Today, six hour global
forecasts of wind and temperature produced with estimates derived from data assimilation
algorithms are generally as accurate in a root-mean-square sense as most individual verifying
observations themselves [Errico, 1999].

Hydrologists now face the challenge to apply true data assimilation techniques to all
problems where remote sensing data can provide new insights. However, this is a difficult
task due to the highly nonlinear nature of land-surface processes, the size of the problem,
and the lack of data and experience to determine error statistics accurately. Consequently,
the implementation of data assimilation techniques always requires trade-offs between res-
olution, complexity, computational effort, and data availability.

This study is predominantly a feasibility study. Its main goals are (1) to develop an
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optimal land surface data assimilation algorithm, and (2) to determine how useful remotely-
sensed L-band (1.4GHz) passive microwave measurements could be for the large-scale esti-

mation of soil moisture.

1.2 Environmental Data Assimilation

In this Section, we briefly review a few influential studies in the field of environmental data
assimilation with a focus on large-scale applications. Our primary goal is to introduce data
assimilation techniques that have been used in the environmental sciences and to establish

a broader frame of reference for this thesis. We certainly do not claim to provide a full

review of the topic.

This Section covers a wide range of applications, mostly drawn from meteorology and

oceanography. In meteorology, in particular, massive amounts of observations have been

available for decades as operational data streams. Early on it has been indispensable to

develop methods that make optimal use of these data for numerical weather forecasting
and model development. More recently, large-scale operational observations that are useful
for oceanographers have become widely available, and advanced data assimilation systems

have been successfully developed and applied.

Large-scale hydrologic data assimilation, however, is still a field very much in its infancy.

This probably owes as much to the scarcity of large-scale data as to the lack of consensus

about how best to model land surface processes. In Section 1.2.3 we briefly present a few

studies on hydrologic parameter estimation and data assimilation. A specific survey of soil

moisture data assimilation can be found in Section 1.3.
Please note that our partitioning of the discussion into meteorologic, oceanographic,

and hydrologic data assimilation does not at all imply that the methods used in these

fields are different or separate. In fact, almost all assimilation techniques currently used

in environmental data assimilation are simplifications or variants of the weak-constraint

variational technique (Section 2.1) or, equivalently, the Kalman smoother [Gelb, 1974]. For

details on the equivalence and approximations of the optimal methods consult the review
papers cited below. All techniques can theoretically be applied to almost any dynamic

problem in the geosciences, and the most important factor in determining the choice of
method is usually computational feasibility.

1.2.1 Data Assimilation in Meteorology

"One of the main reasons we cannot tell what the weather will be tomorrow is that we do

not know accurately enough what the weather is today. /... ] Data at the initial time of

a numerical forecast can be supplemented, however, by observations of the atmosphere over

a time interval preceding it. New observing systems [... ] make it absolutely necessary to

find new and more satisfactory methods of assimilating meteorological observations - for

the dual purpose of defining atmospheric states and of issuing forecasts from states thus

defined". This quote is taken from the preface of a volume on progress in data assimilation

published in 1981 [Bengtsson et al., 1981]. Almost two decades later, the European Centre
for Medium-Range Weather Forecasts (ECMWF) has implemented a fully four-dimensional
data assimilation algorithm in their operational forecast system [Klinker et al., 1999].

Since the early days of numerical weather forecasting, researchers have been trying to
merge data and models. Excellent descriptions, reviews, and comparisons of the various
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data assimilation techniques used in meteorology have been provided by Le Dimet and
Talagrand [19863, by Ghil and Malanotte-Rizzoli [1991], and by Daley [1991] on general
methods, by Lorenc [1986] on variational methods, and by Todling and Cohn [1994] on
sequential methods. Courtier et al. [1993 compiled a literature list on the use of adjoints,
variational methods and the Kalman filter in meteorology. The list includes comments and
goes back to 1955.

Weak-constraint Variational Assimilation

Unfortunately, truly optimal operational data assimilation with a full Kalman filter, a
Kalman smoother or an equivalent variational technique' is still not computationally fea-
sible, and the algorithm implemented at the European Centre (ECMWF) is not yet ideal.
(Why this is so will be discussed below.) However, a successful large-scale research appli-
cation of a fully optimal data assimilation approach has been presented by Bennett et al.
[1996. Their study is unique in that the model is only imposed as a weak constraint. In
other words, errors in the model formulation are taken into account as process noise (or
model error). The optimal estimate is derived with the variational representer approach,
which is presented in detail in Section 2.3.

Bennett et al. [1996 invert a global Numerical Weather Prediction (NWP) model using
about 2500 scalar data from reprocessed cloud-track wind observations. However, in an
operational setting the assimilated data should include all of the global quality-controlled
but otherwise raw observations. The authors point out that there are about 40,000 in situ
observations alone [Daley, 1991], which clearly shows the current limitations of the technique
in an operational context.

Strong-constraint Variational Assimilation

There have been numerous attempts at simplifying either the model equations (although
the physics did not change, of course) or the optimal estimation equations in order to make
operational data assimilation computationally feasible. The algorithm recently implemented
operationally at the European Centre (ECMWF) is based on the variational scheme 4DVAR
[Th6paut and Courtier, 1991; Th6paut et al., 1993; Courtier et al., 1994]. In 4DVAR, the
model is assumed perfect and imposed as a strong constraint, that is model errors are
neglected. Only uncertainties in the initial and boundary fields are taken into account. If
model error is present, as is certainly the case, using the model as a strong constraint may
result in erroneous adjustments of the estimates. In other words, the estimates of the initial
and boundary conditions must compensate for any significant model errors. However, unlike
the weak-constraint method proposed by Bennett et al. [1996], 4DVAR is already feasible
in the operational environment of the European Centre (ECMWF).

Simplified Kalman Filters

4DVAR is certainly an improvement over conventional Optimal Interpolation [Rabier et al.,
19933, which is used in most other weather forecasting centers (see below). But neglecting
model errors does constitute a serious limitation. As an alternative to 4DVAR, one could

Optimality refers to the implementation of the full Kalman filter, the Kalman smoother, or a weak-
constraint variational algorithm. We ignore for a moment any suboptimality resulting from nonlinearities in
the physics.
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think of sophisticated approximations to the Kalman filter which allow for model errors but
rely on a simplified propagation equation for the forecast error covariance. Such approxima-
tions are also called low-rank approximations of the full Kalman filter. Dee [1991] suggests
a Kalman filter in which a simplified version of the dynamic model is used for the forecast
error covariance propagation. Alternatively, Cohn and Todling [1996] suggest a filter based
on partial eigenvalue decompositions of the forecast error covariance together with adaptive

tuning based on reduced resolution ideas.

Optimal Interpolation

To this day, almost all operational weather forecast centers still use Optimal Interpolation
or variants thereof as their method of choice. Optimal Interpolation can be viewed as a sim-
plified Kalman filter in which the propagation of the estimation error covariance is entirely
neglected [Daley, 1991]. In return for the computational savings, the complicated and time-
dependent error covariance fields of the atmospheric states must be accurately estimated.
In practice, this is quite impossible and leads to rather suboptimal assimilation algorithms,
even though the name of the method would suggest otherwise. Moreover, Optimal Inter-
polation is usually implemented in the spectral domain, which limits the choices of error
covariance models in practical applications. Finally, the approximate solution method for
the update equations in conventional Optimal Interpolation can lead to dynamic imbalances

[Cohn et al., 1998].
For these reasons, NASA's Data Assimilation Office has recently developed the Physical-

space Statistical Analysis System (PSAS) as an improved variant of Optimal Interpolation

[Cohn et al., 1998; Chen et al., 1999]. The new method has been included into the Goddard

Earth Observing System (GEOS) data assimilation package. PSAS operates in physical
space rather than in the spectral domain and employs a different numerical method to solve
for the updates. Since it is operating in physical space, PSAS is capable of using more
advanced error covariance models than conventional Optimal Interpolation.

1.2.2 Data Assimilation in Oceanography

In oceanography, operational data streams have not been available in the same way as in
meteorology. Therefore the focus of the investigations has been somewhat different, oriented
more towards learning about ocean dynamics by using optimal methods for individual case
studies whenever data are available. Ghil [1989], Bennett [1992], Ghil and Malanotte-Rizzoli
[1991], Evensen [1994a], Malanotte-Rizzoli [1996], and Wunsch [1996] offer good collections,
descriptions, reviews, and comparisons of the various attempts to solve inverse problems in
oceanography.

Weak-constraint Variational Assimilation

Egbert et al. [1994] use the direct representer algorithm (Section 2.3) to estimate global tides
from the TOPEX/POSEIDON altimeter data. Even though the tide model is linear, which
is rarely the case for geophysical applications, the number of remote sensing data is still
too big for a naive implementation of the direct representer approach. Egbert et al. [1994]
therefore develop a set of steps in which they reduce the dimensionality of the problem.

Eknes and Evensen [1997] extend the representer formalism by solving a simultaneous
parameter and state estimation problem with a weak-constraint formulation for an Ekman
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model. Finally, Bennett et al. [1998] apply the indirect representer algorithm to assimilate
data from the Tropical Atmosphere-Ocean (TAO) array into a coupled model of the tropical
Pacific. They compare their weak-constraint approach with a strong-constraint algorithm
and reach the important conclusion that the assumption of a perfect model must be clearly
rejected in this case study.

Simplified Kalman Filters

A low-rank approximation of the Kalman filter has been applied by Verlaan and Heemink
[1997] to the tidal flow forecasting problem. Their approach is to combine a reduced rank
approximation of the error covariance with a square root factorization. The use of the
factorization ensures that the error covariance matrix stays positive-definite at all times,
while the smaller rank reduces the computational effort.

Asif and Moura [1999] develop a computationally efficient formulation of the optimal
Kalman filter which is based on the block structure that results from the discretization of the
partial differential equations commonly used in the physical sciences and from the sparseness
of the measurements, for example satellite scans. The authors further develop an approxi-
mate implementation of the block Kalman filter. Underlying this simplified implementation
is the approximation of the inverse error covariance matrix, that is the information matrix,
by a sparse block banded matrix. Such banded approximations correspond in essence to
modeling the error field in the spatial estimates at each point in time as a reduced-order
Markov random field. To demonstrate the concept, Asif and Moura [1999] use the optimal
filter and the simplified scheme to assimilate synthetic satellite altimeter data into a linear
shallow water model. The comparison shows that the suboptimal filter performs well and
that the approximations of the simplified filter are reasonable.

Yet another simplification to the Kalman filter for large-scale applications has been pro-
posed by Evensen [1994b]. In the so-called Ensemble Kalman Filter, the error covariance is
propagated with a Monte Carlo method. Instead of solving the Riccati equation for the error
covariance evolution, the scheme is based on propagating an ensemble of model forecasts.
If a measurement becomes available, the forecast error covariance needed for the update
step is estimated from this ensemble. Evensen and van Leeuwen [1996] use the Ensemble
Kalman Filter to assimilate Geosat altimeter data into a two-layer quasi-geostrophic model
of the Agulhas Current. The validity of the ensemble approach is obviously dependent on
the size of the ensemble. It does seem daring to estimate the forecast error covariance from
an ensemble of 500 model trajectories when the state vector is approximately of dimension
100, that is when the error covariance matrix contains on the order of 10,000 elements.

Very recently, Lermusiaux and Robinson [1999a] presented an assimilation scheme based
on a combination of the Ensemble Kalman Filter and a reduced rank approximation. Like
in the Ensemble Kalman Filter, the error covariance is propagated with a Monte Carlo
approach. Before the update step, however, the covariance matrix is reduced in rank. The
authors formulate an objective criterion to decide whether the addition of another member
to the existing ensemble is necessary or not. The result is a suboptimal filter which tracks
an evolving error subspace in space and in time. Consequently, the scheme is termed error
subspace statistical estimation (ESSE).

In a companion paper, Lermusiaux and Robinson [1999b] apply their algorithm to shelf-
break front simulations in the Middle Atlantic Bight. Identical twin (synthetic) experiments
are conducted under the assumption of a perfect model, that is model errors are neglected.
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Moreover, the synthetic observations do not contain measurement error, although a small

measurement error is used in the estimation algorithm. The proposed filter compares fa-

vorably to a traditional Optimal Interpolation scheme which does not include any error

covariance propagation. In case the computational demand for the proposed filter is too big

for a given operational application, the authors suggest that their scheme could be used to

improve the parameterizations of the Optimal Interpolation approach.

Multiresolution Optimal Interpolation

Fieguth et al. [1995] have developed and applied a new variant of Optimal Interpolation. The

goal is to provide interpolated estimates at multiple resolutions at the time of the update

or analysis step. The multiresolution algorithm is a generalization of time series state-space

models for which the Kalman filter is an efficient estimator. When applying the multi-scale

estimation technique, the biggest task is to build a model for the particular application that

fits the covariance matrix at the finest scale. In addition to providing interpolated estimates

and accompanying error variance statistics at multiple resolutions, a striking advantage of

the multi-scale estimation framework is that its complexity scales linearly with the problem

size. Moreover, the efficiency of the algorithm is entirely insensitive to irregularities in the

sampling or spatial distribution of measurements and to heterogeneities in measurement

errors or model parameters. Consequently, the approach has the potential of being an

effective tool in a variety of remote sensing problems.

Fieguth et al. [1995] have applied the multiresolution estimation algorithm to the inter-

polation and statistical analysis of the TOPEX/POSEIDON altimeter data in the North

Pacific Ocean. Another application of the multi-scale Optimal Interpolation algorithm to

the mapping of temperature in the northeastern Pacific has been published by Menemenlis

et al. [1997]. The authors also concern themselves with the development of a class of multi-

scale statistical models appropriate for oceanographic mapping. Finally, Fieguth et al.

[1998] have applied the method to map the sea level anomaly of the Mediterranean Sea

based on TOPEX/POSEIDON and ERS-1 data. Unfortunately, the extension of the mul-

tiresolution framework to problems with temporal evolution presents formidable challenges.

The development of temporally dynamic models is the subject of ongoing research.

1.2.3 Data Assimilation in Hydrology

In hydrology, inverse methods have traditionally been focusing on parameter estimation

and model calibration rather than state estimation. In particular for groundwater inverse

problems, measurements are scarce, and highly heterogeneous parameters such as the hy-

draulic conductivity are virtually unknown a priori. McLaughlin and Townley [1996] offer

an excellent review of the subsurface data assimilation problem. Also, Zimmerman et al.

[1998] compare seven geostatistically based inverse approaches to estimate transmissivities

for modeling advective transport by groundwater flow. Recently, Reid [1996] and Sun [1997]

have worked on parameter estimation in groundwater contaminant transport problems. Fi-

nally, Daniel et al. [1999] have applied the multiscale estimation approach described in

Section 1.2.2 to the estimation of solute travel time.

Hydrologic data assimilation as a state estimation problem has only very recently become

a topic of widespread interest. In a review of hydrologic data assimilation published in

1995, McLaughlin [1995] is "unaware of any studies which use distributed watershed models
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to assimilate field data". Recent data assimilation efforts to estimate soil moisture are
summarized in Section 1.3.

1.3 State of the Art of Soil Moisture Data Assimilation

In this Section, we attempt to assess the state of the art of data assimilation techniques
used for the estimation of soil moisture. Only selected works will be discussed, with a focus
on studies that apply optimal estimation techniques or at least non-trivial approximations
thereof. By no means do we claim for our overview to be complete.

Two obvious classification schemes can be applied. In a first scheme, the studies can
crudely be classified into a first category consisting of spatially one-dimensional physical
models using synthetic data [Entekhabi et al., 1994; Milly, 1986], or small-scale field data
[Mahfouf, 1991; Katul et al., 1993; Parlange et al., 1993; Galantowicz et al., 1999; Calvet
et al., 1998; Callies et al., 1998; Bouyssel et al., 1999; Castelli et al., 1999], and a second
category, in which large-scale field cases have been investigated [Houser et al., 1998; Bouttier
et al., 1993b; Rhodin et al., 1999]. In the first category of small-scale studies, the dimensions
of the state vector and the observation vector are small, and the computational effort for
truly optimal estimation is easily bearable. The models in the second category of large-
scale applications are horizontally distributed and of high dimensionality. Consequently,
only suboptimal filters have been implemented to date.

A second classification could be based on the data types that are assimilated. With
the exception of [Castelli et al., 1999], the studies of Sections 1.3.1 and 1.3.2 use either
direct measurements of soil moisture or remotely sensed brightness data which are very
closely related to surface soil moisture. Since such measurements of soil moisture are not
yet available operationally, there have been numerous investigations on soil moisture data
assimilation from low-level atmospheric parameters such as air temperature and relative
humidity at 2m above the ground. However, these parameters are only weakly and indirectly
related to surface soil moisture. The latter studies are geared towards improving numerical
weather prediction and treat soil moisture rather as a tuning parameter. For this reason
we describe them in the separate Section 1.3.3.

1.3.1 One-dimensional Optimal Estimation Approaches

If the modeled land surface system is one-dimensional and contains only a single vertical
column, the dimension of the state vector is small and the application of truly optimal esti-
mation techniques is not limited by computational resources. One such optimal technique
is the Kalman filter [Gelb, 1974], which has been used by many investigators. Other in-
vestigators have applied a variational approach, which is described in detail in Section 2.1.
Among the latter are Mahfouf [1991], Callies et al. [1998] and Bouyssel et al. [1999]. Since
they assimilate low-level atmospheric observations to infer soil moisture, their studies are
discussed in Section 1.3.3, even though optimal variational assimilation methods are used.

The Study by Milly [1986]

Milly [1986] presented a study to determine the optimal temporal characteristics of a remote
soil moisture sensor. He uses a very simple linear soil moisture model in which the param-
eters are perfectly known. The forcing consists of a sequence of equally spaced Dirac delta
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functions to model the precipitation input. Milly [1986] uses a full Kalman filter to evaluate

the relative merits of the accuracy and the sampling frequency of the measurements.

The Studies by Katul et al. [1993] and by Parlange et al. [1993]

Katul et al. [1993] use an Extended Kalman Filter (EKF) for the estimation of the soil

moisture state in a simple bucket model. The model is obtained from the depth-integration

of a one-dimensional version of Richards' equation, which results in a nonlinear state-space

formulation with a scalar state. A no-flow boundary condition is imposed at the top, and the

flux at the lower boundary is prescribed. The hydraulic conductivity and the soil moisture

content are related through a simple exponential-type two-parameter model.

The assimilated soil moisture data are neutron-probe measurements from a small field

drainage experiment carried out by the authors. In addition to the state estimation, Katul

et al. [1993] also estimate the two soil hydraulic parameters, the initial estimation error

variance, and the model error of the state-space formulation. These four parameters are

determined through repeated runs of the Extended Kalman Filter. For every run, a set of

parameters is guessed, and a goodness-of-fit objective function is evaluated. The goodness-

of-fit is measured with a sum of squared differences between the predicted states and the

corresponding measurements. No prior information about the parameters is used. The final

set of parameters is then given by the best fit. To carry out the optimization, the authors

implemented a simplex scheme.

In a similar study, Parlange et al. [1993] estimate the field scale diffusivity together with

the initial estimation error variance and the model error of the state-space formulation. The

starting point here is an approximate solution to the depth-integrated diffusion equation,
combined with a water balance equation. Once the model equation is cast into a state-

space formulation, the mechanics of the estimation algorithm are identical to the approach

by Katul et al. [1993].

The Studies by Entekhabi et al. [1994] and by Galantowicz et al. [1999]

The studies by Entekhabi et al. [1994] and by Galantowicz et al. [1999] stand out because

an optimal data assimilation approach is applied to a multi-layer model of soil moisture

and temperature dynamics. The authors use a Kalman filter to update the temperature

and moisture profile from observations of the brightness temperature. The spatially one-

dimensional model is entirely physically-based, making use of Richards' equation, the heat

equation, and a model for the radiative transfer.

Entekhabi et al. [1994] show that it is possible to infer information about the temperature

and the moisture at depths below the penetration depth of the microwaves. Note, however,
that the focus is on the methodology. Most importantly, the data are completely synthetic

and vegetation is not modeled. Only one vertical column is considered. In addition, updates

from the brightness temperature and the infrared temperature data are made hourly, which

is not a very realistic situation.
In a very recent study, Galantowicz et al. [1999] present an assimilation algorithm which

is based on the Kalman filter and similar to the one in Entekhabi et al. [1994]. The

algorithm is tested on field data, namely data from the Beltsville Agricultural Research

Center (BARC), Maryland, taken during a seven-day drydown in July 1994 [Jackson et al.,
1997]. Moreover, the authors test their algorithm with a four-month series of simulated

operational conditions. The results indicate that the soil moisture profile can indeed be
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retrieved from updates of the brightness temperature made only every three days, and that
the proposed data assimilation scheme is stable.

The Study by Calvet et al. [1998]

Calvet et al. [1998] present a comprehensive study on the feasibility of retrieving root zone
soil moisture from surface soil moisture or surface soil temperature observations. They
use the ISBA (Interaction between Soil, Biosphere, and Atmosphere) surface scheme of
the French weather forecast system, which models soil moisture in just two layers, a very
shallow surface layer and a deep reservoir.

The assimilation technique is a strong-constraint variational method. The uncertain
parameter is the initial soil moisture of the deep reservoir, and the objective function to
be minimized consists of the root mean square difference between the measured and the
simulated values of the observed surface soil moisture content. No prior regularizing term
is included in the objective. The data are from two months of field observations taken in
Spring and Fall 1995 in southern France. The assimilation period is either a moving fifteen-
day window or a moving five-day window during the thirty-day observation periods. In a
series of assimilation experiments, observations are available to the estimation algorithm
from twice daily to once every four days.

In conclusion, Calvet et al. [1998] suggest that deep soil moisture can indeed be retrieved
with reasonable accuracy from surface soil moisture observations once every three days,
but concede that soil moisture estimation from soil temperature measurements can at best
work under dry conditions. Finally, the authors conclude that the length of the assimilation
window should not be less than ten days.

The Study by Castelli et al. [1999]

A major goal of the study by Castelli et al. [1999] is to reduce the data needs for surface
flux and soil moisture estimation. Therefore, the authors only assimilate observations of
ground temperature, which are readily obtained from current remote sensing platforms. The
uncertain input is a time-dependent parameter which is called soil moisture index. The soil
moisture index describes the limitation of evaporation due to the limited availability of soil
water and is closely related to the surface heat flux.

Castelli et al. [1999] use a variational technique and include the surface energy balance
as a physical constraint in the objective function. In mathematical terms, the estimation
of the time-dependent soil moisture index amounts to the estimation of a state-dependent
model error term. The scalar weights used in the objective function imply that this model
error is not correlated in time.

Estimates of the surface heat flux and the soil moisture index are derived from the data
of the First International Satellite Land Surface Climatology Project Field Experiment
(FIFE). The experiments cover the summer months of 1987 and 1988, but the individ-
ual assimilation windows are limited to one day. Daily averages of the estimated surface
heat flux compare well to independent latent heat flux observations. However, the au-
thors conclude that there is a need to discriminate between soil moisture and aerodynamic
contributions to the surface control over evaporation.
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Discussion

The straightforward application of optimal data assimilation algorithms to one-dimensional

problems has met with fair success, and the potential for inferring soil moisture from remote

sensing observations of passive microwave data has clearly been demonstrated. In light of

these results, the most pressing question is how best to extend the techniques presented

above to large-scale applications.

1.3.2 The Study by Houser et al. [1998]

The so far most comprehensive study on soil moisture data assimilation has been carried out

by Houser et al. [1998]. The authors modified and extended the TOPLATS land-atmosphere

transfer scheme [Famiglietti and Wood, 1994a; Famiglietti and Wood, 1994b]. TOPLATS

is a spatially distributed hydrologic model to predict the diurnal dynamics of the water and

energy fluxes at the land surface as well as the local vertical recharge into the underlying

aquifer. Its algorithms are intentionally simpler than the ones used in operational surface-

vegetation-atmosphere transfer schemes (SVATS). The basic components of TOPLATS are

water balance equations for the canopy and the soil as well as an energy balance equation at

the surface. The original model describes the unsaturated zone with two layers, a root zone

and a transmission zone. Houser et al. [1998 added a shallow third soil layer at the top.

The soil moisture in this new soil layer can possibly be inferred from remote sensing. The

soil hydraulic properties are parameterized with the model of Brooks and Corey [1964] and

the soil moisture dynamics are based on an approximate analytical solution of Richards'

equation using infiltration and exfiltration capacities [Eagleson, 1978]. Horizontal flow exists

only in the underlying saturated layer. In the unsaturated zone, lateral flow is completely

neglected. The model is applied to the Walnut Gulch watershed in southeastern Arizona.

In the following, we briefly describe the data assimilation techniques that have been

applied by Houser et al. [1998]. In all cases, the assimilated data are soil moisture values that

have been obtained through an off-line inversion of remotely sensed microwave observations.

Direct Insertion and Statistical Corrections

The simplest data assimilation method used by Houser et al. [1998] is Direct Insertion. Here,

all observations are assumed perfect. In the update step, the model prediction is simply

replaced with the measurement for all observed components of the state vector. No other

assimilation is performed, nor are the observations pre-interpolated. This results in very

abrupt discontinuities of the soil moisture field. Any advection of information is accom-

plished through the subsequent prediction steps. The propagation of the error covariance is

entirely neglected. The computational savings are enormous, and the computational effort

is almost the same as for a pure simulation run without using the data at all. However, the

scheme is wholly suboptimal.

Houser et al. [1998] also employ a technique they call Statistical Corrections. In this

approach, the mean and the variance of the observations are computed. Then the com-

ponents of the predicted state vector are rescaled in order to match the statistics of the

observations.
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Nudging

Next, Houser et al. [1998] test two forms of nudging. The idea behind nudging is to add an
artificial forcing term to the model equation such as to drive the state continuously towards
the observations. This artificial forcing is not obtained from covariance propagation and the
filter is thus suboptimal. Two nudging techniques are used. In "Nudging Towards a Grid-
ded Analysis", the observations are pre-interpolated to the model grid. This means that the
scheme can only be applied within a region of observations. After the pre-interpolation, "ob-
servations" are available for every state. In the second nudging technique, termed "Nudging
to Individual Observations," no interpolation is carried out. In both nudging techniques,
the artificial forcing is entirely empirical. Houser et al. [1998] implemented all possible
combinations of the two nudging techniques together with the method of Statistical Cor-
rections. The authors were most satisfied with "Nudging to Individual Observations" both
inside and outside the region of observations.

Optimal Interpolation

Optimal Interpolation (or Statistical Interpolation) is a special case of the Kalman Filter
[Daley, 1991]. In Optimal Interpolation, the error covariance propagation equations are
omitted. Houser et al. [1998] approximate the predicted error covariance (or background
error covariance) for the computation of the gain in the following way. First, the difference
between observed and TOPLATS-simulated values is computed. Second, the covariance of
this difference is calculated. Third, an analytical covariance model is fitted to the data.
Houser et al. [1998] use a model for a climatological background derived by Thiebaux
[1976]. Although Optimal Interpolation is always less computationally demanding than a
full Kalman Filter, the computational effort for the application of Houser et al. [1998] was
still by far too large. The authors therefore reduced the number of measurements in an
ad hoc fashion. They followed two approaches. In the first approach, a random subset
of observation is chosen for each grid point, and together with the observation closest to
the given grid point, only these measurements are assimilated. All other measurements
are discarded. In the second approach, "super-observations" are obtained by averaging the
available measurements over a coarser spatial grid and thus reducing their number.

Discussion

Except for Optimal Interpolation, all data assimilation techniques used by Houser et al.
[1998] are empirical. By empirical we mean that the estimation equations are neither de-
rived from the optimization of an objective criterion, nor are they consistent simplifications
such that the approximation error could be quantified in some way. An example for the
former would be a full Kalman Filter, an example for the latter would be an eigenvalue de-
composition with only the largest eigenvalues retained in the estimation algorithm. Optimal
Interpolation in its full form could be called semi-empirical. It is an optimal interpolator
in space at each isolated time step, provided the correct background error covariance is
known. The suboptimality with respect to the Kalman Filter is due to the fact that the
error covariance is not propagated. Therefore Optimal Interpolation is only optimal if the
Kalman Filter happens to operate in steady-state and if the background error covariance
of the Optimal Interpolation'algorithm is equal to the steady-state Kalman Filter error co-
variance prediction. However, in the way Optimal Interpolation is implemented by Houser
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et al. [19981, namely through the ad hoc reduction of the number of measurements, the

estimation algorithm is certainly empirical.

The degree of optimality in the data assimilation approaches implemented by Houser

et al. [1998) is not clear and strongly depends on the particular application. In the case

of nudging, the degree of optimality also depends on the choice of the many parameters.

In the Optimal Interpolation scheme as implemented by Houser et al. [1998], the ad hoc

reduction of the number of measurements defies a strict assessment of the approximation.

1.3.3 Soil Moisture Estimation from Atmospheric Observations

The Study by Mahfouf [1991]

Mahfouf [1991] introduced a technique to estimate soil moisture from the assimilation of

low-level atmospheric parameters such as relative humidity and air temperature. The main

purpose of the investigation is to come up with a better initialization of soil moisture

in atmospheric models and consequently with better short- and medium-range weather

forecasts.
The basic idea is that errors in the predicted meteorologic quantities may be related

to errors in soil moisture. This is hypothesized to be particularly true for low-level air

temperature and humidity, which are linked to surface and deep soil moisture by the sensible

and latent heat fluxes. In other words, the assimilated data are not measurements of soil

moisture, but rather observations of low-level atmospheric parameters, namely screen level

temperature and relative humidity.
Two assimilation algorithms are developed. The first approach is a variational algorithm

based on the minimization of an objective function. The objective function consists of the

weighted sum of squared differences between the observed and the estimated low-level air

temperature and relative humidity. No regularizing prior term for the uncertain initial soil

moisture is included in the performance index, and the model is imposed as a strong con-

straint. The objective function is minimized with a standard Gauss-Newton method. This

optimal scheme takes the modeled nonlinear relationship between the low-level parameters

and soil moisture fully into account and is therefore computationally expensive.

The second approach is a statistical algorithm based on linear regression. This sequential

scheme is suboptimal but computationally efficient and compatible with current operational

assimilation. To get soil moisture estimates, the errors in the low-level atmospheric parame-

ters are linearly related to the soil moisture errors in two layers, a very shallow top layer and

a deeper reservoir. The linear relationship is described with a set of so-called nudging co-

efficients, which are in turn determined by an Optimal Interpolation analysis [Daley, 1991].
This implies that the nudging coefficients depend on the observation and forecast error

statistics of the low-level atmospheric parameters as well as on the forecast error statistics

of soil moisture. Mahfouf [1991] infers the necessary forecast error covariances with a Monte

Carlo technique.
Mahfouf [1991] successfully assimilates field data into a one-dimensional version of a

mesoscale numerical weather prediction model for three 48-hour periods. The results indi-

cate that under certain atmospheric conditions it is indeed possible to estimate soil moisture

from low-level atmospheric variables. The author also states that the variational scheme is

preferable to the sequential scheme, but that the latter appears good enough to be given se-

rious consideration for implementation in current operational numerical weather prediction

systems.
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The Study by Bouttier et al. [1993a]

Bouttier et al. [1993a] further investigate the sequential soil moisture estimation technique
introduced by Mahfouf [1991]. As an alternative to the sequential approach of Mahfouf
[1991], Bouttier et al. [1993a] provide an approximate analytic formulation of the nudging
coefficients. This avoids the computationally expensive Monte Carlo simulations needed to
come up with reasonable forecast error covariances. In the analytic formulation, the nudging
coefficients are given as explicit expressions of the surface characteristics, most importantly
of the vegetation parameters.

Moreover, Bouttier et al. [1993a] assess the sensitivity of the estimates to the vegetation,
the soil texture, and the wind conditions. Vegetation is identified as the most crucial pa-
rameter. In a companion paper, Bouttier et al. [1993b] implement their simplified analytical
filter in a mesoscale model. The study area covers 400 x 400 km 2 in the southwest of France.
Disturbing the initial soil moisture conditions from a reference simulation, Bouttier et al.
[1993b] show that their nudging technique is able to restore soil moisture to the reference
value within 48 hours.

The Study by Hu et al. [1999]

Hu et al. [1999] apply the sequential nudging technique of Mahfouf [1991] to 16 sites selected
to sample a range of climates and land covers across the globe. Their goal is to derive a
single set of nudging coefficients, which is then applied to a test site. The authors report
computational instability when assimilating air temperature and relative humidity directly.
Apparently, the strong correlation between air temperature and relative humidity makes
the coefficient matrix of the equation for the nudging coefficients close to singular. The
problem is overcome with a Principal Component Analysis.

Finally, Hu et al. [1999] conclude that numerical weather prediction can be improved by
the nudging technique, but that nudging is unable to determine accurately the soil moisture
within soil layers that are accessible to the atmosphere. Moreover, the improvement in the
weather forecast holds only if the meteorologic model simulates precipitation poorly. If, on
the other hand, precipitation is simulated well but surface radiation is modeled poorly, the
nudging technique could erroneously adjust soil moisture.

The Studies by Callies et al. [1998] and by Bouyssel et al. [1999]

Following up on the variational approach of Mahfouf [1991], Callies et al. [1998] and Bouys-
sel et al. [1999] further investigate the feasibility of off-line soil moisture estimation for
operational weather forecasting. The authors use one-dimensional versions of the soil and
atmospheric boundary layer models of the German and the French weather services, respec-
tively. Apart from minor differences, both soil models consist of a two-layer force-restore
approximation for the soil temperature and of a two-layer soil moisture model. Callies
et al. [1998] and Bouyssel et al. [1999] assimilate near-surface atmospheric measurements
of air temperature and relative humidity to estimate the initial soil moisture conditions for
a one-day and a two-day assimilation window, respectively. Whereas Bouyssel et al. [1999]
choose ideal anticyclonic conditions with a clear sky and low advection, Callies et al. [1998]
specifically choose a day reflecting non-perfect conditions.

While Callies et al. [1998] use the original strong constraint variational approach of
Mahfouf [1991], Bouyssel et al. [1999] add a regularizing prior misfit term for the uncertain
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initial condition to the objective function. Neither study takes model errors into account.

Note that the variational approach of Callies et al. [1998 is approximate because some

of the fluxes in the atmospheric model are kept constant while the initial soil moisture is

changed.

Both studies closely investigate the shape of the cost function and find that the initial

soil moisture in the two layers cannot be estimated unambiguously. Lacking a regularizing

term in the objective function, Callies et al. [1998 resort to fixing the soil moisture of the

lower layer. Bouyssel et al. [1999] relate the ambiguity to the relatively short assimilation

window and expect the problem to be solved by using longer assimilation periods.

In conclusion, the authors confirm the usefulness of the assimilation of soil moisture for

short-term weather forecasts even under non-perfect conditions. Callies et al. [1998] state

that "a significant part of the information carried by the data cannot be explained by the

need for higher energy input at the surface (stronger radiation) but must be attributed to an

incorrectly modeled Bowen ratio probably resulting from a bad soil moisture specification".

However, their retrieved soil moisture seems to be too low for the season, which reveals the

estimated soil moisture as a tuning parameter for improving numerical weather prediction

rather than a physical quantity.

The Studies by Rhodin et al. [1999]

In a recent study, Rhodin et al. [1999] apply the technique of Callies et al. [1998] to a regional

weather forecast model. For the assimilation of soil moisture, all horizontal correlations are

neglected and the three-dimensional problem is treated as a collection of completely entirely

independent single-column assimilation problems. This offers huge computational savings,

but large-scale structures in the errors of the soil moisture fields, arising for example from

geologic processes, have to be neglected.

Discussion

Assimilating low-level atmospheric observations for the estimation of soil moisture offers

great opportunities to improve short- and medium-range weather forecasts. Most impor-

tantly, the data are readily available within operational data assimilation system used for

numerical weather prediction. However, the soil moisture values estimated in this way lack

physical meaning. Indeed, Callies et al. [1998] deduce that "soil moisture retrieval by the

present method should be considered as a parametric approach".

Moreover, by dividing the domain into completely independent columns for the sake of

soil moisture assimilation, the approach followed by Rhodin et al. [1999] does not allow for

any explicit horizontal correlation of the initial condition of soil moisture. In their approach,

soil moisture is correlated horizontally only through the spatial correlation of the low-level

atmospheric parameters. This is clearly undesirable from a hydrologist's point of view and

makes soil moisture even more of a tuning parameter.

Finally note that the indirect estimation of soil moisture from low-level atmospheric

parameters is unsuitable for cloudy conditions or situations with predominantly large-scale

advection. In these situations, air temperature and relative humidity are not related to

local soil moisture.
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1.4 Challenges in Hydrologic Data Assimilation

More research is necessary in order to set up an operational soil moisture data assimilation
package. In particular, investigations should be undertaken along the following lines.

e The data assimilation approach should be truly optimal and four-dimensional, that is
the large-scale correlation of land surface states should be considered explicitly. In-
troducing such structure only indirectly through correlations in low-level atmospheric
parameters as done by Rhodin et al. [1999] is clearly inadequate from a hydrologist's
point of view. Trying to estimate forecast state error covariances for Optimal Inter-
polation approaches is similarly unsatisfactory. In other words, the data assimilation
algorithm should be optimal and provide for some form of large-scale error covariance
propagation.

e In order to deal with the complexity of real world applications, a land-surface model
suitable for hydrologic data assimilation has to be developed. Such a model must
capture the key physical processes, but at the same time be highly computationally
efficient.

e It is desirable to resolve the soil moisture profile in the field studies to a greater
extent. A finer discretization in the vertical allows for a much better description of
the nonlinear behavior than two-layer or three-layer models can provide.

" Off-line inversion of the remotely-sensed radiances into land surface states such as soil
moisture can lead to inconsistencies in the model physics. It is therefore preferable to
assimilate the remote sensing data directly into the hydrologic model.

" The temperature profile of the soil strongly affects the remotely sensed brightness
temperature. When brightness temperatures are assimilated, it is necessary to model
soil temperature along with soil moisture. The dynamics of the temperature profile can
easily be described with the heat equation or approximations thereof, and observations
of the surface temperature are readily available. Therefore, the land surface model
should include soil temperature, and the estimation algorithm should provide for the
assimilation of soil surface temperature measurements.

* Another problem that needs to be addressed is the mismatch between the scale of the
hydrologic model and the scale of the observations. In particular, ground-based ob-
servations of soil moisture are generally point measurements, whereas remotely sensed
observations are satellite footprints with a resolution of typically tens of kilometers.
The same disparity in scales is true for precipitation measurements, one of the most
important inputs for a soil moisture model. Moreover, inputs to hydrologic models
are often available at scales finer than the scales of satellite remote sensing data. This
creates a need for optimal downscaling methodologies. Hence, a consistent multiscale
framework needs to be developed in order to accommodate measurements at different
scales.

" Last but not least it is desirable to include more detailed models of the vegetation, as
vegetation is probably the most important factor for the calculation of the latent and
sensible heat fluxes at the land surface.
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We address all of the above topics in our research. However, due to the highly nonlinear

structure of the physical processes at the land surface, and given the high dimensionality

of real world applications, a compromise will have to be made between a desirable phys-

ical foundation of the model and crude simplifications in order to achieve computational

feasibility.
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Chapter 2

Data Assimilation

The goal of this Chapter is to develop a comprehensive set of estimation equations for

assimilating remote sensing data into a model of land surface dynamics. The hydrologic

model itself is described in detail in Chapters 3 and 4.

In Section 2.1 we first define the state and measurement equations in a general form.

From this general formulation, we then derive the nonlinear estimation equations (Euler-

Lagrange equations) using a variational technique. Sections 2.2 and 2.3 provide an overview

of the representer algorithm which is used to solve for the estimates.

The focus of Section 2.4 is to derive the posterior covariances of the state and the

measurements within the representer approach. In Section 2.5 we briefly discuss the nature

of the representer approach as a data space search engine and the opportunities for data

compression and for the a posteriori assessment of the observing system.

2.1 General Formulation of the Estimation Problem

2.1.1 State and Measurement Equations

We formulate the state in vector form, assuming that the model equations have been dis-

cretized in space but not in time. In other words, the components of the state vector

correspond to state variables at discrete spatial nodes but depend continuously on time.

There are two parts to the state vector: the vector X(t) of length Nx which obeys a set of

implicit algebraic equations, and the vector Y(t) of length Ny which obeys a set of ordinary

differential equations. In a land surface model, the storage terms of some canopy states,
for example the canopy temperature, are typically neglected. Therefore such canopy states

obey diagnostic (algebraic) equations. Soil moisture and temperature, on the other hand,
have significant memory through storage of water and energy in the soil. Such prognostic

variables are subject to ordinary differential equations. For details on the exact definition

of X and Y within the land surface model see Section 4.2. Together, X and Y obey the

state equation

0 = $(X, Y; a) + DPav

ay (2.1)
OY = p(X, Y; a) + D,(Y)Pow

The operators #(X, Y; a) and p(X, Y; a) depend nonlinearly on the state and on the un-

certain parameter vector a of length N,. In the soil moisture application, these parameters
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could for example be the saturated hydraulic conductivities. The state equation also in-
cludes the process noise terms v(t) and w(t), which are time-dependent vectors of length N,
and No, respectively.

The diagonal matrices D, and D, of size Nx and Ny, respectively, account for scaling
between the states and the process noise. To facilitate the estimation, it is important that
all variables be scaled. On the other hand, we would like to directly relate the process noise
to a physical flux. As a result, it is necessary to account for scaling between the states and
the process noise. We also include a formal dependence D, (Y) of the scaling matrix on the
state, which we will need for the soil moisture application. From the spatial discretization,
we usually get a matrix multiplying the time derivative. We include this factor in the
operator p and the matrix D,.

Finally, the process noise does not necessarily affect all components of the state vector.
The Nx x N, matrix P, and the Ny x N, matrix P, serve the purpose of projecting the
process noise onto just those components of the state vector that we consider subject to
model errors. In this sense, the choice of P, and P, partially reflect our assumptions on
the model's shortcomings. Both P, and P, contain ones and zeros only.

The state equation (2.1) is subject to the initial condition

YL = Yo(3) (2.1a)

which is parameterized by the uncertain vector 3 of length N. Section 4.3 explains why we
need such a nonlinear parameterization. Without loss of generality, we have set the initial
time to zero. The final time of the estimation interval is denoted with tf.

Measurements, and in particular remote sensing data, are not necessarily direct obser-
vations of the state. We therefore introduce a nonlinear measurement equation.

Z = M[X,Y] +v (2.2)

All Nz individual measurements are collected into the data vector Z and are corrupted
by the measurement noise v. The measurement operator M[-] is a vector-valued, nonlinear
functional operating on vector-valued functions (e.g. the state vector). For later use, we
rewrite the measurement operator according to

tf

M[X,Y] = [6]f(X, Y)dt (2.3)

0

where

[6] =_ diag {o6(t - ti), 6(t - t2),...,6(t - tNz l (2.3a)

Both M[X, Y] and f(X, Y) are vectors of length Nz. Whereas M[X, Y] is a (vector-
valued) functional, f (X, Y) = f (X(t), Y(t)) is a (vector-valued) function of the state vector
evaluated at time t. For all practical purposes, both M[-] and f(-) can be thought of as the
measurement operator. The scalar Dirac delta function for time tk is denoted with 6(t - tk),
and diag{.} stands for a diagonal matrix with the argument of diag{.} on the diagonal and
zeros elsewhere. The formulation of (2.3) implies that the measurement Zk has been taken
at time tk. Note that the tk are not necessarily all different. Two measurements can be
taken at the same time, for example as different pixels of the same remote sensing image.
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But note that (2.3) constrains the set of possible measurements to point measurements in

time, i.e. we cannot express measurements which integrate the state over time. For the soil

moisture application, we will not need such measurements.

For the statistics of the process noise v and w, the measurement noise v, and the pa-

rameters a and # we assume

v(t) 0 v(t1)v(t2)T = C (t 1 ,t 2 )

w(t) 0 w(ti)wo(t 2 )T = Cw(t 1 , t 2 )

T 0 VVT = Cv (2.4)

(a - d) =0 (a - O)a - MT = cc,

(- 13) =0 (# - 0)(#3 - O)T = C'3

where the overbar is the expectation operator. We generally denote the covariance of a

random variable with C. The superscript T denotes the matrix transpose. The prior

values d and / are our best guesses for the parameters prior to using the data Z. Moreover,
we assume that all cross-covariances between v, o, v, a, and # vanish.

w(t)v(t')T = 0 vv(t)T = 0 av(t)T = 0 Ov(t)T = 0

vw(t)T = 0 aw(t)T = 0 O/w(t)T = 0 (2.4a)

vaT = 0 Ve3T = 0 (a - d)(3 - )T = 0

It is important to keep in mind that we only consider second-order statistics and implicitly

assume distributions to be Gaussian or at least close to Gaussian. The computation of the

reduced objective (Section 2.3.6) and of the posterior covariances (Section 2.4) will allow

for tests of this crucial assumption.
Finally note that the measurement error covariance C, can usually be made block-

diagonal for remote sensing applications. In the soil moisture application, the snapshots

of brightness temperature at different observation times are usually uncorrelated, although

the measurement errors in each image are typically spatially correlated. Arranging the mea-

surements within Z appropriately allows us to express the covariance Cv as a block-diagonal

matrix, with the blocks containing the spatial correlation matrix of the measurement error.

2.1.2 Objective Function

Without loss of generality, we assume that there are no measurements exactly at the initial

or the final time, that is we assume tk C (0, tf) and use [0, tf] as the time window for the

inversion. The performance index for the estimation problem is the objective function

J =(Z - M[X,Y]) T C (Z - M[X,Y])

tf tf tf tf (2.5)

+ J v(t)TC (t', t")v(t")dt'di" + f w(t') TCI (t', t")w(t")dt'dt"

0 0 0 0

which will be minimized with respect to v(t), w(t), a, and 3 subject to the state equa-

tion (2.1) as a constraint. The first term accounts for the misfit between the data and the
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model predictions of the measurements. The weights are given by the inverse covariance
matrices of the measurement errors. The second and third terms penalize the deviation of
the parameter vectors from their prior values a and 3. The weights are given by the inverse
covariance matrices C, and C- 1 of the respective parameters.

Finally, the last two terms accounts for the model error. Note that the weight here is
an inverse covariance function, which is defined by the operator identity

0

where INg is the Ng x Ng identity matrix and 6(-) is again the Dirac delta function.

2.1.3 Euler-Lagrange Equations

In order to derive the Euler-Lagrange equations, we adjoin the state equation (2.1) and the
initial condition (2.1a) as constraints to the objective function J (2.5). This step introduces
the adjoint variables p(t), a vector of length Nx, as well as A(t) and AO, both vectors of
length Ny.

J=

tf

- 2 fp_ (<(X, y; a) + DPPv) dt
(2.7)0

tf

+ 2 AT - <p(X, Y; a) - D, (Y)Pw) dt + 2A4 (YIs- - Y0 (3))
0

The minimization of the objective function is a straightforward application of the calculus of
variations [Courant and Hilbert, 1953; Lanczos, 1966]. Details of the derivation are outlined
in Appendix A.1. We eventually get a set of equations for the estimates X, Y, )', C, 6,
and / of the state, the process noise, and the parameters, respectively. We call this set the
Euler-Lagrange equations.

Forward Equation

0 =$$ 6) + DP, ( 2.8 )o (X, Y; &) + DP(Y) (2.8)
at

It =(,V ) + DW(Y)P (28a

oI 0 =Yfo() (2.8a)
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Backward Equation
-T -T -T

0o0p 8+ 0 A+Of 6]C0= ax + (z-M[,

_T -T 
TA

OA 0# Bp + 80 [D,( )P A
at OY 09Y OY

aT

+ Of[6]1 (z - M[k,OY

A lt=t, = 0

Parameter Update

tf (-T -T

T= + Ca p+1 A dt

0
,T

o+ /3Co b Alt 0

Noise Update

tf

- f C,(t, t')PTDi p(t')dt'

0
tf

CD = C)(t, t') P Dw ( (t')) T A (t') dt'

0

Note that all partial derivatives of #, p, f, and Yo are evaluated at

and ), for which we use the shortcut notation

(2.10)

(2.11)

the estimates Z, Y, 6,

ax ax
~74a~
aa a~k~

Equation (2.8) resembles the state equation and is solved forward in time subject to

the initial condition (2.8a). This so-called forward equation uses the estimates of the pa-

rameters and is forced with the estimate of the process noise. The parameter update (2.10)

and the process noise update (2.11) are in turn determined by the solution of the adjoint

equation (2.9), which is subject to the terminal condition (2.9a). Since the adjoint equa-

tion is solved backward in time, we call it the backward equation. Note that the backward

equation is linear in the adjoint variables y and A. At measurement times tk, the backward

equation is forced with the misfit between the data and the estimates of the observations.

But to compute the latter, we need the state estimates from the forward equation (2.8).

Obviously, the Euler-Lagrange equations present a highly coupled, nonlinear set of equa-

tions. Notice that even for linear state and measurement equations the Euler-Lagrange

equations are coupled through the data misfit term in the backward equation. This cou-

pling leaves us with a two-point boundary value problem. Sections 2.2 and 2.3 provide

details on how the Euler-Lagrange equations are solved.

39

(2.9)

(2.9a)

Of Of
OY Y

etc. (2.12)



2.2 Solving the Nonlinear Euler-Lagrange Equations: Iter-
ated Representers

A simple solution strategy for the Euler-Lagrange equations is to iterate simultaneously on
all the nonlinear terms as well as on the data misfit coupling term in the backward equation.
Breaking the coupling in this way leaves us with two initial value problems at each iteration,
which are easily integrated. However, this approach failed to converge for the soil moisture
problem. Similar difficulties for oceanographic applications have been reported by Bennett
[1992].

Alternatively, we can solve the nonlinear estimation problem as a sequence of linear
estimation problems [Bennett, 1992]. Rather than linearizing all the coupling terms, we
can linearize the Euler-Lagrange equations with a standard Taylor series expansion around
a given trajectory and at the same time keep the coupling through the data misfit term in
the backward equation. We are then left with having to solve a linear two-point boundary
value problem in every iteration. Each of these two-point boundary value problems cor-
responds to solving the estimation problem for a set of linearized state and measurement
equations. Equivalently, if we consistently linearize the state and measurement equations
with a standard Taylor series expansion around the given trajectory, and if we then derive
the estimation equations for these linearized state and measurement equations, we find that
they are exactly the linearized Euler-Lagrange equations. Below we outline this approach
in detail.

An elegant technique for solving a linear Euler-Lagrange system is the representer ap-
proach [Bennett, 1992; Bennett, 1999]. In this approach the Euler-Lagrange equations
are decoupled by introducing a series expansion solution of the estimate around so-called
representer fields. The representers are the prior cross-covariances of the measurement pre-
dictions with the state, which implies that there are as many representer fields as there are
measurements. Fortunately, we do not have to compute every representer field in order to
get the best estimate. It is sufficient to compute a sequence of suitable linear combinations
of the representer fields. This approach is called the indirect representer method, and we
describe the technique in detail in Section 2.3. We use the indirect representer method in
combination with the iteration on the nonlinearity to obtain the estimates X, Y, 6, and 13.
After the estimates have been computed, we can use the representer method to compute
some posterior covariances (Section 2.4). A summary of the algorithm can be found in
Figure 2.1 and in Section 2.3.5.

2.2.1 Tangent-linear Model

In meteorology and oceanography the state equation linearized around a trajectory is called
the tangent-linear model. Our approach for solving the nonlinear Euler-Lagrange equations
(2.8)-(2.11) is based on successive tangent-linearizations of the state and measurement
equations. In this Section, we outline the linearization procedure.

Let X7, Y , w77, oe, and 37 denote the best estimates of the previous iteration level
T. At the current iteration level T1 + 1, we linearize the state and measurement equations
around the trajectories X7(t), Y'l(t), and w 7 (t) as well as around the previous parameter
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estimates 0 and 3'7. Simplifying the linearization in w' according to

D,(Y)Poo ~ D,(Y 7)Pw' + D[DW(Y)Pw]
Dy P + [D (Y)Pw]((o ~ O -q" +(

D, (Y7) Pw + 0[D( Y)PoW] (Y - Y77)
ay 77

and neglecting terms of second and higher order, we obtain the tangent-linear state equation

0 =#(X, Y 7 ; a7) + (X - X71) + DY

+ DPu

(a0 - aZ 7)

Dt =W(X, Y 77; a) + O
Ot OX 7

(X - X7) + D
9Y

Dy
(Y - Y) +O (a - a")

Da

+D(P+Dj(Y)Pww] (Y - Y?)
DY

Y t=O =YV(#) + a O(# - on)
DY0

The tangent-linear measurement equation reads

Z = M[X7i ,Y77] + L[X - X7,Y - Y7] +v
t5

L [X,Y1 { fk

0

X(t) + fk
DY

,q

Y(tk)

We used (2.3) to get this explicit expression for the linear (vector-valued) functional L[-],
which can be interpreted as the slope of the measurement operator. For the partial deriva-

tives we use the obvious short-cut notation

DX DX ,Y7;a Oa O X17,Y7?;an

Df Df
Y - X,Y

Note that the linear operator L[-] of the tangent-linear measurement equation changes

with each iteration. In particular, L[.] of the current iteration level r1 + 1 is obtained

by evaluating the partial derivative of f(-) at the best estimate of the previous iteration

level. Consequently, L[.] should carry a superscript r /+ 1. However, we opt to drop this

superscript because it is easy to infer from the context.

2.2.2 Linearized Euler-Lagrange Equations

We obtain a "linearized" version of the objective function by introducing the linearizations

of (2.13) and (2.14) into (2.7). Following the general procedure outlined in Appendix A.1 for

the derivation of the nonlinear Euler-Lagrange equations, we can easily derive the linearized
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(2.13a)

Y(t) 6(t - tk)dt

D X Thtk X (tk) + 8fk

(2.14)

etc.

(Y - Y77) +



Euler-Lagrange equations from the "linearized" objective function.

09X 7

+ Of+ax
OAt+1

at

p17+1  T+1

T

[6]Cg 1' (z -M[X 7,Y7 - L[X17+1 - x7, y1+l - Y1 ])
7

T Pq+1 + T 7+1 +7
OY 7Y Oy7

D[D,(Y)Pow] T+1

OY 7

+ [6]C;1 (Z - M[X 7 , Y 7] - L[X71+ 1 - X7, Y7+ 1 - Yn7)

A =0

an+1 = i + cc,

p31+1 = + CO

o T

y T l+1
013 7 =

T \
n+1 + & +1 A± dt

a 7 
/ (2.16)

tf

0

0

aX

8O
ax 7

(X?7+ 1 - X 7) + - 7 Y) + a
8q5DY17

(X1+ 1 - X7) + Y7) + Dp
Oa

(2.17)

(an+1 - a7)

( n1 + 1

17

Y -+ _ Yo) + aYOt=O ~ 0/3
(377+1 - 07)

Having completed iteration level 7I, we need to solve these linearized Euler-Lagrange equa-
tions for the new estimates p7+1, A7+1, a17+1, 07+1, 0n+1, W7+1, X7+1 and Y1+1. The
iteration can be initialized by setting the initial best estimates XI and Y'7 for r = 0 equal
to the prior trajectories X and Y of the nonlinear model, which are the solution of the
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0 =#(X, Y; cel) +
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(9Y

(y7+1 - Y 7)
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(2.18)

(2.18a)

Cv(t~t')PD Dl_,pn+1(t')dt'

Cw (t, t') Pw [Dw (Y,(t'))]TA77+1 (t')dt'



nonlinear Euler-Lagrange equations when no data are available. In particular, X and Y are

defined through

0 = #(X, Y; T) = O(X, Y; T) YL~O = YoOg) (2.19)
at

Note that 7 A 0.
As mentioned in the introduction to this Section, the linearized Euler-Lagrange equa-

tions (2.15)-(2.18) can also be obtained by linearizing the nonlinear estimation equations

(2.8)-(2.11). However, care must be taken that the linearization be carried out consistently,
because there is an infinite number of ways in which the Euler-Lagrange equations can be

linearized. Re-deriving the linearized Euler-Lagrange equations from the tangent-linear
model ensures that the meaning of the linearized Euler-Lagrange equations as the iterated

estimation equations of the original problem is preserved.
Although there is no proof or guarantee that the sequence defined above converges, ex-

perience has shown that it converges in practice for forward models that are reasonably close

to linear. For a quasigeostrophic model, Bennett [1992] provides a theorem on convergence

in a doubly-periodic domain. The sequence is then bounded, and so must have points of

accumulation or cluster points, but not necessarily unique limits.

Solving the nonlinear problem as a series of linear estimation problems is clearly moti-

vated by the fact that we are certain to obtain a solution to the linear estimation problem

at each iterate. Before implementing the full estimation technique, it is therefore a good

idea to check whether the tangent-linear model converges to the solution of the nonlinear

forward model, which is equivalent to solving the estimation problem with no data. With-

out fulfilling this prerequisite there is little hope that the sequence will converge when data

are assimilated.

2.3 Solving the Linear Euler-Lagrange Equations: Indirect
Representers

The focus of this Section is to illustrate the representer solution of the linearized Euler-

Lagrange equations (2.15)-(2.18). The representer approach is a very elegant way to de-

couple and solve the linear Euler-Lagrange equations. The approach is based on series (or

representer) expansions for the estimates of the state and its adjoint variable. The series

expansions linearly superimpose the measurement updates from each individual observa-

tion, implying that the representer solution is inherently the solution to a linear estimation

problem.
In essence, the representer solution reduces the size of the space in which the objective

is minimized from infinity to a finite dimension equal to the number of observations. This

promises better convergence behavior than a direct minimization of the objective function

with a gradient search. Fortunately, the indirect representer method allows us to solve for

the estimates without explicitly computing all of the individual representer fields, that is we

do not necessarily have to solve the basic equation (forward or backward) 2Nz times (per

nonlinear iteration). The indirect representer method therefore provides us with a fast way

to get the estimate [Bennett et al., 1996]. If we opt for computing the individual representer

fields after the nonlinear iteration has converged and the estimate has been obtained, the

representer approach also yields a lot of information about the posterior error covariance

(Section 2.4).

43



We conclude this Section with a short discussion of the hypothesis test associated with
the value of the reduced objective function (Section 2.3.6) and a summary of the iterated
indirect representer algorithm (Section 2.3.5).

2.3.1 Representer Expansion

The representer approach is essentially a series expansion solution of the estimation prob-
lem, where the number of unknown coefficients exactly matches the number of available
measurements. For the new estimates of the current iteration level 'r + 1, we define

NZ Nz

Xn+1(t) = Y+1S(t) + E bk k(t) Y7+1 (t) _7 1 (t) + bkyTk(t) (2.20)
k=1 k=1

NZ Nz

P+1 (t 17(t) + E bk k A+ 1 (t) -
1 (t) + SbkAk (t) (2.21)

k=1 k=1

The 4Nz representer functions k(t), -k(t), Q k(t) and Ak(t) for the state and its adjoint
are time-dependent vectors of length Nx and Ny, respectively. We write T in order to
refer to the i-th component of the k-th representer function Tk. The Nz scalar representer
coefficients bk are constant in time. Note that the coefficients are the same for both the
state and the adjoint representers.

The expansion is carried out around the prior fields Yj 1 07+1 gn+1, and V+1, which
are the solutions of the linearized Euler-Lagrange equations (2.15)-(2.18) when no data are

available. In particular, Xn+1 and Yin+1 are defined through

0 =#(X, Y"; an) + Xo IX - X 7 ) + yY -Y0) +a )

O W++ 1P09

+ 8[D, (Y)P, () Y17
OY

(2.22)

F 0+ y00,17) + ( - #3) (2.22a)

and An+1 z 0. Recall that Xn and Yn are the best estimates from the previous
iteration and serve as the trajectories around which we linearize.

It is easy to see that the prior fields for iteration level q + 1 as defined above are the
tangent-linear approximations of the prior trajectory (2.19) of the nonlinear problem. Obvi-
ously, one cannot simultaneously linearize around the previous estimate and the nonlinear
prior trajectory (2.19). In order to achieve a dynamically consistent estimate, we must
linearize around the previous best estimate, and the accuracy of the prior must be compro-
mised. Therefore the nonlinear estimate cannot be strictly optimal. However, if the model
is reasonably linear, the error so introduced is bearable.
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On the Notation

Please note again that the superscript k that is used for the representer fields stands for the

number of the measurement that corresponds to the representer function in question. This
superscript is an integral part of the name of the representer function. Individual vector

components of a given representer field are denoted with subscripts, usually i or j. For

instance, E' denotes the i-th component of the representer field that corresponds to the k-
th measurement. In contrast, the representer coefficients carry a subscript k. This subscript

represents the number of the measurement to which the representer coefficient corresponds.
It also serves as the index of the vector component when the representer coefficients bk are
collected into the vector b, in analogy to assembling the individual measurements in the
data vector Z.

Moreover, it is important to note that the representer fields and the representer coeffi-

cients like the estimates and the prior trajectories of the states change with every iteration.

Consequently, bk, Ek, Tk, Qk and Ak should have an additional superscript r/ + 1. Again,
we opt to drop this superscript because it is easy to infer from the context. Unlike for the

states, we never have to use representer fields or coefficients from different iteration levels
in the same equation. Finally note that the priors of the original uncertain parameters d,
/3, and -F(t) = D(t) = 0 never change!

2.3.2 Representer Equations

By inserting the adjoint representer expansion (2.21) into the backward equation (2.15),
and choosing

b = C; 1 (Z - M[X, Y7] - L[Xn+1 - X 7, Y7+ 1 - Y7]) (2.23)

we can derive an equation for the adjoint representers.

Adjoint Representer Equations

0 p Qk + Ak+6(t-tk) 8fk
aX 7X X (2.24)

DAk ao T T [D (Y)Pw] T kfk T

Qk + A + A +_6(t_-_t)at ay DY ay Dy

Ak|= 0 (2.24a)

Recall that the k-th measurement is taken at time tk. If we compare the adjoint representer

equation (2.24) with the backward equation (2.15), we can see that the two equations are

very similar. Whereas the backward equation is forced with the posterior data misfit, the

adjoint representer equation is forced with a single unit impulse at one measurement time

and location. We can therefore solve for the adjoint representer fields without having to

know the estimate in advance.

Next, we derive an equation for the state representers by inserting the parameter up-

date (2.16), the process noise update (2.17), and the representer expansions (2.20) and (2.21)

into the forward equation (2.18) and its initial condition (2.18a). Using the definition of
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the prior fields (2.22), we find

State Representer Equations

t5

0 = + T T + DPCt,t')P DT~k(t')dt'ax ay

ti

+ C a (t')+ A dt'aeao 7 aa 7

ayk 0 - ft k1l t (2.25)

at 09X +kOas0 T f Dw(Y(t))PC,(t,t')PD(YT(t'))TAk(t')dt'

at0 ax a T

+ C" f Qk(t')+ Ak(t')1 dt'Ia q a0a 77 Oa7

+ a[Dw(Y)Pw] Tk
+ T09Y

Tkl|= 0 = Cp Aklt=0 (2.25a)

As will be shown in Sections 2.4.1 and A.2.1, the state representer function for the k-th
measurement is equal to the prior cross-covariance of the model prediction for the k-th
measurement and the states at all times and locations. Most importantly, the representer
fields encapsulate only prior information and do not depend on the data. Finally note that
we can solve for the state representers as soon as we have integrated the adjoint representer
fields.

2.3.3 Representer Coefficients and Representer Matrix

In order to derive the representer equations, we defined the representer coefficients as

b = C1 (Z - M[X7, Y?] - L[X7+1 - X-, Y-+1 _ Y'-]) (2.23)

Using the representer expansion (2.20) for the estimate and the linearity of L, we can easily
rewrite (2.23) as

b = U- 1 (Z - M[Xn, Yn] - L[Xr" - X7-, Yn+1 - Y] (2.26)

where we define

U C + R and [R]kI = Lk[,T1] (2.27)

Both U and the representer matrix R are symmetric Nz x Nz matrices. We can calculate the
entries of the representer matrix (and hence U) if we compute all Nz individual representer
fields 7k and Tk, and subsequently apply the operator L of (2.14).
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Obviously, knowledge of the representer matrix suffices to compute the estimate. If we

know the representer matrix, we can solve (2.26) for the representer coefficients. Once we

have the representer coefficients, we can use the definition (2.23) and integrate the backward

equation (2.15). After the backward integration, we can easily calculate the parameter

update (2.16) and the noise update (2.17), and finally solve the forward equation (2.18)

for the state estimates. The coupling between the forward and the backward equations

of the original two-point boundary value problem (2.15)-(2.18) has now been broken by

the representers. The price we pay for breaking the coupling is of course the increased

computational burden.

The representer matrix encapsulates all the relevant prior information. In contrast to

(2.23), Equation (2.26) expresses the representer coefficients entirely in prior terms, except

for the explicit appearance of the data vector Z. For a linear estimation problem we could

even precompute the representer matrix before we know the data, and then solve for the

representer coefficients when the data become available. Solving for the optimal estimates

via explicit computation of the representer matrix is called the direct representer method.

2.3.4 Indirect Representers

In particular for data-rich remote sensing applications, the computational burden for the

calculation of the representer matrix is very heavy, because all Nz individual representer

fields must be integrated. But recall that we really only need the representer coefficients to

compute the estimated fields. Once we have the representer coefficients, we can integrate

the backward equation (2.15) and subsequently the forward equation (2.18). Fortunately,
we do not need to know the representer matrix explicitly in order to get the representer

coefficients. The conjugate gradient technique for solving linear equations like (2.26) does

the trick.

A conjugate gradient solver [Press et al., 1992] successively approximates the solution

of a linear equation. In our case, this means constructing successive approximations of the

representer coefficient vector b. Let us rewrite (2.26) as Ub = rhs, where rhs is obviously the

known prior data misfit. Given an approximation ( of the representer coefficient vector b,
the conjugate gradient technique only uses the product U( to refine the approximation. If

we can supply the conjugate gradient algorithm with the product U( for any given vector (,
we will eventually find the representer coefficients. We never need to supply the matrix U

itself to the conjugate gradient solver.

It turns out that we can compute the product U( without explicit knowledge of the

matrix U (or equivalently R) [Bennett et al., 1996]. All we need to do is solve the representer

equations for a linear combination of inhomogeneities. For a given vector (, we solve the

following equations for the fields E and T.

oT 89 T N Ofk T
0 = Q+ A+ (t-tk) (k

aX 77 0X 77 k14X 7k=11

9A - p T a T 0[D,(Y)Pw] T N Ofk
----- + A+ A+ Z6(t-t) (kat aY OY aY k ay

Al =0
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0 =- + T + DPvCv (t, t')Pu'D TQ(t')dt'
DX D Y

t5 T T

+ cc, Q(t') + A(t') dt

0

15
.+ OP T + D, (Yq (t)) P, C, (t, t') PS Do (Y (t')) TA (t') dt'

tj T~ TOT\
P<t8 ,_, DE(Y )Paw]T+ Ca D(t + A (t) dt' +

0a 0Z f a 77 a 7 Y
0

ao 77 0oTI~0 =DC 3! 1 A|

Having computed the fields E and T, we have by way of linearity

RC(=L[E,T]

It is now simple to compute R( + C(= U(, which is all we need to supply to the conjugate
gradient solver. Note that in the indirect representer approach we are effectively computing
linear combinations of the representer fields, namely E =kE (k and T =Ek Tk.

Numerical issues aside, the conjugate gradient solver for our linear system is guaranteed
to converge after at most Nz iterations, that is we need to compute at most Nz linear
combinations of representer fields. This means that we can only do better compared with
the direct approach of assembling the representer matrix, for which we need exactly Nz
(individual) representer fields. The actual number of iterations for the conjugate gradient
solver depends of course on the problem at hand. For the land surface application, the
savings are substantial. Detailed results on the efficiency of the indirect representer method
are presented in Section 8.2.1.

Finally, preconditioning with an approximation of U (and hence the representer matrix
R) can further improve the convergence speed [Press et al., 1992]. Bennett [1999] discusses
several options for a preconditioner. If only one data type is assimilated, preconditioning
does not seem necessary at all.

2.3.5 Summary of the Iterated Indirect Representer Algorithm

Figure 2.1 shows a flowchart summarizing the iterated indirect representer algorithm. For
simplicity, we omit the diagnostic state vector X in the Figure and in the discussion. We
start by computing the prior state trajectory F from the nonlinear state equation with
the model errors and the uncertain parameters set to their prior values (2.19). Next, we
initialize the previous best estimate of the first iteration as Y0 = Y and enter the loop of
iterations on the nonlinearity in the state equation. The iteration on the nonlinearity is the
outer loop of the algorithm.

During each iteration, the state and measurement equations are linearized around the
trajectory of the previous best estimate Yl (2.13)-(2.14). First, we compute the prior
trajectory V'7+1 of the current iteration (2.22). From this prior trajectory, we derive the

48



FSolve nonlinear forward model

for prior trajectory Y0(t) = Y(t)

rj=O

L

Linearize around Y TI(t)

Hypothesis tests

Posterior covariances
]

Figure 2.1: Flowchart for the iterated indirect representer method. A summary of

the algorithm is presented in Section 2.3.5. The diagnostic state X has been omitted

for clarity.

49

Solve linearized Euler-
Lagrange equations

1. Get prior trajectory Yln+t)
and prior data misfit

2. Get representer coeffs
(indirect repr method)

3. Bkwd/fwd integrations
for new estimate Yfl+kt)

Converged?

yes



corresponding prior data misfit. Next, we calculate the representer coefficients of the current
iteration with the indirect representer method (Section 2.3.4). Note that this constitutes an
inner loop in which we successively refine our best estimate of the representer coefficients
with a conjugate gradient algorithm. During each of the inner iterations, we essentially
compute one linear combination of representer fields. After having obtained the representer
coefficients, we finally compute the new estimate Y7+ 1 using the definition of the representer
coefficients (2.23) in the linearized Euler-Lagrange equations (2.15)-(2.18), which are then
decoupled.

The convergence check is carried out by comparing the previous best estimate Y7 to
the current best estimate Y7+ 1 . In particular, we check whether IYl - Y 7 +1|| < Cy for a
given threshold Ey. Additional convergence checks are done for the uncertain parameters,
for instance ||#" - 0+1|| < c,3. After convergence has been achieved, we may compute
posterior covariances (Section 2.4) and carry out hypothesis tests on the reduced objective
function (Section 2.3.6) or on the posterior data residuals (Section 2.4.1). Note that the
hypothesis test on the reduced objective function does not require any posterior covariance
calculations and can be done at negligible cost.

2.3.6 Reduced Objective Function

The objective function at the minimum is given by

P+1 =(Z - M[X71,Y7N] - L[ 70+1 - X77,yn+1 _ yq] TU-1 -

- (Z - M[Xn, Y/] - L[Yn+1 - X7, Y+ - Yn]) (2.28)

=(Z - M[X7, Y 7 ] - L[Y'- XY71n+1 Y7])Tb

and can be evaluated at negligible cost once the representer coefficients are known [Bennett,
1992]. If our assumptions about the model physics and the prior statistics are true, and
if we invoke the central limit theorem in case we do not claim that the priors are exactly
normally distributed, then the reduced objective is a chi-squared random variable with Nz
degrees of freedom

j01 ~ x2 = Nz var(X2 2Nz (2.29)XNz XNZ ~N akNZ)~1~

We can therefore formulate our assumptions about the model physics (2.1), the measurement
process (2.2), and the prior statistics (2.4) as a null hypothesis and apply the chi-square test
to see whether these assumptions are statistically consistent with the data. Should our null
hypothesis fail the test, we are forced to discard the estimated fields. In this case, however,
we would have learned something about land surface dynamics.

Note that the hypothesis test, much like the estimates, relies on the successive tangent-
linearizations. In the case of nonlinear model dynamics, the test can only be valid approx-
imately.

2.4 Posterior Covariances

After the nonlinear iteration has converged, we can opt for calculating the posterior co-
variances of the state and the observations. These may be obtained by computing the
individual representer functions -k and Tk (rather than the linear combinations E and T
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of the indirect representer approach) [Bennett, 1992]. This Section provides the expressions
for the posterior covariances as functions of the representers.

Since the problem at hand is nonlinear, the linearized posterior covariances derived in
this Section can at best be approximations of the true posterior covariances. For example,
the prior fields X'+I and '+1 depend on the linearization around the previous estimate,
which in turn depends on the data for all but the first iteration. In the derivation of the
posterior covariances, however, we treat the previous estimate as a fixed input around which
we linearize, although strictly speaking the previous estimate is itself a random field.

It is convenient to define short-cut notation for the various deviations that occur. In
general, we use Y for the true state and Y'1+ 1 for the estimate. We denote with V7+1 the
prior state as defined in (2.22). For the deviations we define

X (t) - Yn I(t) X, X(t) Y (t) -Y77+1 (t) Yt Y(t) (2.30)

X(t) - X'+1(t) fX(t) Y(t) - Y1+1(t) Y(t) (2.31)

and from the representer expansion we have

"-11 NZ kt)Nz y t

Xn7+1(t ) - X+1(t) = b k M Y7+1 _t)-7n+1(t) =( bkT*t (2.20)
k=1 k=1

In other words, Y' is the (linearized) prior error and Y is the (posterior) estimation error
of the state.

Similarly, the (linearized) true measurement predictions are M[X7, Y 77] + L[X - XT', Y -

Y'7], the prior measurement predictions are AI[X 7 , Y7] + L[XOl - X7, g+ 1 - Y7], the
estimates for the measured quantities are M[X7, Y 7 ] + L[X7+1 - X77, Y7+1 - Y7], and the
actual measurements are Z. For the deviations we define

V =Z - (M[Xn, Y7] + L[X - X7, Y - Yq]) (2.14)

0 -=Z - (M[X77, Yn] + L[X71+ 1 - X, Y7+ 1 - Yn]) (2.32)

f = (M[X7?, Y7] + L[X - X7, Y - Y7]) - (M[X7, Y1] + L[Xn+ 1 - X7, Y7+1 - yID

=L[X - X-+1 Y _ yq+1] (2.33)

Note that 'b = v + i. In other words, v is the true measurement error, i9 is the (posterior)
estimation error of the measurement prediction, and b is the estimate of the measurement
error, or equivalently, the posterior data residual.

Like the representer fields, the deviations defined above are different at each iteration.
Again, we opt to drop the superscript q + 1, as it is clear from the context.

2.4.1 Posterior Covariances

It is a very important fact, not only in the derivation of the posterior error covariances,
that the state representers are equal to the linearized (prior) cross-covariances of the mea-
surement predictions and the states.

Lk[X', Y]X(t) = Ek(t) Lk[X', Y']Y'(t) = T M2.4
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A proof is given in Appendix A.2.1. Using (2.34) it is easy to derive the posterior covariance
of the state vector.

[Cgk(t1, t2)]ij XA(t1)Xj(t2) = [Cxxi (t1 ,t2)]ij - ( ( E (t1)[U-1kI7(t2)
k 1

[CkV (t1, t2)lij X k(t 1 )Yj (t 2 ) = [Cx'Y(t1, t 2)]ij - (k( E (t1)[U 11ki f(t 2)
k 1 (2.35)

[C - (t1,t2)1ij Yi(t 1 )kj(t2 ) = [Cy'x;(t1,t2)]ij - ( ( T (t1)[U ]kigt 2 ) (.
k 1

[Cvv(tl,t2)lij Y (t 1)Yj (t 2) = [Cy'y'(t1,t2)ij - ( T (ti)[U- 1 (t2)
k 1

The prior error covariance is denoted with CxixI (t1 , t 2 ) etc. Details of the derivation are
presented in Appendix A.2.2. The estimation error covariance for the state indicates how
close to the truth the estimator thinks it is. Its diagonal provides us with error bars around
the state estimate.

The posterior covariance for the estimates of the measured variable at observation times
is

Cf j T = R - RU- 1 R (2.36)

Details of the derivation can be found in Appendix A.2.2. Again, C3 indicates how close
to the truth the estimator thinks it is. We can use the diagonal of Cf3 to draw error bars
around the estimates of the measurements.

Finally, we find for the covariance of the posterior data residuals

C = -= C5 + Cv - CvU 1 R - (CvU-R)T (2.37)

For details of the derivation see Appendix A.2.2. We can use Ce to normalize the data resid-
uals after the estimation and to check the algorithm's underlying statistical assumptions.
This test is particularly powerful when field data are assimilated, because it provides a way
to check whether the estimator is operating in accordance with its statistical assumptions. It
must be stressed, however, that this test relies on the linearizations that have been applied.
Since the model is nonlinear, both i5 and f' already have bias (e.g. M[X, Y] 4 M[X, Y]).

Even if we are only interested in the covariance of the posterior data residuals (2.37),
we need a good approximation of the matrix U = (R + C)- 1 (2.27). This task is very
computationally demanding, because we need to calculate individual representer functions.
Luckily, we only have to do this once. After the iteration on the nonlinearity of the forward
model has converged, we can switch from the indirect representer technique to computing
individual representers as needed. Depending on the problem at hand, we will likely be able
to get a reasonable approximation of U 1 by calculating only a subset of all representer
functions. Note that data compression (Section 2.5) could be particularly helpful to reduce
the number of individual representers and therefore the dimension of U.

2.4.2 Prior Covariance

In order to get error bars around the state estimate or to reinitialize the algorithm for
subsequent assimilation windows, we need to compute at least the posterior variance of the
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state, which is given by the diagonal elements of the estimation error covariance (2.35).
Although the storage of the Nz representer fields Tk(t) poses a serious problem, a dif-
ficult part in computing the estimation error variance is the prior variance of the state,
namely [Cxix(t,t)]ii uo' (t) and [Cy'y (t, t)]ii

For the initialization of a subsequent assimilation interval, we are only interested in the
posterior error covariance of the state at the final time of the previous assimilation window.
This also means that we only need the prior error covariance at the final time. If we only
need the prior state covariance at certain times and for certain states, we can again use the
representer technique.

Introducing a pseudo-observation for a direct measurement of the state Y(tf) at the
final time allows us to compute the corresponding pseudo state representer function T*i.
Now recall that the state representer function is the covariance of the state with the mea-
surement prediction, which in the case of our pseudo-observation is the state at the final
time (Sections 2.4.1 and A.2.1). Therefore, the pseudo representer function T*i(tj) at the
final time includes the prior state cross-covariance at the final time.

[Cyry'(tftf)]i, = Tf* 3(tf) (2.38)

It is important to note that the computation of the pseudo state representer function T*i
does not require the specification of a corresponding measurement error covariance or a
pseudo measurement value. In the representer technique, all the prior knowledge is en-
capsulated in the representer functions and the representer matrix, which are completely
separate from the measurement error covariance. In fact, by comparing (2.9) and (2.24)
we see that the representer functions are computed using unit impulses instead of the data
misfit terms in the backward equation.

2.5 Data Compression and Observing System Assessment

Satellite images often contain a lot of redundant information. When such images are trans-
mitted, image compression is routinely used to minimize the number of bits being trans-
ferred. Similarly, treating each pixel of the image as a separate data point in the assimilation
algorithm may be very inefficient.

Whether or not data compression techniques help reduce the computational effort re-
quired by the data assimilation scheme depends on the assimilation method. If the objective
function (2.5) is minimized directly with a gradient search technique, the search happens
effectively in the space of the uncertain inputs. If model error is included, this space is
more or less equivalent to the state space and hence very big (Section 8.3). Moreover,
compressing the data does not lead to significant computational savings because the state
space remains unchanged when the data are compressed.

In the representer technique, on the other hand, the search consists mainly of solving
(2.26) for the representer coefficients, where the dimension of the space involved is equal
to the number of observations. We can say that the search is carried out in the data space
and that the unobservable modes have been discarded a priori [Bennett, 1992].

Since in land-surface data assimilation there are generally a lot fewer observations than
states, the representer method is an elegant way to reduce the size of the estimation problem
by searching only the data space. In addition, the representer method offers the intriguing
possibility to save even more computational effort by compressing the data a priori [Bennett
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et al., 1993]. If each satellite image is compressed linearly, for example with a singular value
decomposition or a two-dimensional Fourier Transform, the assimilated data vector Z can
simply be defined as a collection of linear combinations of the original observations.

The degree of meaningful compression and the corresponding savings depend of course on
the problem at hand. Note that data compression does not generally mean that observations
are discarded. In fact, we typically use all the original observations, but instead of looking
at the individual measurements which are supplied by the sensor, we focus on the dominant
linear combinations.

It is also important to emphasize that the indirect representer method and a priori data
compression may achieve related savings. Data compression might therefore not be of much
additional help if the estimates are computed with the indirect representer method (Sec-
tion 2.3.4). In contrast, only data compression may make the calculation of the posterior
error covariances feasible, because for the posterior covariances the individual represen-
ter functions are needed (Section 2.4.1), and their number is equal to the length of the
(compressed) data vector Z. Results related to this question are presented in Section 8.2.1.

Within the (direct) representer technique, we can also assess the observing system a
posteriori by carrying out an eigenvalue decomposition of the matrix U = (C' + R) (2.27).
Note that the inverse is unstable if the matrix U is poorly conditioned. If this is the
case, the measurement functional could be rotated and the modes corresponding to very
small eigenvalues could be discarded to stabilize the assimilation algorithm. This technique
amounts to compressing the data a posteriori. For details see [Bennett, 1992].
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Chapter 3

A Land Surface Model for Data
Assimilation

Selecting a hydrologic model for the land surface data assimilation problem is not an easy
task. The model must capture the key physical processes adequately, but at the same
time it must be efficient enough to make large-scale optimal estimation computationally
feasible. In addition, the variational data assimilation approach also requires a differentiable
model. From the variety of models described in the literature, we develop a land surface
scheme especially designed for data assimilation purposes. Our land surface scheme is a
simple model for moisture and heat transport in the unsaturated soil zone and at the land-
atmosphere boundary, together with a Radiative Transfer model relating the soil moisture
and temperature to the remotely sensed brightness temperature.

A key assumption is to neglect lateral flow in the unsaturated zone, which is reason-
able for terrain with moderate relief and on the spatial scales under consideration. The
model domain thus breaks down into a collection of one-dimensional vertical cells or pixels
(Figure 4.1). In this Chapter we describe the one-dimensional vertical components of the
land surface model and the Radiative Transfer scheme. In Chapter 4 we then describe in
detail how these one-dimensional model components can be used in a fully four-dimensional
(space and time) land surface data assimilation algorithm.

First, in Section 3.1, we present the one-dimensional model for the moisture and heat
dynamics. We use Richards' equation for the moisture transport and the force-restore
approximation for the soil temperature. A conceptually similar model of the soil processes
has been presented by Acs et al. [1991]. The vegetation model is similar to the Simplified
Biosphere Model (SSiB) developed by Xue et al. [1991]. In Section 3.2 we describe the
Radiative Transfer (RT) model. The RT model consists of a soil part, including (1) the
Dobson mixing model for the wet soil dielectric constant, (2) the Fresnel equations for the
soil microwave emissivity, and (3) the gradient RT model or the grey body approximation
for the effective soil temperature, and of a vegetation part.

A comprehensive list of all symbols used in the hydrologic model can be found in Ap-
pendix B.1. Note the notational convention to label most of the empirical constants in the
various parameterizations with K for scalars and with 13 for distributed parameters. The
constants are superscripted with the variable which is being parameterized and subscripted
with a number in case more than one empirical constant is needed.
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3.1 Moisture and Heat Transport Model

In this Section we describe a simple one-dimensional model for moisture and heat transport
in the unsaturated soil zone and at the land-atmosphere boundary. The moisture dynamics
are modeled with Richards' equation, whereas the temperature submodel relies on the
force-restore approximation of the heat equation. The dynamics of the moisture and the
temperature are coupled via the heat capacity, which depends on the moisture content, and
via the evapotranspiration rate/latent heat flux at the land surface. The transport of soil
water vapor is entirely neglected. The downward flux of water out of the bottom layer is
described by gravitational drainage only. The vegetation submodel is designed after the
Simplified Biosphere Model (SSiB) Xue et al. [1991].

3.1.1 Soil Moisture Submodel

Vertical unsaturated flow is described with a modified version of Richards' equation ne-
glecting soil vapor movement and flow due to thermal gradients.

9- = -Ka (lg + z) - Sg (3.1)
0t -z az

The volumetric moisture content is denoted with 09 [mr3 /m 3 ], the matric head with @g [m],
and the unsaturated hydraulic conductivity with K, [m/s]. The sink term S. [1/s] accounts
for root water uptake through transpiration.

At the surface, the boundary condition is the net flux resulting from precipitation falling
through the canopy Pt [m/s] and from evaporation from the ground surface Eg [kg/m 2 /s]

qt = -Pt + Eg/pw (3.2)

where pw [kg/m 3 ] is the density of liquid water. Note that Pt is defined as a positive
quantity. The gravity drainage from the bottom layer is given by

qb = -Ku(Zbottom) (3.3)

The soil hydraulic properties are parameterized with the model by Clapp and Hornberger
[1978]

CH W-BCH Wpg = /H (3.4)

2BCH3 K = K( -(2gCH+3)/BCH

Ku KsW W2BcH+3C (3.4a)

where the soil wetness or saturation W. [-] is related to the volumetric soil moisture con-
tent 09 and the porosity 0, through W =_ 0,/0. The hydraulic conductivity at saturation
is denoted with K,. The "matric head at saturation" @CH and the parameter BCH are
empirical constants.

Recent results on robust solvers for Richards' equation can be found in [Miller et al.,
1998]. We discretize Richards' equation following the mass conservative scheme developed
by Celia et al. [1990]. For details on the discretized equations see [Simunek et al., 1997].
Here we only introduce the notation for the vertical discretization. The locations of the Nz
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vertical nodes are collected into the vector z [m], and the thickness of the layers between

the nodes is denoted with A [m].

Zi Z2 - ZI

Z2 A2  Z3-Z2

ZNz _ANz-1_ _ZNz ZNz-1_

The vertical coordinate z [m] increases upward and the locations of the bottom and the top

nodes are zi and zNz, respectively. Note that the vector A has Nz 1 elements.

From the node locations we derive the locations [m] of the mid-points in between

the nodes and the thickness A [m] of the layers between the mid-points, which is also the

thickness of the layers "around" the finite difference nodes.

511 1 Z2 - 12
Z1l+Z2 A -A

2 ZA2 f3 - 2 2

(3.6)
zNz -1zNz N 1 N -Nz -2ANz -1zNz __Nz N-z2 2

Z Nz± + INA - - ANz -1N~1 N

It is convenient to define the bottom and the top point as the first and the last mid-points.

The vector Z is thus of length Nz + 1, and the vector A is of length Nz.

3.1.2 Soil Temperature Submodel

The temperature submodel is based on the force-restore method [Bhumralkar, 1975; Dear-

droff, 1978; Lin, 1980; Dickinson, 1988; Hu and Islam, 1995]. The force-restore approxi-

mation relies on the analytical solution of the heat equation under periodic forcing, which

is used to parameterize the almost periodic daily ground heat flux. In this way, a very

simple and efficient but reasonably accurate description of the temperature dynamics can

be achieved. Only two layers are considered, a surface layer of thickness 6g [m] at temper-

ature T [K], and a deeper layer, which serves as a heat reservoir. The deeper layer is at

temperature Td [K], the depth-average temperature of the soil. The prognostic equation

for the temperature Tg in the surface layer is

= Pg [F'G 9/Cg - (Tg - Td)] (3.7)

Here Gg [W/m 2] is the ground heat flux evaluated at the surface, and the coefficients

C [J/m 3 /K], Fg [1/s], and F' [s/m] are discussed below.

At the ground surface, the energy balance (in [W/m 2]) consists of the net shortwave

radiation R"ft, the net longwave radiation Rgnt, the latent heat flux LEg, and the sensible

heat flux Hg. The latent heat of vaporization L [J/kg] is used to convert the mass flux E

into a latent heat flux.

G9 = Rg" + R, - LE 9 - Hg (3.8)

The coefficients F_, [1/s] and F, [s/m] are given by

-Wd 2/ 2 2
rg - T' = (3.9)

0Zai 9 V Kwd d9Lwa
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where the coefficient ag is discussed below, and the damping depth dg [m] of the daily
temperature forcing is

d 2 - 2KT (3.10)9 dCg Wd

The angular frequency Wd = 27/86400/s enters from the consideration of the analytical for-
mulation with diurnally periodic forcing. The volumetric heat capacity is denoted with C9
[J/m 3 /K] and the thermal conductivity with A [W/m/K]. Both depend on the soil mois-
ture content and thus vary with time (Section 3.1.7). Lastly, we define thermal diffusiv-
ity KT [m2 /s] as

KT = . (3.11)
09

As discussed in Section 3.1.7 we use a constant thermal diffusivity, implying that both F9
and F', are constant.

Following [Hu and Islam, 1995], the different versions of the force-restore method can
be described by different expressions for the dimensionless coefficient ag. We will use the
version proposed by Hu and Islam [1995], which minimizes the approximation error of the
soil temperature at depth 69. The computationally efficient polynomial approximation to
the optimal og is

a = 1+ K a;7( 9 /dg) + ~ "(6g/dg) 2 + , (6g/dg) 3 + 6g(/dg) 4  (3.12)

u 9 = 0.943 r * = 0.223 K g = 1.68 - 10- c'g = -5.27 - 10-3

which is valid for 0 < 6g/d < 5. The closed form for greater values of o /dg can be found in
[Hu and Islam, 1995]. If we keep in mind that o9 is the modeled depth of the surface layer
in which the temperature varies diurnally, and that d9 is the damping depth of the forcing,
we see that og/dg should not be far from unity to be consistent. Therefore, the polynomial
approximation (3.12) will be appropriate for all practical purposes.

It should be noted that the force-restore versions of Bhumralkar [1975] and of Lin [1980],
using ag = 1 + 26 9 /dg and ag = 1 + 6g/dg, respectively, can be considered special cases
of (3.12). They yield similar results for large (Bhumralkar) and small (Lin) values of 6g/dg,
respectively. For details see [Hu and Islam, 1995].

3.1.3 Vegetation Submodel

The vegetation is modeled with a standard resistance network for the latent and sensible
heat fluxes (Figure 3.1).

Canopy Heat Submodel

We assume zero heat capacity for the canopy. The canopy energy balance reads

Rts*e + Rdft - LEct - LEce - He = 0 (3.13)

consisting of the net shortwave radiation Ret, the net longwave radiation R"t, the latent
heat fluxes LEct and LEce from the dry and wet portions of the canopy (canopy transpiration
and canopy evaporation), and the sensible heat flux Hc. All fluxes are measured in [W/m 2].
This energy balance is solved for the canopy temperature Tc [K].
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Figure 3.1: Resistance network (after [Xue et al., 1991])

Canopy Water Submodel

If vegetation is present, the canopy intercepts the precipitation. The balance equation for

the water We [m] stored in the canopy (per unit area) reads

= Pi - Ece/pw - De (3.14)
at

The intercepted flux is denoted with Pi [m/s]. The evaporation from the wet canopy is

Ece [kg/m 2 /s], and Dc [m/s] accounts for dripping off the canopy. We use De Wc/tiP,
with a typical dripping time trip [s] on the order of 0.5d [Thompson and Pollard, 1995].

A simple parameterization for the intercepted precipitation and the evaporation from
the wet canopy is

Pi = min (fcPr, (Wim* - We)/At) (3.15)
Ece = min (EPct, pwWc/At)

We denote with fc [-] the fraction of the land surface which is shaded by the canopy.

P, [m/s] is the precipitation at screen (or reference) height Zr [m] as measured by the

meteorologic station. (Recall that precipitation is defined as a positive quantity.) Ecpeot is
the potential evaporation from the wet canopy assuming unlimited water supply. Wc7 ax [m]
is the canopy storage capacity, and At [s] is the numerical time step. Equation (3.15)
approximately constrains the water stored in the canopy to be nonnegative and less than
the storage capacity, < W ax. We write the canopy storage capacity as

WCMax = fcLSAInwc (3.16)
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where LSAI [-) is the sum of the one-sided leaf area index LAI [-] and the stem area index
SAI [-). The parameter KW, [m] is on the order of rwc~ 10-- ... 10-m [Abramopoulos
et al., 1988]. Finally, we have for the throughfall

Pt = Pr + Dc - Pi (3.17)

Canopy Air Submodel

We also assume zero heat capacity for the canopy air. The energy balance reads

Ha = H + Hg (3.18)

where Ha [W/m 2 ] is the overall sensible heat flux to the atmosphere. This energy balance
is solved for the temperature of the canopy air Ta [K]. The mass balance within the canopy
air space is

LEa = LEg + LEct + LEce (3.19)

where LEa [W/m 2 ] is the overall evapotranspiration to the atmosphere. This mass balance
is solved for the vapor pressure of the canopy air ea [mb].

3.1.4 Radiation Balance

All radiation fluxes are in [W/m 2 ]. The downwelling shortwave and longwave radiation at
reference height above the canopy are denoted with Rrs and Rrj, respectively. For the net
fluxes at the ground surface and at the canopy we have [Deardroff, 1978]

Rgt = (1 - fc)(1 - ag)Rrs (3.20)

(1 fc)g(Rr - o-Tg) + fc E (Tc - T (3.21)
Ec + E9 - EcEg

R",t = fc(1 - ac)Rrs (3.22)

Rnet = fe EcRri + EC eoT - Ec + 2 E9 - EcE9 ccgT4 (3.23)
fC1 [Ccr E CC 69 - EcE C + g - ECE(

where ag, ac, eg, and ec [-] denote the albedos (shortwave) and emissivities (longwave)
of the ground and the canopy, respectively, and a [W/m 2 /K 4] is the Stefan-Boltzmann
constant.

The parameterization for the ground surface albedo follows [Idso et al., 1975].

a9 = r"" - nag W(ztop) K"" = 0.25 sag = 0.125 (3.24)

The canopy albedo is on the order of ac ~ 0.16 ... 0.2 for grassland and crops.
We compute the downwelling longwave radiation from the air temperature

Rrj = CrrTr (3.25)

and the expressions for the air and the ground surface emissivities are

Er = sr + K er n = 0.74 K' = 0.0049 (3.26)

9=K~ ± '2 09 Ki=0.9 K2 - 0.18 (3.27)
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Tr [K] is the atmospheric temperature at screen height, and er [mb] is the water vapor

pressure at screen height. The formulation of the soil surface emissivity is taken from

[Chung and Horton, 1987]. The expression (3.26) for the atmospheric emissivity is known

as the Idso-formula. For the volumetric soil moisture affecting the long wave radiation we

use the top node moisture content 09 0(ztop). The canopy emissivity is on the order

of Ec ~ 0.95... 1.
With both the emissivities for the ground and the canopy being close to unity, we can

expand the above equations into series in (1 - Eg) and (1 - 6e). Using

Ec + (g - EcEg 1 - (1 -c))(1 - c)

and neglecting terms of second order or higher we get

"et = (1 - fc)g (Rri - aT;) + fc(Cc + e9 - 1)4(Tg - T ) (3.21a)

(1 - fc)gRr - [eg + fc(cc - 1)]oT + fc(4 c + E, - 1 F

R = fc [eceroJT4 + (Cc + E - 1)oT 4 - ( 2 cc + Eg - 1)o-T ] (3.23a)

These expressions are used in the model.

3.1.5 Sensible and Latent Heat Fluxes

All sensible and latent heat fluxes are determined with a resistance formulation.1

T - T
Ha = PaCa (3.28)

Ta

Hg = (1 - fc)pacaTg - Ta (3.29)
Td

He = 2LSAIfcpaca T c Ta (3.30)
rc

LEa Paca (ea - er) (3.31)
7 Ta

LE (1 - fc) Paca (es(T 9) - ea) (3.32)

LEPt fcfceLSAIPaca (e(Tc) - ea) (3.33)
7 Tc

LEPo fc(1 - fe)LAI Paca (es(Tc) - ea) (3.34)
7 c 8 s

LEct = x9 (Wg)LEc t (3.35)

All latent and sensible heat fluxes are expressed in [W/m 2 ]. The air density is denoted

with Pa [kg/m 3 ], the specific heat of air at constant pressure with Ca [J/kg/K], and the

psychometric constant with 7 [mb/K]. The temperature of the canopy is Tc [K]. The

vapor pressure and the temperature within the canopy air space are ea [mb] and Ta [K],

'Note that we can rewrite the evapotranspiration rate as Ea = pa(qa - q,)/ra by using 7 = cap,/Le and

q, = eer/pr, where q, is the specific humidity, p, the air pressure, and c the ratio of the gas constants,
E = Rdry air/Rvapor = 0.622.
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respectively. Furthermore, er [mb] and T, [K] are the vapor pressure and the air temperature
at screen or reference height as given by the meteorologic measurements, and e, (T) [mb] is
the saturation vapor pressure at temperature T, calculated by the empirical formula

( 17.4(T - T0 )
es (T) = 6.11 exp 1.T - 4.1 (3.36)

T - 34.16f

where To = 273.15K. Moreover, the fraction of the canopy which is wet and from which
water is directly evaporated is denoted with fee [-] and modeled after [Abramopoulos
et al., 1988]

fce = (Wc/Wcmax)rjee (3.37)

The resistances r and the stress function Xg(Wg), which parameterizes water-limited tran-
spiration, are discussed in Section 3.1.6.

3.1.6 Resistances

The resistances can be partitioned into the aerodynamic resistances r, rd, rc and the sur-
face resistances rg, rs. All resistances are measured in [s/m]. Water-limited (stressed)
transpiration is parameterized with the stress function Xg(Wg) [-].

Aerodynamic Resistances

In our scheme we have three aerodynamic resistances: the atmospheric resistance between
the canopy air space and the reference level in the atmosphere r, the resistance between
the leaves and the canopy air space re, and the resistance between the soil surface and the
canopy air space rd (Figure 3.1).

The atmospheric resistance for neutral conditions (in terms of buoyancy) can be obtained
by elimination of the friction velocity u, [m/s] from the expression (3.39). The friction
velocity is a parameter in the logarithmic wind profile (3.38).

Ur = In zrdc (3.38)
K IzoI

In Izr-ac 1 n2  z-

ra - z j _ Izo (3.39)
Ku* K 2u,

Here, ur [m/s] is the wind velocity at the reference height Zr [m], K = 0.4 is the von Karman
constant, and zo [m] is the roughness length. The zero displacement height de [m] accounts
for the geometric effect of vegetation stands. If vegetation of height he [m] is present, we
use

de = Kd, he and zo = Kzohc (3.40)

with Kd, = 0.63 and Kzo = 0.13 [Abramopoulos et al., 1988]. Although strictly speaking the
zero displacement height vanishes for bare soils, we can still use (3.40) by setting he = zo/nzo
with a roughness length on the order of zo 2.5mm, which is typical for bare soils. Note
that in this case z, > dc and the error introduced by using (3.40) for bare soil is negligible.
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For nonneutral conditions, stability corrections can be taken into account. These cor-

rections are usually parameterized with the gradient Richardson number or the Monin-

Obukhov length. Detailed expressions can be found in [Acs et al., 1991]. We will confine

ourselves to the assumption of neutral conditions.

For the other two aerodynamic resistances, we use parameterizations from [Sellers and

Dorman, 1987].

r =3r (3.41)rc

a 3rd (3.42)
uc

The wind speed uc [m/s] at the canopy top can be obtained from the wind profile (3.38) as

uc = ur ln hc - dc In1 Zr - dc~ (3.43)

Note that a measurement of zero wind speed would lead to numerical problems because

the resistances diverge. Such problems are easily overcome by preprocessing and setting

all measurements of zero wind speed to a minimum of 0.01m/s. This is well below the

instrument resolution and the error inflicted is negligible.

Surface Resistances

The surface resistance of bare soil rg [s/m] parameterizes the effect of soil-water limited

evaporation. If the upper soil layer is not saturated, the water evaporates at some depth

in the soil and must reach the surface through diffusion. We work with the following

formulation,

r = Kr exp (Prg (Wr9 - Wg)) (3.44)

which depends on three parameters. At saturations W. > Wry the surface resistance rg <

rg = 10s/m becomes negligible when compared to rd. The third parameter is the maximum

surface resistance rmax at zero saturation, which determines #rg - 1/Wrg ln(rnax/r9).

Typical values are Wry e 0.25 . .. 0.6 and rax 3000 ... 7000s/m, depending on the

texture of the soil in question. Finer soils have higher surface resistances. Figure 3.2 shows

the bare soil resistance as a function of the volumetric soil moisture content. Also shown

are two formulations by Kondo et al. [1990] and by van de Griend and Owe [1994], which

we will not discuss here.

The stomatal resistance r. [s/m] describes the closure of the plants' stomate due to

environmental impacts [Lhomme et al., 1998]. The most important factors determining the

transpiration under unstressed conditions (no water limitation) are shortwave (or photosyn-

thetically active) radiation, temperature, and vapor deficit, although some authors believe

that the dependence on vapor deficit is an artificial effect. We only retain the dependence

of r, on the shortwave radiation, which essentially shuts off transpiration at night. We use

a formulation equivalent to the one in [Dorman and Sellers, 1989]

= re' xc(Rrs) (3.45)
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Figure 3.2: Bare soil resistance from (3.44) as a function of the volumetric soil moisture
content using Wrg 0.6 and rgmax = 6500s/m. For comparison, we also show the
parameterizations by Kondo et al. [1990] and by van de Griend and Owe [1994].

where

Rrs<0

Rr > 0
(3.46)

Typical values are r 30... 50s/m, 0. .. 100, and r 100 ... 200W/m 2.

The factor Xg(Wg) in (3.35) parameterizes the conditions of water-limited transpiration.
The total stress is given by the sum over the individual stress terms at the i = 1 ... Nz nodes
of the vertically discretized soil moisture model.

N,

xg (Wg) =g xg(Wg.) 19 )1± fRi _ fRiXgi(W-i) =1 CHF I
9+ gi/V)W +ilt 1 + C1

wilt WBCH

We used (3.4) to obtain the last equality. We denote with o"Et [m] the matric head at
which the plants start wilting. A typical number is the equivalent of -15bar [Dickinson
et al., 1993]

(3.48)

The acceleration due to gravity is g = 9.81m 2 /s. The root distribution factor fi > 0
measures the root density attributed to node i. We use a simple exponential model for the
continuous root density PR [1/m] with maximum density at the top.

1 exp ( z -PR(z) ( R ER
dR exp( )- exp( )
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(3.49)

xc( R-s ) = R,,/nxc+1(Rrs/Kxc+1|nxc

Vwat = -15bar/p,/g = -153m



where dR > 0 [m] is a typical rooting depth. For the root distribution factor fRi we obtain

exp(Z) - exp(g)
fai = pR(z)dz = R ZjRZ (3.50)

ex( R dR

Note that pR(z) is normalized on the interval [zi, zNz] and that Z fR= 1.
Finally, we can give an expression for the sink term as it appears in the discretized form

of Richards' equation (3.1).

xgi(Wgi)Et /pw (3.51)

3.1.7 Thermal Properties of the Soil

The volumetric heat capacity of the surface layer depends on the soil moisture content
according to [Simunek et al., 1997]

C = PqbCg + Ogpwcw (3.52)

where cg [J/kg/K] is the specific heat of the dry soil, pw [kg/m 3 ] is the density of water,
and cv [J/kg/K] is the specific heat of water. The bulk density of the dry soil Pgb [kg/m 3]
is given by

Pgb (1 - Os)Pg (3.53)

where pg [kg/m 3 ] is the density of the soil particles. A generally accepted number for all soil
types is p9 = 2.65 - 103 kg/m 3 . For the volumetric moisture content and the porosity which
enter the parameterization we choose values averaged over the top layer of thickness o9 of
the force-restore approximation.

Following [Chung and Horton, 1987], the thermal conductivity Ag [W/m/K] can be
parameterized as

Ag = 3" + #A" B + A 09 (3.54)

The , 9 depend on the soil type (Table B.5). Figure 3.3 shows the volumetric heat capacity,
the thermal conductivity, the thermal diffusivity, and the damping depth as functions of
the saturation for three soil types [Chung and Horton, 1987]. We adopt the approximation
of a constant heat diffusivity KT which is justifiable for not too dry conditions, W. > 0.1.
This is important because for constant KT the force-restore parameters ag, dg, Fg, and F'
are also constant and need not be computed at each time step.

3.1.8 Thickness and Number of Soil Layers

In the article by Acs et al. [1991], the thickness of the uppermost soil layer for the moisture

submodel is 10cm, whereas the thickness of the top layer for the temperature submodel
is o9 = 2cm. This disparity is somewhat inconsistent with the model formulation, because
the thermal properties of the soil depend on the soil water content. A top moisture layer
of 10cm thickness can only represent an average moisture value, and it cannot resolve the
moisture content of the top 2cm, which is used in the temperature submodel.
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Figure 3.3: Soil thermal properties: volumetric heat capacity (upper left), thermal
conductivity (upper right), thermal diffusivity (lower left), and damping depth (lower
right) as functions of the saturation Wg. The parameters are pg =2.65. -l1 3kg/m 3,

s= 0.4, cg =900 J/kg|K.

To be consistent within the force-restore approximation, the layer for the temperature T9
should also correspond as much as possible to the layer in which the temperature actually
fluctuates. A measure for the thickness og of this layer is the damping depth d9 of the
diurnal forcing. Recall from Figure 3.3 that the damping depth d9 varies between 7cm
and 15cm for various soil types and over a wide range of moisture conditions. Similarly, Hu
and Islam 119951 cite damping depths d9 that range from 5cm (clay) to 20cm (rock).

Now note that appreciable errors due to the neglect of higher harmonics can occur in
the force-restore method if the upper soil thickness og is less than the damping depth of the
diurnal forcing [Hu and Islam, 1995]. This suggests the use of a thicker top soil layer for
the temperature submodel. On the other hand, the ground surface temperature Tg from
the force-restore method is used in the computation of the boundary fluxes and will also
be used for the Radiative Transfer model (Section 3.2). We are therefore interested in the
temperature of a shallow layer. Moreover, the diurnal heat wave is much stronger than the
higher harmonics, so the errors due to the neglect of higher harmonics should be bearable.

The best overall compromise for moisture and heat transport seems to be a single value
of 5cm for both the top moisture layer and the o5-layer of the force-restore approximation.
For the lower layers in the moisture submodel, we use a few layers which reflect the mea-
surement levels of existing time-domain reflectometry (TDR) profile measurement devices.
Generally, we work with six layers ranging from 0-5cm, 5-15cm, 15-30cm, 30-45cm, 45-
60cm, and 60-90cm. This allows for the assimilation of data from field experiments such
as the Southern Great Plains 1997 (SGP97) experiment (Section 5.3.1).
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3.2 Radiative Transfer Model

In this Section we describe a model for the Radiative Transfer (RT). It relates the soil

moisture and temperature to the remotely sensed radiobrightness temperature TB, which

is a measure of the microwave energy emitted by the soil. In Section 3.2.1 we first describe

a model for microwave emission from bare soil, and we then give a complete description in

the presence of a vegetation cover in Section 3.2.2.

3.2.1 Microwave Emission from Bare Soil

For microwave emission from bare soil, various coherent and incoherent Radiative Transfer

models can be found in the literature [Njoku and Kong, 1977; Wilheit, 1978; Schmugge and

Choudhury, 1981; Choudhury et al., 1982; Raju et al., 1995]. Most recently, Galantowicz

et al. [1999] discussed and compared several options such as conventional RT, a gradient RT

approximation, a grey body approximation, and a coherent model for a stratified medium.

In a non-coherent model, the observed radiobrightness temperature TB is factored into

the microwave emissivity E& and the effective soil temperature Tff

TBare _ (3.55)

The model then consists of three parts:

1. The wet soil dielectric constant is computed from the dielectric constants of dry soil

and water depending on the volumetric soil moisture content (Dobson mixing formula).

2. The microwave emissivity E9 is obtained from the wet soil dielectric constant (Fresnel

equations).

3. The effective temperature Teff is determined from the soil temperature profile and
9

possibly the dielectric constant.

In the following subsections, we will discuss each of these steps separately.

Wet Soil Dielectric Constant

The dielectric constant of the wet soil k9 is obtained from the dielectric constants of the

dry soil and the soil water, which are evaluated at the microwave frequency of interest.

For L-band observations, for instance, the frequency is vr = 1.4GHz. Ulaby et al. [1986]
present among other models a semi-empirical mixing model which makes use of soil texture

information in order to account for the bound water contribution in an aggregate way. We

call their model the Dobson mixing model because it is an improved version of the semi-

empirical mixing model presented by Dobson et al. [1985]. In particular, the model for the

wet soil dielectric constant reads

k9k kg

k9 = 1 + (1 - O) (kg 1) +( F"(k" 1 (3.56)

with

'2k9 k fs fc (3.57)
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where fs [-] and fc [-) are the sand and clay fractions of the soil in question. The K
are empirical constants. Their values can be found in Table B.7. The porosity Os and the
volumetric moisture content 0 are appropriate averages over depth (Section 3.2.1). For
L-band observations, Galantowicz et al. [1999] used averaging depths of 1.5cm and 2cm for
gradient RT and grey body RT, respectively (Section 3.2.1). In our coarse discretization
(Section 3.1.8) we best use an average moisture content and an average porosity over the
top layer.

The dielectric constant of the dry soil kgd depends only very weakly on the density of
the soil particles. A good approximation for all soil types is [Dobson et al., 1985]

kgd = 4.67 (3.58)

The dielectric constant of water km [-] at the microwave frequency vr [Hz] and tempera-
ture T [K] is determined with a Debye model [Ulaby et al., 1986].

kw = kwoo + (kwo - kwoo) (1 +i - 2,rvrw) (3.59)
1 + (27rvrTw)

2

where kwoo = 4.9 is the high frequency limit of kw. The static limit kwo [-] as well as the
relaxation time of water T [s] are given by Taylor series expansions.

ko=kwo +kw + kwo(TkTo)kwo = n 2o (T -To) k(T )+ o(T To) 3  (3.60)

T -= {N- + K2 (T - To) + 3w(T - To) 2 + KT(T - To)3} (3.61)

The coefficients nw and K<wo are listed in Table B.7. The reference temperature is To =

273.15K. We choose for the temperature T = Tg from the force-restore approximation
(Section 3.2.1).

Figure 3.4 shows the dependence of the wet soil dielectric constant on soil moisture
for the five soil types discussed by Dobson et al. [1985] together with the wet soil dielectric
constant derived from two dielectric mixing models presented by Birchak et al. [1974], which
we will not discuss here. Figure 3.5 shows the dielectric constant of water at frequency vr =
1.4GHz as a function of temperature. Note that the temperature effect is of the same order
as the texture effect (Figure 3.4).

Microwave Emissivity

The microwave emissivity for a smooth soil surface is readily obtained from the Fresnel
equations. The microwave emissivities of the soil for horizontal polarization Esmooth and for
vertical polarization esmooth are for a look-angle #r from nadir (in air)gv

2

smooth kg cosr- kg sin (362)
Eh

kg cos#r+ kg - sin2 

2
COS #r - kg - sin2 #r

"smooth =1- (3.63)gv COS #r + kg si 2 #r
2

smooth kg + 1(3.64)
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wet soil dielectric constant
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Figure 3.4: Wet soil dielectric constant for the five soil types discussed by Dobson

et al. [1985] together with the wet soil dielectric constant derived from two dielectric

mixing models presented by Birchak et al. [1974] at Tg = 300K and 1.4GHz as a

function of the volumetric moisture content.
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Debye model for the dielectric constant of water

Figure 3.5: Dielectric constant of water k. at frequency vr = 1.4GHz as a function of
temperature T [K].

The last equation shows the microwave emissivity for incidence from nadir (#r = 0). For
microwave frequencies and look-angles #r ~ 100 the nadir incidence formula is a very good
approximation for both the horizontal and vertical polarization formulae. Note also that
strictly speaking the emissivities are zero if the look-angle #r is larger than the critical angle
at which total reflection occurs. We do not consider this case and assume that #r is small
enough.

Figure 3.6 shows the microwave emissivities for the five soil types discussed by Dob-
son et al. [1985] together with the emissivities derived from two dielectric mixing models
presented by Birchak et al. [1974], which we will not discuss here.

Roughness Effects The previous discussion assumed the soil surface to be smooth, but
this is rarely the case in nature. Roughness effects can be taken into account with a simple
one-parameter model developed by Choudhury et al. [1979]. The overall effect of roughness
is to increase the emissivity, that is to decrease the reflectivity. In the model, the reflectivity
is modified by an exponential term including the roughness parameter 3Eg

Egp = 1 - (1 - Es ooth) exp(- 0'9 COS 2 0r) (3.65)

Using (3.62), the emissivity for incidence from nadir (#, = 0) is

2

Egn k1-exp(-/JEg) (3.66)
Vg+ 1

Effective Temperature

The effective temperature generally depends on the soil temperature and moisture profiles,
where the moisture profile enters primarily through the dielectric constant. For our objec-
tives, there are primarily two choices of models: the gradient RT model and the grey body
RT approximation, which are both non-coherent models.
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smooth soil microwave emissivity for horizontal polarization
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Figure 3.6: Microwave emissivities Esooth for horizontal polarization (#, 100) for

the five different soils in [Dobson et al., 1985] and for two models presented by Birchak

et al. [1974] at Tg = 300K.

Gradient RT Model In the gradient RT model, the effective temperature is given by

T = T(Zgrad) cgrad) cos O dT (3.67)
ae dz zgrad

where

ae = Im k
Clight

is the attenuation coefficient and

Zgrad Cgrad cos #9

is an effective depth for the gradient RT model. The in-soil propagation angle #g is obtained

from Snellius' law.

#g = arcsin(sin , / k) (3.68)

The speed of light is Clight = 3 ' 10 8 m/s, and finally, Cgrad is a gradient RT parameter.

Galantowicz et al. [1999] use cgrad = 1.03. Figure 3.7 shows the gradient RT effective

depth zgrad for the same soils and models as Figure 3.6.

Grey Body RT Model In a grey body approximation, one simply uses

Tg = T(zgrey) (3.69)

The parameter zgrey determines the depth at which the temperature is evaluated. For

L-band observations, Galantowicz et al. [1999] use a depth of zgrey = 1.5cm.
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gradient RT parameter Zgrad

Figure 3.7: Gradient RT effective depth zgrad for the five different soils in [Dobson
et al., 1985] and for two models presented by Birchak et al. [1974].

Choice of a Model The appropriate choice of the RT model depends on the damping
depth dg and the resulting discretization og chosen in the force-restore approximation of the
heat equation (Section 3.1.2). Recall that the damping depth d9 describes the penetration
depth of the diurnal heat wave, whereas zgrey and zgrad relate to the penetration depths of
the microwaves.

According to Galantowicz et al. [1999], the gradient RT model is superior to the grey
body approximation over the full diurnal cycle if the parameters are calibrated with day-
time data. However, the force-restore model provides an approximate temperature gra-
dient only at a depth dg ~ 9. Now recall from Figure 3.7 that for all soils and most
moisture conditions, zgrad $ 5cm. Compared to the typical damping depth and discretiza-
tion d 9e >o 5cm (Section 3.1.2), we see that the use of the gradient RT model might be
inappropriate. From the force-restore method, we cannot get the temperature gradient we
need in the gradient RT approximation. In summary, we therefore use the grey body RT
approximation with Teff T.

g 9

3.2.2 Microwave Emission in the Presence of a Canopy

If vegetation is present, the radiation observed by the instrument is given by

TB =1 - fc)ef

fc EgTeffcac + (1 - ac)Tc + (1 - ac)Tc(1 eg)a c

The first term (proportional to (1 - fc)) is the direct microwave emission from the bare or
unshaded portion of the soil. The other three terms (proportional to fc) are

. emission from the soil attenuated by the canopy,
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Table 3.1: L-band (wavelength 21cm)

and Schmugge, 1991].
parameters for the canopy transmissivity [Jackson

" direct (upward) emission from the canopy (neglecting canopy reflection, that is emis-

sion equals absorption equals one-minus-transmission),

" ground surface reflection of emission from the canopy and attenuated by the canopy.

The model follows [Ulaby et al., 1986) (p. 1552), where we neglected the scattering albedo

[Jackson and Schmugge, 1991]. We can rewrite (3.70) as

TB [1 - fc(1 - ac)] EgTg fTc [(1 - azc)(1 + (1 - Egl'c)]

= [1 - fc(1 - ac)] T;" - [fcac(1 - ac)]Tc} &g + f(1 - c
(3.70a)

The canopy microwave attenuation ac [-] depends on the canopy optical thickness 6c [-].

ac = exp(-6c) (3.71)

The optical thickness is parameterized as

6c = #6c W, / cos #, (3.72)

where W, [kg/m 2 ] is the vegetation water content, and #, is the look-angle from nadir. For

the L-band (v, 1.4GHz), some of the parameters given by Jackson and Schmugge [1991]

can be found in Table 3.1.
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Vegetation type oc cos , [-) W, [kg/m2] 36, [M2kg]

Corn - - 0.115

Corn 0.452 4.0 0.113
Corn 0.163 1.2 0.133
Corn 0.611 6.0 0.102
Soybean - - 0.086
Soybean 0.087 1.0 0.087
Sorghum 0.613 5.4 0.105
Winter Rye 0.080 0.7 0.114
Short Grass 0.093 0.3 0.300
Tall Grass 0.288 0.4 0.720
Tall Grass - 0.5 0.150
Rangeland, Pasture - - 0.098





Chapter 4

Implementing Land Surface Data
Assimilation

In this Chapter we describe in detail how the one-dimensional land-surface model of Chap-
ter 3 is used in a fully four-dimensional (space and time) data assimilation algorithm. We

also match the general estimation formulation of Chapter 2 with the variables of the hy-
drologic model.

A key assumption in the hydrologic model is to neglect lateral flow in the unsaturated

zone, which is reasonable for terrain with moderate relief and on the spatial scales under

consideration. The model domain thus breaks down into a collection of one-dimensional
vertical cells or pixels (Figure 4.1). The horizontal resolution of the land surface model

is determined by the availability of the micro-meteorologic data and of the land surface

parameters, such as land cover and soil texture maps, and by computational resources.

Since we aim to estimate the land surface states at this resolution, we refer to this scale as

the estimation pixels.
From a simulation perspective, the estimation pixels are uncoupled but for larger-scale

patterns of the inputs such as the meteorologic forcings as well as the land cover and soil

texture classes. Lateral unsaturated moisture and heat fluxes between different pixels are

neglected. When the model is incorporated into the data assimilation algorithm, however,
the pixels are also coupled through the statistics of the uncertain inputs. The model error,
representing for example errors in surface forcings, and the initial condition parameters in

different pixels are assumed to be random fields which are correlated over time and space.

The assimilation algorithm is therefore fully four-dimensional (space and time).

The horizontal resolution of the brightness images is solely determined by the sensor.

We call this scale the observation pixels. In the foreseeable future, the brightness images will

only be available at a resolution much lower than the resolution of the land surface model,
that is each observation pixel generally contains several estimation pixels. We therefore

need to develop the assimilation algorithm together with a general downscaling capability.

This Chapter is organized as follows. We first describe the model domain and the

spatial discretization (Section 4.1). Next, we define the state vector for the land surface

application (Section 4.2). The initial condition parameterization is explained in Section 4.3,
the state equation is defined in Section 4.4, and the model error terms are identified in

Section 4.5. Section 4.7 contains the definition of the assimilated data and the measurement

operator. We also present the general downscaling scheme, which is based on an appropriate

definition of the measurement operator. Next, Section 4.8 reviews the covariance models

75



of the uncertain inputs that we use in the assimilation. After a brief discussion of how the
adjoint and the tangent-linear models are derived (Section 4.9), we conclude this Chapter
with a description of the temporal discretization of the model equations (Section 4.10).

4.1 Model Domain and Spatial Discretization

The model domain for the estimation of soil moisture and temperature consists of Nep
N, - Ny vertical columns or estimation pixels (Figure 4.1). Typical scales for the size of the
estimation pixels are 1 ... 10km. Each column has Nz vertical nodes for the saturation. The
vertical resolution is typically six layers (Nz = 7). Starting at the surface, the thickness
increases downwards (5cm, 10cm, 15cm, 15cm, 15cm, and 30cm). For the soil surface
temperature there is only one node per column, likewise for the canopy temperature, the
interception storage, the canopy air temperature, and the canopy vapor pressure.

In the unsaturated zone, horizontal moisture and heat fluxes over the scale of an esti-
mation pixel are insignificant compared to vertical fluxes. We therefore neglect horizontal
unsaturated fluxes, which makes the model very computationally efficient. Even though the
columns are uncoupled as far as lateral moisture and energy exchange is concerned, they are
in fact connected through horizontal correlations of the micro-meteorologic inputs and the
soil and vegetation parameters. Meteorologic and geologic processes generally vary over a
scale larger than the scale of an estimation pixel for soil moisture. Such correlations provide
the large scale patterns observed by remote sensing instruments. Within the data assimila-
tion algorithm, the estimation pixels are also coupled through the covariance structure of
the uncertain inputs (Section 4.8).

4.2 State Vector

The state variables for all pixels are collected into the state vectors X and Y (4.1). The
canopy temperature Tc, the vapor pressure ea and the temperature Ta in the canopy air
space, which are subject to algebraic equations, are concatenated into the state vector X.
Likewise, the saturation W9 , the soil temperature Tg, and the interception water content We,
which obey ordinary differential equations, are collected in the vector Y. The superscript
in parentheses indicates the number of the estimation pixel.

TP /To /

eal /e 20  gl

(I) ITTa

- -- -- -W (1)Z
(2)gzX =Te I|TO Y =TO ITO (4-1)

pressure ea in the canopy air space is scaled with the water vapor pressure e 2 = 23.4mb
at 20 C. The interception storage is dimensionless, but needs to be scaled to be of order
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Figure 4.1: Schematic of the model grid with typical length scales. Note the huge ratio
of horizontal to vertical scales. In the unsaturated zone, vertical fluxes dominate. Lat-
eral unsaturated fluxes of moisture and energy are neglected (Section 4.1). Soil moisture
estimates are obtained on the 5km-scale of the estimation pixels (fine outline). Remotely
sensed brightness measurements are available on the 10km-scale of the observation pixels
(thick outline). The downscaling is achieved by including in the measurement operator the
computation of the average of the brightness temperature over an observation pixel. For
L-band brightness temperatures, the arithmetic average is appropriate [Drusch et al., 1999].
This average is then subtracted from the data to provide the data misfit. By respecting the
information contained in the fine-scale model inputs, the algorithm implicitly distributes
the innovation from the measurement over all estimation pixels within a given observation
pixel (Section 4.7).
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one. This is done with (Wcmax + Ys), where W ax depends on the pixel (3.16) and -y, is
a constant scaling factor. The saturation W is already dimensionless and on the order of
one. It does not require further scaling.

The time-dependent vector Y(t) is of length Ny = N, -Ny -(Nz + 2). The length of X(t)
is Nx = N, - Ny -3. Altogether, there are N - Ny - (Nz + 5) states at every time step. For
a two-week period with 15min time steps, we need Nt - 1300 time steps. Using N = 16,
Ny = 32, and Nz = 7, the total number of states is on the order of 107 .

4.3 Initial Condition

In this Section, we match the land-surface variables to the initial condition parameterization
(2.1a).

4.3.1 Initial Saturation

The parameterization for the initial saturation W (t = 0) maps the entire profile of each
pixel onto a single uncertain parameter -yg, the transformed total initial water storage, as
follows. First, we decompose the initial saturation profile of each pixel into the total initial
water storage in the column W.tore and the shape of the initial profile W.shape, which is a
vector of length Nz-

W9 (t = 0) = Wstore . Wshape (4.2)

The total initial water storage is defined as

Nz

Wstore = 'ovsvWgi(t = 0) (4.3)
i=1

For a definition of the thickness around the nodes A see (3.6). The shape of the initial
saturation can be derived from a hydrostatic profile or from the estimate at the final time
of a previous data assimilation interval.

Since the initial storage is a bounded variable, the probability distribution of its er-
ror cannot conceivably be Gaussian. We therefore introduce a transform which maps the
bounded variable onto the entire real axis. This transform is also an elegant way of telling
the estimator that the storage is bounded, which greatly improves the estimator's conver-
gence behavior. We map the initial storage W.tore with the transform

t7r ( wgt - gstre

79(Wstore) = tan w -Sm 0.5 (4.4)
KT ptore - p/store

L gmax g,min

onto a transformed initial storage lg varying over the entire real axis. The parameters Wsto;e
and W acan be derived from (4.3). In practice, however, it is advisable to treat Wstoeand Wslmaxg mm
and t as empirical parameters and to constrain the initial condition parameter w tore

well within its physically possible limits. Starting a simulation at very low or very high
initial saturations can entail serious numerical problems in the forward model.
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4.3.2 Initial Soil Temperature and Interception Storage

The initial condition for the scaled soil temperature T9 /To can be used directly. There is
no need for a nonlinear transform.

Similar to the saturation, the initial interception storage must be transformed onto the
entire real axis. We use the transform

Fir (Wc( =-0) \i
yc(Wc) = tan 7 W0ax±+ *5)]. (4.5)

Both -y, and -y' are constant scaling factors.

4.3.3 Initial Condition Parameterization

The complete initial condition parameterization reads

(1) -

(1 )/To W 1
(1) ( 1

(2) 7 Yo(3) = T~ #2)T (4.6)

g /T) We (#3 )/Wcmax,(i) + -ys)
(2)

The superscript in parentheses again indicates the number of the estimation pixel.

4.4 State Equation

Like the state vector, the state equation is a collection of equations from each pixel. The
exact notation follows easily from the definition of the state vector (4.1).

The state equation for X is given by a collection of mass and energy balance equations
from each pixel. In particular, the energy balance for the canopy (3.13) yields Tc, the water
mass balance equation for the canopy air space (3.19) yields ea, and the energy balance for
the canopy air space (3.18) yields Ta. For a one-pixel problem, we define

#1 = (R nt + Rft - LEct - LEce - Hc)/fc

#2 = LEa - LEg - LEct - LEce (4.7)

#3 =Ha - Hc - Hg

The notation for multi-pixel problems follows immediately from (4.1). Note that the canopy

energy balance in #1 is divided by the fractional vegetation cover. This is important to get

proper scaling of # for varying vegetation densities. The mass and energy balance equations

are implicit and are solved for the states with a Newton-Raphson method [Press et al., 1992].
The state equation for Y is the collection of the discretized version of Richards' equa-

tion (3.1), the force-restore equation (3.7), and the interception equation (3.15) for each
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estimation pixel. For a one-pixel problem, we define

Nz

Ajjb + b) /A/Osi

PNz+1 F9 [FqGg/Cg - (Tg - Td)] /To

Nz+2 = (i - Ece/pw - Dc)/(Weax + 'ys)

for 1 < i < Nz

(4.8)

Again, the notation for multi-pixel problems follows immediately from (4.1). The matrix A
and the vector b in the definition of po, (1 < i < Nz) follow from the discretization of
Richards' equation according to the scheme by Celia et al. [1990] (see also [Simunek et al.,
1997]).

ei 0

eNz-2 d
0 e

0

0

Nz-1 eNz-1

Nz-1 dNz

(4.9)

(4.10)

0 ei

eNz-1
eNz -1I _ 0 _

ei = (Kui + Ku,i+ 1)/(2Ai)

= -Ai Sgi + (Kui + Ku2 )/2 + qb

= -AiSgi + (Ku,i+1 - Ku,i_1)/2

= -ANzS g Nz - (Ku,Nz-1 + KuNz)/2 - qt

for 1 i Nz -1

for 2 < i < Nz - 1

4.5 Model Error

The model error or process noise accounts for errors in the model formulation, such as
simplistic parameterizations or unresolved processes. In addition, it also accounts for errors
in the micro-meteorologic forcings or incorrect parameter values.

In the general formulation of the estimation problem of Chapter 2, the model error is
written as an additive term. Likewise, the land-surface fluxes enter the hydrologic model
additively. It is therefore convenient to formulate the model error as uncertainties in the
physical fluxes such as the latent and sensible heat fluxes. This has the added benefit
that we can get a reasonable estimate of the magnitude of the model error. However, the
formulation of the model error as uncertainties in the land-surface fluxes does not necessarily
mean that the fluxes are the only source of uncertainty.
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Formulating the model error as uncertainties in the physical fluxes determines the scaling

factors D, and D, in the state equation (2.1). For a single pixel, we have D, = INx, where

INx is the Nx x Nx identity matrix, and

D (Y) = diag {-1/1/1S . .. l-/ANz/OsNz FgF'/Cg(Y)To 1/(Wma + Ys)} (4.13)

where diag{.} stands for a diagonal matrix with the argument of diag{.} on the diagonal

and zeros elsewhere.
The projection matrices P, and P, in the state equation (2.1) are made up of ones

and zeros. They determine which fluxes are deemed uncertain. We usually restrict the

model error to affect only the fluxes at the land-surface boundary. For bare soil, this means

that only the flux into and out of the top node for soil moisture is uncertain. If there

is vegetation, the uncertain top flux boundary condition for the saturation more directly

affects all nodes that are connected to the surface by plants' roots. Owing to the rather

shallow depth of the domain, all nodes are typically connected to the surface through the

vegetation.

4.6 Uncertain Parameters

Land-surface hydrologic models are heavily parameterized, and few, if any, of the parameters

are known accurately. The soil hydraulic parameters, for example, or the many parameters

of the Radiative Transfer model are prime candidates for parameter estimation. However,
estimating such parameters is no simple task. The parameter estimation problem is likely to

be very ill-posed, and the benefit of estimating soil hydraulic parameters in an operational

context is doubtful anyway.
At this point, we do not implement the parameter estimation in a. Our assumption is

that the parameters of the hydrologic model are already well calibrated when the model

is used in the data assimilation algorithm. Furthermore, we account for model deficiencies

with the model error terms. But note that we do treat the parameterized initial condition

as uncertain (Section 4.3).

4.7 Assimilated Data, Measurement Equation, and Down-

scaling

In this study, the only data assimilated into the hydrologic model are brightness tempera-

tures. We define the data vector as

Tbs(t)T0

Z =(4.14)

Ts (tN bs 0
Bop )T-
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The first No, entries correspond to the image taken at the observation time tI, the next
No, entries correspond to the image taken at the observation time t2 , etc. With a total of
N obs images and No, observation pixels within each image the number of measurements
is Nz = N, - Nt bs. Note that the observed brightness temperatures are scaled with the
reference temperature To. Within the general framework of Chapter 2, it is straightforward
to assimilate other types of data, for example remotely sensed surface temperatures.

Soil moisture data assimilation can be formulated as a general downscaling problem.
Satellite observations of L-band brightness temperatures will likely be available at a scale
much larger than the scale of the micro-meteorologic, soil texture, and land cover data.
Over the continental United States, the latter data are typically available on scales of 1km
or less, whereas the projected resolution for a space-born passive L-band sensor is on the
order of 50km in the near future and possibly 10km in ten years.

Clearly, it is desirable to get soil moisture estimates at a scale finer than the resolu-
tion of the brightness images. In our formulation, the fine-scale micro-meteorologic, soil
texture, and land cover data constitute valuable information incorporated into the hydro-
logic model. We can use such fine-scale information to effectively downscale the brightness
images. By defining the measurement operator appropriately, this downscaling is easily
formulated within the assimilation algorithm. In essence, we run the hydrologic model on
the finer scale and define the measurement operator such that it maps the fine-scale model
predictions of brightness to the coarse scale of the remotely sensed brightness data.

As an example, Figure 4.1 shows the hydrologic model defined on a scale of 5km (esti-
mation pixels). By using the Radiative Transfer model (3.70) described in Section 3.2, we
can derive model predictions of the brightness temperature on the 5km-scale. In contrast,
brightness data are assumed to be available on a scale of 10km (observation pixel). In order
to compute the data misfit term Z - M[X, Y], the data assimilation algorithm needs model
predictions of brightness temperature on the 10km-scale of the measurements. This is eas-
ily achieved by averaging the fine-scale brightness predictions over the observation pixels.
For L-band observations, the arithmetic average is appropriate [Drusch et al., 1999; Liou
et al., 1998]. In mathematical terms, we this can be summarized as

Mk[X,Y1 ] N TBik (tk)/To (4.15)

The TBik (tk) are the predicted brightness temperatures at time tk of the N estimation pix-
els ik within the observation pixel corresponding to measurement k. We use the Radiative
Transfer model (3.70) on the scale of the estimation pixels to obtain the TBik . Like the
observations, the predicted brightness temperatures are scaled with the reference tempera-
ture To.

In other words, with the measurement Zk we only supply to the algorithm the average
brightness temperature over the estimation pixels within the corresponding observation
pixel. But we also supply micro-meteorologic, soil texture, land cover, and other model
inputs on the finer scale of the estimation pixels, that is we tell the algorithm how the
estimation pixels behave relative to each other. Respecting such information through the
model physics, the algorithm is then able to distribute the coarse-scale brightness update
onto the finer scale estimation pixels accordingly. Note again that the downscaling procedure
is carried out implicitly within the algorithm. In summary, the downscaling scheme follows
naturally from an appropriate definition of the (forward) measurement operator.
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4.8 Error Covariances

In principle, the formulation of the variational data assimilation algorithm allows the use of

any covariance for the model and parameter errors. In practice, however, one is limited by
the computational effort required to store the covariance matrices and to solve the update

equations (2.16) and (2.17). Depending on the choice of covariance, the calculation of the

convolution integrals for the update is easily the most computationally demanding part of

the assimilation algorithm.
The computational burden of solving the update equations is greatly reduced by as-

suming stationarity for the error covariances. In this case, we can speed up the numerical

evaluation of the convolution integral significantly by using the Fast Fourier Transform

[Press et al., 1992]. Another technique to efficiently solve the convolution integral relies on

solving a corresponding differential equation [Bennett et al., 1997].
It is important to note that stationarity for the model error does not imply that the

fluxes themselves obey stationarity. For example, the moisture flux into the soil is the sum

of precipitation and evaporation. Precipitation in particular is certainly not stationary in

time or in space. But the stationarity assumption is only made for the error in the fluxes

and all other contributions to the model error. The fluxes themselves are not assumed to

be stationary.
We choose exponential correlation functions to model all covariances of the uncertain

inputs. The initial condition parameter covariance is

S-x())2C =) o exp (xi (4.16)

where represents the transformed initial soil moisture storage -y, (4.4), the (scaled) ini-

tial soil temperature, or the transformed initial interception storage y, (4.5). The spatial

coordinates of estimation pixel (i) are denoted with x(') and y(), and l" is the isotropic

horizontal correlation length. All cross-correlations between physically different components

of the uncertain parameters are assumed to vanish. For example, the error in the initial

storage is always uncorrelated with the error in the initial soil temperature, regardless of

the location.
For the model error, we assume that the covariance is separable in time and space.

Again, physically different components of the model error are assumed to be uncorrelated.

The same is assumed for saturation components belonging to different layers. For one

component, the model error covariance can be written as

C ) (t, t1) = oF exp t exp -X())2 + (y(i) - y(i))2 (4.17)

where ( represents for example the component of v corresponding to the model error in the

canopy energy balance, or the component of w corresponding to the error in the moisture

flux into and out of the top node for the saturation.

For w, we also implemented a non-stationary model error covariance which is effectively

white in time.

C W W (t, t') - o(t) 6(t - t') exp - x(j))2 +(y - (4.18)
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The whiteness in time turns the convolution integral in the update equations into a simple
multiplication. The time-dependent variance o2(t) is meant to be zero most of the time,
and rather big at select times, for example at times of heavy precipitation. In this way
we can account for much larger errors during precipitation events without introducing too
much overall uncertainty. The approach is physically motivated by the fact that quanti-
tative precipitation measurements over large horizontal scales are usually quite uncertain
(Section 7.2). Alternatively, one can choose the assimilation window in such a way that the
initial condition is re-estimated after each major precipitation event (Section 7.1).

4.9 Tangent-linear and Adjoint Equations

Both the adjoint (backward) equation (2.15) and the tangent-linear (forward) model (2.18)
use derivatives of the forward operators with respect to the states. It is straightforward,
albeit laborious, to derive these adjoint operators from the definition of the states (4.1), the
initial condition parameterization (4.6), the forward operators (4.7) and (4.8), the scaling
factor D,(Y) (4.13), and the measurement operator (4.15). We consumed a lot of paper and
pencils and accomplished this task manually. Alternatively, automatic adjoint compilers are
available [Giering and Kaminski, 1998]. Since such tools have been developed only recently,
they are not yet easy to use.

4.10 Temporal Discretization

So far, time has been treated as a continuum. We must, however, also discretize the time
coordinate in order to implement the algorithm on a digital computer.

In the estimation algorithm, the nonlinearity of the forward model is resolved by it-
erating on the tangent-linear model (Section 2.2). This iteration is initialized with the
prior model trajectory. Therefore we need a good initial prior model trajectory to keep the
computational effort for the tangent-linear iteration at bay. For the initial prior fields, we
implemented a nonlinear solver which uses a Picard iteration to handle the nonlinearity and
a variable time step to deal with the intermittent nature of the forcings. The variable time
step scheme follows closely the one implemented in HYDRUS, a sophisticated model for
flow and transport in the unsaturated zone [Simunek et al., 1997]. The length of the time
step is governed by the number of iterations needed in the Picard iteration for the most
recent matric head. Moreover, the time step is reduced to seconds if there is precipitation.

In contrast, the tangent-linear model and the backward equation are implemented with
a fixed time step. This time step is determined by the frequency of the micro-meteorologic
inputs. Since the equations are linear and all the coefficient matrices are constant, we can
solve the system directly using a time-implicit scheme. We choose the time-implicit scheme
for its stability at longer time steps.
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Part II

Assessing the Performance of the
Assimilation Algorithm
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Chapter 5

Synthetic Experiments

In the following Chapters, we present a series of synthetic (or twin) experiments to test

our land surface data assimilation algorithm. Synthetic experiments are assimilation runs

with synthetically generated parameter, model, and measurement errors, allowing us to

compare the estimated and the prior fields to the (synthetic) true fields. Such experiments
are ideally suited to evaluate the performance of the algorithm as all of the uncertain inputs

are known. Furthermore, synthetic experiments allow us to assess the potential impact of

the proposed L-band passive microwave satellite. All experiments are designed to mimic the

conditions during the 1997 Southern Great Plains (SGP97) experiment in central Oklahoma

(Section 5.3.1) which provides a realistic setup.

In this Chapter, we first explain briefly how synthetic experiments are conducted and

explain in more detail why we choose synthetic experiments. Next, we describe the experi-

ment area and the hydrology of the experiment period (Section 5.2). Finally, we describe in

detail the data that we use as inputs to the hydrologic model (Section 5.3). The synthetic

experiments themselves are described in Chapters 6 and 7.

5.1 Synthetic Experiments and Performance Assessment

5.1.1 Design of Synthetic Experiments

For a synthetic experiment, one realization of the uncertain inputs is generated with a ran-

dom number generator and suitable mathematical methods to obtain the desired correlation

structures. The model is then integrated with this realization of the uncertain inputs, and

the output is the corresponding realization of the (synthetic) true state variables. Next, true

values of the measured variables are obtained at specified times and locations by applying

the measurement equation to the (synthetic) true states. Finally, synthetic measurements

are generated by adding synthetically generated measurement error to the true fields of the

measured variables.

In the assimilation procedure, the estimation algorithm is denied knowledge of the given

(true) realization of uncertain inputs. Instead, it is only supplied with the statistics of the

uncertain inputs, that is the prior mean and covariances. The algorithm is also supplied

with the noisy synthetic observations, which contain some information about the particular

realization of the true fields. From the prior statistics and the noisy synthetic observations,
the assimilation algorithm produces a best estimate of the true fields.

If the assimilation algorithm is only supplied with the prior statistics of the uncertain
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inputs but not with the synthetic observations, it will default to the so-called prior solution.
This prior solution or prior state trajectory is derived from a (forward) model integration
with all parameters and model errors set to their prior mean values. In particular, the prior
states do not contain any information about the given realization of the true solution. When
data are assimilated, the prior solution is the starting point for the algorithm to derive the
best estimates of the true states (Section 2.2).

5.1.2 Why Synthetic Experiments?

Synthetic experiments are irreplaceable tools for assessing the performance of the assimila-
tion algorithm. By design, the true solution and the statistics of the uncertain parameters
are perfectly known. If we use the same hydrologic model and the same model inputs for the
generation of the (synthetic) true fields and for the estimation, the assimilation algorithm
is operating under ideal conditions. Non-linear issues aside, the estimate must have certain
features that can be tested with the hypothesis tests described in Sections 2.3.6 and 2.4.1.
Consequently, coding errors can easily be detected and the effects of nonlinearities can be
assessed. Moreover, observing system characteristics can be evaluated and optimized. In
Chapter 6, we describe a series of assimilation experiments under such ideal conditions.

When field data are assimilated, the hydrologic model will only be a crude approximation
of the "model" that nature is using, and the error statistics we specify will likely be poor
approximations of the true error characteristics. By specifying different parameters or
statistics in the estimation process than have been used for the generation of the synthetic
uncertain inputs, such nonideal situations can be investigated. With synthetic experiments,
we can therefore investigate the sensitivity of the estimation algorithm to wrongly specified
error statistics.

Similarly, inputs such as the soil hydraulic parameters will only be poorly known. By
using different soil hydraulic parameters for the generation of the (synthetic) true fields and
for the estimation process, we can emulate the realistic condition of assimilating data into a
model that contains structural errors and bias. To compensate for the discrepancy, we will
likely have to increase the model error variance in the assimilation algorithm. If we conduct
synthetic experiments under such nonideal conditions, we can investigate the influence of
the quality of the hydrologic model on the assimilation. Synthetic experiments allow for
the evaluation of any number of such scenarios.

A final word of caution is in order. We believe that synthetic experiments are useful and
irreplaceable tools for testing the assimilation algorithm and for investigating the sensitivity
of the estimation process to various factors. Synthetic experiments cannot, however, replace
the ultimate test of the algorithm with field observations. Such a field application must
eventually be carried out.

5.2 Experiment Area and Period

The area of the synthetic experiments is located within the SGP97 experiment area. We
choose the domain to coincide loosely with the swath of the airborne ESTAR brightness
temperature measurements (Section 5.3.1). Figure 5.1 shows the horizontal grid of 16 by
32 estimation pixels together with the county lines and the meteorologic stations of the
Oklahoma Mesonet. At a resolution of 5km x 5km, the experiment area covers a total of
12, 800km 2 in an 80km x 160km rectangle. The estimation pixels are numbered from 1 to
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512 starting in the southwestern corner and going north until the boundary of the domain

is reached. The numbering continues at the bottom of the next column to the east of the

first column and so on until the northeastern corner of the domain is reached.
The vertical resolution of the saturation is as shown in Figure 4.1 (Section 4.1). Each

column has Nz = 7 vertical nodes for the saturation W. at 0cm, -5cm, -15cm, -30cm,
-45cm, -60cm, and -90cm. There is only one node per column for each of the other five

states (canopy temperature Tc, vapor pressure ea, temperature in the canopy air space Ta,
soil temperature Tg, and interception water content Wc). Per pixel, we have therefore 12

states, and the state vector has a dimension of 512- 12 = 6144 at every time step. (Note that

the total number of scalar data in the reference experiments is also 6144 by coincidence.)
The total number of 15 minute time steps in the synthetic experiment is 1280 (see below),
and the total number of states is therefore 6144 - 1280 ~ 107 .

All experiments extend over a two-week period from June 18, 1997 (day 169) to July 2,
1997 (day 183). Figure 5.2 shows time series of the area average micro-meteorologic inputs

as derived from the Oklahoma Mesonet data (Section 5.3.2). The top panel shows the

area average precipitation. Initially, there is a four day drydown across the entire domain.

On day of year 174, significant rain is falling across the entire area. In contrast, the two
major precipitation events of days 177 and 179 are concentrated in the northern half of the

domain. The total rain over the two-week period measured at the stations in the northern

half was between 3cm and 8cm, whereas only 0.5cm to 2cm were observed at the southern

stations. The area average cumulative precipitation over the two-week period is 2.8cm.

The other panels of Figure 5.2 show the area average air temperature, wind speed,
incoming shortwave radiation, and relative humidity. These fields are fairly homogeneous

across the experiment area. Note that the area average quantities are only shown for

illustration. In the synthetic experiments we use spatially distributed data. For details see

Section 5.3.2.

5.3 Inputs to the Hydrologic Model

In this Section, we briefly describe the sources and the character of the various inputs to

the hydrologic model that we use in the synthetic experiments.

5.3.1 The Southern Great Plains 1997 (SGP97) Hydrology Experiment

The Southern Great Plains 1997 (SGP97) Hydrology Experiment took place in the sub-

humid environment in Oklahoma over the one-month period of June 18 - July 17, 1997
[Jackson, 1997; Jackson et al., 1999]. Its main objectives are

1. to examine the estimation of surface soil moisture and temperature using remote

sensing at a hierarchy of scales,

2. to examine the feasibility of estimating vertical profiles of soil moisture and temper-

ature by combining in situ data, remote sensing measurements at the surface, and

modeling techniques,

3. and to evaluate the influence of soil moisture on the local surface energy budget and

the influence of mesoscale variability in the surface energy budget on the development

of the convective boundary layer.

89



GUTH

S
SPEN

SHA
NORM

SWASH

BYAR
4PAUL

E SULP

Counties
Rivers
Estimation Pixels

e Mesonet Stations

0 20 40
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Figure 5.2: Area average micro-meteorologic inputs as derived from the Oklahoma Mesonet
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precipitation events are concentrated in the northern half of the domain. The area average

quantities are shown for illustration only. In the experiments, we use spatially distributed

data.

91



To achieve these objectives, a host of ground-based and remotely sensed data were
gathered. This includes measurements of ground-based soil moisture and soil properties,
airborne boundary layer measurements, atmospheric soundings, vegetation parameters, air-
borne remote sensing measurements, ground-based remote sensing observations, satellite
remote sensing measurements, surface flux data, and surface hydrometeorologic measure-
ments. Moreover, micro-meteorologic data were provided by the Oklahoma Mesonet (Sec-
tion 5.3.2), and soil texture classes were compiled by the Earth System Science Center
(ESSC) at Pennsylvania State University (Section 5.3.3).

In the synthetic experiments of Chapters 6 and 7, we use the Oklahoma Mesonet data
for the micro-meteorologic inputs, the ESSC database for the soil texture classification,
and the land cover map to obtain the vegetation class for each pixel. In addition, for the
Radiative Transfer model we use the maps of the vegetation water content We, the surface
roughness parameter #', and the vegetation parameter 06c.

The land cover data are derived from Landsat Thematic Mapper (TM) images and
come in 30m resolution. The parameters of the Radiative Transfer model are available at a
resolution of 800m. According to their type, the data were aggregated to the resolution of
the estimation grid by assigning the class of the block majority to the estimation pixel or
by averaging over the estimation pixels. Figure 5.3 shows a map of the land cover classes
aggregated to the 5km resolution. The projection is Universal Transverse Mercator (UTM),
Zone 14, which is used throughout this thesis. The predominant land cover class is pasture.
In the northern half, there are also large areas of wheat cultivation. The remaining land
cover classes include forage, shrub, urban, and water. For the synthetic experiment, we
neglect the latter two classes and use the pasture properties for the corresponding pixels as
well as for the pixels for which there are no data available. This change does not affect the
results of the synthetic experiments. When field data are assimilated, however, the water
bodies and urban areas need to be treated separately.

Remotely Sensed Brightness Temperature from ESTAR

During the SGP97 field campaign, the Electronically Scanned and Thinned Array Radiome-
ter (ESTAR) was flown daily on the NASA P3 aircraft. ESTAR successfully recorded sixteen
images of L-band brightness temperatures (1.4GHz) on a swath of roughly 50km x 200km at
a resolution of 800m. Together with the ground-based soil moisture [Famiglietti et al., 1999]
and flux measurements, these invaluable data will allow a first test of the soil moisture as-
similation algorithm on field data.

5.3.2 Micro-meteorologic Inputs: The Oklahoma Mesonet

The micro-meteorologic inputs to our land-surface model consist of six data types: precip-
itation Pr, incoming shortwave radiation Rrs, air temperature T, vapor pressure er, wind
speed ur, and depth average soil temperature Td. All of the above are directly available or
easily derived from the Oklahoma Mesonet data [Brock et al., 1995].

The Oklahoma Mesonet is a statewide network of 115 automated weather observing
stations. It is unique in its dense spatial coverage, with an average distance between sites
of about 31km [Basara et al., 1999]. Among other parameters, each site records at five
minute intervals relative humidity at 1.5m height above the ground, air temperature at
1.5m, average wind speed at 10m, rainfall, barometric pressure, and solar radiation. In
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Figure 5.3: Surface soil texture and land cover classes for the synthetic experi-
ment. The surface soil texture map has been derived from the ESSC data base
(Section 5.3.3), and the land cover map has been obtained from SGP97 data (Sec-
tion 5.3.1). The dominant soil texture classes are sand loam (SL), silt loam (SIL),
and loam (L). There are also some areas where sand (S) and clay loam (CL) can be
found. The dominant land cover class is pasture. In the northern half of the domain,
there are also large areas of wheat. The urban, water, and no-data pixels are treated
as pasture in the synthetic experiment. The horizontal resolution is 5km x 5km.
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addition, bare and vegetated soil temperature at 10cm depth are measured at 15 minute
intervals.

There are a number of supplemental parameters available. Of most interest to us are
observations of the bare and vegetated soil temperatures at 5cm and at 30cm, which are
taken at nearly half of the stations. Recently, many stations have been upgraded with heat
dissipation sensors and time-domain reflectometry (TDR) probes to record soil moisture
profiles [Basara et al., 1999]. Unfortunately, at the time of this writing there were still a few
unresolved issues in the calibration of the moisture probes. In the future, such operational
ground-based soil moisture data have great potential for assimilation into a land-surface
model and for the validation of such algorithms.

Preprocessing the Micro-meteorologic Inputs

Before using the Mesonet data as inputs to our land-surface model, we apply a few prepro-
cessing steps. The very few missing data points are filled in with neighboring observations
or earlier observations at the same site. The observed relative humidity is converted into
the vapor pressure using the measured air temperature. The deep soil temperature of the
force-restore equation (3.7) is obtained from a monthly average of the air temperature.

The five minute interval for the micro-meteorologic inputs is attractive from a modeling
point of view, as it allows to resolve the dynamics very finely. On the other hand, the model
runs become very computationally demanding. We therefore average the five minute data
to 15 minute inputs. Consequently, the basic time step of the tangent-linear and the adjoint
models is 15 minutes. Note, however, that the initial prior state trajectory is obtained by
solving the nonlinear land surface model with a variable time step (Section 4.10). During
and after a rain event, the time step of the nonlinear model is typically reduced to a few
seconds.

Even though the network of the Oklahoma Mesonet is very dense, the resolution is still
too coarse for direct use in the hydrologic model. We interpolate the data with inverse
square distance weights to the grid of estimation pixels. The weights for the seventeen
stations of the synthetic experiment are shown in Figure 5.4.

It is important to note that we did not place emphasis on the optimal preprocessing
of the micro-meteorologic data. Our focus is on the assimilation algorithm rather than on
the calibration of the hydrologic model. Most importantly, the quality of the meteorologic
inputs will be a lot poorer in future operational applications of land-surface hydrologic
data assimilation. By including model error, the data assimilation algorithm is expressly
designed to account for such deficiencies (Section 4.5).

5.3.3 Soil Properties

The database of the Earth System Science Center (ESSC) at Pennsylvania State University
contains a variety of geographically referenced data sets. For the convenience of SGP97
researchers, the ESSC derived soil properties and land cover data from the State Soil Ge-
ographic (STATSGO) data set compiled by the Natural Resources Conservation Service
(NRCS) of the U.S. Department of Agriculture. In our synthetic experiments, we use the
dominant soil texture data, the sand and clay fraction data, and the bulk density data, all
of which are available at 1km resolution for each of 11 standard soil layers.

The data sets come in the Universal Transverse Mercator (UTM), Zone 14 projection,
which we use throughout this study. The aggregation of the data to the estimation grid
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square distance weights for the interpolation of the micro-
The 0.1, 0.3, 0.5, 0.7, and 0.9 contour lines are shown. The

locations of the seventeen Oklahoma Mesonet stations used in the synthetic experi-

ments of Chapters 6 and 7 are also shown in Figure 5.1. The average distance between

stations is only 31km.
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was performed according to the data type by assigning the class of the block majority or
by averaging. Figure 5.3 shows a map of the surface soil texture classes at 5km resolution.
The dominant textures are sand loam (SL), silt loam (SIL), and loam (L). There are also
some spots with sand (S) and clay loam (CL). Note the streaky pattern of both the soil
texture and the land cover classes in the northwestern corner of the domain. This pattern
can be recognized in the soil moisture fields during drydowns (Figure 6.3).

5.3.4 Other Data Sources

Not all of the inputs necessary to run the hydrologic model are provided by the SGP97 data
set. Each soil texture and land cover class still needs to be translated into the corresponding
numerical parameters. Vegetation parameters for the Little Washita catchment, which is
located within the SGP97 experiment area, are tabulated in [Kustas and Jackson, 1999].
Inputs to land-surface schemes within General Circulation Models can be found in [Sellers,
Los, Tucker, Justice, Dazlich, Collatz and Randall, 1996]. Similar data for the roughness
length zo, the fractional vegetation cover fe, the vegetation albedo ac, the minimum stomatal
resistance r", and the leaf and stem area indices LAI and SAI can be found in [Dickinson
et al., 1993]. Typical values for the roughness length zo are also tabulated in [Dorman and
Sellers, 1989]. Yang et al. [1998] give typical rooting depths. The soil hydraulic parameters
are based on the data published by Clapp and Hornberger [1978]. Finally, the parameters #r
and 31d of the resistance network are given in [Sellers and Dorman, 1987].

The choice of the above parameters amounts to calibrating the hydrologic model, a task
which we performed only in a rudimentary fashion. Our focus is on the performance of the
assimilation algorithm and not on model calibration. For the synthetic experiments pre-
sented here the calibration matters little. However, for the future assimilation of field data
such as the ESTAR brightness observations, the model must be reasonably well calibrated.

96



Chapter 6

Assimilation Under Ideal
Conditions

In this Chapter, we present the results from a series of synthetic experiments under ideal
assimilation conditions. By ideal conditions we mean that the same hydrologic model,
the same model inputs, and the same error statistics are used for the generation of the
(synthetic) true fields and for the assimilation. Experiments under more realistic nonideal
conditions are presented in Chapter 7.

Even though the estimates derived in ideal experiments are unrealistically good, such
experiments are valuable. First, assimilation under ideal conditions allows us to test whether
the estimation algorithm is working properly. If conditions were not ideal, any coding error
can be equally well blamed on the nonideal nature of the assimilation, and we would be
left with an inconclusive result. Second, it is much easier to portray and to understand the
basic features of the assimilation algorithm when conditions are ideal. Finally, we can gain
valuable information on the sensitivity of the estimation procedure to various inputs.

In Sections 6.1 and 6.2 we present the estimation results of two reference experiments.
The setup of the reference experiments is without downscaling, that is the observation pixels
coincide with the estimation pixels, and synthetic brightness observations are available once
daily. The focus of Reference Experiment I is on the estimation of the initial condition,
whereas Reference Experiment II is designed to examine the estimation of the model error.
In another series of experiments, we address two topics which are crucial to the design of an
operational soil moisture data assimilation system. First, we investigate the quality of the
estimates as the horizontal resolution of the brightness data decreases (Section 6.3). Finally,
we address the impact of the satellite repeat cycle on soil moisture estimation (Section 6.4).
The computational requirements for the assimilation are discussed in Chapter 8.

6.1 Reference Experiment I

6.1.1 Experiment Design

For a synthetic experiment, we generate synthetic fields for the uncertain inputs. This
allows us to specify fields of land surface variables which serve as the "true" states. These
true states are derived with a single simulation or forward integration of the land surface
model. Starting from a synthetically generated initial condition field, the land surface model
is driven with the measured micro-meteorologic inputs and synthetically generated process
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noise. The resulting fields are then used as the true fields to which we can compare the
estimates and the prior trajectories. See Section 5.1 for a more detailed description of
synthetic experiments.

We use normal distribution functions when generating the (synthetic) true fields of the
uncertain inputs, namely the uncertain initial condition parameter and the model error.
As described in Section 4.5 we use exponential correlation functions for the temporal and
spatial covariances. In this first experiment, Reference Experiment I, we choose a relatively
large uncertainty for the initial condition of the saturation. The initial condition fields were
generated around a spatially uniform prior top node saturation of 0.5. Alternatively, we
could have spun up the model by integrating it for an extended period of time in order to
derive possibly more realistic and heterogeneous prior initial conditions. But since we are
conducting a synthetic experiment, the difference in the prior mean values matters little
and the most important feature is the variance of the uncertain inputs.

The variance of the transformed saturation parameter - has been selected such that
the initial condition distribution for the top node saturation is almost uniform between a
minimum allowed saturation of 0.3 and a maximum allowed saturation of 0.75. For the
given realization, the sample mean is 0.55 and the sample standard deviation is 0.1. A
snapshot of the true initial top node saturation just two hours after the initial time is
shown in Figure 6.3. The correlation length for the initial condition parameters is 50km.
The initial saturation profile is set to be hydrostatic, that is the gravity force is exactly
balanced by a pressure gradient, that is a gradient in soil saturation.

Finally, we have fixed the initial condition for the soil temperature at the air temperature
at the initial time, which is at 10:00h local time (CDT) in the morning. Trials have shown
that varying or estimating the initial soil temperature does not alter the results. This
is because the memory of the soil temperature is only on the order of a few hours. An
incorrectly specified initial soil temperature therefore makes very little difference over the
two-week assimilation window.

In contrast to the high uncertainty in the initial saturation, we choose a comparably
small model error for this first experiment. We account for model errors in the top flux
boundary conditions for the saturation and the soil temperature by choosing appropriate
ones and zeros in the matrix P,,. We also account for model error in the canopy energy
balance (3.13). The other energy balance equations are treated as perfect models and the
matrix P, is determined accordingly. The standard deviation for the top moisture flux
condition is the equivalent of 10W/n 2 in latent heat flux. Likewise, the standard deviation
of the forcing terms in the force-restore equation and in the canopy energy balance equation
is set to 10W/m 2 . Note that the uncertain top flux boundary condition for the saturation
affects all nodes that are connected to the surface by plants' roots. Owing to the rather
shallow depth of the domain, all nodes are typically connected to the surface through the
vegetation.

For the horizontal correlation of the model error we choose a small value of 1.5km. This
implies that only model errors in directly neighboring pixels are effectively correlated. In
this way we can keep the computational effort for the evaluation of the convolution integral
in the model error update small (Section 8.1.2). The correlation time for all model errors
is 10 hours.

Figure 6.1 shows the area average true states for Reference Experiment I. The top panel
shows the area average soil saturation at four out of the seven nodes. There is a general
trend towards drier conditions across the domain over the two weeks of the experiment.
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Figure 6.1: Area average true states for Reference Experiment I. The top panel shows

the area average saturation at four out of seven layers. The precipitation events

shown in Figure 5.2 are clearly discernible. The lower panel shows the area average
soil temperature Tg, the canopy temperature Tc, and the deep soil temperature Td

together with the observed area average air temperature Tr. The deep soil temper-
ature is derived by temporally averaging the measured air temperature as part of

the micro-meteorologic inputs (Section 5.3.2). See Figure 5.2 for the area average

micro-meteorologic inputs.
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This drying trend is related to the fact that the southern half of the domain experienced
only very little rainfall (Section 5.2). The lower panel shows the area average true soil and
canopy temperatures. For comparison, the observed area average air temperature and the
deep soil temperature are also shown. The deep soil temperature is specified as the time
average of the observed air temperature (Section 5.3.2). As expected, the amplitude of the
canopy temperature is larger than the amplitude of the soil temperature. There is also a
short time lag between the canopy temperature and the soil temperature. The temperature
of the canopy air space (not shown) tracks the canopy temperature very closely.

For the synthetic experiment, we neglect the interception water storage by setting rh
and therefore the capacity of the interception water reservoir Womax to zero. The interception
process is highly intermittent and interception happens on a time scale much shorter than
the typical scale for the other state variables. Moreover, interception is almost by definition
a threshold process and therefore not differentiable. For these reasons, the interception
water is very difficult to estimate stably. Since the interception reservoir for pasture and
crops is relatively small, neglecting the interception introduces only a small error. However,
we feel that more research in this direction is necessary.

From the true states, synthetic L-band (1.4GHz) brightness data are derived on the
scale of 5km, which is also the scale of the estimation pixels. In this case the observation
pixels coincide with the estimation pixels, and we refer to this scenario as a setup without
downscaling. For twelve days, brightness images of the entire domain are generated once
daily at 9:45h local time (CDT) in the morning. To each scalar true brightness temperature
we add a spatially and temporally uncorrelated measurement error with a standard devia-
tion of 5K. Note that the absence of spatial correlation is not a constraint imposed by the
algorithm. Uncorrelated measurement errors are attractive for a first application because
they make coding easier and more transparent. In the future, spatially correlated measure-
ment errors can be introduced rather straightforwardly. With 12 images and 512 brightness
pixels per image, the total number of scalar data in the experiment is 12 - 512 = 6144.

Figure 6.2 summarizes the temporal setup of the reference experiments and other exper-
iments which are discussed later. For the reference experiments, we use the entire two-week
period as the assimilation window and measurements from all twelve observation times.
Note that for some of the pixels some observations are taken during rain events. While it
is raining, the water film covering the vegetation and the soil defies taking accurate mea-
surements of the passive L-band microwave radiation. In an operational setting, a quality
control routine must screen such faulty data. In this context, the rainfall interception model
becomes important. For the synthetic experiments presented here, observations taken dur-
ing rain events pose no particular problem.

6.1.2 Estimation of the True Fields

Figure 6.3 shows the true, the prior, and the estimated top node saturation for Reference
Experiment I at six different times during the two-week period. In addition to the persis-
tence of the initial condition, the evolution of the true top node saturation is governed by
the precipitation inputs and the soil texture and land cover classes. This can best be ob-
served in the prior fields because they start from a spatially uniform saturation. During the
initial drydown (day 172.66) and during the second drydown (day 176.66), the soil texture
and land cover properties lead to clearly visible streaky patterns which are most prominent
in the northwestern corner of the experiment area. See Figure 5.3 for maps of the texture
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Figure 6.2: This Figure summarizes the

reference, the area average precipitation
temporal setup of the synthetic experiments. For
time series is also shown. The experiment period

covers two weeks from June 18, 1997 (day 169) to July 2, 1997 (day 183). There are up

to twelve observation times at 9:45h local time (CDT) in the morning. In the reference

experiments (Sections 6.1 and 6.2), all twelve observation times are used and there is just

one assimilation (inversion) window which covers the entire two-week period. The same

is true for the downscaling experiments (Section 6.3). The experiments on the brightness

observation repeat cycle (Section 6.4) also use just one assimilation window. For the 3-
day repeat cycle experiment, only the measurements at observation times 1, 4, 7, and

10 are assimilated. Likewise, only the measurements at observation times 1 and 7 are
assimilated for the 6-day repeat cycle. Finally, the vertical dotted lines indicate the inversion

time windows that are used in the three experiments with multiple assimilation windows

(Section 7.1). In experiment A, we use three assimilation windows as indicated by the

coarsely dotted vertical lines and the horizontal arrows. In experiments B and C, we use

twelve assimilation windows for which the observation times are at the end and at the

beginning of the window, respectively.
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Figure 6.3: Top node saturation for Reference Experiment I. The first row shows the true

top node saturation at six different times during the assimilation interval. In the second and

third rows the prior and the estimate of the top node saturation, respectively, are depicted

for the same six times.
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and land cover classes. Owing to the very heterogeneous distribution of rain (Section 5.2),
the northern half of the domain is obviously much wetter than the southern half at the end
of the two-week period.

The value of the observations for retrieving the uncertain initial condition is obvious.
Without assimilating the brightness data, our best guess for the top node saturation is the
prior solution shown in the middle row of Figure 6.3, which is quite far from the truth. Once
we assimilate the brightness data, we are able to accurately estimate the initial condition.
With the initial condition being the dominant source of uncertainty in this experiment, we
also get good estimates of the entire saturation time series.

Figure 6.4 shows time series of the area average errors in the top node saturation and
in the soil temperature. The errors shown are root-mean-square errors (rmse) of the prior
and the estimated fields with respect to the true fields. In the legend we also indicate the
time average of the area average rmse's. Note that the soil moisture errors are in terms of
the relative saturation, which varies between zero and one. In order to derive the errors in
terms of volumetric moisture percent, the numbers have to be scaled with the porosity. For
reference, the area average porosity is 0.46.

It is obvious that on average the estimated saturation fields are much closer to the truth
than the prior fields. This again confirms that there is enough information in the brightness
observations to infer the true initial condition for the saturation. Another interesting feature
of Figure 6.4 is how the error of the estimate varies with time. In particular, the error
decreases each time it rains. In other words, precipitation events tend to wipe out the
memory of the system including errors.

Note that the errors in the soil temperature estimates are unrealistically small, because
the experiment was not designed to test the soil temperature estimate thoroughly. In brief,
the soil temperature initial condition was assumed perfectly known, and there was only a
small uncertainty in the forcing of the soil temperature equation. These constraints lead to
an overly optimistic estimate of the soil temperature if compared to field conditions.

It is important to point out why the area average prior saturation error in Figure 6.4
decreases with time. This is due to the specific setup of Reference Experiment I. In this
particular setup, the initial condition becomes unimportant after some time because of the
nonlinearity of the system. If, for instance, we start from too wet an initial saturation,
then the evapotranspiration will also be higher than in the true case, therefore reducing the
difference between the prior and the true fields with time. Conversely, if we start too dry,
then evapotranspiration will be suppressed, and the prior will again edge towards the truth.
Since in this experiment we use the same model and the same micro-meteorologic forcings
for the generation of the (synthetic) true field and for the estimates, and since we only have
a small model error, we know that the prior, the estimate, and the true fields must finally
converge.

If this setup were to hold true in nature, we could indeed reasonably well estimate the
saturation at the final time without a complex assimilation algorithm, in fact we could
even do without the brightness data. In reality, however, we will of course never know the
model physics and the forcings well enough to rely on this naive idea. Nature will always be
much more complicated than our models, and we will need to estimate the initial condition
over and over again. The important point for the interpretation of Reference Experiment I
is therefore to look at how well we are doing in estimating the initial condition. Clearly,
we can much improve the prior trajectories and we can estimate the initial condition to
satisfying accuracy if we assimilate the brightness observations.
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Figure 6.4: Area average errors for Reference Experiment I. The root-mean-square
errors (rmse) of the prior and the estimated top node saturation and soil temperature
with respect to the (synthetic) true fields are shown. In the legend we also indicate
the temporal average of the area average rmse. Note that the soil moisture errors are
in terms of saturation. To derive the errors in terms of volumetric moisture percent,
the numbers have to be scaled with the porosity. The area average porosity is 0.46.

Obviously, the assimilation greatly improves the errors in the top node saturation over
the prior errors. Note that this experiment is not designed to test the soil temperature
estimate. Also note that the decrease in the prior rmse is an artefact of the setup of
Reference Experiment I (see text).
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6.1.3 Profile Estimation and Validity of the Land Surface Model

For all subsurface nodes, we get the same excellent estimates as for the surface node (see
Figure 6.14 for Reference Experiment II in Section 6.2.1). However, the fact that the profile
estimates are this good does not in itself mean that the profile information is necessarily
contained in the brightness observations. Indeed, recall that the shape of the initial con-
dition profile is fixed as hydrostatic in both the generation of the true solution and in the
assimilation. Moreover, in our ideal setup we use the same hydrologic model for the gener-
ation and for the estimation of the true fields. Finally, by using only a small model error
in the top flux boundary condition, we assume an almost perfect model. For these reasons
we naturally get excellent results for the profile estimates.

Whether subsurface information can in fact be retrieved from measurements related to
the states in the top few centimeters is mostly determined by the accuracy and the physical
realism of the land surface model. Without assimilating measurements that are directly
related to the subsurface states, the only way information can be propagated to the deeper
soil is via the hydrologic model. However, the time scales for the evolution of the profile are
longer than the intervals that could reasonably be covered by a single assimilation window.
Consequently, experiments to show the benefit of brightness assimilation for the estimation
of the saturation profile depend on the successful development of an operational framework
for soil moisture data assimilation.

Experiments to test the validity of the profile estimates could be verified with inde-
pendent observations of the subsurface states. But the meaning of the large-scale (surface
and subsurface) saturation is itself not obvious, considering that each pixel covers an area
the size of tens of square kilometers. Certainly one cannot expect to go out to the field
and verify the estimates with point measurements of the profile saturation. The large-scale
saturation profile may rather be understood as an aggregate measure of how much water is
stored at depth across the pixel. Such a vertically distributed and nonlinear reservoir may
be used to determine how the land surface interacts with the atmosphere. In other words,
the reservoir may tell us how much large-scale evapotranspiration and how much large-scale
infiltration can be sustained by the land surface.

But suppose that we assimilate brightness data for a long time in an operational fashion.
After enough time has elapsed, the posterior data residuals will show whether the subsurface
dynamics of the hydrologic model and the prior statistics are consistent with the data. If
this is the case, we have proof that the land surface model captures the multilayer subsurface
reservoir and its feedback onto the surface states with reasonable accuracy. We can then
interpret the saturation profiles in the manner suggested. If, on the other hand, the posterior
data residuals remain biased or have structure even after months of assimilation, the model
turns out not to be adequate in its description of land surface dynamics. In this case, we
would have learned something about land surface dynamics. The assimilation then prompts
us to go back and improve the hydrologic model accordingly.

6.1.4 Reduced Objective Function

Variational data assimilation is based on minimizing an objective function. Consequently,
it is important to closely examine the value of the objective. Figure 6.5 shows the prior
and the reduced objective as a function of the iteration on the tangent-linearization. In the
first iteration, the objective function decreases significantly from its prior value of 31,749 to
6705. Unlike in a gradient search, the objective function need not decrease monotonically
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Figure 6.5: Objective function versus iteration number for Reference Experiment I.
The reduced objective function after convergence is 6151. The number of data points
is 6144, which is also the expected value of the reduced objective function. The stan-
dard deviation of the reduced objective function is 111. The values of keg indicate
the number of linear combinations of representer functions that needed to be eval-
uated during the conjugate gradient iteration of the indirect representer approach
(Chapter 8).
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with the number of iterations. In fact, upon closer inspection we see that the reduced

objective equals 6132 after the second iteration, 6120 after the third iteration, 6150 after the

fourth iteration, and finally 6151 after convergence. During the first iteration, the linearized

trajectory is adjusted to a first-cut estimate using all observations. Had the problem been

linear from the outset, we would have been done after this first iteration. During the

remaining iterations, the assimilation algorithm mainly ensures that the estimate obeys the

nonlinear state equation by making small corrections to the estimated trajectory. In other

words, during the early iterations the estimates are not yet dynamically consistent, and the

value of the objective function may decrease or grow while dynamic consistency is achieved

during the iteration process.

Note that the final reduced objective function J 6151 compares well with the expected

value of i = 6144, which is equal to the number of data points (Section 2.3.6). The standard

deviation of the objective function in this case is cj = 111. Since the errors were generated

synthetically with perfectly known covariances, and since the true fields were generated

with the same model that is used in the inversion, the reduced objective must by design

indicate consistency of the prior assumptions with the (synthetic) data. This is an important

validation step in the practical implementation of the algorithm.

6.1.5 Posterior Data Residuals

After the estimates have been derived, it is advisable to also take a close look at the posterior

data residuals. The data residuals are the difference between the estimates of the measured

quantities and the observations (Equation (2.32), Section 2.4). For an optimal estimate,
the residuals must not show spatial or temporal patterns, that is they ought to be white in

space and time. Moreover, their distribution should be close to normal with a mean of zero.

If all of the above holds true, we can assume with reasonable confidence that the estimation

process was optimal.

First, we examine the mean values (Figure 6.6). For all of the twelve individual residual

brightness images that have been assimilated, we find a mean whose 95% confidence interval

includes zero. But the mean for all residuals with a 95% confidence interval is 0.14 0.12K,
which does not include zero. Indeed, Figure 6.6 suggests that there is a slight positive bias.

The fact that the sample mean of all residuals is not compatible at 5% significance level

with the hypothesis of a zero mean could just be a spurious statistical fluctuation of the

given realization. But the effect is more likely to have its origin in the nonlinearities of the

hydrologic model. We will return to this point below when we test for normality. Note that

the residuals of Reference Experiment II do not show this bias (Section 6.2).

Before further investigating the posterior data residuals, it is best to standardize them.

Ideally, this is done with the posterior error covariance of the data residuals (2.37). However,
computational limitations prohibit the exact calculation of this quantity. We therefore

normalize with the sample standard deviation of the data residuals. The sample standard

deviation of the residuals of the individual images varies between 4.4K and 5.1K. The

sample standard deviation for all residuals is 4.8K. Recall that the measurement error

standard deviation is 5K.

Figure 6.7 shows the posterior data residuals for all twelve brightness images that have

been assimilated in the experiment. The residuals of each image are standardized with the

sample mean and standard deviation of the corresponding observation time. The residuals

show no obvious spatial structure, which indicates that the estimation algorithm works
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sample mean TB residuals with 95% confidence intervals [K]

Figure 6.6: Sample mean values of the posterior data residuals for Reference Exper-
iment I. The mean residuals for the twelve images that have been assimilated are
shown together with the 95% confidence intervals. Even though the confidence inter-
val for each of the images includes zero, the confidence interval for the sample mean
of all images does not. This is likely due to the nonlinearities in the hydrologic model.

108

6 8 10 12
observation time

24



M 2

1201

0 1-2

obs time 9 obs time 0 obs time 1 obs time 1

122

Ea

- 80 0

40-1

0 -2

obs time 5 obs time 6 obs time 7 obs time 8 .

160 m maan 2

12011

80 a 0

Freul show Stnoadie obvosteil stuctresichal indicatrees thaxtereimtIfon algothmlv

works optimally.

109

obs time 1 obs time 2 obs time 3 obs time 4



normalized TB residuals

Figure 6.8: Standardized posterior data residuals for Reference Experiment I at three

observation pixels from different areas within the domain. The residuals have no
obvious temporal correlation, which indicates that the estimation algorithm works
optimally.

optimally. Likewise, Figure 6.8 shows the time series of the data residuals for three pixels
from different regions of the domain. The posterior data residuals also show no obvious
temporal correlation. A test for whiteness using the autocorrelation function [Jenkins and
Watts, 1968] confirms this result, but it must be noted that the short length of the time
series defies an accurate statistical assessment.

Finally, Figure 6.9 shows the sample cumulative distribution functions (cdf) of the stan-
dardized posterior data residuals for two brightness images. For comparison, we also show
the theoretical cumulative distribution function of the standard normal distribution. We can
test the posterior residuals for normality with the Kolmogorov-Smirnov test [Benjamin and
Cornell, 1970]. In brief, the Kolmogorov-Smirnov test compares the maximum difference
between the sample cdf and the assumed theoretical cdf.

For two out of the twelve observation times, we must reject the hypothesis of a normal
distribution of the data residuals at a 5% significance level. The upper panel of Figure 6.9
shows the sample cdf at the second observation time, for which we must reject the normality
hypothesis. In contrast, the lower panel shows the sample cdf of the residuals at the tenth
observation time. Here, the hypothesis of a normal distribution is not inconsistent with
the data. Since the model and the statistics used for the generation of the (synthetic)
true fields and for the estimation are identical in this experiment, and since the assimilation
algorithm used is optimal in the linear case, we must attribute the deviation from normality
to the nonlinear effects. Given the strong nonlinearities in the land surface model and in
the measurement operator, it is not surprising that the posterior data residuals are not
perfectly normally distributed.
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Figure 6.9: Sample cumulative distribution function (cdf) of the standardized poste-

rior data residuals for Reference Experiment I for two of the twelve brightness images

that have been assimilated (solid line). Also shown is the theoretical cumulative dis-

tribution function of the standard normal distribution (dashed line). For both images,
the sample cdf is close to normal. However, the residuals at the second observation

time do not pass the Kolmogorov-Smirnov test for normality at a 5% significance

level. The data residuals for one other observation time out of twelve also fail this

test. We attribute the deviation from normality to the nonlinearities in the hydrologic

model and the measurement process.
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6.1.6 Adjoint Variables

Figure 6.10 illustrates the temporal behavior of the adjoint variables. Time series of the
adjoint saturation and the adjoint soil temperature are shown for a representative pixel. For
comparison, we also plot the time series of the estimated brightness temperature together
with the (synthetic) observations. Note that in this experiment the observation pixels and
the estimation pixels coincide.

The forcing of the adjoint equation only consists of impulses at the observation times
(2.15). These impulses are proportional to the misfits between the observed and the esti-
mated brightness temperature. They are also proportional to the sensitivity derivative of
the brightness temperature with respect to the corresponding state variable. Starting from a
final condition of zero at the end of the assimilation interval (day 183), the adjoint equation
is integrated backward in time. The adjoint therefore equals zero until, going backwards
in time, we hit the last measurement time (day 181.6). At the last measurement time,
the misfit between the observed and the estimated brightness is negative for this particular
pixel. Since the soil saturation is inversely correlated with the brightness temperature, that
is BTB/OW < 0, the negative data misfit leads to a positive impulse for the adjoint satu-
ration. The opposite is true for the adjoint soil temperature. Further integration backward
in time causes the adjoint states to decay and grow exponentially according to the model
physics while they are repeatedly forced with data misfit impulses at observation times.

In Figure 6.10 we can also observe how the brightness misfit forcing affects the saturation
profile. Since the brightness temperature directly depends on the saturation in the top two
nodes at Ocm and -5cm via the top layer microwave emissivity and via the heat capacity, the
misfit forcing impulse leads to instantaneous effects in the corresponding adjoint saturation
components. In contrast, the lower components of the saturation do not directly influence
the brightness temperature. Therefore, the adjoint saturation of the lower nodes only
experience a delayed effect after the misfit forcing has been propagated downward through
the (adjoint) model physics.

Finally, Figure 6.10 also illustrates the much longer memory of soil moisture compared
to soil temperature. After each measurement time, the adjoint soil temperature decays
(backwards) to zero within twelve hours, whereas the adjoint saturation does not reach zero
before the misfit impulse at the next earlier measurement time comes in.

6.2 Reference Experiment 1I

To complement Reference Experiment I of Section 6.1, we now present another synthetic
experiment using different error statistics for the uncertain parameters and a different re-
alization, that is a different seed for the random number generator. The focus of Reference
Experiment II is on the model error. Unless otherwise stated, the inputs for this experiment
are the same as for Reference Experiment I. The initial condition is still uncertain, but with
somewhat reduced variance compared to Reference Experiment I. For this experiment, the
initial top node saturation varies between 0.3 and 0.65 (Figure 6.11). The sample mean is
0.52 and the standard deviation is 0.07. The correlation length for the initial saturation is
still 50km, and the initial saturation profiles are again hydrostatic.

The structure of the model error is the same as in Reference Experiment I, but the
standard deviations are drastically increased. The standard deviation for the top moisture
flux condition is now the equivalent of 50W/m 2 in latent heat flux. Likewise, the standard
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Figure 6.10: Adjoint variables for Reference Experiment I. The top panel shows the esti-

mated brightness temperature for a representative observation pixel along with the (syn-

thetic) observations. Note that for this experiment, observation and estimation pixels coin-

cide. The second and the third panels show the adjoint saturation for the upper three nodes

and the lower four nodes, respectively. The last panel shows the adjoint soil temperature.

The adjoint equation is solved backward in time starting from zero at the final time (day

183). It is forced at observation times with the misfit between the observations and the es-

timates of the measured brightness temperatures. If the observed brightness temperature is

higher than the estimated brightness, the saturation adjoint variable will be forced towards

negative values, because the brightness temperature increases with decreasing saturation.

The opposite is true for the adjoint soil temperature. Note how the upper two nodes of

the adjoint saturation at Ocm and -5cm are directly and instantaneously influenced by the

data misfit forcing, while the rest of the nodes experience the forcing with a delay when the

shock is propagated through the model physics.
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deviation of the forcing terms in the force-restore equation and in the canopy energy balance
equation is set to 50W/m 2 . Moreover, the horizontal correlation of the model error has been
increased to 6km. This implies that the model errors are correlated over a few neighboring
pixels. This correlation increases the share of the process noise update to approximately
25% of the total CPU time (Section 8.1.2).

From the new realizations of the uncertain parameters we again derive (synthetic) true
fields and (synthetic) brightness data. The 5km resolution of the estimation and the ob-
servation pixels is unchanged, and we again use twelve brightness images (Figure 6.2 and
Section 6.1).

6.2.1 Estimation of the True Fields

Figure 6.11 shows the true, the prior, and the estimated top node saturation for Reference
Experiment II at six different times during the two-week period. As in Reference Exper-
iment I, the soil moisture estimates are greatly improved through the assimilation of the
brightness data. In Figure 6.12 we plot the area average errors in the top node saturation
with respect to the true fields. The time and area average error is now 2.9% in saturation,
compared to 1.4% in Reference Experiment I. This loss of quality in the estimate can be
attributed to the much stronger model errors.

The strong model error is also responsible for the rapid increase of the error in the
estimates at the end of the assimilation window. The last brightness image is assimilated
on day 181.6 (Figure 6.2). After this time, we essentially forecast the top node saturation,
which is of course very difficult to do with such strong model errors. Note that for this
experiment the area average prior error does not decrease over the two-week period. Since
we continuously add strong model error, the prior fields will not converge artificially to the
truth. Reference Experiment II therefore describes a much more realistic scenario.

The lower panel of Figure 6.12 shows the area average root-mean-square errors of the
prior and the estimated soil temperature. The stronger model error in the force-restore
equation leads to a higher area average prior soil temperature error of 1.6K compared to
0.37K in Reference Experiment I. Moreover, the estimate is only a slight improvement over
the prior guess, because L-band brightness temperature observations once a day are too
infrequent compared to the short memory of soil temperature.

Figure 6.13 examines the estimate of the model errors. For a representative pixel, we
plot the estimate, the prior, and the true model error time series. For comparison, we also
show the 24 hour moving average of the true model error. Recall that the prior model error
is zero. The top panel of Figure 6.13 shows the model error estimate for the moisture flux
upper boundary condition. While the true model error correlation time is 10 hours, we
only assimilate brightness updates once per day. Therefore the estimate is necessarily much
smoother than the true time series. But if we compare the estimate to the 24 hour moving
average of the true model error, we see that the estimate is in fact quite good.

As shown in the second panel of Figure 6.13, we get a poorer estimate for the model
error in the soil energy balance. For the model error in the canopy energy balance, shown
in the third panel, we do even worse. Obviously, the daily L-band brightness images do not
contain much information on the canopy states. Although we have only plotted the results
for a single pixel, we reach the same conclusion when we look at all pixels. Finally note
that all model error estimates vanish after the last observation time plus one correlation
time (day 181.6 plus 10 hours). The observations do not contain any information on times
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Figure 6.11: Top node saturation for Reference Experiment II. The first row shows the true
top node saturation at six different times during the assimilation interval. In the second and
third rows the prior and the estimate of the top node saturation, respectively, are depicted
for the same six times.

115

0.6

0.5

0.4

0.3

0.2

0.6

0.5

0.4

0.3

0.2

0.6

0.5

0.4

0.3

0.2



area average error (rmse)

6 0.02 - -...

0

C

170 172 174 176 178 180 182

2.2 - - est (rinse = 1.57K)
-- prior (rinse = 1.61K)

0

170 172 174 176 178 180 182
day of year

Figure 6.12: Area average errors for Reference Experiment II. The root-mean-square
errors (rnse) of the prior and the estimated top node saturation and soil temperature
with respect to the (synthetic) true fields are shown. In the legend we also indicate
the temporal average of the area average rinse. Note that the soil moisture errors
are in terms of saturation. Obviously, the assimilation greatly improves the errors in
the top node saturation over the prior errors. On the other hand, daily brightness
observations are not enough to improve the prior guess of the soil temperature by
much.
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Figure 6.13: Model errors for Reference Experiment II. The estimated, the prior, and the
true model errors for a representative pixel are shown. For comparison, we also plot the 24
hour moving average of the true time series. The upper panel shows the model error in the
upper moisture flux boundary condition. Considering the difference in time scales between
the true model error variability and the frequency of the brightness data, we get a very
good estimate. In contrast, we have somewhat less skill in estimating the model error in
the soil energy balance (second panel). We do even worse on the model error in the canopy
energy balance (third panel).
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that are further into the future.

For the subsurface nodes, we again get the same excellent estimates as for the surface
node. To illustrate this point, Figure 6.14 shows the estimated, the prior, and the true profile
saturation for a representative pixel. However, the limitations discussed in Section 6.1.3
still apply. In summary, we get an overly optimistic profile estimate because we use a fixed
shape for the initial profile and because the assimilation window is too short for significant
divergence to occur between the shape of the prior and the true profiles.

6.2.2 Reduced Objective Function and Posterior Data Residuals

Figure 6.15 shows the reduced objective function versus the iteration number. The con-
verged value of the reduced objective is 5985 and lies within 1.5 standard deviations from
the expected value of 6144. From the reduced objective function we have therefore no
indication that the assimilation was not optimal.

Finally, a close look at the posterior data residuals yields qualitatively the same results
as for Reference Experiment I (Figures 6.7, 6.8, and 6.9). The raw mean for all residuals
with a 95% confidence interval is 0.04 ± 0.11K. For all but one of the residual brightness
images we find a mean whose 95% confidence interval includes zero. The slight bias observed
in the Reference Experiment I is absent here. The residuals are uncorrelated in space and
in time, but the residuals of the individual images are not exactly normally distributed. We
can again attribute this deviation to the nonlinear nature of the problem.

6.3 Downscaling Experiments

We now investigate the downscaling capability of the assimilation algorithm. As outlined
in Section 4.7, we can effectively increase the resolution of the brightness images by making
use of the fact that the inputs to the hydrologic model are available at a finer scale. The
additional information is implicitly deduced from our knowledge of soil and land cover
parameters as well as from the meteorologic forcings.

In the downscaling experiments, we use the same setup as in Reference Experiment I.
In particular, we continue to estimate the land surface states at 5km resolution. In contrast
to the reference setup, we now generate brightness observations at resolutions of 10km and
20km, respectively. In the former scenario, each observation pixel contains four estima-
tion pixels. Consequently, we call this setup the (1:4) downscaling scenario. In the case
of brightness observations at 20km resolution, there are 16 estimation pixels within each
observation pixel, and we call this setup the (1:16) downscaling scenario.

6.3.1 Estimation of the True Fields

In Figure 6.16, we compare the estimates of the top node saturation for both downscaling
scenarios. For comparison, the true and the prior top node saturation are shown in the first
two columns. All columns depict the saturation fields for the same three times during the
experiment. For each downscaling estimate, we also show the outline of the corresponding
observation pixels.

In both downscaling scenarios, the algorithm can adequately estimate the large-scale
spatial distribution of the saturation. More importantly, structures at scales well below
the scale of the observations can be resolved satisfactorily (Figure 6.16). This means that
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Figure 6.14: Profile saturation for Reference Experiment II. The true, the prior, and

the estimated profile saturation are shown at six different times during the assimilation

interval. Note that the profile estimates are overly optimistic because of the setup of

the synthetic experiment.
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Figure 6.15: Objective function versus iteration number for Reference Experiment II.
The reduced objective function after convergence is 5985. The number of data points
is 6144, which is also the expected value of the reduced objective function. The stan-
dard deviation of the reduced objective function is 111. The values of k,9 indicate
the number of linear combinations of representer functions that needed to be eval-
uated during the conjugate gradient iteration of the indirect representer approach
(Chapter 8).
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Figure 6.16: Top node saturation for the downscaling experiments. The first column shows
the true top node saturation at three different times during the assimilation interval. In
the second column, the prior top node saturation is depicted for the same three times. In
columns three and four, the estimated top node saturation is shown for downscaling ratios
of (1:4) and (1:16), resp. In the (1:4) scenario, each observation pixel covers four estimation
pixels. The observation pixels are drawn with solid grid lines. The assimilation algorithm
is clearly capable of capturing structures that are finer than the scale of the observations.
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Figure 6.17: Area average errors for the downscaling experiments. The root-mean-

square errors (rmse) in the estimated top node saturation with respect to the (syn-
thetic) true fields are shown for Reference Experiment I (1:1) and two downscaling
scenarios. The prior error is shown in Figure 6.4. In the legend we also indicate the
temporal mean of the area average rmse. Note that the soil moisture errors are in
terms of saturation (see Figure 6.4). As expected, the errors increase with decreasing
resolution of the brightness data, but even for the coarser brightness images (1:16),
the errors are still acceptable. The decrease with time in the errors of the two down-
scaling scenarios can be explained in the same way as the decrease in the prior error
of Figure 6.4 (Section 6.1).

brightness images with resolutions of a few tens of kilometers are definitely useful even if the
scale of interest is on the order of a few kilometers, provided we have fine-scale information
on the micro-meteorologic forcings and on the model parameters.

Figure 6.17 offers a complementary view by showing time series of the area average top
node saturation errors for all downscaling scenarios. The (1:1) downscaling scenario cor-
responds to Reference Experiment I of Section 6.1. Spatio-temporal averages of the errors
are given in the legend. Note again that the errors are in terms of the saturation (see
Figure 6.4). As expected, the area average error in the top node saturation increases with
decreasing resolution of the brightness data. Even for the coarser (1:16) downscaling sce-
nario, the root-mean-square error is always below 0.07, which translates into approximately
3% volumetric soil moisture. Of course the experiments so far have been assimilation ex-
ercises under ideal conditions, and the numbers are subject to change when field data are
assimilated.

Finally, Figure 6.18 shows the reduced objective function for both downscaling scenarios.

In both cases, the reduced objective function lies within about 1.5 standard deviations from

the expected value. This confirms that the algorithm is working properly under the ideal
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Figure 6.18: Objective function versus iteration number for the downscaling experi-

ments. The upper and lower panels show the objective for the (1:4) and the (1:16)

downscaling experiments, respectively. The reduced objective function after conver-

gence is 1464 and 342, respectively. The number of data points is 1536 (384), which

is also the expected value of the reduced objective function. The standard deviation

of the reduced objective function is 55 (28). The values of kcg indicate the number of

linear combinations of representer functions that needed to be evaluated during the

conjugate gradient iteration of the indirect representer approach (Chapter 8).
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conditions of these experiments.

6.3.2 Determining the Horizontal Resolution

Ideally, we would like to determine the horizontal resolution of the model and hence of
the estimation pixels only according to the availability of the model inputs such as the
micro-meteorologic forcings or the soil and land cover parameters. In practice, however,
the model resolution will also depend on the resolution of the brightness images, as well
as on the computational feasibility. If we only get brightness data at 50km resolution,
then it probably does not make much sense to work with a model resolution below 10km.
Clearly, a brightness average over 50km will have very little additional information when
assimilated into a model of 1km resolution, and the assimilation procedure would effectively
return the prior fields as the best estimate. Moreover, the computational effort increases
with increasing resolution of the model (Section 8.2.2). Even if the model parameters are
available at a very fine resolution, we may not be able to afford this fine a model resolution
when we carry out the assimilation.

6.4 Satellite Repeat Cycle Experiments

6.4.1 Motivation and Experiment Design

Another question of practical relevance is the sensitivity of the estimates to the satellite
revisit frequency. Since L-band microwave sensors require rather large antennae, and since
the antenna size to achieve a given horizontal resolution increases with increasing orbit
height, only polar orbiting satellites can be equipped with such sensors. This implies the
disadvantage of a rather long revisit interval, which is typically on the order of three to four
days for one polar orbiting satellite. By installing sensors on a few satellites, the repeat
cycle may be somewhat reduced. However, with current technology and funding, a repeat
cycle of one day, that is one image per day, appears to be the best one can hope for.

The most important factor determining soil moisture is certainly precipitation. But
provided we have good observations of precipitation, most of the uncertainty in the soil
moisture stems from poor knowledge of the initial condition and of the land surface fluxes.
Now consider that soil moisture has a relatively long memory compared to soil temperature
and other land surface variables. We can therefore hope to estimate the initial condition
with rather infrequent observations, and therefore remove some of the uncertainty in the
soil moisture estimates. The question is then how much the uncertainty in the land surface
fluxes affects the soil moisture estimates. To examine this problem, we have conducted two
experiments in which fewer brightness observations were assimilated.

In the first experiment with a 3-day brightness repeat cycle, only four (synthetic) bright-
ness images at observation times 1, 4, 7, and 10 were assimilated. In another experiment, the
assimilated data were further reduced to a 6-day repeat cycle, and only the measurements
at observation times 1 and 7 were assimilated. See Figure 6.2 for details on the observa-
tion times. Otherwise the setup of the experiments is identical to the setup of Reference
Experiment II. In particular, the repeat cycle sensitivity experiments were carried out with
no downscaling and just one assimilation window covering the entire two-week period.
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Figure 6.19: Area average errors for the repeat cycle experiments. The root-mean-

square errors (rmse) of the estimated top node saturation with respect to the (syn-

thetic) true fields are shown for Reference Experiment II (1-day repeat cycle) and

two experiments with brightness repeat cycles of three and six days. The circles show

the times at which observations are assimilated for each of the three experiments. In

the legend we also indicate the temporal mean of the area average rmse. Note that

the soil moisture errors are in terms of saturation (see Figure 6.4). As expected, the

errors increase with decreasing availability of the brightness data.
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6.4.2 Estimation of the True Fields

Figure 6.19 shows the area average top node saturation errors for the different brightness
repeat cycles. Note again that the errors are in terms of saturation (see Figure 6.4). In the
legend, temporal averages of the area average errors are also given. As expected, the time
and area average error increases as we assimilate fewer brightness images.

At observation times 1 and 7, the errors for all experiments are nearly identical, because
at these times brightness data are assimilated in all three experiments. Moreover, at ob-
servation times 4 and 10, the errors of the 3-day repeat cycle experiment and of Reference
Experiment II are very close, because at these times brightness observations are assimilated
in both experiments. After such shared observation times, however, the error of the 6-day
and the 3-day repeat cycle experiments increases markedly. With observations available
only every three or six days, we cannot expect to accurately estimate the model errors,
which vary on the scale of their correlation time of 10 hours.

Since in all experiments we assimilate brightness data at the first observation time, we
can reasonably well detect the initial condition for all repeat cycles. This explains why
the estimates of all experiments are still much better than the prior trajectory. Even if we
assimilate brightness data only every six days, we can reduce the prior error significantly,
provided of course we have good precipitation data.

If we have only poor measurements of precipitation, the uncertainty in soil moisture will
be dominated by the lack of precipitation information. Since the time scale of variability
of soil moisture is governed by the interstorm periods, the minimum repeat cycle is then
determined by the frequency of rainstorms. In the absence of accurate precipitation data,
we must assimilate brightness observation at least once per interstorm period in order to
get a satisfactory estimate of soil moisture. In Section 7.2, we examine whether it is feasible
to estimate soil moisture even under the extreme condition of not having any quantitative
precipitation data.

Finally, Figure 6.20 shows the reduced objective function for the repeat cycle experi-
ments. In both cases, the value of the reduced objective function suggests that the algorithm
works optimally.
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Figure 6.20: Objective function versus iteration number for the repeat cycle exper-

iments. The upper and lower panels show the objective function for the 3-day and

the 6-day brightness repeat cycle experiments, respectively. The reduced objective

function after convergence is 1901 and 985, respectively. The number of data points

is 2048 (1024), which is also the expected value of the reduced objective function.

The standard deviation of the reduced objective function is 64 (45). The values of ke9
indicate the number of linear combinations of representer functions that needed to be

evaluated during the conjugate gradient iteration of the indirect representer approach

(Chapter 8).
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Chapter 7

Assimilation Under Nonideal
Conditions

In this Chapter, we present the results from a series of synthetic experiments under nonideal

assimilation conditions. By nonideal conditions we generally mean that we use different

inputs or parameters for the generation of the (synthetic) true fields and for the estimation

algorithm. In contrast to the ideal experiments of Chapter 6, nonideal conditions allow us

to subject the assimilation algorithm to harder and more realistic tests.

It is important to note that under nonideal conditions, the assimilation algorithm is not

operating optimally in the strict sense of the word. Even in the ideal cases of Chapter 6, the

nonlinearities in the hydrologic model and in the measurement equation lead to distortions

in the normality of the error distribution functions, thus limiting our chances to conduct a

fully optimal assimilation. In the nonideal scenarios, however, we explicitly specify wrong

error models, which is what we do involuntarily in any field application. The resulting

estimation procedure must therefore be suboptimal.

This argument appears to be contradicting our initial goal to develop a truly optimal

assimilation algorithm. If the algorithm will always be suboptimal, why not use a simple

and fast scheme like Optimal Interpolation right away? But recall that Optimal Interpola-

tion is not optimal even in the ideal linear case unless we manage to come up with the exact

(time-dependent) state error covariances at each update, which is quite impossible in prac-

tice. In contrast, the representer algorithm only requires the covariances of the uncertain

parameters, which are much easier to specify. By using the representer algorithm, which is

truly optimal in the ideal linear case, we will arguably get estimates that are much closer

to the truth.

In the following experiments, we address three topics which are of major importance for

the development of an operational soil moisture data assimilation system. First, we inves-

tigate the quality of the estimates when multiple assimilation windows of variable length

are used (Section 7.1). This also raises the question of how we can reinitialize the varia-

tional algorithm in subsequent assimilation windows. Second, we assess the performance

of the estimation when the observed precipitation data are withheld in the assimilation

(Section 7.2). Finally, we investigate the influence of the soil hydraulic parameters (Sec-

tion 7.3). The computational requirements of the assimilation experiments are discussed in

Chapter 8.
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7.1 Multiple Assimilation Windows

Maybe the biggest advantage of the variational method over sequential techniques is the
implicit and thus cheap propagation of the error covariances. But in an operational setup,
this is also a disadvantage. If we want to use the variational method operationally, we have
to choose appropriate assimilation windows and, most importantly, we have to reinitialize
these windows repeatedly. In particular, we need to calculate the posterior state error
covariance at the final time of the assimilation window such that we can use it as the prior
initial condition covariance for the subsequent window. Unless we can exactly compute
the posterior state error covariance, we are likely to end up with a suboptimal algorithm.
Unfortunately, the cost of providing accurate posterior state error covariances is prohibitive,
even if we are only interested in the posterior covariances at the final time.

In practice, however, this does not necessarily mean that we are going to do very poorly
even if we cannot reinitialize the assimilation windows optimally. Since the exact error
covariances are implicitly propagated in the variational method, a suboptimally specified
initial error covariance may evolve into the optimal error covariance after some time. This
means that we should specify the assimilation window such that the observation time is
near the end of the window. The wrongly specified initial error covariance will then be
implicitly propagated for some time, and the error introduced at the initial time will have
less impact.

This is also how we would want to proceed from a practical point of view. As soon as
a brightness image becomes available, we would like to improve our estimate of the current
soil moisture conditions in order to issue a forecast. We would then specify an assimilation
window that starts some time in the past and ends at the current time. Of course we are
not limited to having just one observation time within the assimilation window. Ideally,
we would like to assimilate many past observations, although in practice we are certainly
limited by the computational burden that this entails.

Since soil moisture variability is foremost governed by rain, it appears to make sense
to take the precipitation history into account when choosing the assimilation windows. As
strong rain events tend to wipe out the soil moisture variability at least near the surface,
a natural choice is to use assimilation windows that coincide roughly with the interstorm
periods. This should also make it easier to estimate the initial saturation.

7.1.1 Experiment Design

We now present the results of three experiments which differ in the choice of the assimilation
windows covering the two-week experiment period. The temporal setup is illustrated in
Figure 6.2. In experiment A, we use three assimilation windows that roughly coincide
with the interstorm periods. In the other two experiments, we cut the two-week period
into twelve short assimilation windows, each of which contains one observation time. For
experiment B, we choose the assimilation windows such that the observation time is always
at the end of the window. In experiment C, the assimilation windows are chosen such
that the observation time is at the beginning of the window, with the exception of the
first window. As discussed above, experiment B is the setup we prefer on theoretical and
practical grounds.

All three experiments are based on Reference Experiment II, that is all inputs are the
same unless mentioned otherwise. The reinitialization of the assimilation windows is done in
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an intentionally simple and ad hoc fashion. At the beginning of each assimilation window,
we use the state estimate at the final time of the previous assimilation window to derive the

prior mean of the initial condition parameters as well as the shape of the initial saturation

profile. For the prior covariance of the initial error we use a scaled version of the initial

condition covariance of Reference Experiment II. In particular, the correlation length is

always 50km, regardless of the evolution of the system. The scaling of the covariance was

found necessary to ensure convergence. Using the initial condition uncertainty of Reference

Experiment II for the now shorter assimilation windows appears to lead to poor conditioning

of the representer matrix, and consequently convergence could not always be achieved.

We scale the initial condition variance with a factor depending on the length of the

assimilation window, or equivalently, the number of observation times within the window.

Moreover, the scaling factor also depends on the number of the assimilation window. Ear-

lier windows have a relatively higher initial condition variance. In particular, in the first

experiment the three windows contain (in order) 5, 3, and 4 out of 12 observation times,

and we scale the initial condition covariance of the three windows with 0.63, 0.19, and 0.17,
respectively. In the other two experiments, each window contains exactly one observation

time, and we scale the initial covariance of Reference Experiment II with 0.5/n, where

n,= 1 ... 12 indicates the number of the assimilation window. For example, the initial

condition covariance of the second assimilation window is 0.25 times the initial condition

covariance of Reference Experiment II.

7.1.2 Estimation of the True Fields

Figure 7.1 shows the area average root-mean-square errors (rmse) of the estimated top node

saturation for the three experiments with three and twelve assimilation windows, together

with the rmse of Reference Experiment II. For experiment A, the time and area average top

node saturation error is 3%, and for experiments B and C the errors are 3.2% and 3.8%,
respectively. These numbers compare to an error of 2.9% in Reference Experiment II. As

expected, the area average error increases as the number of assimilation windows increases.

With each additional assimilation window we introduce more approximations by naively

reinitializing the initial saturation covariance.

Certainly the most interesting result, however, is the difference in the errors of ex-

periments B and C. This difference illustrates the impact of the implicit error covariance

propagation in the variational scheme. In experiment B, the choice of the assimilation

windows lets the initial error covariance evolve dynamically for almost 24 hours before the

observation time. In experiment C, by contrast, the poorly specified initial error covariance

is propagated for only a couple of hours before the observation time. The update therefore

relies on a crude approximation of the error covariance, which results in poorer estimates.

Note that experiment C corresponds closely to an Optimal Interpolation scheme, in which

the error covariances are not propagated. In summary, the estimates for Reference Experi-

ment II and for experiments A and B are very similar. This suggests that the suboptimality

introduced by the naive reinitialization is not severe, provided the assimilation windows are

chosen such that the initial error covariance can evolve for at least one day.

7.1.3 Assessing the Optimality of the Estimates

We can further examine the degree of suboptimality by looking at the value of the reduced

objective function. Figure 7.2 shows the reduced objective function after convergence for
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Figure 7.2: Objective function for multiple assimilation windows. The reduced ob-

jective function after convergence is plotted versus the number of the assimilation

window for experiments A (top), B (middle), and C (bottom). The expected values,
which equal the number of data assimilated in the window, are also shown. The error

bars around the reduced objective are plus/minus one standard deviation, which is

equal to the square-root of twice the number of data assimilated. For experiment A,
the reduced objective function does not necessarily indicate suboptimal assimilation.

Experiments B and C, however, are clearly suboptimal.
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each assimilation window. We also show the expected value of the reduced objective func-
tion, which equals the number of scalar data that have been assimilated in each window.
The standard deviation of the reduced objective function is indicated with error bars.

For experiment A, the reduced objective function of the three assimilation windows lies
within one standard deviation from the respective expected values. Even though all three
values are above the expected value, the reduced objective function does not necessarily
indicate that the assimilation was suboptimal. For experiment B, eight out of twelve values
of the reduced objective function are more than one standard deviation above the expected
value, and all but one of the values lie above the expected value. This hints at the fact that
the assimilation was not optimal. Clearly, the assimilation of experiment C must have been
suboptimal.

An investigation of the posterior data residuals yields roughly the same results as for
Reference Experiment II. The residuals are white in time and the hypothesis of a normal
distribution cannot be rejected in almost all cases. For experiments A and B, the residuals
show no obvious spatial patterns. Only the residuals of experiment C exhibit a weak spatial
structure (not shown). In summary, using shorter assimilation windows and a relatively
naive reinitialization does not appear to have a significant negative effect on the optimality
of the algorithm, provided the assimilation windows are chosen such as to allow adequate
evolution of the error covariance before observation times.

Finally, we would like to note that the computational effort for experiments A, B, and C
is substantially smaller than for Reference Experiment II. For a more detailed discussion
please turn to Section 8.1.3.

7.2 Assimilation without Precipitation Data

Of all model inputs, precipitation is the one parameter which dominates soil moisture
conditions. At the same time, precipitation is also the input associated with the highest
uncertainty. Precipitation observations from rain gauges are point measurements, and the
interpolation to larger areas is notoriously ill understood. On the other hand, large-scale
precipitation measurements from radar sensors are equally imprecise. The quality of the
soil moisture estimates stands and falls with the accuracy of the large-scale precipitation
data. It is therefore desirable to take a closer look at the sensitivity of the assimilation
algorithm to the precipitation inputs.

7.2.1 Experiment Design

We now present the results of an experiment where the precipitation data are withheld
from the assimilation. The experiment is based on Reference Experiment I (Section 6.1),
and all inputs are the same unless otherwise mentioned. For this experiment, instead of
supplying the observed precipitation time series to the assimilation algorithm, we specify
zero precipitation throughout the two-week period. In order to compensate for the lack of
precipitation in the assimilation, we specify certain times at which the model error in the
upper moisture boundary condition has a very high variance. The times at which such model
error occurs are chosen to be times at which significant area average precipitation has been
observed. Such times can be regarded as precipitation indicators. This is a realistic, albeit
extreme, scenario, because it is fairly easy to detect whether or not there is precipitation,
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Figure 7.3: Area average errors when precipitation is withheld. The errors in the top

node saturation of the estimate, the prior, and the estimate of Reference Experiment I

(Figure 6.4) are shown. The errors are in the root-mean-square sense with respect

to the (synthetic) true solution. In the legend we also indicate the temporal mean of

the area average rmse. Note that the soil moisture errors are in terms of saturation

(see Figure 6.4). Even when quantitative precipitation data are withheld entirely, the

algorithm can estimate soil moisture to good accuracy.

but it is rather difficult to observe the rain event quantitatively. In practice, one would of

course use whatever quantitative precipitation information is available.

Note that the intermittent model error is nonstationary, and in practice we then have

to use a white noise error model to make the noise update computationally feasible (Sec-

tion 4.8). When precipitation is indicated, we set the spatially uniform standard deviation

of the model error in the moisture flux boundary condition equal to 86.4mm/d, which is a

typical area average rain rate at 15min resolution. This is the case for 70 out of 1280 time

steps. At all other times, the white component of the model error has zero variance.

Note that we did not tune the error model to improve the performance of the estimation

algorithm. Moreover, the above error model is of course not the only choice. Many other

error models can be thought up to compensate for the lack of precipitation data in the

assimilation. For example, the model error variance could be horizontally distributed, which

may better capture the strong gradient in rainfall across the domain. Also note that with

the above error model, "negative precipitation" could result from the estimation, that is

the model error could lead to unrealistically high evapotranspiration rates. To prevent this

from happening, the model error could be formulated from the start with a logarithmic

transform.
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7.2.2 Estimation of the True Fields

Figure 7.3 shows the area average top node saturation errors with respect to the (synthetic)
true fields when quantitative precipitation data are withheld from the assimilation. For
comparison, we also show the best estimate of the ideal assimilation run of Section 6.1
(Figure 6.4). Even when all quantitative precipitation information is withheld from the
assimilation, we can estimate the top node saturation to within 3.4% in saturation terms,
compared to 1.4% under ideal conditions. Unlike in the case of the ideal Reference Ex-
periment I (Figure 6.4), the prior error in this experiment increases over the two-week
assimilation window. Since the prior solution does not contain any rain events, the prior
saturation is governed by a single, two-week long drydown. For longer assimilation windows,
the prior saturation error reaches a plateau.

Around precipitation events, the average error in the top node saturation increases some-
what. This follows naturally from the fact that we cannot resolve the temporal structure
of the events from brightness data that are available only once daily. To illustrate this
point, we plot in Figure 7.4 the observed precipitation and the corresponding model error
estimates for three different pixels during the three major precipitation events of the two-
week assimilation window. The three pixels shown in Figure 7.4 are in the southwestern
corner (pixel 100), the center (pixel 398), and the northeastern corner (pixel 412) of the
domain. For the three pixels, the cumulative observed precipitation over the entire two-
week period is 1.6cm, 1.5cm, and 4cm, respectively. The cumulative model error estimates
are 1.6cm, 0.9cm, and 2.8cm. The area average cumulative precipitation is 2.8cm, and the
corresponding area average cumulative model error estimate is 1.6cm.

By using the precipitation indicators we naturally get the overall timing of the storms
right. In addition, we also get reasonable estimates of the volume of the storms from the
brightness observations. It is clear, however, that the detailed temporal structure of the
storms eludes us. Moreover, the model error estimates are generally lower than the observed
precipitation. To understand this, recall that we assimilate brightness data only once a day.
In this case, the nonlinearities in the infiltration and exfiltration processes defy a more
accurate estimate of the volume of the storms. Since the true precipitation is heavier than
the model error estimates, the soil actually gets wetter than estimated, but this also leads to
stronger evaporation and possibly runoff. If the observations are available only some time
after the storm, the difference between the true and the estimated soil saturation at the
observation time is then much smaller than the difference between the model error estimate
and the observed precipitation at the time of the storm, and we cannot distinguish between
the two scenarios.

Note that the increase in the model error estimate with time during blocks of nonzero
estimates is a direct consequence of the whiteness of the model error. If the temporal
correlation of the model error is white, the model error estimates are in essence scaled
version of the adjoint variables. The adjoint variables, in turn, decay backwards in time, as
can be seen for example in Figure 6.10.

7.2.3 Reduced Objective Function and Computational Effort

Figure 7.5 shows the reduced objective function during the iteration. After convergence,
the reduced objective function is 10,907, which is not compatible with an expected value of
6,144. Obviously, our choice of error model does not capture the real error introduced by
withholding all quantitative precipitation information. In fact, the above experiment is only
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Figure 7.4: Model error estimates when precipitation is withheld. Model error estimates for three different pixels during the three

major precipitation events. The pixels 100, 398, and 412 are located in the southwestern corner, the center, and the northeastern corner

of the domain, respectively. By using precipitation indicators, we supply the overall timing of the storms to the estimation algorithm.
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Figure 7.5: Objective function versus iteration number when precipitation is withheld.
The reduced objective function after convergence is 10,907. The number of data points
is 6144, which is also the expected value of the reduced objective function. Obviously,
the estimates do not pass the hypothesis test on the value of the reduced objective
function. The values of kcg indicate the number of linear combinations of representer
functions that needed to be evaluated during the conjugate gradient iteration of the
indirect representer approach (Chapter 8).

138



sample mean TB residuals with 95% confidence intervals [K]

2 4 6 8 10 12
observation time

Figure 7.6: Sample mean of the posterior data residuals when precipitation is with-

held. The mean residuals for the twelve images that have been assimilated are shown

together with the 95% confidence intervals. Very obviously, the mean value of the

posterior data residuals differs from zero.

a crude approximation of a much more sophisticated optimal assimilation procedure. Ideally,
if the precipitation inputs are considered very uncertain, the true precipitation should be

estimated by assimilating the rain data into a suitable model of precipitation processes.

In the future, the current soil moisture assimilation algorithm may be augmented to also

estimate precipitation.

Interestingly, the computational effort for this experiment is only about two thirds of

the computational burden of Reference Experiment I. This stems from the fact that we

changed the prior statistics in order to compensate for the lack of precipitation data. For a

more detailed discussion see Section 8.1.2.

7.2.4 Posterior Data Residuals

A closer look at the data residuals sheds more light on the suboptimal nature of the as-

similation in this experiment. We first examine the mean of the residuals (Figure 7.6).

Unsurprisingly, the mean of all residuals with a 95% confidence interval is -0.43 ± 0.12K,
which does not include zero. Similarly, none of the individual residual brightness images

has a mean whose 95% confidence interval includes zero. Figure 7.7 shows the standardized

posterior data residuals for each of the twelve brightness images that have been assimilated.

Obviously, some of the residual images show spatial structure. This is especially true for

observation time 10, which happens to be during a major rain event in the northern half of

the domain.

Figure 7.8 shows the sample cumulative distribution function (cdf) for two representative
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Figure 7.7: Standardized posterior data residuals when precipitation is withheld for the

twelve brightness images that have been assimilated. The residuals of each image are

standardized with the sample mean and standard deviation of the corresponding observation
time. Some of the residual images show an obvious spatial structure, which indicates that

the estimation algorithm does not work optimally.
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Figure 7.8: Sample cumulative distribution function (cdf) of the standardized pos-

terior data residuals when precipitation is withheld for two of the twelve brightness

images that have been assimilated (solid line). Also shown is the theoretical cumu-

lative distribution function of the standard normal distribution (dashed line). For

observation time 2 (upper panel), the residuals are close to normal and pass the

Kolmogorov-Smirnov test for normality at a significance level of 5%. For observation

time 10, however, the sample cdf is far from normal. The same is true for four other

observation times.
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residual images. For seven of the twelve observation times, the sample cdf is close to normal
and passes the Kolmogorov-Smirnov test at a significance level of 5%. A representative
example is observation time 2, which is shown in the upper panel of Figure 7.8. The lower
panel shows an example of the five observation times for which the residuals are far from
normally distributed. The examination of the brightness residuals thus corroborates that
the assimilation was not optimal.

7.3 Assimilation with Poor Soil Hydraulic Parameters

Inevitably, the success of the estimation procedure depends on the quality of the model
parameters that need to be specified. Many of these inputs, in particular the soil hydraulic
parameters, are rather poorly known. Ideally, one would of course estimate the uncertain
model parameters. Even though the data assimilation algorithm formulated in Chapter 2 is
very general and provides for the estimation of model parameters, we have not implemented
this feature in the synthetic experiments of this thesis for two reasons. First, the state
estimation problem as implemented is already very complicated, and it is certainly wise to
be conservative when specifying the uncertain inputs in a first application. Second, any
hydrologic model that is to be used in an operational assimilation package had better be
well calibrated. Estimating already calibrated parameters may make sense when one tries to
improve the stability of the assimilation algorithm, but it is unlikely to be the most pressing
problem in an operational context. Moreover, the parameter estimate adds significantly to
the computational burden.

7.3.1 Experiment Design

Nevertheless, it is important to understand the sensitivity of the assimilation algorithm to
poorly or wrongly specified model parameters. To address this issue, we have conducted a
synthetic experiment in which we use different soil hydraulic parameters for the generation
of the (synthetic) true fields and for the estimation. The setup of the experiment, including
the (synthetic) true solution, is identical to Reference Experiment I of Section 6.1, with one
exception. For the estimation, we change the soil hydraulic parameters of the land surface
model by assigning the values from soil texture classes that have been randomly sampled
from the existing soil texture classes. The resulting soil texture map is shown in Figure 7.9.
Compared to the original map (Figure 5.3), 361 out of the 512 pixels differ in their texture
classes.

We choose to randomly sample from existing soil texture classes for two reasons. First,
the procedure guarantees that we only work with calibrated and tested input parameters.
Unfortunately, the stability of the Richards' equation solver is fairly sensitive to the soil
hydraulic parameters. Moreover, the scenario is realistic because in general we will have
a good idea what soil texture classes occur in any given area, even though we may not
accurately know their spatial distribution.

7.3.2 Estimation of the True Fields

Figure 7.10 shows the area average errors in the top node saturation of the prior and the
estimate for the texture sensitivity experiment. Also shown is the error of the estimate
from the ideal setup of Reference Experiment I (Figure 6.4). Even for wrongly specified soil
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Figure 7.9: Soil texture classes for the texture sensitivity experiment. This "wrong"

soil texture map has been derived by randomly subsampling from the original soil

texture map (Figure 5.3). Compared to the original map, 361 out of the 512 pixels

differ in their texture classes.

hydraulic parameters, the assimilation algorithm manages to estimate soil moisture satis-

factorily. During precipitation events, however, the error increases. This is directly related

to the fact that we supply wrong soil hydraulic parameters to the assimilation algorithm.

Most of the infiltration happens during rain events, and exfiltration via evapotranspiration

is highest just after the events. But with wrong soil hydraulic parameters, we cannot model

the (synthetic) true moisture fronts accurately. This leads to higher errors during and after

rain events.

Note that using the wrong soil hydraulic parameters leads to a prior error (Figure 7.10)
which is only slightly higher than the error of Reference Experiment I (Figure 6.4), in which

the true texture classes have been used. In Reference Experiment I, we already assume a

very big uncertainty in the initial condition, and the prior rmse is about as big as it can be

under the conditions of the experiment. Since we already know next to nothing about the

initial condition distribution, the prior error does not increase much if we use the wrong

soil hydraulic parameters.

7.3.3 Assessing the Optimality of the Estimates

Finally, Figure 7.11 shows the reduced objective function for the texture sensitivity experi-

ment. The converged value of the reduced objective function is 7023, which is almost eight

standard deviations above the expected value. This follows naturally from the fact that

we use the same error statistics for the generation of the (synthetic) true solution and for

the estimation, even though we changed the soil hydraulic parameters in the assimilation.

143

Soil Texture (wrong)
S
SL
SIL
L

L CL

0 20 Kilometers



area average error (rmse)

-- reference (rmse = 0.014)
0.14 -..-----.. - - est - wrong texture (rmse = 0.024)

.-.- pnor - wrong texture (rmse = 0.099)

- 0.12 - ------..

0.1 -

-0,08 -. ~ -

0.06-

c

ca.0.04 -*-0

0-00

170 172 174 176 178 180 182
day of year

Figure 7.10: Area average errors for the texture sensitivity experiment. The errors
in the top node saturation of the estimate, the prior, and the estimate of Reference
Experiment I (Figure 6.4) are shown. The errors are in the root-mean-square sense
with respect to the (synthetic) true solution. In the legend we also indicate the
temporal mean of the area average rmse. Note that the soil moisture errors are in
terms of saturation.
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Figure 7.11: Objective function versus iteration number for the texture sensitivity

experiment. The reduced objective function after convergence is 7023. The number of

data points is 6144, which is also the expected value of the reduced objective function.

Obviously, the estimates do not pass the hypothesis test on the value of the reduced

objective function. The values of kcg indicate the number of linear combinations

of representer functions that needed to be evaluated during the conjugate gradient

iteration of the indirect representer approach (Chapter 8).
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The change in model parameters leads to additional errors in the model, which are not
adequately described with the original error statistics. This confirms that the assimilation
is not operating optimally in this nonideal case.

On the other hand, a close look at the posterior data residuals yields qualitatively the
same results as for Reference Experiment I (Figures 6.7, 6.8, and 6.9). The raw mean
for all residuals with a 95% confidence interval is 0.13 ± 0.13K. For all but one of the
residual brightness images we find a mean whose 95% confidence interval includes zero.
There is no indication that the residuals are correlated in either space or time. Moreover,
the sample cumulative distribution function for all but one of the residual images passes
the Kolmogorov-Smirnov test for normality. In summary, this indicates that the estimation
process is at least close to optimal.
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Chapter 8

Computational Requirements

Optimal data assimilation has many advantages. Most importantly, we can derive truly

best estimates, and we can assess whether the hydrologic model and our assumptions on

its shortcomings are valid in the sense that they are statistically consistent with the as-

similated data. Unfortunately, the computational burden for optimal data assimilation is

also formidable. In this Chapter, we closely examine the computational requirements of the

representer algorithm.
First, we review the computational demands of the synthetic experiments presented

earlier and of a few more experiments that were not previously discussed (Section 8.1).

Differences in the computational burden are explained and traced back to the design of the

experiments. We then further investigate the computational requirements paying particular

attention to the scalability of the approach (Section 8.2). This includes a review of the

memory requirements and the possibility of parallel processing. Finally, we compare the

computational requirements of the representer approach to other data assimilation methods

(Section 8.3).

8.1 Computational Demands

In summary, the computational burden is influenced by three factors. First, the number of

scalar data that are assimilated chiefly determines how many model integrations we need in

order to derive the optimal estimates. Second, the number of nodes in the hydrologic model

determines the CPU requirements for each model integration. Third, the computational

effort is strongly influenced by the prior statistics and the number and length of the assim-

ilation windows. The first two factors critically affect the scalability of the approach. We

will postpone their discussion until Section 8.2. The last factors are the easiest to isolate,
because it is straightforward to control the number of data and the size of the model. But

they are also the hardest to understand (Section 8.1.2).

8.1.1 Computational Effort for the Synthetic Experiments

Table 8.1 summarizes the computational requirements of the experiments of Chapters 6

and 7 and of a few more experiments which were not presented earlier. The experiments

are partitioned into three groups, according to the reference experiment they are based

on. For the experiments that were presented earlier, we give the Section where a detailed

description of the setup can be found. The other experiments are straightforward variations
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Experiment ideal Ne Nt Nz ka Ekcg N/Ad CPU Noise upd. NAd/Nit
[h] [% CPU] [%]

1 Reference Exp. I Sec. 6.1 yes 512 12 6144 5 902 1819 30.5 3 3.0
2 (1:4) downscaling exp. Sec. 6.3 yes 512 12 1536 3 334 677 11.8 3 7.3
3 (1:16) downscaling exp. Sec. 6.3 yes 512 12 384 3 148 305 5.4 3 13.2
4 3-day repeat cycle t yes 512 4 2048 4 565 1142 20.4 3 7.0
5 6-day repeat cycle t yes 512 2 1024 3 365 739 13.2 3 12.0

6 Rain withheld Sec. 7.2 no 512 12 6144 7 594 1209 20.9 3 1.4

7 Wrong texture Sec. 7.3 no 512 12 6144 4 817 1646 28.5 3 3.3

8 Reference Exp. II Sec. 6.2 yes 512 12 6144 4 439 890 18.0 25 1.8
9 (1:4) downscaling exp. t yes 512 12 1536 3 183 375 7.3 26 4.1

10 (1:16) downscaling exp. t yes 512 12 384 2 78 162 3.3 25 10.5
11 (1:64) downscaling exp. t yes 512 12 96 3 47 103 2.2 27 17.6
12 3-day repeat cycle Sec. 6.4 yes 512 4 2048 4 290 592 11.5 26 3.6
13 6-day repeat cycle Sec. 6.4 yes 512 2 1024 4 234 480 9.8 25 5.9
14 12-day repeat cycle t yes 512 1 512 4 136 284 5.6 25 6.9
15 3 assim. windows At Sec. 7.1 no 512 12 6144 3.4 181 372 6.9 22 0.9
16 12 assim. windows B1 Sec. 7.1 no 512 12 6144 2.8 45 98 2.4 18 0.3
17 12 assim. windows CT Sec. 7.1 no 512 12 6144 2.2 33 73 2.0 16 0.3

18 Reference Exp. Ha t yes 128 12 1536 3 197 403 1.9 20 4.4
19 (1:4) downscaling exp. t yes 128 12 384 3 99 207 0.9 22 8.9
20 (1:16) downscaling exp. t yes 128 12 96 2 36 78 0.4 21 20.0

21 3-day repeat cycle t yes 128 4 512 4 162 336 1.7 18 8.2
22 6-day repeat cycle t yes 128 2 256 3 94 197 0.9 22 12.8
tNo other results from these experiments were presented. ISome entries are averages over the assim. windows.

Table 8.1: Computational effort for the synthetic experiments. The number of estimation pixels is denoted with Nep, the number of
observation times with Nt, the number of scalar data with Nz, the number of outer (tangent-linear) iterations with ktj, and the total
number of inner (conjugate-gradient) iterations with Ekcg. For the number of model integrations we count all forward and backward
runs separately. The total number of model integrations for the indirect representer method is Niint = 3kt, + 2 Ekcg. The CPU time is
measured on a DEC Alpha workstation with a clock speed of 333MHz and does not include I/O and preprocessing. We also indicate
how much of the CPU time can be attributed to the process noise update. In the last column we compare the computational effort of
the indirect representer method with the burden of the direct approach, which requires Ni = ktz(2Nz + 3) model runs.



on the ones presented throughout the thesis. For example, the repeat cycle experiments of

the first group are designed in analogy to the repeat cycle experiments of Section 6.4, except

that they are based on Reference Experiment I. Likewise, the downscaling experiments of

the second group are designed similar to the ones in the first group but based on Reference
Experiment II.

The experiments of the third group are variants of the second group at a coarser scale.

For Reference Experiment Ha, we divide the same computational domain into 8 x 16 = 128
estimation pixels of 10km x 10km each. The prior statistics are the same as in Reference Ex-
periment II, except that we increase the correlation lengths by a factor of two (Section 8.2.2).
Moreover, instead of spatially aggregating the true solution of Reference Experiment II, we

use a different random seed when generating the synthetic true solution. This adds one

more realization to the sparse body of data and helps corroborate the results.

For all experiments of Table 8.1, we indicate whether or not the assimilation conditions

were ideal (Chapter 6). We then list the number of estimation pixels Nep, the number of

observation times Nt, the number of scalar data Nz, the number of outer (tangent-linear)

iterations kti, and the total number of inner (conjugate-gradient) iterations Eke9 , where

the sum is over all outer iterations. We also show the number of model integrations Nid
that are required in the indirect representer method. The last three columns contain the

CPU time, the proportion of the CPU time attributed to the process noise update, and the

percentage of the computational effort required by the indirect representer approach when

compared to the direct method.

The total count for the indirect representer method is Nid = 3kt, + 2Eke, model in-

tegrations, where we count the forward and backward runs separately and equally. For

each outer iteration, we have to compute the representer coefficients with the conjugate

gradient solver in an inner loop (Section 2.3.4). During each of the iterations of the inner

loop, we have to compute one linear combination of adjoint representer fields and one linear

combination of state representer fields, which explains the factor of two in front of Ekcg. In

addition, for each outer iteration we need to calculate the prior trajectory (one integration)

and, after obtaining the representer coefficients, we must finally solve the tangent-linear

Euler-Lagrange equations for the state estimates (two integrations). This is why we need

an additional 3kt, model integrations.

By contrast, for the direct representer approach we need N.[ = ktz (2Nz + 3) model

integrations. During each outer iteration, we calculate the representer matrix by computing

one prior trajectory, Nz adjoint representers, and Nz state representers. Finally, after

obtaining the representer coefficients, we must calculate the estimated adjoint and state

trajectories.

The CPU time is measured on a DEC Alpha workstation with a clock speed of 333MHz.

Note that the CPU times given in Table 8.1 do not include the preprocessing steps and

input/output (I/O) operations. In the current implementation, all inputs and the process

noise are kept in RAM, but the state (or the state representers) must be stored on disk.

Depending on the type of experiment, the I/O operations increase the time for the assimila-

tion by 5 ... 20%, where the higher number is for the experiments with twelve assimilation

windows.
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8.1.2 Computational Effort and Prior Statistics

If we compare the computational requirements of the experiments in the first and in the
second group (Table 8.1), one obvious difference is the proportion of CPU time that goes
into the process noise update. In Reference Experiment I, the model error is weak and the
correlation length is only a fraction of the size of one estimation pixel. Consequently, we
only spend about 3% of the CPU time on the process noise update, or approximately 2s of
CPU time per model integration. In Reference Experiment II, the process noise variance is
much stronger relative to the uncertainty in the initial condition, and, more importantly,
the correlation length of the model error is increased fourfold. We now have to spend about
25% of the CPU time on the process noise update, which is equivalent to spending 18.5s
per model run.

For small correlation lengths, we expect the burden for the process noise update per
model integration to grow quadratically with the increase in the correlation length, because
the convolution integral of the process noise update scales with the number of estimation
pixels that are within one correlation length from any given point. This is compatible with
the numbers given above if we also take boundary effects into account.

Moreover, the actual CPU requirements for the process noise update depend strongly
on how many components we deem uncertain in the problem at hand. Considering that
only one out of four components of the model equations is directly affected by process noise,
and that the horizontal correlation length in Reference Experiment II is only 1.2 times the
side of an estimation pixel, 25% is a significant share of the total computational effort. The
share is so high because the model itself is not horizontally coupled and therefore extremely
computationally efficient. The process noise update, by contrast, provides the horizontal
coupling of the domain.

Despite the increased burden for the process noise, the computational effort for Reference
Experiment II is still much less than for Reference Experiment I, even though the number of
pixels and data is the same for both experiments. Whereas we need more than 30 hours of
CPU time for Reference Experiment I, we only need 18 hours for Reference Experiment II.
This can be explained by considering the condition number of the representer matrix.

Although we never explicitly compute the representer matrix, its condition number does
of course affect the number of iterations needed in the conjugate gradient solver. In brief,
the representer matrix encapsulates the correlation between the measurement predictions
and the states. If there is very little model error, as was the case in Reference Experiment I,
earlier and later brightness observations carry approximately the same information on the
initial condition. As a consequence, the representer matrix is poorly conditioned. Since in
Reference Experiment II the model error is strong, earlier and later brightness observations
contain different amounts of information on the initial condition and on the model error
at a given time. By increasing the model error variance and simultaneously decreasing the
initial condition variance, we effectively improve the condition number of the representer
matrix.

Another interesting comparison is between Reference Experiment I and the assimilation
without precipitation data. Intriguingly, the computational effort for the latter experiment
is only about two thirds of the computational burden of Reference Experiment I, although
we do not supply the rain data to the assimilation algorithm. But by using different error
statistics to compensate for the lack of precipitation data, we effectively improve the condi-
tion number of the representer matrix. Of course, we pay for the withholding of input data
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and the increased convergence speed with a poorer estimate.

In summary, we can say that the prior statistics strongly influence the computational

requirements. Increasing the horizontal correlation length of the model error leads to an

increased computational burden for the process noise update. On the other hand, increasing

the variance of the model error relative to the initial condition variance improves the condi-

tion number of the representer matrix and therefore eases the computational requirements.

8.1.3 Computational Effort for Multiple Assimilation Windows

We also observe a substantial decrease in the computational requirements if we go to multi-

ple but shorter assimilation windows. Cutting the experiment period into three assimilation

windows decreases the CPU time from 18 hours in Reference Experiment II to only 6.9 hours

for experiment A for the entire two-week period. The savings are even more dramatic if we

use twelve assimilation windows. For experiment B we only need 2.4 hours of CPU time.

This decrease in CPU requirements is due to two factors.

First, we need relatively fewer model integrations as we increase the number of assimi-

lation windows. For Reference Experiment II, we need 890 model runs to get the estimate,
whereas in experiments A and B we only need on average 372 and 98, respectively. Second,
the percentage of CPU time that goes into the process noise update decreases from 25% to

22% and 18%, respectively. This reflects the smaller relative importance of the model error

compared to the initial condition uncertainty, because in experiments A and B we estimate

the initial condition for each of the three or twelve assimilation windows. Although the

reinitialization of the error covariances follows a naive scheme and the assimilation in these

experiments is not strictly optimal, the estimates are nevertheless quite close to the optimal

estimates of Reference Experiment II (Section 7.1). For a small sacrifice in optimality, the

savings in computational effort are substantial enough to make assimilation intervals of a

few days attractive in future applications.

8.2 Computational Effort and Scalability

For operational applications, we will have to tackle bigger problems, that is we must assim-

ilate more data into larger domains. It is therefore of utmost importance to understand the

scaling of the computational requirements as we increase the size of the problem. The two

critical factors which determine the scaling are the number of scalar data that are assim-

ilated and the number of nodes in the hydrologic model. In summary, the computational

effort scales roughly with the product of the number of data and the number of estimation

pixels, although the effort appears to grow somewhat less than linearly with the number of

data. What follows is a more detailed discussion of this finding.

8.2.1 Number of Data and Efficiency of the Indirect Representer Method

The scaling of the computational effort with the number of data is closely related to the

efficiency of the indirect representer approach. When we compare the computational burden

of the indirect to the direct representer approach (Table 8.1), it is striking by how much the

computational load is reduced in the indirect method. Typically, the effort for the indirect

method is only a small percentage of what we would need in the direct approach. Of course,
these huge savings come at a cost. The price is the ready availability of the posterior
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Figure 8.1: Computational effort for the ideal assimilation experiments. The top
panels show the CPU requirements as a function of the number of scalar data that are
assimilated. The lower panels show the computational effort of the indirect representer
approach relative to the direct method. Obviously, there is redundancy in the data,
and the computational burden grows less than linearly with the number of scalar
data.

covariance information, which naturally comes with the direct method (Section 2.4). But
this is a small price to pay, because it is certainly unnecessary to compute all of the posterior
covariances at each outer iteration before the estimates are even dynamically consistent. We
may still compute the individual representer fields after convergence has been achieved.

The efficiency of the indirect representer method does have an intuitive physical inter-
pretation. In brief, there are many fewer degrees of freedom in the brightness irnages than
there are scalar data, and the data are effectively compressed. To shed more light on this
intuitive argument, it is helpful to investigate how the computational effort of the indirect
representer method scales with the number of data. For reference, recall that the burden
for the direct method scales linearly with the number of data (Section 8.1.1).

The top panels of Figure 8.1 show the CPU requirements for the three groups of synthetic
experiments versus the number of scalar data. To avoid comparing apples and oranges, we
only plot the ideal experiments of each group. For all three groups, the computational effort
increases less than linearly with the number of data, suggesting that there is redundancy
in the additional brightness observations. Another way to look at the same phenomenon
is to plot the computational effort of the indirect method relative to the direct approach
versus the number of data, which is done in the lower panels of Figure 8.1. We can see that
the relative effort of the indirect method decreases as the number of data increases, again
suggesting that there is relatively less information in the data as their number increases.

For the downscaling experiments, the result is obvious if we look at the spatial correlation
scales of the dominant spatially distributed inputs, namely the soil texture and land cover
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classes (Figure 5.3), the initial condition (Figure 6.3), and the precipitation. For all these

inputs, the horizontal correlation scale is well above the scale of the estimation pixels, leading
to redundant information in the brightness images. This finding confirms our hypothesis
that the indirect representer approach and a priori data compression (Section 2.5) achieve
related computational savings.

For the repeat cycle experiments, this result is not so obvious. From the 6-day repeat
cycle experiment of Section 6.4 it is clear that an excellent estimate of the initial saturation
can be obtained from only two brightness images at observation times 1 and 7. But the
repeat cycle experiments based on Reference Experiment II have a strong model error which
varies on a daily time scale. One would therefore expect that adding more information
by assimilating more brightness images increases the computational effort proportionally.

However, it appears that the brightness observations are effectively compressed in time as
well as in space by the indirect representer method.

Unlike the spatial compression of individual images, such a compression in time is not

straightforward, and it is not obvious whether it could be accommodated within the pro-

posed data assimilation method by an a priori data compression scheme (Section 2.5). This
means that the indirect representer approach is likely to be more efficient in reducing the
computational effort than a priori data compression. But recall that a priori data com-

pression greatly reduces the burden for calculating posterior error covariances (Section 2.5).
Ideally, both schemes should be implemented.

Finally, it is interesting to take a quick look at the number of model integrations that

are needed at each tangent-linear (outer loop) iteration to get the representer coefficients in

the conjugate gradient solver. For Reference Experiment I, Figure 6.5 shows that ke9 = 442

(inner loop) iterations were necessary to derive the representer coefficients in the first (outer

loop) iteration. In the remaining four tangent-linear (outer loop) iterations, on average only

115 such inner loop iterations were needed.

Similar results hold if we look at the other experiments (Figures 6.15, 6.18, 6.20, 7.5,
and 7.11). On average, we only need about half the number of conjugate gradient iterations

for the second and higher (outer) iterations than we do in the first (outer) iteration. This

decrease in the computational burden is due to the much improved initial guess for the

representer coefficients in the conjugate gradient solver. Obviously, we use the estimate for

the representer coefficients from the previous iteration to initialize the conjugate gradient

solver. This means that for nonlinear problems the indirect method is relatively more
efficient (compared to the direct approach) than for linear problems.

8.2.2 Computational Effort, Resolution, and Size of the Domain

As we have seen above, the computational effort increases with the number of model runs

that are required to solve for the estimate. One crucial factor determining the compu-

tational burden of the assimilation is therefore the time it takes to integrate the model

once. Since the model is composed of a collection of independent vertical columns, the

CPU requirements for each model integration will scale with the number of estimation pix-

els. Subtracting the effort for the model error update, each model integration covering the

two-week experiment period takes approximately 60s of CPU time for the experiments of

the first two groups with 512 estimation pixels. For the experiments of the third group

with 128 estimation pixels, each model integration takes roughly 15s. This translates into

a CPU requirement of 0.01s per estimation pixel and per experiment day on the 333MHz
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DEC Alpha workstation.

Although the number of model integrations required for the estimate is mostly deter-
mined by the number of scalar data being assimilated, the number of nodes may affect the
computational demand beyond merely increasing the CPU requirement for each model run.
However, given all the other factors, in particular the complicated dependence of the compu-
tational burden on the prior statistics, it is hard to isolate the scaling of the computational
demand with the number of nodes.

Suppose we increase the horizontal resolution of a given area, but we keep the horizontal
correlation length for the model error fixed and we assimilate the same (coarse-scale) data.
This will change the computational effort through at least three effects. First and trivially,
each model integration will take longer at the fine resolution than at the coarse resolu-
tion. Second, one correlation length covers more estimation pixels at the fine resolution
than at the coarse resolution, and the effort for the model error update will increase (Sec-
tion 8.1.2). Third, the same(!) data may have different information content when viewed
from the coarse and from the fine resolution of the estimation pixels, leading to different
savings in the indirect representer method. This last effect is related to the increase in the
relative computational effort of the indirect approach as we decrease the number of data by
assimilating coarser brightness images (Section 8.2.1).

By comparing experiments with the same number of data from the second group and the
third group (Table 8.1), we can check whether the computational effort scales only linearly
with the number of estimation pixels. As mentioned above, we have increased the correlation
length in Reference Experiment Ila and the related experiments with respect to Reference
Experiment II. This makes the relative cost of the model error update approximately equal
for both groups. If we now compare experiments of the two groups for which the same
number of data are assimilated, we find that the CPU requirements increase approximately
linearly with the number of estimation pixels. For example, if we divide the CPU time for
experiment 9 by the CPU time for experiment 18, we get 3.9, while there are four times
as many estimation pixels in experiment 9 than in experiment 18. For experiments 10 and
19, we get 3.7, and for experiments 14 and 21, we get 3.4. For experiments 11 and 20,
on the other hand, we get 6.1, but this may be due to the extreme downscaling ratio of
experiment 11. In summary, we have not found evidence that the computational effort
increases more than linearly with the number of nodes.

8.2.3 Memory Requirements

The memory requirements for the assimilation algorithm are substantial. Ideally, all vari-
ables are kept in RAM (random-access memory) during the assimilation to keep the ad-
ditional cost for I/O (input/output) operations low. As mentioned above, this was not
possible with our computing equipment. But differences in speed aside, we can treat RAM
and memory on the harddrive as being equivalent for the sake of this discussion. Also
note that it is usually possible to trade off memory requirements against CPU time by
recomputing dependent quantities each time they are needed rather than storing them.

We now discuss the memory requirements in detail. First, we have to store the model
inputs. For the numerical parameters derived from the soil texture and land cover classes,
the memory requirements are proportional to the number of estimation pixels and vertical
nodes. For the micro-meteorologic inputs, the memory requirements are proportional to
the length of the assimilation window. They are also proportional to the number pixels,
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unless we opt for recomputing the interpolated fields whenever they are needed. Since

during the assimilation the model must be run many times, it makes sense to keep the

interpolated micro-meteorologic inputs at every pixel, together with some derived variables

such as the land surface resistances, in RAM. In our implementation, the model inputs for

the experiments of Chapters 6 and 7 require about 60MB in double precision.

Since the underlying hydrologic model is nonlinear, the adjoint operators depend on

the state trajectories. Moreover, the variational method processes the entire assimilation

window in a batch mode. It is therefore necessary to store the full state trajectory. In our

example, the number of scalar states for all times is roughly 107 (Sections 4.2 and 5.2). For

double precision, this is equivalent to about 80MB.

Moreover, we need to store the estimates of the uncertain inputs. The memory require-

ments for the initial condition parameters are small, but we must also store up to two copies

of the model error fields. First, the adjoint operator depends on the model error, because

the coefficient in front of the process noise term in the state equation depends on the state

itself (Section 2.2). We must therefore store the model error estimate of the previous iter-

ation. Second, we may have to store the model error that is under update in the current

iteration. Depending on the implementation, we may be able to use the memory allocated

for the state trajectories to store the current model error estimate. But since we do not

keep the entire state trajectory in RAM due to memory limitations, this is not possible in

our implementation.
The actual memory requirements for storing the process noise depend strongly on how

many components of the model we deem uncertain in the problem at hand. However, the

memory requirements will always scale with the length of the assimilation window. For the

experiments of Chapters 6 and 7, we need about 26MB of memory for storing the model

error.

8.2.4 Parallel Computing

By design, the direct representer method is ideally suited for parallel computing [Bennett

and Baugh, 1992]. In theory, each of the individual representer fields can be integrated

simultaneously on a separate processor. The indirect representer approach, by contrast,
does not generally allow for such parallel processing. But in our case, the structure of the

hydrologic model would allow us to integrate the individual estimation pixels in parallel.

Ideally, with Nep processors, each model integration would only take as long as it takes

to run a single one-dimensional column. Consequently, parallel computing offers great

opportunities for the land surface data assimilation problem.

8.3 Comparison with Other Assimilation Techniques

In this Section, we briefly compare the computational requirements of the iterated indi-

rect representer technique, the gradient-descent ("adjoint") method [Bennett, 1992], the

full Kalman filter (KF) [Gelb, 1974], the Ensemble Kalman Filter (EnKF) (Section 1.2.2,
[Evensen, 1994b]), error subspace statistical estimation (ESSE) (Section 1.2.2, [Lermusiaux

and Robinson, 1999a]), and Optimal Interpolation (Section 1.2.1, [Daley, 1991]). Since we

have only implemented the representer algorithm, the comparison with the other methods

remains theoretical in nature. Nevertheless, an approximate count of the floating point

operations provides sufficient insight into the characteristic requirements of each method.
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Among the techniques mentioned above, the Kalman filter, the representer method, and
the gradient-descent approach are optimal algorithms which fully propagate the error co-
variances. The big difference between these methods is that the Kalman filter propagates
the error covariances explicitly, whereas the representer approach and the gradient-descent
technique accomplish the error covariance propagation implicitly through the adjoint equa-
tions. The Ensemble Kalman Filter, ESSE, and Optimal Interpolation are suboptimal
assimilation algorithms which rely on approximations of the dynamic evolution of the error
covariances.

We now discuss the approximate operations count of each method for the experiments
of Chapters 6 and 7. Recall from Sections 4.2 and 5.2 that the state vector at each time
step is of length NXNY(N + 5) = 6144. With Nt = 1280 time steps, the total number
of scalar states is NXNY(N + 5)N ~ 07 . For each model integration, we simply count
O(107) floating point operations. The dimension of the process noise in the example is
3NXN = 1536 at every time step or a total of 3NxNyNt a 2 - 106 scalar variables. The
number of data is 512 in each of the 12 images, and the total number of scalar data is
Nz = 6144. Note that we only discuss the leading order of the operations count.

8.3.1 Optimal Assimilation Algorithms

The explicit propagation of the error covariances in the Kalman filter requires manipulating
matrices of the size of the state vector at each time step. The operations count for such
matrix multiplications scales with the size of the matrix to the third power. Since this
has to be done at every time step, the total count for the Kalman filter is 0(1014). The
actual operations count is even higher, because in the examples the process noise is colored,
and the state must first be augmented. Note that solving the smoothing problem with the
Kalman smoother approximately doubles the effort. The computational burden is so heavy
because the Kalman filter comes with the full posterior covariance information.

As discussed above, the iterated indirect representer method scales with the time it
takes to integrate the model once times the number of model integrations. Using 1000
model integrations and doubling the effort to accommodate the process noise update, the
total operations count is 0(1010). It is important to note that this does not include the
posterior covariance information. We also stress that here we make use of the particular
structure of the land surface model and the nature of the brightness observations, which
implies that the results of this Section are valid only for the land surface data assimilation
problem discussed in this thesis.

At first glance, the gradient-descent method requires only two model integrations at
each iteration for the evaluation of the gradient. But the number of iterations needed for
convergence strongly depends on the technique that is used for stepping down the gradient.
The steepest-descent algorithm, which does not require any additional effort, is notoriously
inefficient and should never be used [Press et al., 1992]. One alternative is to determine a
"conjugate" gradient descent direction and to search for the minimum along this direction.
For the line search, the model needs to be integrated multiple times and the objective
function must be determined. If there is process noise, the latter step makes the method
unattractive in practice, because the model error covariance is of size 106 x 106 and must be
inverted. The problem becomes especially severe if the process noise is colored, as it is in
our example. Regardless of the particular variant employed, the gradient-descent method is
always impractical in our example because the search happens in the space of the uncertain
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inputs, of which there are many more than there are scalar data.

8.3.2 Suboptimal Assimilation Algorithms

The effort for the Ensemble Kalman filter or related techniques, such as for example the

error subspace statistical estimation (ESSE) scheme of Lermusiaux and Robinson [1999a],
depends critically on the number of realizations or ensemble members that are used to ap-

proximate the error covariances. For a problem with 2800 data, a total of 108 states, and

no model error, Lermusiaux and Robinson [1999b] need approximately 200 ensemble mem-

bers. Moreover, the decomposition of the forecast error covariance and the actual update

step require additional matrix manipulations. If we use their expression for the operations

count (Table 2 of [Lermusiaux and Robinson, 1999b]) and substitute our numbers, the ESSE

scheme and the EnKF require roughly 0(1011) floating point operations. Since these tech-

niques approximate the error covariance propagation, the estimates are not optimal, but

the methods provide valuable information about the posterior error covariances.

Finally, Optimal Interpolation as the most suboptimal scheme essentially requires one

model integration and the manipulation of matrices which are of the size of the data vector

at each update time. The operations count for Optimal Interpolation is roughly 0(109).

8.3.3 Summary

In conclusion, the full Kalman filter or smoother cannot be used for large-scale land data

assimilation. Likewise, the optimal adjoint-based gradient- descent method is not compu-

tationally feasible if model errors are present. From a computational point of view, the

indirect iterated representer technique is competitive with suboptimal sequential Monte

Carlo methods like the Ensemble Kalman Filter and ESSE. The great advantage of the

representer technique lies with the optimality of the estimates. If posterior covariance

information is required, the sequential Monte Carlo methods may be a better choice. Op-

timal Interpolation is of course the cheapest alternative, but the estimates are poorer and

no posterior covariance information is provided.
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Chapter 9

Conclusions

In Section 9.1 we first summarize the major original contributions of this thesis. Finally, in

Section 9.2 we point out the limitations of the approach, the problems that still need to be

addressed, and some possible solutions.

9.1 Summary of Original Contributions

In the introductory Section 1.3 we tried to assess the state of the art of soil moisture data

assimilation. Having described our approach in detail in the previous Chapters, we now

summarize the major original contributions of this work. In a nutshell, the five major

contributions of this thesis are (1) the implementation of the optimal representer algorithm

for a hydrologic data assimilation problem, (2) the development of a land surface model

suitable for data assimilation, (3) the formulation of a general downscaling methodology

for L-band passive microwave images, (4) the investigation of a number of topics which are

crucial to the design of an operational soil moisture data assimilation system, and (5) the

detailed assessment of the computational requirements of the algorithm for the soil moisture

assimilation problem. Here is a more detailed summary of our contributions:

1. The optimal indirect iterated representer algorithm has been applied for the first time

to a hydrologic data assimilation problem.

(a) The assimilation algorithm is fully four-dimensional. We account explicitly for

vertical and horizontal correlations.

(b) The hydrologic model enters the assimilation as a weak constraint. Model error

(or process noise) is taken into account.

(c) The iterated representer method has been extended to allow for a nonlinear

measurement operator, for a nonlinear dependence of the state on the parameters,
and for a state-dependent coefficient multiplying the process noise.

(d) Satellite radiances (or brightness temperatures) are assimilated directly. No off-

line inversions of the remote sensing observations are necessary.

(e) The formulation of the algorithm allows for the assimilation of various other data

types, not only L-band passive microwaves.

(f) Posterior error covariance calculations have been formulated for land surface

hydrologic applications.
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2. A land surface model suitable for hydrologic data assimilation has been developed.

(a) Our model captures the key physical processes of the land-atmosphere boundary,
and at the same time it is very computationally efficient.

(b) The computational efficiency has been achieved foremost by dividing the model
domain into laterally uncoupled one-dimensional vertical columns, which we call
estimation pixels. Horizontal coupling has been incorporated through correla-
tions of the inputs and of the model and parameter errors.

(c) Our model fulfills the basic differentiability requirement for use in a variational
assimilation algorithm.

(d) For the soil moisture dynamics, any number of vertical nodes can be specified.
It is easy to adjust the resolution of the soil moisture profile according to the
problem at hand.

(e) Soil and canopy temperatures are modeled together with soil moisture. This
obviates the need to independently specify soil and canopy temperatures for
the Radiative Transfer model. It also opens up the possibility of assimilating
remotely sensed soil and canopy temperatures.

(f) We have developed the adjoint of our land surface model.

3. A general downscaling capability has been incorporated into the assimilation algo-
rithm, making it possible to effectively increase the resolution of the remote sensing
brightness images, or equivalently, to estimate the land surface states at a scale finer
than the resolution of the brightness images (Section 4.7).

4. We have conducted a series of synthetic experiments to test our land surface assimila-
tion algorithm. These experiments demonstrate the usefulness of L-band radiobright-
ness data for soil moisture estimation under realistic conditions. We have assessed
the optimality of the estimates for all experiments.

(a) For a series of synthetic experiments under ideal and nonideal conditions, the
assimilation algorithm can estimate the (synthetic) true land surface states to a
high degree of accuracy.

(b) From our results we conclude that large-scale soil moisture estimation from L-
band passive microwave data is feasible.

(c) In two reference experiments, we have successfully demonstrated the ability of
the estimation algorithm to estimate the initial soil moisture conditions and the
moisture flux boundary condition at the land surface (Sections 6.1 and 6.2).

(d) We have investigated two typical downscaling scenarios which combine coarse-
scale remote sensing data with fine-scale information from the model inputs
(Section 6.3). Even for downscaling ratios of one to sixteen (each observation
pixel contains sixteen estimation pixels), the estimate captures many of the fine-
scale features of the true fields. This implies that brightness images with a
resolution of 50km may be used to infer soil moisture on the scale of ten to
twenty kilometers, provided sufficiently accurate model inputs are available at
the finer scale.
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(e) Repeat frequencies of up to three days for brightness images allow for satisfac-

tory estimation of soil moisture conditions (Section 6.4). Generally, the repeat

frequency should not be smaller than the typical frequency for rainstorms. If

brightness data are available less frequently, the soil moisture estimates deterio-

rate rapidly.

(f) We have assessed the influence of the length of the data assimilation interval and

the problem of reinitializing the windows in an operational fashion (Section 7.1).

For an operational setup, it seems best to match the assimilation window approx-

imately to an interstorm period. The assimilation intervals must be chosen such

that there is sufficient time for the initial error covariance to evolve before the

first observation time. This mitigates the negative effects of naively reinitializing

the assimilation windows.

(g) We have demonstrated the ability of the assimilation algorithm to satisfactorily

estimate soil moisture even if quantitative precipitation data are not available

(Section 7.2).

(h) The assimilation algorithm is also capable of satisfactorily estimating soil mois-

ture even if the soil hydraulic parameters are only poorly known (Section 7.3).

(i) For all experiments, we have thoroughly assessed the optimality of the estimates

by examining the posterior data residuals and the value of the reduced objective

function.

Even under ideal assimilation conditions, the nonlinear structure of the hydro-

logic model and the measurement operator leads to deviations of the residuals'

sample cumulative distribution function from a normal distribution.

The residuals and the reduced objective function consistently show when the as-

similation conditions were not ideal and the estimates were therefore suboptimal.

5. The computational requirements of the assimilation algorithm have been assessed in

detail.

(a) For a typical application, the computational effort of the iterated indirect rep-

resenter method grows less than linearly with the number of scalar data (Sec-

tion 8.2.1).

(b) The computational effort grows only linearly with the number of pixels (Sec-

tion 8.2.2).

(c) The prior statistics and the length of the assimilation interval strongly influence

the computational requirements (Section 8.1.2 and 8.1.3). Assimilation windows

of a few days are computationally very attractive while providing estimates that

are close to optimal.

(d) For the land surface data assimilation problem discussed in this thesis, the it-

erated indirect representer approach is competitive from a computational per-

spective with suboptimal sequential Monte Carlo methods such as the Ensemble

Kalman Filter (EnKF) and error subspace statistical estimation (ESSE) (Sec-

tion 8.3). For a given computational cost, the trade-off is between the optimality

of the estimates (representer method) and the availability of posterior covariance

information (EnKF, ESSE).
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9.2 Limitations and Problems to be Addressed

We now provide some comments on the research presented throughout this thesis. These
comments are meant to serve three main purposes. First, we hope to raise the reader's
awareness of any difficulties that may arise when implementing the methods described in
this work. Second, we suggest areas that require more research, and perhaps entirely new
directions of approaching the problem. Last but not least, we point at possible solutions
that we think are appropriate but did not investigate for lack of time.

Given the highly nonlinear structure of land-atmosphere processes, and given the high
complexity of real world applications, any large-scale land surface data assimilation al-
gorithm will necessarily be a compromise between realistic physical representations and
computational feasibility. A lot more research still needs to be done before an operational
soil moisture data assimilation package can be set up. Here is a list of caveats, possible
solutions, and suggestions for future research:

1. So far, the assimilation algorithm has only been verified with a few synthetic experi-
ments. A field test and further synthetic experiments must be carried out.

(a) All results have been obtained with a few synthetic experiments. Even though
we made an effort to mimic realistic conditions, we have only discussed a total of
three different realizations. There can be no guarantee that the results remain
completely unchanged if more synthetic experiments are added which rely on
different random seeds.

(b) The results may depend on the particular choices of the error covariances. As we
have seen Section 8.1.2, the computational demand is already quite sensitive to
the prior statistics. To corroborate the findings, these intuitive choices will have
to be validated in a field application, or, alternatively, the same outcome would
have to be found for synthetic experiments with many different setups.

(c) Before the assimilation algorithm can be applied to any particular field experi-
ment, a robust calibration of the hydrologic model must be carried out for the
field site in question.

(d) The next, indispensable step is to conduct a field test of the algorithm by as-
similating the SGP97 ESTAR observations. This will bring up difficult issues
of model bias. Using the hypothesis tests described in Sections 2.3.6 and 2.4.1,
we will then be able to thoroughly check whether the model and the statistical
assumptions are appropriate in the field. In other words, the field test will help
to identify realistic prior error statistics for land surface data assimilation.

2. The computation of the posterior error covariances must be implemented.

(a) Ideally, when running the estimator in an operational mode, the prior error
covariance of the initial condition should be specified or at least approximated
respecting the posterior error covariances of the previous assimilation window.
If this turns out to be too expensive to do operationally, the computation of the
posterior error covariances in research studies will still provide valuable insights
into the accuracy of the estimates and the operating conditions of the assimilation
algorithm.
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(b) It is certainly unnecessary in any case to compute the full posterior error co-
variances of the state and the measurements. Suitable approximations for the
calculation of the posterior error covariances must be identified.

(c) A priori data compression should be implemented to decrease the cost of calculat-
ing the posterior covariances. There may also be additional savings from a priori
data compression that are not realized with the indirect representer method.
This topic is worth a detailed investigation because of the practical relevance of
such savings.

3. The application and interpretation of Richards' equation at the regional scale clearly
deserve more attention.

(a) In our approach, the second-order Richards' equation is but a means to model
moisture fronts that move nonlinearly in both directions. Any simple formulation
capable of producing such upward and downward movement will in practice
resemble Richards' equation.

(b) Consequently, we do not claim that the small-scale soil hydraulic properties pub-
lished in the literature can necessarily be interpreted as the parameters that we
should use for our large-scale Richards' equation. Moreover, we do not interpret
the soil moisture values in different vertical layers as a soil moisture profile that
could be verified with ground-based point observations.

(c) In our interpretation, Richards' equation can be viewed as governing a nonlinear
multilayer reservoir of soil moisture that is reasonably consistent with the true

land surface fluxes and with the groundwater recharge. The verification of this
hypothesis and of the validity of the profile estimates will have to come from
data assimilation experiments which are conducted over long experiment periods
in a quasi-operational manner (Section 6.1.3).

4. In the current implementation, the assimilation algorithm depends heavily on the
information needed to run the hydrologic model. To relax this dependence, other
data types must be assimilated.

(a) L-band brightness temperatures are determined not only by soil moisture, but
also by soil temperature. Therefore our ability to estimate soil moisture from
observations of the L-band brightness temperature critically depends on how
accurately we know soil temperature. The experiments of Chapters 6 and 7
are not designed to test the capability of the algorithm to estimate the soil

temperature. Instead, the soil temperature was rather well known by design.

In an operational setting, such good knowledge of soil temperature can only be

achieved by assimilating supplemental data, for example infrared remote sensing

observations.

(b) If satellite derived soil skin temperatures are assimilated, the one-layer soil tem-

perature force-restore approximation may have to be extended to a two layer

model. This would, however, conflict with the desire to keep the model as com-

putationally efficient as possible for the transition towards continental-scale op-

erational assimilation.

163



(c) The precipitation inputs to the land surface model are crucial for the quality of
the soil moisture estimates. In the current implementation, errors in the micro-
meteorologic forcings including precipitation are lumped into the model error
terms. In other words, we treat precipitation as a model parameter which is not
explicitly estimated.

If the precipitation data are poor, it may be beneficial to assimilate these data
into a coupled land surface and precipitation model. Note, however, that a
simple scheme would not offer much information on the complicated nature of
the precipitation processes. A sophisticated precipitation model, on the other
hand, may prove hard to invert or too computationally expensive.

5. The experiments of Chapters 6 and 7 represent only a small fraction of the possibilities
to study land surface data assimilation problems with our algorithm. Many other
useful synthetic experiments can be thought up.

(a) Together with the soil properties, the land cover parameters are critical for es-
timating soil moisture and other land surface variables. Therefore, the impact
of the vegetation on the quality of the estimates must be investigated in more
detail.

(b) We have not fully explored the potential to estimate land surface variables other
than soil moisture. Suitable experiments must be designed to assess the capa-
bility of the algorithm to infer soil temperature, canopy temperature, and the
land surface fluxes from L-band passive microwaves and possibly other remote
sensing observations.

(c) Operational brightness observations at higher frequencies are already available
or will soon become available. The algorithm could be used to investigate the
trade-off of assimilating many data of poorer quality with respect to soil moisture,
such as C-band (5.3GHz) observations, versus fewer data of higher quality, such
as L-band (1.4GHz) observations.

6. The land surface model may require modifications for certain applications.

(a) The measurement operator for the general downscaling methodology must be
re-evaluated when only C-band brightness temperatures are available for assim-
ilation (instead of L-band brightness). The use of the arithmetic mean over the
estimation pixels within each observation pixel becomes questionable at higher
microwave frequencies.

(b) The rainfall interception model proved very difficult to include in the assimilation
algorithm. This is not surprising given the disparity in the time scales of canopy
interception and of the other land surface states. Since the quantity of water
stored in the canopy is very small, the influence of the interception process on
the soil moisture estimates is limited. On the other hand, canopy interception
provides invaluable information about brightness data. Due to complicated re-
flections at and within the canopy, brightness images are essentially useless when
the canopy is wet.

Simply neglecting canopy interception altogether, as we have done so far, is one
way out of the dilemma, but this works only when the brightness images are
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subject to careful quality control. In future implementations, it might be benefi-

cial to run the interception model off-line and in forward mode only. Brightness

images taken at times when the canopy is wet can then be discarded in a quality

control step.

(c) For continental-scale applications, our land surface model will have to be re-

evaluated. The physics of the model may not be appropriate at much larger

scales, although no obvious alternatives spring to mind. In addition, more com-

putational savings may be required before a continental-scale application be-

comes feasible.

(d) It is desirable to couple the land surface model with a runoff and a groundwater

model in order to more accurately represent land surface hydrologic processes.

(e) Any change in the land surface model must also be reflected in its adjoint.

7. Since the iterated indirect representer algorithm is the cheapest optimal approach, it

constitutes an invaluable benchmark. The actual computational requirements, how-

ever, may defy its use for operational applications.

(a) The results on the computational demands and the scalability of the algorithm

(Chapter 8) must be corroborated or modified through numerical experiments

conducted with more pixels and longer experiment periods.

(b) With its CPU and memory requirements, the iterated indirect representer method

may be too expensive for an operational assimilation package for some time still.

Moreover, there is little hope of calculating accurate and detailed posterior error

covariances even in research studies.

(c) Nonetheless, the iterated indirect representer approach is an efficient way to

derive the optimal estimates, something which is not possible with a Kalman

filter or an adjoint-based gradient search at the same computational expense.

The representer method can therefore be used as a benchmark against which

cheaper but less optimal algorithms can be evaluated.
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Appendix A

Data Assimilation

A.1 Derivation of the Euler-Lagrange Equations

This Section outlines the derivation of the Euler-Lagrange equations presented in Sec-

tion 2.1.3. In order to find the minimum of the objective function, we perform a first

variation on J.

6J 6J 6J 6J dJ 0J 6J 01
6J= 6X+ 6Y + 66v+ 6w+ 9a+ 60+ 6PP+ + oAo (A.1)

At the minimum we have 6J = 0. Since all variations are considered arbitrary and inde-

pendent, each of the individual partial derivatives of the objective function must vanish.

Obviously, variation of (2.7) with respect to the adjoint parameters P, A and A0 simply

returns the state equation, i.e. the forward equation (2.8) and its initial condition (2.8b) in

the set of Euler-Lagrange equations.
From the variation of (2.7) with respect to the parameters a and 3, we get

2 (a - a)T C-- -2 T p9 dt - 2 fAT dt 6a = 0
I 0a 0 c0a
0 0

and

2(/3 _ -)TCfl - 2AVi9" o = 0

Using Ao = Al, 0 (see below), these are the parameter update equations (2.10).

Next, variation of (2.7) with respect to o yields

2 f [.w(t')TC--
1 (t', t")dt' - A(t")T Dw(t")Pw 6w(t")dt" = 0

and therefore

t0

f (t')TC-1(t', t") dt' = A (t",)T D,(t") P,
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Postmultiplying by C(t", t), integrating over t", and using (2.6), we find

tj

W(t)T = A(t"/)T Du)(t"l)PLOCw (t", t)dt"

0

which is the process noise update (2.11a). Similarly, we get the update equation for v.
Variation with respect to X yields

-2 (Z - M[X,Y]) TC 1 aM[X,Y] 6XSax

t5

- 2  PT 6Xdt

0

15

-2 f

0

AT 6Xdt = 0
ax

In this expression, we substitute from (2.3)

aM[X, Y]
ax

t5

Of ( X )dax
0

and get the first part of the backward equation after collecting all terms under a single
integral and setting the integrand to zero.

In order to perform the variation with respect to the state Y, we start from (2.7) and
integrate by parts the term containing O.

T C-1 (Z - M[X,Y])

tf tf

+ f f V(t')T C;1(t',t")v(t")dt'dt" +

0 0

- 2 J PT ($(X, Y; a) + DvPvu) dt

0

f

0

tf tf

J J w (t')TCjl (t', t")w(t")dt'dt"

0 0

Y + AT (X, Y; a) + ATDw (Y)P'W dt

+ 2A0 ( _ -Yp))

From the variation with respect to Y|t=t we immediately get the terminal condition (2.9a)
for the backward equation. (Recall that tm E (0, tf), i.e. there are no measurements at the
final time tf). Similarly, variation with respect to YL yields

Finally, variation with respect to the state Y(t), t E (0, tf), yields

- 2(Z - M[X,Y])T

t5 tf

-2 p SYdt- 2 +
ay at

0 0

ATa +ATa[Dw (Y)Pow] 6Ydt =0
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In this expression, we substitute from (2.3)

t5DM[XY] f f(X(t),Y(t))dt
OY J 16 1Y

0

and get the backward equation after collecting all terms under a single integral and setting
the integrand to zero.

A.2 Derivation of the Posterior Covariance Equations

This Section outlines the derivation of the posterior covariance equations of Section 2.4.
Recall that the problem at hand is nonlinear, and that the linearized posterior covariances
derived below are at best approximations of the true posterior covariances. In particular,
we treat the previous estimate as a fixed deterministic input, although strictly speaking the

previous estimate depends on the data and therefore on the measurement error.

A.2.1 Equivalence of Representers and Prior Cross-Covariances

We first prove the fact that the state representers are equal to the linearized (prior) cross-

covariances of the measurement predictions and the states.

Lk[X', Y']X'(t) =Ek(t) Lk[X', Y ]Y (t) = Tk(t) (2.34)

The idea is to show that Lk[X', Y']X'(t) and Lk[X', Y'Y'(t) obey the same differential

equations as Ek(t) and Tk(t), which are of course the state representer equations (2.25).
From the tangent-linear state equation (2.13) and the equation for the prior state (2.22),

we obtain an equation for the perturbation of the state X' = X - and Y' = Y -

0= X'+ Y'+ a'+DPav
aX1 a DY Da 77 (A.2)

DY' Do Do Dp ,D[Dw(Y)Pww] ,X' + Y' + a/ + D(Y)Pw+ Y
at -x DX DYa ,7, DY

YIO YO 13' (A.2a)

For the perturbations of the parameters we write a' -a - a and /' /3 - #.
Next, we multiply (A.2) with the scalar Lk[X', Y'] and take the expectation. We get

= X Lk[X, Y']X(t)+D Lk[X', Y']Y(t) + Lk[X', Y']a'
aX 7a Y7 a 7
+ Lk[X', Y']DvPev

-- Lk[X, Y]'(t) = Lk[X, Y]I(t) + Lk[X, Y']%Yt) -+ - Lk[X', Y'a'
at aX 770Y 77 aa 7

+ Lk[X', Y']Dw(Y7)Paw + Lk[X', Y11 D[D](Y)Pw1 Y/
LD YL

Lk[X', Y'y't~ = D Y0  kXY13
D/3 ,,kfY
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Comparing these equations to the state representer equations (2.25), we see that the
fact (2.34) holds if the following four identities hold.

Lk [X',Y']a' =

Lk [X',Y']DPv =W

Lk[X', Y']D, (Y7)PLw =w

Lk [X',Y't]#' =

Jf (09 T
0\O0 T') +

0 az J7

T

090Z 71

Ak(t')) dt'

tj

DP,C,(t, t')P'DjQk (t')dt'

0
tf

fDw (Y77(t))PO Cw (t, t') PS [Dw (Y77(t'))]T A k (t') dt'
0

a3T

For the proof of (A.3)-(A.6) we seek an expression of the form

/ , aMk 6Mk SMk 8Mk 6 Mk
Lk[X', Y] Mk [XY] = 6X -W 6Y = WV + W -9 + a +

6X~S 6Y6V 6) 6

(A.3)

(A.4)

(A.5)

(A.6)

6Mk
6/3

To this end, we apply an adjoint technique which avoids the explicit computation of 6
"k

65X
and 6 3 k and yields the derivatives with respect to v, w, a, and /3 directly. We first define
as an objective the function for which we need the derivatives.

jk = Mk[Y+1 V+1] - Lk [X - V+1 Y _ V+1] (A.7)

In order to satisfy the relation between the states X, Y and the inputs v, W, a, and 13, we
adjoin the tangent-linear state equation (2.13) to the objective.

jk = Mk [X+1,7+lY 1] + Lk[X - y+1 -V+

Oj(X), Y77-a i) - Ti

+ (a -
Oa 77

D,(Yl)Pw -[Dw (Y)PWw]
aY

(X-X7)-

77

(k)T Y O - Yo(#3T) -

Using partial integration we substitute

ay0 (Y -Y7)

a'7) + DPav) dt

dy Ti(Y Y77) -

(3 - ) )

0 0It ((Ak)TY) ±( ) )
0 0
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(Y - Y77)) dt
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in (A.8) and then use the resulting expression to compute the first variation of jk.

6jk = 6Jk 6Jk +6jk 6jk 6Jk 6Jk
J 6X- 6Y+ 6v 6 w± 6a + 6/36X' 6Y kj 6X j 6 c

We now choose pk, ~k and 10 such that 6JX 6 6Y 0 because then we have

6 jk - 6 jk -- 6Lk[X,Y] = Lk[X',Y']

First, the variation of jk with respect to X and Y yields

- tk) afk
ax-t)

- tk) afk
ay77

-| ( k)T ax 7+ W~\ &P 6Xdt = 0

-9 7 + at + (\k)T aY 77

+(k)T a[Dw(Y)Pw] )6Ydt = 0aY )

as well as ~k = Z kl 0 andk 1t = 0. Comparing (A.11) with the adjoint represen-

ter equations (2.24), we see that jk and 1k obey the same equations as

therefore ok = Qk and ~\k - Ak.
The other variations of jk yield

6Jk tf
=6 ( k )DP6vdt

0

6 jkw t=(
w = (k)TD(Y7)P,6wdt

0

6Jk 6a
6a

t5

0 ( k)T

0

Qk and Ak and

-h O( ) 6adt
Oa 77

6Jk 8) aY 6

sing k Qk, ~k _ Ak and the fact that Lk[X', Y'] is a scalar (for example ou =

T ), we can now write Lk[X', Y'] according to (A.9) and (A.10) as

Lk[X',Y'] = t PD dt wT P[Dw(Y )] Adt

0 0

tf

+ I
0

IfT ( Ta

77z1'
k k + T

S 77
09 OT klt=0
ao
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6X

6Y

tI

=
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0

6(t (A.11)
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If we left-multiply this expression with 6a _ a', take the expectation, and keep in mind
that the cross-covariances (2.4a) between a and v, w or 3 vanish, we find (A.3). Similarly,
multiplication with v, w, and 0' yield (A.5), (A.4), and (A.6). This completes our proof of
(2.34).

A.2.2 Derivation of the Posterior Covariance Equations

Before we start with the derivation of the posterior covariances, we prove the following
result. Whereas the representer functions are deterministic, the representer coefficients are
random variables. Their covariance is

bkb = [U ]ki (A.12)

where we defined earlier

U = C + R and [Rlkl = Lk[, '] (2.27)

This result is easily derived from (2.26). We have

bL =Z[U-1 ]kr(Zr - Mr [X, Y7] - L,[Y'+ 1 - Y"+1 - Y
rs

- Z - Ms[Xr,Y"] - Ls[Yu" - Xq,Y +1 -Y7])[U-l]sl

= [U- 1]kr(Vr + Lr[X - +1Y - ?7+1])(vs + L,[X - Y+1,y - gn+1])[U-1]s,
rs

=Z[U-]kr ([Culrs + Lr[X', Y']Ls[X', Y']) [U']sJ
rs

With Lr[X', Y']Ls[X', Y'] = Lr [Ls[X', Y']X', Ls[X', Y']Y'] = L[E, T s]= Rrs, the desired
result follows immediately.

We are now finally ready to derive the equations (2.35), (2.36), and (2.37) for the
posterior covariances. Using the previous results, the derivations are straightforward. First,
we expand the expression for the posterior state covariance Cgg.

[Cpg(t1,t2)]ij (Yi (t1) - Yi7 1 (t 1 )) (Yj t2) -Yjl) ((t2))

j (t)-Eby t) iT(t)=(Yi(ti)- ( - b+ k (tib (Y (t2) -2 Y + 1 (t2)-
k

=[CyivYi (t 1, t2)] T :f(t1)bk (Yj t2) - 7+1(t2))

- >3T (t2 )b1 (Yi(ti) - Y20+ 1 (t1)) + >3T '(Li)bbT (t2 )
ki
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Using (A.12) and

bk[(YU (t2) - M Y-+1 (t2))

= :[U-']kr ( Zr - Mr [X", Yn] - Lr [V+1 _ Xn Tn+1 - X7])(Yj (t 2 ) -Yj+1

ZI[U -]kr (Vr + Lr [X - + - +1 ])(Y(t 2 ) - +1(t2))

[U-1 ]kr Lr [X', Y']Y'(t2)
r

Z[U-1]kr T (t2)
r

we immediately get the corresponding equation in (2.35). The other posterior state covari-

ance equations of can be derived analogously.

In order to derive the posterior covariance of the measurement predictions (2.36), we

expand

[CI,]mn Lm[X - X1+1, - Y17+1 ]Ln[X - X"+ 1,Y - y+1

(Lm[X - Xj+1, Y -Yn+1] - bLm[Ek,T k]-

k

-(Ln[X - y _ ±1] - ZbiLn[El, T])

= Lm[X', Y']L,[X', Y'] - L[Ek,T k]bkLf[X - +1, Y _ +
k

- n >3 L[, T']biLm[X - )07+1, Y - Y'7+] + [7 Lm[k, Tk] bkIL 1
,T11

ki

With Lm[Ek, Tk] = Rnk and

b, L,[X - Xr+1 y _"'+1

Z[U-1 Iki(ZI - Mi[X'7,Yq] - Li[)r+ - X -Y,Yn+1 Yq])L,[X - Y -Yn+1

= Z[U-]kl(Vi + Li[X -

[ YU-1]gi Li[X',Y'] Ln[ X',Y']

w ImeaklRIbn

we immediately obtain (2.36).

173

1

Y _ Fri+1 ])L, [ X - V+1, Y _T+1]



Finally, for the covariance of the posterior data residuals (2.37) we expand

[CD mn -(Zm - Mm[X7, Yn] - Lm[X?7+ 1
- XI, Y77+1 - y]).

-(Zn - Mn[X1, Y7] - Ln[X"+1 - X, Y"+ 1 - Yr])

=(vm + Lm [X - X -n+1, Y Y7+ 1] )(Vn + Ln[X - X n+1 , Y - y7+1

(vm + Lm[X - I Y - ]1 - bkLm [-' k ,T ).
k

(Vn + Ln[X - Y - - biLn El, fT)

=Vmon - ZL[ E', T'lbivm - Lm[-k, TkbkVn + [Cjj]mn
k

Using L[-El, T') - Rn, and

biVm = [U-1]ir (Zr - Mr[X' ,Y7] -

r

= fU'lr(Vr + Lr[X -y7h

L,[X"' - Xq,Y' - Yq])vm

= [U-1 ir[C]rm

we get

[C]mn = [Cvlmn - Rni[U-'ir[Cvlrm -( Rmk[Ul]ks[Cvlsn + [Cf]mn
ir ks

= [Cv]inn - [RU 1 Cv]nm - [RU lCvlmn + [Cb1mn

which is obviously (2.37).
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Appendix B

Land Surface Model

B.1 List of Symbols

Tables B.1 to B.8 provide a list of all symbols used in the land surface model. The last

column generally indicates in which spatial dimensions the variables or parameters vary
and whether they are time-dependent. First, a list of the state and observation variables is

shown in Table B.1. The three state variables for soil moisture can be used interchangeably.

They are connected through the Clapp-Hornberger relations (3.4). The soil moisture and

temperature states and the interception water are governed by ODE's, therefore initial

conditions must be specified.
Next, Table B.2 lists the meteorologic inputs to the model. Tables B.3 and B.4 compile

all the time-dependent variables and parameters. The functional dependence is indicated.

Note that empirical and physical constants are not listed in this functional dependence.

Tables B.5 and B.6 list the time-independent parameters, most of which must be specified

as model inputs. Table B.7 contains all the scalar empirical constants with their values or

appropriate references. Finally, Table B.8 shows all the physical constants in the model.

Those numbers are fixed and never used for calibration.

Recall the notational convention to label most of the empirical constants in the various

parameterizations with / for scalar constants and with 13 for distributed parameters (which

for example depend on texture or vegetation). The empirical parameters are superscripted

with the variable which is being parameterized and subscripted with a number in case more

than one empirical constant is needed.
Moreover, the subscripts r, a, c, g refer to reference (or screen) height, air (within the

canopy), canopy (plant material), and ground, respectively. Note that all variables at screen

height are inputs that are directly measured or derived from meteorologic observations. The

subscripts s and I are used for shortwave and longwave, s and u are used for saturated and

unsaturated, depending on context. The symbol f always denotes a fraction varying from

0 to 1.
Lastly, in our convention the matric head 4@g is negative for unsaturated conditions. The

vertical coordinate z is positive upward, and the numbering of the layers increases upward.
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Symbol Units Description Dimension

W, [-) soil wetness/saturation x, y, z, t
09 [m 3 /m 3 ] volumetric soil moisture content

9 [mi] matric head

T9 [K] soil surface temperature X, y, t
Wc [m] jcanopy interception water x, y, t
Tc [K] canopy temperature x, y, t

e, [mb] canopy air vapor pressure x, y, t
Ta [K] canopy air temperature x, y, t
TB [K] radiobrightness temperature x, y, t

Table B.1: State variables of the land surface model.

Symbol Units Description Dimension

P, [m/s] precipitation at ref. height X, y, t
Rrs [W/m z] incoming shortw. radiation at ref. height x, y, t
T, [K] atmospheric temperature at ref. height X, y, t
er [mb] vapor pressure at ref. height X, y, t
Ur [m/s] wind speed at ref. height X, y, t
Td [K] depth average soil temperature X, y, (t)

Table B.2: Meteorologic inputs. The depth average soil temperature changes on a seasonal
time-scale only.

176



Sym. Units Description Dependency Dim.

Pt [rn/s] throughfall rate of precipitation Pt(Pr, Pi, Dc, fc) X,y,t

Pi [m/s] interception rate of precipitation Pi(Pr, W, We ) zax, y, t
Dc [n/s] dripping rate from interception storage Dc (Wc, tc') z, y, t
Sg [1/s] root sink term for transp. loss Sg (Et, x(W)) zy,zt

Gg [W/m2] ground heat flux Gg(R"net Rnit E,,H 9 ) ,y, t

Rj [W/m] incoming longw. radiation at ref. height RI(Tr, c,) z, y t
R"net [W/m2] net shortw. radiation at ground surface R nt (Rrs, ag, fC) x, y, t
"t [W/m2] net longw. radiation at ground surface R iet (Rni,jT,Tceg, efc) zy,t

Rc [W/m net shortw. radiation at canopy RCSt(Rrs, ac, fc) X, y, t

Rcel [W/m2] net longw. radiation at canopy RCt (Rri, Tg, Tc, eg, Ec, f) X,y,t
ag [-] ground surface albedo ag (W9,, 1) x,y,t
E9 [-] longw. soil surface emissivity C (W) x,y,t

Er [-] longw. atmospheric emissivity 'E (ex) z,y,t
Ea [kg/m2/s] evapotransp. rate to atmosphere Ea (ea, er, ra) z,y, t

E [kg /m2/s] ground surface evap. rate Eg (es (T), ea, rg, rd, fc) x,y,t
Ece [kg/M2/s] (wet) canopy evap. rate Ece (es (Tc), ea, r, LSA, fe, fce) x,y,t

EP" [kg /m2/s] potential (dry) canopy transp. rate Eot (es (Tc),ea,rc,rLAI,fe,fe) ,y,t

Ect [kg/Mz/s] actual (dry) canopy transp. rate Ect(Ecpt , xg(Wg)) Xyt
Ha [W/mz] sensible heat flux to atmosphere Ha (Tr, Ta, ra) x, y, t

Hg [W/m2] sensible heat flux at ground surface Hg (Tg, Ta, rd, fc) z, y, t
Hc [W/m2] sensible heat flux from canopy Hc (Tc, Ta, rc, LSAI, fc) X, y, t
es [mb] saturation vapor pressure e,(T) x,y,t
uc [m/s] wind speed at canopy height oc (Ur, Zr, Zo, de, hc) x,y,t
u. [m/s] friction velocity U* (Ur, Zr, ZO, de) x,y,t
ra [s/mi atmospheric resistance ra (ur, zr, zo, de) x,y,t
rc [s/m] bulk canopy resistance rc (uc) X, y, t
rd [s/mi aerodynamic resistance within canopy rd(uc) X, y, t

rg [s/rm] surface resistance of bare soil rg (W 9,, 0s) x,y,t
r, [s/m] stomatal resistance rs (r.", Xc (Rs)) x,y,t

Cg [J/m /K] vol. heat capacity of wet top soil layer Cg(pgb, cg, Wg, 0,) x, y, t
Ag [W/rn/K] thermal conductivity of wet top soil layer Ag(Wg, 0,) X, y, t
qt [rn/s] moisture flux b.c. at top qt(Pt, Eg) z,y,t

qb [m/si moisture flux b.c. at bottom q(Ku) z,y,t
Ku [rn/s] unsaturated hydraulic conductivity Ku(Ks, W) z, y, z, t

fee [-i wet canopy fraction (for canopy evap.) fe( (We, W") a, y, t

xg [-i stress function for water-limited transp. xg(Wg, @wit, fR) z, y, z, t

Xc [-] solar radiation influence on transp. Xc(Rs) z, y, t

Table B.3: Forcing variables and time-dependent parameters for the land surface model.

Note that we assume the soil thermal diffusivity KT to be constant in time (Section 3.1.7).
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Symbol Units] Description Dependency 1 Dim.]
k9  [-] microw. dielectric constant of wet soil kg (W 9 1., k., kg, fs, fc) X, y, t
km _ [-) microw. dielectric constant of water kw(kmo, kwoo, vr , T) X, y, t
kwo [-] static dielectric constant of water kwo(Tg) X, y, t

[s] relaxation time of water Tw(Tg) X, y, t
E9, rough surface microw. emissivity for polariz. p Eg(kg, #r) X, y, t

smooth [-] smooth surface microw. emissivity for polariz. p E"'Oth(kg, #r) X, y t
T _ [K] eff. soil temp. for microw. emission Te"(Tg, k.) X, Y, t

g [rad] in-soil propagation angle #g (kg, #r) X, y, t
zgra [m] gradient RT effective depth zgrad (aze, #g) X, y, t

ac [1/m] microw. attenuation coefficient ae(kg, vr) X, y, t

Table B.4: Time-dependent variables and parameters for the Radiative Transfer model.
Note that #~g, zgrad, and ae are part of the Gradient RT approximation and not used.
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Symbol Units Description/Value Model Input ? Dim.

o9 [m] depth of surface temp. layer yes -

Ai [n] depth of finite difference soil moisture layer i yes z

j [n] depth of layer "around" soil moisture node i A(A) z

0 [m7/m] porosity yes x,y,z
K, [m/s] saturated hydraulic conductivity yes x, y, z

7 [in] [Clapp and Hornberger, 1978] yes x, y,z
B [-] [Clapp and Hornberger, 1978] yes x, y,z
Ws [-] surface resistance param. (0.25 ... 0.6) yes xy
r"ax [s/m] surface resistance param. (3000 ... 7000) yes x, y

#' [-] surface resistance param. Or (Wrs, rr'ax) x, y
KT [m/s] thermal diffusivity of soil surface layer yes x, y
dg [m] damping depth of temp. forcing dg(KT) zy
og [-] param. of force-restore approx. ag (d9 , 6g) x, y
17 [1/s] coefficient in force-restore approx. Fg(ag) X, y

' [s/rn] coefficient in force-restore approx. g'(KT) x, y
Pgb [kg/m3] bulk density of (dry) soil in layer og Pgb(0s,pg) X, y
cg [J/kg/K] specific heat of dry soil in layer 6g yes x, y
zr [m] reference (or screen) height yes -
h [n] vegetation height (also for bare soil zo) yes X, y, (t)
d [n] zero plane displacement height dc(hc) x, y, (t)
zO [m] roughness length zo (h) Xy, (t)

#3Ts [fs/m] [Sellers and Dorman, 1987] yes X, y, (t)
#rd [-] [Sellers and Dorman, 1987] yes X, y, (t)

r"" [s/rn] minimum stomatal resistance yes x, y, (t)
ac [-] shortw. canopy albedo yes X, y, (t)

[-] longw. canopy emissivity yes X, y, (t)
WJmax [in] max intercepted water W ax(LSAI) X, y, (t)
c [s] dripping time for canopy interception storage yes X, y, (t)

fc [-] area fraction shaded by vegetation canopy yes X, y, (t)

4 wiit [n] wilting point yes X, y, (t)
dR [in] typical rooting depth yes X, y, (t)
PR [1/rn] root density distribution pR (dR) X) y, Z, (t)
fR [- root distribution factor fR (dR) x) y, Z, (t)
LAI [-] (green) leaf area index yes X, y, (t)
SAI [-] stem (and dead leaf) area index yes X, y, ()
LSAI [-] leaf and stem area index LSAI( LAI, SAI) x, y, (t)

# [W/n/K] -0.197 (clay), 0.243 (loam), 0.228 (sand) (yes) xy

# 9 [W/m/K] -0.962 (clay), 0.393 (loam), -2.406 (sand) (yes) zy

# [W/m/K] 2.521 (clay), 1.534 (loam), 4.909 (sand) (yes) xy

Table B.5: Time-independent parameters for the land surface model. Note that we assume

the soil thermal diffusivity KT to be a constant in time (Section 3.1.7), that is the /3" are
not used. Note also that vegetation parameters are time-dependent on the time-scale of
plant growth, which is indicated by (t).
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Symbol Units Description Model Input ? Dim.

Vr [Hz microw. observation frequency yes -

#1 [rad] (in-air) look-angle from nadir at ref. height yes -

fs [-] sand fraction in layer 6 yes x, y

fc [-] clay fraction in layer 6g yes X, y

#k [- Dobson dielectric mixing model param. #k,"(fs, fc) x,y
S[-] surface roughness param. [Choudhury et al., 1979] yes x, y

W, [kg/m 2) vegetation water content yes x, y, (t)
#6' [m2/kg] "vegetation b param." [Jackson and Schmugge, 1991] yes X, y, (t)

[-] canopy optical depth 6c (W, r) X, y, (t)
c [-] canopy microwave attenuation ac (6c) z, y, (t)

zgrey [i] grey body RT param. yes -

Table B.6: Time-independent parameters for the Radiative Transfer model. Note that veg-
etation parameters are time-dependent on the time-scale of plant growth, which is indicated
by (t).

Symbol Value Units

, 0.25 [-]
' 2 0.125 [-]
K' 10.74 [-]
r 0.0049 [-]
r 0.9 [-]
n 4 0.18
r 4 10 [s/rn]

r'19 0.943 [-]
r 0.223 [-]
'34 1.68.-1 - -

4 -5.27 -10- [-]

n dc 0.63 (-]
rz0 0.13[-

Table B.7: Scalar empirical constants.
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Symbol Value Units Description

Pw 1000 [kg/m] density of water

Pa 1.20 [kg/m] density of air

pg 2.765- 10 [kg/m ] density of soil particles in layer og
Wd 27r/86400 [1/s] angular frequency of diurnal cycle

L 2.5 - 106 [J/kg] latent heat of vaporization

o- 5.57 - 10~" / iK Stefan-Boltzmann constant

' 0.65 [mb/K] psychrometric constant

ca 1004 [J/kg/K] specific heat of air at constant pressure

c. 4187 [J/kg/K] specific heat of water

K 0.4 [-] von Karman constant

TO 273.15 [K] reference temperature

kgd 4.67 [-] microw. dielectric constant of dry soil

kwoo 4.9 [-] high frequency dielectric constant of water

g 9.81 [m/s'] acceleration due to gravity

cight 3 -.108 [m/s] speed of light

Table B.8: Physical constants
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