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Abstract

One of the ensemble Kalman filter's (EnKF) attractive features in land surface ap-
plications is its ability to provide distributional information. The EnKF relies on
normality approximations that improve its efficiency but can also compromise the
accuracy of its distributional estimates. The effects of these approximations are eval-
uated by comparing the conditional marginal distributions and moments estimated
by the EnKF to those obtained from an SIR particle filter, which gives exact solutions
for large ensemble sizes. The results show that overall the EnKF appears to provide
a good approximation for nonlinear, non-normal land surface problems.

A difficulty in land data assimilation problems results from the high dimensionality
of states created by spatial discretization overlarge computational grids. The high
dimensionality can be reduced by exploiting the fact that soil moisture field may
have significant spatial correlation structure especially after extensive rainfall while it
may have local structure determined by soil and vegetation variability after prolonged
drydown. This is confirmed by SVD of the replicate matrix produced in an ensemble
forecasting experiment. Local EnKF's are suitable for problems during dry periods
but give less accurate results after rainfall. The most promising option is to develop
a generalized method that reflects structural changes in the ensemble.

A highly efficient ensemble multiscale filter (EnMSF) is then proposed to solve
large scale nonlinear estimation problems with arbitrary uncertainties. At each pre-
diction step realizations of the state variables are propagated. At update times, joint
Gaussian distribution of states and measurements are assumed and the Predictive
Efficiency method is used to identify a multiscale tree to approximate statistics of the
propagated ensemble. Then a two-sweep update is performed to estimate the state
variables using all the data. By controlling the tree parameters, the EnMSF can re-
duce sampling error while keep long range correlation in the ensemble. Applications of
the EnMSF to Navier-Stokes equation and a nonlinear diffusion problem are demon-
strated. Finally, the EnMSF is successfully applied to soil moisture and surface fluxes
estimation over the Great Plains using synthetic multiresolution L-band passive and
active microwave soil moisture measurements following HYDROS specifications.
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Chapter 1

Background and Introduction

Over the past decades, tremendous effort has been focused on studying the land

surface system at different temporal and spatial scales. The understanding about

the land system has been incorporated into many land surface models (LSM), which

usually include water, energy, and carbon balances. Theoretically, LSM's are able

to provide continuous description of the physical processes in time and space. Since

these land surface models make many assumptions about real physical processes, they

are always imperfect and subject to various errors.

On the other hand, with the advancement of observation ability, especially the

remote sensing technologies, more and more land surface datasets are becoming avail-

able. Remotely sensed precipitation, radiation, soil moisture, vegetation, and ground

water, etc. may provide valuable information to better understand the land surface

system. Some of the measurements are directly used as input to LSM. Unlike the

land surface models, measurements are often discontinuous in time and space. For

example, satellite tracks are discontinuous in space and time but with large footprint

coverage; ground station measurements are continuous in time but discontinuous in

space. Similar to LSM's, the measurements are often subject to errors which result

from observation instrument precision inadequacy and retrieval model assumptions.

Taking all the errors into account, the land surface models and observations can

be described in an uncertain, or probabilistic manner, which offers great convenience

to better estimate or predict the variables of interest. Data assimilation provides
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an ideal framework to consistently and optimally/suboptimally meld all the avail-

able continuous or discontinuous information from the dynamic model prediction and

observation data to describe the reality.

1.1 Brief Introduction

Generally speaking, data assimilation techniques are designed to characterize the un-

certain state of an environmental system, using all relevant measurements. Data

assimilation has a long history in meteorology for generating initial conditions for

numerical weather prediction. Currently, operational numerical weather prediction

centers all produce initial conditions through a statistical combination of observations

and short-range forecasts, i.e. data assimilation. Oceanographers use data assimila-

tion to merge large volumes of data, such as TOPEX/POSEIDON altimeter data.

The data assimilation techniques in meteorology and oceanography has evolved

from successive correction method, nudging, to the 4-dimensional variational meth-

ods, and ensemble methods. There are several excellent reviews in the literature

about data assimilation. Daley [24] gives a comprehensive description of methods for

atmospheric data analysis and assimilation. Ghil and Malanotte-Rizzoli [44] gives

a rigorous discussion of present data assimilation methods with special emphasis on

sequential methods. Talagrand [93] reviews current methods of data assimilation.

Data assimilation in hydrology is still young compared to the the other two. De-

spite the the short history of data assimilation in hydrology, it has found a wide

range of applications in estimation of soil moisture, rainfall, groundwater, energy

fluxes, runoff, snow and ice. McLaughlin [71] gives an excellent review of hydrologic

data assimilation. Some of the earlier work focusing on 1-dimensional estimation

using synthetic data includes Entekhabi [31], Callies [11], Castelli [14], Houser [55].

Some lately work includes Dunne [29], Reichle [82], Crow [22], Rodell [86], Mitchell

[74], Parada [79], Caparrini [13], Kumar [64], Boulet [8], Li [65], Boni [6].

The techniques used in hydrology community are much the same as those used

in meteorology and oceanography. In much of the work mentioned above, varia-
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tional methods and variants of Kalman filters are the two types of commonly used

assimilation methods. Reichle [83] solves a soil moisture estimation problem using

4-dimensional variational methods for a land surface model with additive errors. To

account for nonadditive uncertainties commonly existent in the land surface system,

ensemble methods are beginning to gain popularity. Margulis [69] uses the ensemble

Kalman filter to assimilate airborne L-band microwave observations and ground-based

measurements of micrometeorological variables, soil texture, and vegetation type into

NOAH (NCEP, Oregon State University, Air Force, Hydrologic Research Lab) land

surface model. Assimilation is done in a pixel by pixel fashion and no horizontal

correlation is considered. Dunne [29] presents an adaptive hybrid filter/smoother in

which brightness temperature is used to break the study interval into a series of dry-

down events. The smoother is used on dry-down events, and the filter is used when

precipitation is evident between estimation times.

1.2 Land Surface System

Before reviewing any detailed data assimilation techniques, it is useful to look at a

simple land surface system. For any land surface data assimilation application, the

system of interest typically involves water, energy, and carbon balance and fluxes

at different spatial and temporal scales. Existing micro or macro scale land surface

models characterize these processes using some complex nonlinear dynamic equations.

Usually the equations in these models are composed of three major parts: the soil

water and heat dynamics, the vegetation processes, and the atmospheric boundary

layer dynamics. These dynamics are highly coupled, which often entails iterative

methods in solving these equations. The unsaturated zone soil water and heat trans-

port equations are the key in the coupled system, since it controls the incoming water

and energy partition. The coupled soil water and heat dynamics are described by

nonlinear advection diffusion equation. For the soil moisture part, the models are in
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the variant form of the simple 1-D Richards equation

t= D D()z + K(O) - S(O) (1.1)

where z is the vertical axis, 0 is volumetric soil moisture, D(O) is diffusivity, K(O) is

hydraulic conductivity, S(O) is sink term representing vegetation root uptake. The

simplest heat equation can be described by the following diffusion equation:

C(o) T- a (0)T J (1.2)
at az

where C(0) is the soil volume heat capacity, A(0) is soil heat conductivity. These

two equations are mainly coupled through the pathway of evapotranspiration, which

exerts the top boundary conditions of both equations. Since evapotranspiration is

also controlled by roughness of vegetation and canopy characteristics, all the water,

energy, and carbon fluxes are then coupled.

The variants of these 1-D water and heat equation are widely used in land surface

modelling. One distinctive feature of the land surface system is that the lateral

interactions of water or heat is usually not considered. The same 1-D equations above

are used for different computational pixels but with different set of parameters and

inputs determined by land surface characteristics and meteorological forcing which

have lateral connections between pixels.

These equations are simply a set of nonlinear diffusion equations which forms a

nonlinear dissipative system. The downward water and energy diffusion processes

depends on the gradients and land surface parameters. The inputs to the system are

exerted at the top boundary, where rainfall controls soil moisture and short/long wave

radiation controls soil temperature. After each rainfall events, the rainfall passing

through vegetation infiltrates into ground and the amount exceeding soil infiltration

capacity becomes runoff. The bottom boundary of the soil water equation is controlled

by the position of the saturated water level. At large scales, the variables in these

equations such as soil moisture below surface, groundwater, evapotranspiration are

hard to observe directly. However, they can be inferred from the relationships between
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the variables in the equations and other physical quantities.

Since these models are only approximations to the true physical processes, they are

subject to all kinds of errors or uncertainties. In a typical land surface model, these

uncertainties may come from model parameters such as soil properties, vegetation

properties, or from model forcing input such as rainfall, and solar radiation, etc. For

the land surface processes taking place in a 4D space, accurate quantification of these

errors is not a trivial task, and error assumptions usually have to be made.

The estimate of the variables of interest as accurate as possible, or inference of

the unobservable variables or model parameters of the land surface system, can be

solved with estimation theory.

1.3 Estimation Theory

The data assimilation problem is essentially an estimation or inference problem in

statistics. Based on different ways of using the available information, data assimilation

can be categorized into filtering, smoothing, and prediction three problems. When

the time at which an estimate is desired coincides with the last measurement point,

the problem is referred to as filtering; when the time of interest falls within the

span of available measurement data, the problem is termed smoothing; and when the

time of interest occurs after the last available measurement, the problem is called

prediction. McLaughlin [72] gives a complete set of these demonstration problems,

where interpolation is illustrated with an example based on multiscale estimation of

rainfall during the TOAGA-COARE field experiment; smoothing is illustrated with a

variational soil moisture estimation algorithm applied to the SGP97 field experiment

and filtering is illustrated with an ensemble Kalman filter, also applied to the SGP97

(Southern Great Plains 1997) experiment. In this thesis, filtering problem will be the

main focus.
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1.3.1 Bayesian Least Squares Update

The simplest estimation problem can be described in this way: given an indirect

measurement vector y of a Gaussian random vector x with mean m. and covariance

matrix P, we want the estimate of x as close as possible to the truth. Suppose the

measurement uncertainty v in y is a Gaussian noise with zero mean and covariance

matrix R; y and x are related through

y = Hx + v (1.3)

which is called the measurement equation, H is the measurement operator. Now

we want , the best or optimal estimate of x, in the sense that tr(E[(- X)2]),

the trace of expected mean squared error matrix, is minimized for this x. Here E

represents the expectation with respect to the conditional distribution p(xly). The

approach of using the expected mean squared error as the performance gauge is

intuitive since it describes on average how far away the estimate is from the truth.

Then the minimization problem becomes

x = arg min E[(x - x)2] = arg min /(- x) 2p(xly)dx (1.4)

It can be derived [60] that the solution to x is given by

= mxly (1.5)

where mxly is the conditional mean of x given by the posterior distribution p(xly).

According to Bayes' theorem

p(xly) = cp(x)p(ylx) (1.6)

where c is to ensure p(xly) integrates to one, p(x) is the prior distribution, p(ylx) is

the likelihood function completely determined by the probability distribution of v and

the value of x. It indicates the posterior distribution is only a function of the prior
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distribution and likelihood function. This estimate x is called the Bayesian Least

Squares (BLS) estimate. It has the minimum mean squared error and is unbiased.

If a linear estimate of x from y satisfying the above minimum mean squared error

criteria is desired, we write it in the following form

= By + C (1.7)

where B and C are a constant matrix and vector respectively. We can prove the best

estimate is given by

=m K(y- Hmx) (1.8)

where

K = (PxHT)(HPxHT + R)-1 (1.9)

The K matrix is termed as the gain matrix. It weights the prior mean of x and the

new information in measurement y, i.e., y - Hmx. This estimate is called the Linear

Least Squares (LLS) estimate. It is unbiased and has the minimum error covariance

among all the linear estimates.

For this Gaussian x and v case, the conditional mean of x is exactly the same as

the LLS estimate. Also, the error covariance matrix P = E(( - x - E( -X)) 2 )

for LLS estimate is the same as the posterior covariance matrix of x from the BLS

estimate.

The BLS and LLS estimates described in this section form the foundations of the

most data assimilation problems. In particular, they consider all the measurements

and variables of interest at the same time. The optimal interpolation or Kriging

approach used in data assimilation is simply LLS estimate by assuming the variable

of interest is normally distributed. However, in a data assimilation problem it is

usually impossible to process all the variables as a batch simply because the gigantic

size of a spatial or temporal problem would prohibit such a direct calculation of the

estimate. To make the computation feasible, strategies to deal with temporal or

spatial problems often include sequential processing of the data y by exploiting the

27



internal structure of the x. A universal framework for dealing such a problem is the

graphical model approach [61].

1.3.2 Sequential Estimation Theory for a Dynamic System

As mentioned in the last section, the problem size of a data assimilation problem

might be huge if collecting all the variables together. It is impossible to handle the

big problem directly. Usually the spatial, temporal, or scale Markovian assumption

of a process would dramatically simplify the problem. This section would address the

state space approach of estimation, including introduction to sorts of Kalman filters.

In filtering problems, it is convenient to describe the discrete time state and mea-

surement equations in the following state space form:

Xt = f(xt-1, t) (1.10)

yt = h(xt) + vt (1.11)

where xt is a function of space or time or scale, called the system state vector, with

an uncertain initial condition x0, ut is a vector of uncertain model inputs (not neces-

sarily additive), Yt is the measurement vector, and t is a vector of additive random

measurement errors. In a land surface problem t could be a vector of soil mois-

ture values in different pixels and layers, ut a vector of precipitation rates, and Yt

a vector of microwave radiometer measurements indirectly related to soil moisture.

The uncertain variables x0 , ut, and vt are assumed to have known prior probability

distributions and the measurement error vectors at different times are assumed to be

independent. The functions f(.) and h(.) represent discretized models of the system

dynamics and measurement process.

Using the state pace models to describe the system has the advantage of simpli-

fying the complexity of the problem using Markovian assumption which assumes the

current state vector summarizes all the information at previous times/locations/scales

and the data before the current time/location/scale can be discarded after being used.
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Also, the state space model is consistent with the dynamic system discretization used

for solving partial differential system equations. In terms of describing the uncer-

tainties, the state space model makes it easier to reformulate the full probability

distribution of the state vectors with a set of conditional probability distributions.

For a temporal case, the filtering problem is to characterize the current state

xt from Yl:t, the set of all measurements obtained at discrete times in the interval

[0, t]. The ideal probabilistic characterization is the conditional probability density

p(xtIy1:t), the conditional probability density function (pdf) of variable x at time t,

given all the measurements y between time interval [ t]. Estimating xt, from Yl:t,

where t < t, is the smoothing problem. The ideal probabilistic characterization for

this case is the probabilistic distribution of the full trajectory of the state variables

conditioned on all the measurements. This is analogous to the optimal interpolation

problem as if the time index is removed.

Another point worth making is that the multivariate density of the whole state

vector is difficult to compute or interpret for large land surface problems, we typi-

cally focus on particular properties of p(xtlYl:t), such as its moments and univariate

marginal densities of p(xtlyl:t).

1.4 The Kalman-Bucy Filter and the Extended

Kalman Filter

In general, estimation problems can be formulated in a Bayesian framework. The

process of estimating p(xtlyl:t) can be simplified to be described in the state space

framework as in (1.10) and (1.11). However, the closed form solution for p(xtlyl:t)

is nearly impossible to obtain except for some special situations such as for linear

Gaussian system and measurement model, which will be discussed in this section.

For a linear system with Gaussian process noise and measurement noise, the state
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space model is

xt = Ftxt- + ut (1.12)

Yt = Htxt + vt (1.13)

where t is the system state vector with an uncertain initial condition x0 , ut is a

vector of additive uncertain process noise, t is the measurement vector, and vt is a

vector of additive Gaussian random measurement errors. The uncertain variables x0 ,

ut, and vt are assumed to be independent at different times, i.e., they are white noise.

Ft is the linear system operator and Ht represents the linear measurement operator.

For this system, state variables and measurements are jointly Gaussian, which makes

the first two orders of moment sufficient to describe the uncertainties.

To obtain the estimates tlt at different times for this linear Gaussian system, the

traditional optimal Kalman filter sequentially update the mean of the state variables

based on the covariance of the estimation errors. The uncertainty in error itself is

propagated using Riccati equation describing the propagation of the error - x,

the difference between the estimate and true value. The updating equations can be

written as:

itlt = xtlt-l + Kt(yt-Ftxtlt- ) (1.14)

where the gain matrix Kt is given by

Kt = PtltlHT(HtPt ltl H T + Rt)-1 (1.15)

which is determined by the error covariance matrix Ptt- 1 and the covariance matrix

Rt of the measurement at time t. The error covariance matrix Ptlt-1 of tlt-i is given

by

Ptlt- = FtPt-1 t1 FT + Qt (1.16)
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and

Ptt = (I- KtHt)Ptltl (1.17)

In equation (1.14), the last term Yt-Ftxtlt-l is called innovation, which represents

the new information given by the current measurement Yt. The innovation time series

is a white noise process, which indicates the previous measurements can be discarded

after being used and thus allows the sequential update form in (1.14).

If HtPtlt-,lHt + Rt in (1.15) is rank deficient, pseudoinversion can be used instead

Kt = Ptt_lHtT(HtPtlt_lH tT + Rt)+ (1.18)

This is equivalent to first projecting the observations onto the dominant eigenspace of

HtPtit-HtT+Rt, denoted as L; and then use the projected innovation L(yt-Ftxt_ 1 1t_1 )

for the estimation.

For a quasi-linear system, the state space equation is nonlinear and is written as

xt = Ft(xt- 1) + ut (1.19)

Yt = Htxt + vt (1.20)

In this case, although the mean of the estimate can still be propagated using the

nonlinear model

xtlt_1 = Ft(xt_llt_i ) (1.21)

the error covariance matrix must be propagated by the linearized system equation

with linear operator Ft, called the tangent linear, using

Ptlt-1 = FttlltlFt + Qt (1.22)

All the other equations are the same as in the Kalman-Bucy filter described above.
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This filter is usually called the Extended Kalman Filter.

It's worth noting that the covariance matrix of the error ItlYl:t - xt is the same

as the covariance of tjyl:t, i.e. the posterior covariance of xt. For linear Gaussian

system, Bayesian least squares estimate and linear least squares estimate are identical.

The extended Kalman filter has been widely applied in meteorology, oceanog-

raphy, hydrology. A big issue for these applications is the computational demand

caused by the high dimensionality of these problems. Firstly the extended Kalman

filter requires the propagation of the error covariance matrix at every time step or

few steps if necessary, the size of which might be on the order of 106 x 106. The

memory required to store this matrix would become a serious problem. Secondly

the inversion of the HPHT + R matrix for gain calculation is also a daunting task.

Another big issue is the nonlinearity in these models. For highly nonlinear models,

the linearization in the extended Kalman filter would make the error covariance cal-

culation numerically unstable which can cause the filter divergence. The other issue

is the error assumptions in the process noise ut. In hydrological applications, the

additive Gaussian assumption is insufficient to describe the reality.

To deal with the high dimensionality issues, many suboptimal Kalman filters have

been proposed. One type of such filters is the reduced rank Kalman filters [95, 20, 30,

99]. These methods efficiently represent the error covariance and its propagator by

truncating their singular vectors and eigenvectors expansions to a few leading terms,

which then results in a low-dimensional system easier to solve. Some other reduced

rank filters use coarse-grid approximation [38], EOFs (empirical orthogonal functions)

[12], or wavelets [17, 94, 3] of the error covariance matrix. All of these methods can

only deal with uncertain initial condition problems or systems with additive errors.

Another approximation type is the parameterized flow-dependent error covariance

[85] method that assumes the background error correlation has essentially the same

shape as the background field. This ad hoc approach has the potential to estimate

anisotropic correlations. The other type is the traditional Monte Carlo or ensemble

Kalman Filter (EnKF) methods [33, 56] These traditional EnkF's avoid the expense

of directly propagating error covariances by estimating them from an ensemble of
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forecast, thus it doesn't rely on the tangent linear model to evolve error statistics. The

EnkF is a promising research direction especially for the nonlinear filtering problems

which will be discussed in detail in the following section.

1.5 Ensemble Nonlinear Filtering

For linear or quasi linear systems with a limited number of state variables and additive

system error, the Kalman-Bucy or the Extended Kalman filters can be easily applied.

However, estimation problems of a nonlinear high dimensional dynamic system with

nonnormal nonadditive uncertainties is challenging, which is very common in the land

surface system. Traditional Kalman filters can't be directly used for these cases.

During the last decade nonlinear filtering theory has undergone a rapid devel-

opment partly due to the dramatically reduced computational cost. Many popular

nonlinear filtering algorithms such as particle fillers [2, 45], unscented Kalman fil-

ter [62], and ensemble Kalman filters [33, 10] require no linearization and additive

Gaussian uncertainties assumption and have been proved promising. The basic idea

behind these ensemble filters is to use Monte Carlo approach to approximate the

propagation of p(xtlyl:t_), the posterior probability density function (pdf) of the

state variables and then use Bayes' theorem or an update equation to ingest t, the

new information from observations into the propagated ensemble to form p(xtlyl:t).

Ensemble-based data assimilation methods are becoming popular in many of the earth

sciences, largely because they are easy to use, flexible, and make relatively few restric-

tive assumptions (see the review by [34]). They also have the advantage of providing

distributional information about uncertain variables, including approximate marginal

distributions, quantiles, and higher-order moments. This information is particularly

useful in land surface applications, where variables such as soil moisture can be highly

skewed towards the wet or dry ends and can even be bi-modal, depending on the time

and space scale considered [88]. In such cases, means and covariances alone may not

adequately characterize variability.

From the Bayesian estimation point of view, ensemble methods are able to pro-

33



vide a practical alternative to exact Bayesian solutions because they rely on discrete

approximations of the densities p(xtlyl:t_) and p(xtlyl:t). The approximations can

be expressed as:
N

p(xtlyl:t-) E w 16 tltl(xt (1.23)
i=-1

Np(xtlyi:t) E wlt(xt -xtt)(1.24)
i=1

These approximations replace each continuous density by a sum of N Dirac delta

densities located at the randomly generated state vectors, or replicates, xi% or x,xtW-1o xtlt,
for i = 1,... ,N. The Dirac delta terms (and the corresponding replicates) for each ap-

proximation are assigned discrete probabilities (or weights) wi, or w, respectively.

If the weights in each expansion sum to unity, the integrals of (1.23) and (1.24) yield

stepwise approximations of the continuous cumulative distribution functions for p(xtl 

Yi:t-i) and p(xtlyj:t), respectively. The random replicates and corresponding weights

can be generated in a variety of ways, e.g. as in the SIR particle filter or ensemble

Kalman filters.

In filtering applications it is useful to distinguish two sequential estimation opera-

tions: 1) propagation of the state from one measurement time to the next (forecasting)

and 2) updating of the propagated state with the new measurement (analysis). If the

complete density P(Xtl Yl:t) is desired forecasting is carried out by derivingp(xtl Yl:t-l)

from p(xt_jyl:t_-) (e.g using the Fokker-Planck equation) and analysis is carried out

by deriving p(xtl yl:t) from p(xtlyj:t_) (e.g using Bayes theorem) [60]. The required

calculations are generally feasible only for very small problems.

The nonlinear ensemble filters share the same forecasting step. To examine the

mechanics of this step, suppose that replicate i at t - 1 has the value xtllt_ 1 with

weight wtllt_1 . The nonlinear state equation (1.10) can be used to compute the

value of this replicate at time t from the value at t-1, giving:

x = f(x- 1tlltl-, u) (1.25)
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Note that this operation requires generation of a random input replicate uit, which

is a random sample drawn from the specified prior input probability density p(ut).

Assuming

w[t_1 = 1/N (1.26)

then equations (1.25) yields the following approximation for the forecast probability

density:

1 N 1N
P(xt|yi:t-i tlt-) = N 5[Xt-f(xlltl, ut)] (1.27)

i=1 i=1

Note that the assumption of the even weight can be released. This forecasting step

is just a Monte Carlo-based procedure for deriving p(xtlyl:t-) from p(ut) and p(xtl

Yi:t-i).

The ensemble nonlinear filters differ in the the analysis step. Among all these

filters, the ensemble Kalman filters are especially attractive for land surface problems.

Since it will be used in all the following chapters it will be discussed in the following

section and the SIR particle filter will be discussed in Chapter 2 in detail. In chapter

4 a new ensemble multiscale filter designed for large scale problems will be proposed.

1.5.1 The Ensemble Kalman Filter (EnKF)

The ensemble Kalman filter uses the Dirac expansions of (1.23) and (1.24) to approx-

imate the conditional probability densities of xt and it adopts the approximation of

(1.25) and (1.26) during the forecasting step. However, the ensemble Kalman filter

makes more assumptions at the analysis step. The Kalman filter analysis step can be

derived from various perspectives. Here we take a Bayesian or distribution-oriented

perspective because we are interested in the filter's ability to estimate properties of

the conditional density p(xtjy1:t).

It is generally very difficult to derive an exact closed form expression for p(xtlyl:t)

from Bayes theorem, especially for problems with nonlinear dynamics and measure-

ment operators. However, it is possible to obtain an exact solution when the forecast
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states and measurements are jointly normal. This typically occurs only when the

state and measurement equations are linear and all sources of uncertainty are nor-

mally distributed. In this special case the analysis density given by (2.1) is normal

and completely defined by the following mean and covariance, which are the update

expressions of the classical Kalman filter. In practice, adopting a joint normality as-

sumption is equivalent to assuming that the forecast and measurement densities are

adequately characterized by their means and covariances (i.e. higher-order moments

are ignored in the analysis step). It is possible to use the Kalman update expressions

even when the joint normality assumption does not apply. In this case the conditional

statistics produced by the Kalman filter may not match the true values but they may

be close enough to be useful.

In an ensemble version of the Kalman filter we need to generate an ensemble of

analysis replicates at t, for propagation from t to t + 1. The sample mean and covari-

ance of this ensemble should converge to the mean and covariance of (1.14) and (1.17)

in the limit as the number of replicates approaches infinity. There are many ways to

generate analysis replicates that satisfy this requirement. In nonlinear applications

it is best to use an ensemble generation method that preserves at least some of the

non-normal characteristics of the forecast ensemble when normality assumptions do

not apply.

One way to accomplish this is to generate an analysis ensemble directly from the

forecast ensemble, using the following algorithm [34, 33]:

t = xtlt_l + Ks,t[yt + vt - h(x1ltl)] (1.28)

1
= wtt_ = (1.29)

W~t it- 

Where vis a sample drawn from the measurement error probability density p(vt) and

Ks,t is a sample estimate of the Kalman gain Kt:

Ks,t = Xt 1tlY ttl [yttltt 1 + Cvv,t] (1.30)
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The columns of the sample matricesXtltl andYtt-1 are constructed from the mean-

removed replicates of xtlti, h(xtlt-1 ), and vt.

The ensemble Kalman filter algorithm of (1.28) through (1.30) produces analysis

replicates that converge to the exact Bayesian solution for normal states and mea-

surements. When there are deviations from normality the filter is suboptimal but the

replicates are able to inherit non-normal properties from the forecast.

1.5.2 Two variants of the EnKF's

1. The Square Root EnKF

There are a number of other versions of the ensemble Kalman filter that use

different approaches for generating non-normal ensembles that conform to (12) and

(13) [96]. For EnSRF, also called the deterministic EnKF, the update equation for

mean follows

t = xtltl + Kt(yt- h(xZtltl)) (1.31)

where there is no artificially added measurement noise vt, which differs from (1.28).

To obtain the correct error covariance as ensemble size approaches infinity, Tippett

(2003) presented a square root framework for updating the ensemble spread:

Z(tlt) = Z(tlt - 1)(I - V(tlt - )V(tlt - 1)T) (1.32)

where Z represents the mean removed ensemble, V(tlt- 1) = h(Z(tlt- 1)); =

[D + (RtD) 1/2 ]-1, and D = V(tlt- 1)TV(tlt - 1) + Rt. So (1.32) is essentially a linear

transform ofZ(tlt- 1).

There haven not been any documented hydrological research using the square root

filters. However, the basic concepts here are similar to [33] classical ensemble Kalman

filter. We will focus on the classical version of the filter described above.

2. Hybrid Kalman filter

All the ensemble methods suffer from the sampling error issues for large problems
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simply because the affordable ensemble size is small. To overcome the sampling

error issues, the hybrid Kalman filter [52] adopts the control variate idea which is a

traditional variance reduction technique in Monte Carlo methods. At time t, it uses

L*, the square root form of error covariance matrix P(tlt- 1) from the extended

Kalman filter, as control variate and then incorporates replicates E from the EnKF

into the null space of L* to form

E l = (L*(L*TL*)L*T)E (1.33)

where the term (L*(L*TL*)L*T) is simply the complementary space of L*. Using

the constructed error space L* and E', the error covariance matrix P*(tlt- 1) is

computed from

P*(tlt- 1) = [L* ] [ (1.34)

which is used for the gain calculation. All. the operations involving P*(tlt- 1) in

the filter are in square root form so full matrix of P*(tlt- 1) is never used. The

drawback of this hybrid Kalman filter is similar to those of the extended Kalman

filter: it requires additive model noise and linearization of the system model when

calculating L*.

1.6 Motivations and Thesis Organization

Even though the EnKF's have been studied in land surface problems, many of issues

are still outstanding, such as the the nonlinearity and nonnormality effects of the land

surface model on the performance of the EnKF is still unknown; the high dimension-

ality of the land surface problems needs more efficient data assimilation techniques;

for accuracy reasons the sampling errors due to limited ensemble size needs to be

eliminated as possible; utility of the efficient data assimilation techniques for land

surface applications involving large scale correlation should be examined. These are

the major motivations for this thesis that will be addressed in this section in more

details.
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1.6.1 Nonlinearity and Nonnormality Effects

Ensemble approaches can provide high order moments of the states through the uncer-

tain state propagation using nonlinear dynamic model. However, the widely studied

ensemble Kalman filters assumes normality in the ensemble and only use first two

order moments to calculate the weights between prior information and observation.

For land surface problems, the interactions between the model parameters and state

variables make the system highly nonlinear. The resulting uncertain state variables

might be nonnormal. Another contributing factor to the nonormality is the non-

normal inputs such as rainfall, the intermittency of which could create multimodal

distributions. Skewed or bimodal ensemble of soil moisture would occur after a period

of dry-down or rainfall event, which is largely due to the threshold constraint of soil

moisture. For these cases, high order prior information is ignored when updating.

How the ignored high order information would affect the performance of the update

and the following error propagation is still unknown. Fortunately the particle filters

for nonlinear filtering can be used as the benchmark to assess the extent to which

nonlinearity and nonnormality affect the performance of ensemble Kalman filters.

The second chapter would use the SIR (Sequential Importance Resampling) particle

filter as the tool to address this issue.

1.6.2 High Dimensional State Estimation

The computational requirements of environmental data assimilation problems are a

direct result of the wide range of time and space scales that need to be accommodated.

For example, the number of states to be estimated in a three-dimensional dynamic

land surface assimilation problem tends to be proportional to square of the ratio of

the largest scale of interest (e.g. a regional weather system) to the smallest scale of

interest (e.g. the scale of terrain or soil variations that affect local evapotranspiration

and infiltration). This number can easily exceed 106, a value that is sufficiently large

to render many popular estimation techniques impractical. Similar arguments can be

made for oceanographic and meteorological data assimilation applications.
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The high dimensionality of the state and measurement vectors does not necessarily

reflect what might be called the intrinsic size of a land surface assimilation problem.

This is because the states and measurements might be highly correlated or linearly

dependent. For example, soil moisture tends to be highly correlated between upper

soil layers after a prolonged wet period. There can also be significant horizontal cor-

relation. In the limit when all surface layer pixels are saturated and soil properties

are uniform, the surface soil moisture in an extended region can be described with a

single number, the porosity. On the other extreme, after long drydown periods hori-

zontal correlation tends to decrease, reflecting the effect of small-scale soil variability.

In this case, the intrinsic problem size is high. But it may be possible to divide this

large problem into many independent small problems, each associated with a single

isolated soil column (at least until the next large rain event).

If we could account for such behavior in a systematic way we should be able to

greatly reduce the computational effort required for large problems. The difficulty

is that spatial correlation in a land surface problem changes over time, sometimes

rapidly. Highly efficient estimation algorithms must be able to adapt to such changes,

continually adjusting the intrinsic problem size. Development of such algorithms

requires a careful look at the space-time structure of the system states. The third

chapter would examine the evolution of the soil moisture spatial structure using the

spectrum analysis of the forecasted ensemble from the Community Land Surface

model. The implications of the dynamically changing spectrum for data assimilation

would also be discussed.

The high dimensionality problem stated above is closely related to the sampling

error in any data assimilation approach based on Monte Carlo methods. Ensemble

approaches inevitably have error resulting from random sampling with the limited

ensemble size. As in any Monte Carlo approaches, the sampling error depends on

both the ensemble size and the intrinsic dimension of the sate vectors. For example,

the highly correlated state variables require smaller ensemble size than the highly

uncorrelated ensemble size to achieve the same level of sampling error. However,

the sampling errors in the ensemble doesn't have to enter the filter. The trick is in
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how to exploit the characteristics of the ensemble to wisely use the information in

the ensemble and eliminate the noise. An efficient ensemble filter should require less

replicates while keeping the sampling error low, thus decreasing the spurious spatial

correlation due to limited ensemble size or increasing the effective spatial correlation

length. After having longer effective spatial correlation length, the influence radius for

a particular pixel would be increased. Hence more information from the neighboring

measurements can be utilized if available, which would ultimately increase the filter

performance. The sampling error issue would also be discussed in this thesis.

1.6.3 Need for a Nonlinear Filter for High Dimensional Es-

timation

For a nonlinear non-Gaussian system with nonadditive errors, traditional estima-

tion methods such as the extended Kalman filter can't work well due to its require-

ments for linearization of the system and additive error assumption. During the last

decade nonlinear filtering theory has undergone a rapid development partly due to

the reduced computational cost. Many popular nonlinear filtering algorithms such

as particle fillers [2, 45], unscented Kalman filter [62], and ensemble Kalman filters

[33, 10] require no linearization and additive Gaussian uncertainties assumption and

have been proved successful. The basic idea behind these ensemble filters is to use

Monte Carlo approach to approximate the propagation of probability density func-

tion (pdf) of the state variables and use Bayes' theorem or an update equation to

ingest information from observations into the propagated ensemble. In the particle

filters, the update is based on sequential importance sampling of the posterior pdf

conditional on measurements. While in ensemble Kalman filters, the update equa-

tion is similar to the traditional Kalman filter using the Kalman gain and innovation

from observation. The updated ensemble is then propagated forward using the non-

linear dynamics. However, the high dimensionality in both state and measurement

as is common in land surface problems makes it very hard to implement the particle

filters. It is impossible even to store the error covariance matrix in the traditional
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covariance based methods. To deal with this problem, some approaches have been

developed.

Multiresolution method [101] provides a very powerful framework for efficient large

scale estimation. It describes a covariance matrix using multiresolution autoregressive

model, which leads to an efficient way to deal with high dimensionality encountered in

a big problem. In general, a scale-recursive model can be identified using methods like

canonical correlation [57] or predictive efficiency method [37]. For a general dynamical

system the covariance structure may vary in time. For example, a land surface system

has time varying spatial correlation across many scales in the states due to moving

rainfall input and land surface system dynamics [73]. These identification methods

are able to identify an approximate scale recursive model from any given second order

statistics, which is especially ideal for a system with varying covariance structure.

Originally, the multiresolution method was developed for static estimation. In

[53] it is extended to solve linear diffusion problems, where a tree model is used to

approximate the error covariance matrix. After each update the tree model as an

approximation of the error covariance matrix is then propagated forward. This is

similar to the concept of dynamic bayesian network. However, the approach in [53]

is not applicable for a general dynamic system with nonadditive uncertainties.

Another related model for large scale problems is the Bayesian hierarchical mod-

els used in the study of environmental processes [4]. These models usually assume

tractable conditional distributions for the states or parameters. The posterior den-

sity can be iteratively obtained using Markov Chain Monte Carlo methods. But the

uncertainties of parameters and inputs of a system model might be rather complex

and can't be simply expressed in a simple form such as Gaussian additive noise. This

method is not good for sequential estimation either.

The Ensemble Kalman filter (EnKF) as the other attempt to deal with problems

with high dimensionality rely on a reduced rank approximation to the full error co-

variance matrix, thus helping with the computational feasibility [34]. But calculating

the gain matrix in EnKF is still difficult for a problem with lots of measurements

even using the reduced rank approximation. Another weakness in EnKF is that only
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a limited number of replicates can be generated for large problems so the resulting

sampling errors in covariance matrix might be significant.

Building on the power of ensemble approach in describing the nonlinear high

dimensional dynamics, and the strength of multiresolution methods in solving large

scale problems, an ensemble multiscale filter (EnMSF) is then proposed in the fourth

chapter to exploit the advantages in both methods. It is an efficient filter suitable

for large scale nonlinear applications and can reduce the sampling error at the same

time.

1.6.4 Large Scale Evapotranspiration (ET) Estimation

Up to now, there have not been many documented studies on how the data assim-

ilation methodologies can help understand large scale land surface processes. One

reason is that the big problem size and complicated uncertainties of the nonlinear

land surface system hindered the research in this direction. Data assimilation would

provide a unique tool to estimate ET which is hard to observe directly. The existence

of high correlation between ET and soil moisture under certain conditions allows to

estimate soil moisture first and then use a land surface model to project ET from these

soil moisture estimate. The fifth chapter will attempt to use the proposed ensemble

multiscale filter to assimilate synthetic multi-sensor surface data to obtain better soil

moisture estimate and then the large scale evapotranspiration estimate.

1.7 Outline of Original Contributions

The major contributions of this thesis are closely tied to the thesis motivations. They

are outlined as follows:

* For the first time, the effects of EnKF's normality approximations at update step

on the distributions in land surface data assimilation problems are evaluated.

This is done by comparing the conditional marginal distributions and moments

estimated by the ensemble Kalman filter to those obtained from an SIR particle
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filter, which gives exact solutions for large ensemble sizes.

Comparisons for two land surface examples indicate that the ensemble Kalman

filter is generally able to reproduce non-normal soil moisture behavior, includ-

ing the skewness that occurs when the soil is either very wet or very dry. Its

conditional mean estimates are very close to those generated by the SIR fil-

ter. Its higher-order conditional moments are somewhat less accurate than the

means. Overall, the ensemble Kalman filter appears to provide a good approxi-

mation for nonlinear, non-normal land surface problems, despite its dependence

on normality assumptions.

* Spectrum analysis of the soil moisture replicate matrices (covariance square

root) reveals dynamic soil moisture pattern dependent on rainfall dynamics

and soil properties. The spectrum implications for efficient data assimilation

are also investigated for the first time.

Singular value decompositions of the replicate matrices produced in an ensemble

forecasting simulation experiment confirms the existence of dynamic spatial

structure of surface soil moisture, which relies on the precedent cumulative

rainfall and soil property structures. The singular value spectrum drops off

quickly after rainfall events, when a few leading modes dominate the spatial

structure of soil moisture. The spectrum is much flatter after a prolonged

drydown period, when spatial structure is less significant. Different spatial

structure of soil moisture indicates different update scheme should be used.

Controlled experiments show that local ensemble Kalman filters are suitable for

such problems during dry periods but give less accurate results after rainfall.

* A new efficient ensemble multiscale filter (EnMSF) is proposed to approximately

solve general large scale nonlinear estimation problem with any dynamic sys-

tem and arbitrary uncertainties. A new non-ensemble upward sweep update

replacing the Willsky's version [101] is developed. For a linear gaussian system,

the EnMSF is proved optimal in minimum mean squared error sense, giving

conditional distributions.
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At each prediction step realizations of the state variables are propagated using a

fine resolution nonlinear dynamic model with any appropriate input or parame-

ter uncertainties as in EnKF. At each update time, joint Gaussian distribution

of states and measurements are assumed and the EnMSF uses predictive effi-

ciency method to identify a multiscale tree to approximate the full covariance

matrix given by the propagated ensemble. Then the upward and downward

two-sweep updates are performed on the identified tree to estimate the state

variables using all the available (multiresolution) data. By controlling the tree

model parameters, the EnMSF can reduce sampling error while keep long range

correlation in the prior ensemble. The EnMSF is highly computationally effi-

cient and especially appealing to large scale estimation problems as compared

to the covariance based Kalman filters.

* Soil moisture and evapotranspiration are estimated over the Great Plains at

5km resolution for June 2004, using synthetic 40km L-band passive and 5km

active microwave soil moisture measurements following HYDROS specifications.

This is the first high resolution soil moisture and evapotranspiration estimation

(a high dimensional estimation problem) using multi-sensor data without local

spatial correlation assumption.

Soil moisture estimation results show that using both active and passive mea-

surement is better than using either of them and using any measurement is

better than the unconditional estimate. The results also prove that the soil

moisture estimation improved by microwave measurements helps with the evap-

otranspiration and root zone soil moisture estimation.
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Chapter 2

Assessing the Performance of the

Ensemble Kalman Filter for Land

Surface Data Assimilation

In sequential filtering the distributional properties of an uncertain state xt , given a

set of measurements Yl:t taken through time t, are conveyed by the conditional prob-

ability density p(xt I yo:t). The random replicates generated by ensemble methods may

be used to compute finite sample approximations to this density and its moments.

When new measurements become available some version of Bayes theorem is typically

used to update the replicates (and the corresponding distributional approximations).

The accuracy of this update depends on the assumptions made when applying Bayes

theorem as well as the number of replicates. The ensemble Kalman filter is partic-

ularly efficient because it relies on normality assumptions that greatly simplify the

update process. But this simplification can also limit the filter's ability to provide

accurate distributional information. Here we evaluate the accuracy of the ensemble

Kalman filter by comparing its distributional estimates to those of a less efficient

ensemble method that relies on an exact Bayesian update, i.e., the SIR particle filter.

This is done for two examples that provide useful insight about the ensemble Kalman

filter's performance in land surface applications.
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2.1 The SIR Particle Filter

Particle filters are a class of sequential Bayesian ensemble algorithms that can be de-

rived from a discrete version of Bayes theorem. Arulampalam et al. (2002) [2] provide

a useful tutorial that shows how several different particle filtering algorithms may be

developed from the perspective of Sequential Importance Sampling (SIS). We use the

Sequential Importance Resampling (SIR) filter here because it is easy to implement

and converges to the exact Bayesian Solution as the number of replicates approaches

infinity. It is also well-suited for the land surface application, where uncertain time-

dependent inputs are generally more important than initial condition errors. In other

applications, other types of particle filters may give better performance for a given

number of particles.

2.1.1 A Simple Interpretation

The SIR algorithm adopts the approximation of (1.25) and (1.26) during the fore-

casting step of filtering. The analysis step is based on the following form of Bayes

theorem:

p(xtlyi:t) = P(Yttt)p(xt:t)-Y:t) (2.1)P (Yt Yl:t-i) = cp(ytlxt)p(xtlyltl)
where c is a normalizing constant that insures that p(xtI Yl:t) integrates to one. If we

substitute the Dirac expansions for p(xtlyl:t_) and p(xtlyl:t) into (2.1) we can relate

the analysis density replicate values and weights of the unknown analysis density

(left-hand side) to those of the known forecast density (right-hand side). In the SIR

filter the analysis replicate values are initially kept the same as the forecast values

and only the analysis weights are changed. This gives:

-t = Xtlt (2.2)

wtIt =- cp(ytxtt))Wt1 wt_.1 = p(ytxttlt-) (2.3)
¢p~y ]xtt~wt t _ 1 N

48



wherep(yt Ixlt_)is the likelihood function for the propagated replicatexIlt_1. The like-

lihood function can be readily computed if the measurement error is additive (as

assumed here) since:

P(ytlxtlt-) = Pvt(ytjxtjt-) = Pvt[Yt - h(xlt 1)] (2.4)

where Pt is the known (e.g. normal) probability density of the measurement error vt.

The likelihood function can be viewed as a measure of the "closeness" of the replicate

xlt_ to the measurement Yt.

We could substitute (2.2) and (2.3) directly into (1.24) to obtain an approximation

of the analysis probability density but the result may be unsatisfactory unless the

number of replicates is very large. This is because (2.3) gives replicates "closer" to

the measurements much' more weight than those that are "further away". This can

result in the "collapse" of the ensemble to a very small number of replicates with high

weights, giving a very coarse discrete representation of the analysis probability density.

In order to prevent this, the SIR filter resamples the ensemble with replacement N

times. The probability that replicate i is selected on sample k is equal to its weight:

p(replicate i selected on sample k) = W[t (2.5)

By construction, this resampling operation creates a new analysis ensemble of N

equally likely replicates with the following valuesxtkt and weightswt k t (for k = 1,...,N):

xtkt =replicate value selected on sample k

= 1 (2.6)

The new analysis ensemble is a subset of the old analysis ensemble. Old replicates with

high weight are more likely to be repeated in the new ensemble and old replicates

with low weight are more likely to be omitted. Once the resampling operation is
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completed 2.5) and (2.6) can be substituted into (1.24) to give:

I N
p(xtlyl:t) 6(xt - xtt) (2.7)

k=l

The new equally weighted resampled replicates can then be propagated from t to t +

1, following the procedure given in (1.25) and (1.26) (with t replaced by t + 1 and k

by i). Although many of the resampled analysis replicates at t have the same value,

these values diverge in the subsequent propagation to t + because of the influence

of the random input noise ut+,. This keeps the ensemble from collapsing and is why

the SIR approach works best for problems with random inputs.

The SIR filter's ensemble statistics (marginal densities, moments, etc.) can be

shown to converge to their exact counterparts as the number of replicates approaches

infinity. The version of the SIR filter described here assumes that the measurement

errors are additive and independent over time but does not restrict the form of the

probability densities for xt, ut, or vt. or the form of the functions f(.) and h(.). The

primary disadvantage of the SIR filter is the large number of replicates required to

accurately represent the multivariate conditional probability densities of xt. When

the number of measurements exceeds a few hundred the SIR filter is not practical for

land surface problems. However, it provides a very useful performance benchmark

for small problems since it yields optimal conditional densities (as well as conditional

means and other moments) if the ensemble is sufficiently large.

2.1.2 Sequential Importance Resampling

More generally, the particle filter can be derived using the idea of sequential im-

portance sampling and resampling, which allows more flexible and efficient sampling

approaches. The simple interpretation derived in the last section is only a special case

of the sequential importance sampling and resampling approach. To have a broader

view of the particle filter, the complete derivation from sequential importance sam-

pling is given here.

1) Importance sampling
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Suppose we want samples xi from p(x)that is difficult to sample, where i is index

of sample:
N

p(x) wi6(x - xi), (2.8)
i=1

in which wi is the associated weight for xi and E wi = 1, 5represents delta function.
i

If p(x) c 7r(x), where r(x)is easy to evaluate, and we have another q(x)(proposal

density) that is easy to sample, we can sample xi from q(x) first and calculate the

weight by wi oc (2). This is the traditional importance sampling for variance re-

duction (Hammersley, 1964 [49]). For filtering problems, we want samples xt from

p(xo:tlyl:t), where the subscript is time index, x is the state vector and y is measure-

ment vector:
N

p(xo:tly:t) E wb(xo:t - Xo:t) (2.9)
i=1

Use the importance sampling method, one can obtain:

i0 7r(X'o:tlYl:t) (.0
wt c q(x:t t) (2.10)

where w = 1, x:tis from proposal density function q(xiy:t).

2) Sequential importance sampling

Usually for a dynamic system, the state at previous time step includes a lot of

information that can be exploited to give recursive estimation of the current state.

That way replicates before the previous steps can be discarded to save memory. In

order to sequentially update xO:t using Yl:t, write p(xo:tlyl:t) as

p(xo:tlyl:t) -= P(ytlxo:t, Yl:t-1)p(xO:tY1:t-1) (2.11)

P(YtlYl:t-i)

Since the second item in the numerator p(xo:t[yl:t-1) = p(xt[xO:t-1, Y1:t-1)(xo:t- lYl:t-1),

plug it into (2.11) we have

p(xo:tY:t) P(Ytlxo:t, Yl:t-i)p(xtlxO:t-1, Y1:t-1)p(xo:t-1 Y:t-1)

P~(xo t lYlt) = P(Yt lYl:t-1) (2.12)

Assume p(ytlxo:t,Yl:t-l) = p(ytlxt), p(xtlxo:t_,yl:t_) = p(xtlxtl), which means
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the current measurement is only dependent on the current state and the process

is Markovian. Rewrite (2.12) as

p(xo:tlYl:t) = P(Ytlt)P(xtlxt-i)P(Xo:t-l lYl:t-i) (2.13)
P(Ytlyi:t-i)

cp(ytlxt)p(xtlxt-1)P(xo:t-l Yl:t-1) (2.14)

Here we obtain 7r(x) = p(ytlxt)p(xtlxt-_l)p(xo:tllyl:t_) as in importance sampling.

Select a proposal density q(xo:tlyl:t), and suppose

q(xo:t]yl:t) = q(xtlxo:t-, y1:t)q(x0:t_ IYl:t-1) (2.15)

If we have samples x: t from q(xo:tlyl:t), then

wi IcPY xt)P(Xtl-)Po tl Yl t-)(216A(mt i IXt-, Ylt1)P(Xo:t l l t-1)i P(Yt( 0iI ) i (2.17)(xiI x~t-1,Yl:t) q(xo:t--1 1yl:t- 1)

_P(yt~xt)P(Xt]~Xt-x) iq~~xilxi -t-1 ~~~(2.17)
-- qt~x-1, yt) w-

In the sequential importance sampling and resampling (SIR) filter, we choose q(xtlxi l, Yt) =

p(xtlxtl 1), i.e., the proposal density function is just the prior density and x: t is the

prior replicates. Hence,

wt oC p(ytlx)wtl (2.18)

If x_ 1 are evenly weighted, then w_ 1 = 1/N. (2.18) reduces to

wt °C p(ytlxD) (2.19)

In this simple equation (2.19), the final weight is proportional to the likelihood func-

tion so it is easy to implement. To propagate forward the new information from

observation Yt, it is necessary to eliminate replicates with low weights and only retain

those with high weights. Otherwise the computation efforts would be wasted on those

with low probability. Resampling step is the same as discussed in the last section.

After resampling, each replicate has the same weight 1/N. It's worth noting that the

52



proposal distribution doesn't have to be the prior distribution, which allows for more

efficient filter if using some problem dependent proposal distribution.

The procedure of implementing particle filter is depicted in Figure 2-1, where red

ovals represent updated ensemble and blue ovals propagated ensemble. In this dia-

gram, the initial condition is perturbed and propagated forward. When observation

is available, the weights are calculated from the prescribed likelihood function. Then

the resampling step is done to prevent the population degeneracy. In Figure 2-1 only

two different replicates are retained and duplicated after resampling since compared

to other two replicates they are closer to the observation which is indicated by a

magenta cross.

i
X t+lI1:t+l

;
x 111:1

X: yt+l

t

Propagate ~Update Propagate

t+1
~

Time

Figure 2-1: Schematic diagram of implementation procedures for particle filter. Red
ovals represent updated ensemble and blue ovals propagated ensemble. Lines are
trajectories of replicate. Magenta cross is observation at t+ 1.

As is shown, the particle filter doesn't assume any particular probability density

function of Xo:t. As long as the likelihood function p(Yt\Xt) is known, the poste-

rior probability p(XO:tIYl:t) can be derived from (2.19). For a very large number of

replicates, the true posterior PDF can be obtained without loss of high order prior

information. Yet a caveat of the particle filter is that the resampling step might incur

sample impoverishment, resulting in many identical states in the population. Sample

impoverishment can lead to slow convergence of the particle filter. For the application

here, it's not an issue so it will not be discussed.

It should also be pointed out that since particle filter approximates PDF by sam-

pling approach it can't avoid the curse of dimensionality. For high dimensional prob-
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lems, to represent a high dimensional PDF the required ensemble is prohibitively

expensive if no special measure is taken such as Markov chain Monte Carlo. Hence

only a small size problem is considered in this paper to make the assessment feasible.

Another important fact about particle filter is that it only works well with system

with process noise, because it's necessary to have a wide enough ensemble to encom-

pass the measurement. Otherwise, it's possible that all of the replicates are not close

enough to the measurement, which would cause many updated replicates sharing the

same trajectory during the next propagation period. One remedy is to use other

distributions, such as truncated Cauchy as in [98]. Also, the magnitude of observa-

tion error affects the convergence speed because for small error the number of good

replicates would be less and more replicates would be discarded when resampling.

2.2 A Simple Nonlinear Land Surface Data As-

similation Example

Soil moisture is one of the key states controlling the partitioning of water and energy

fluxes at the land-atmosphere boundary. It is likely to be skewed to the wet end

(after precipitation) or the dry end (after a prolonged drydown period). Here we

use a simple scalar example motivated by soil moisture behavior to illustrate the two

nonlinear filters described in the previous section. Suppose a scalar soil moisture value

x at a particular measurement time has the following forecast probability density:

p(x) = 27.7exp(-0 ) 0.1 < x < 0.5 (2.20)
0.1

This truncated exponential density is shown in Figure 2-2 a. The associated mean

x is 0.19 and the variance is Cxx = (0.08)2. We suppose that a single measurement

y = x + w is taken, where w is a zero mean normally distributed additive error

independent of x with standard deviation Cvv = (0.05)2.

For this problem the analysis probability density p(xly )may be derived in closed
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Figure 2-2: Estimates of scalar soil moisture state statistics for a skewed
prior probability density where yO is the actual observation. (a) Prior pdf:
p(x)=27.2exp( -xjO.1),0.1 ~ x ::; 0.5; (b) Posterior pdf for yO = 0.15, R= 0.05,
estimated with SIR and Ensemble Kalman filters. Also plotted is the theoretical
Bayesian solution; (c) Posterior mean vs. yO ; (d) Posterior covariance vs. yO.

form from Bayes theorem:

p(xly) = cp(ylx)p(x) (2.21)

This exact analysis density is plotted in Figure 2-2b for a measurement value Yo= 0.15,

together with the results obtained from an SIR filter and an ensemble Kalman filter,

each using 30,000 replicates (this large sample size essentially eliminates sampling er-

ror problems). The SIR filter closely approximates the skewed exact analysis density.

The ensemble Kalman filter analysis density is much more normal in shape, reflect-

ing the influence of the normally distributed measurement perturbations Vi added in

the update step. As the measurement error becomes larger the Kalman gain eventu-

ally becomes very small, the forecast replicates dominate, and the Kalman analysis

density becomes more skewed.

The exact, SIR filter and ensemble Kalman filter analysis means are plotted vs.

the measurement value Yo in Figure 2-2c. The Kalman filter analysis mean deviates
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only slightly from the exact and SIR filter means. Figure 2-2d shows that the analysis

standard deviations for the two filters behave quite differently. The SIR filter stan-

dard deviation depends on the measurement value while the ensemble Kalman filter

standard deviation does not. So the Kalman filter underestimates uncertainty for

mid-range measurements and overestimates uncertainty for low or high measurement

values.

Although this scalar example is very simple it suggests that differences between the

SIR and ensemble Kalman filters for land surface problems may be more apparent in

the higher-order moments than in the analysis means. We investigate this hypothesis

further in the next section.

2.3 Formulation of an Observing System Simula-

tion Experiment (OSSE)

In this section we describe a land surface simulation experiment that enables us to

compare the performance of the suboptimal ensemble Kalmnan filter to an optimal

SIR filter for a realistic land surface application. The problem is to characterize soil

moisture and evapotranspiration from remotely sensed passive microwave (radiome-

ter) measurements. Land surface dynamics are described by the Community Land

Model (CLM, version 2.0) (Bonan, 1996, 2002 [5]). Radiometer measurements are

described by a nonlinear radiative transfer model (Njoku et al., 2002 [77]). Input

uncertainties and measurement errors are described by statistical models that are

intended to realistically represent natural variability. These models determine how

the replicates of the ensemble filters are generated.

2.3.1 The Land Surface and Radiative Transfer Models

The CLM is a nonlinear spatially distributed model that describes energy, momentum,

water, and C02 exchange between the land and the atmosphere. Dynamic inputs to

the model include precipitation, wind speed, air temperature, pressure, humidity, and
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solar radiation. Time-invariant inputs include soil and vegetation classifications. The

model is discretized into square pixels that are each divided into several soil layers.

Moisture and heat can only move vertically within individual pixels. Further details

are discussed in Bonan (1996, 2002). Although moisture does not flow between pixels

the states in different pixels are correlated by virtue of their dependence on spatially

correlated inputs such as precipitation and vegetation.

100 km X 100 km (1 ) GPCP pixel
(1024 estimation pixels)

O@60

0~~~ ~ 1 e at 

H3. 1 m A S. I '

km estimation
pixel

. S
S
S
S

/

18.75 km X 18.75 km
radiometer measurement
pixel (36 estimation pixels)

... a

Figure 2-3: Multiple scales used in the land surface OSSE. Precipitation data are
available in a single 100 km by 100 km (GPCP) pixel, synthetic radiometer mea-
surements are generated in a single 18.75 km. by 18.75 km pixel, and estimates are
computed in 36 pixels, each 3.12 km by 3.12 km., nested inside the radiometer pixel.

The study region for our computational experiment reflects conditions at the

Southern Great Plains (SGP97) site in eastern Oklahoma. This 18.75 km by 18.75 km

region is shown in Figure 2-3. It is discretized over a 6 by 6 grid of (approximately)

3.12 km by 3.12 km estimation pixels with 8 soil layers in each pixel. The study re-
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gion is small enough to be feasible for a SIR filter assimilation while large enough to

reveal the impacts of horizontal correlation. The land use is assumed to be cropland

with a loam soil and the soil layers have thicknesses (from top to bottom) of 2, 3, 5,

8, 12, 20, 57, 88 cm respectively. The CLM model states include soil moisture and

soil temperature in the center of each soil layer as well as surface soil temperature,

canopy temperature, and canopy intercepted water, for a total of 684 states in our

36 pixel grid. The CLM derives evapotranspiration from these states. The study

period corresponds to a 28 day field campaign conducted from June 19, 1997at 0 hrs.

UTC through July 16, 1997 at 15 hrs. UTC (Margulis, 2002, [70]). Input data are

generated and the CLM is run for a 1 hr. time step.

Synthetic radiobrightness measurements can be related to soil moisture through

soil reflectivity, as described by the Fresnel equation. For our experiment this process

is described by the following expression for brightness temperature (Njoku et al., 2002

[77]):

Tb = TS(1 -rH) exp(-T) + T(1 - w)[1 - exp(-T)][1 + rHexp(-T)] (2.22)

where TS and TC are surface and canopy temperature (in ° K) and rH is the horizontal

polarization soil reflectivity. For L band (1.4 GHz) microwave, the vegetation can be

considered predominantly absorbing with a small single scattering albedow, and the

vegetation opacity along the slant path is given by (Jackson and Schmugge, 1991 [59])

T = bw/cos 0 (2.23)

wherewis vegetation water content (Kg/m 2 ); b is vegetation-specific parameter; and

0 is the incidence angle. The vegetation water content is derived from Normalized

Difference Vegetation Index (NDVI) data (Jackson et al., 1999). Rough surface re-

flectivity is derived from the procedure described by (Choudhury et al., 1979 [19])

rH = rH exp(-h cos2 0) (2.24)
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where rH is the smooth surface reflectivity and h is a vegetation-specific parameter.

In our experiment, w, h, and b have the values 0.3kg/m 2 , 0.1, and 0.04 respectively.

The view angle 0 is set to zero and the scattering albedo is 0.03.

2.3.2 Uncertain Model Inputs and Measurement Errors

The primary sources of uncertainty in land surface applications are time-invariant soil

properties, time-dependent meteorological inputs, including precipitation, and initial

conditions. In the ensemble approach random replicates for each of the uncertain

inputs are provided to the CLM, which generates random replicates of the land sur-

face states. Corresponding radiobrightness values at the estimation pixel scale are

generated by the radiative transfer model of (2.22). The time-dependent random in-

puts can cause the ensemble to spread during the propagation step while assimilation

of radiobrightness measurements can cause the ensemble to narrow at the analysis

step. These effects are moderated by the physics of the problem, which constrains

the states to lie in limited ranges (e.g. the volumetric soil moisture must lie between

0.0 and the porosity, which is less than 1.0).

The uncertain inputs are generated by transforming nominal input values to obtain

sets of physically realistic replicates. This is done is various ways, depending on the

variable. Table 2.1 lists the uncertain inputs and measurement errors considered

in our simulation experiment. Note that different methods are used to introduce

randomness for different inputs. The soil, vegetation, and precipitation inputs deserve

some elaboration.

The nominal soil is assumed to be loam throughout the study region. Loam

corresponds to a certain section of the classical silt-sand-clay soil triangle. The soil

properties associated with different replicates and different pixels are obtained by

selecting random points in the loam section and then reading off the corresponding

silt, sand, and clay fractions, which are used by CLM. Different independent random

samples are taken in different pixels and soil layers so soil property fluctuations are

not correlated over space.

The vegetation type is assumed to be cropland through the study region. The
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Variable Specified Nominal Uncertainties in Replicates
Value

Soil fractions (sand- Loam over entire Uniformly distributed points in
silt-clay) study region loam section of soil triangle
Vegetation Cropland with: Spatially uncorrelated multiplica-

LAI=1.6, SAI=0.4 tive uniform noise U[0.85, 1.15] for
(June) LAI=1.3, LAI.
SAI=0.8 (July)

Humidity, solar radi- Oklahoma Mesonet Spatially and temporally uncorre-
ation, wind speed time series at El Reno, lated multiplicative uniform noise:

assumed to apply over Relative humidity: U[0.9, 1.1]
entire study region. Solar radiation: U[0.9, 1.1]

.___ Wind speed: U[0.7, 1.3]
Air temperature Oklahoma Mesonet Spatially and temporally uncorre-

time series at El Reno, lated additive uniform noise U[-4
assumed to apply over °K, +4 K]
entire study region.

Precipitation GPCP 1 daily data Nominal GPCP values downscaled
for SGP97 region in time from daily to hourly values

with random pulses model. Tempo-
rally downscaled replicates down-
scaled in space from 100 km to 3.1
kilometer pixels with multiplicative
cascade model

Initial soil moisture Specified soil moisture Spatially uncorrelated additive
(at -10 days) profiles Gaussian noise N(0.0, 0.3).
Initial soil tempera- Specified temperature Spatially uncorrelated additive
ture (at -10 days) profiles Gaussian noise N(0.0, 4 K).
Radiobrightness Simulated "true" Temporally uncorrelated additive
measurement value at 18.3 km by Gaussian noise N(0.0, 3 K).

18.3 km scale

Table 2.1: Summary of
simulation experiment

uncertain inputs and measurement errors for the land surface
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CLM characterizes land use types in terms of the leaf area index (LAI) and the

stem area index (SAI). It uses these indices to compute various model vegetation

parameters that control net radiation, energy partitioning, and intercepted water

capacity. In our experiment the nominal LAI for cropland is 1.6 for June and 1.3 for

July. The nominal SAI is 0.4 for June and 0.8 for July. Individual LAI replicates

are generated by multiplying the nominal value by a uniformly distributed random

variable in the range [0.85, 1.15]. SAI is treated as a deterministic input.

Precipitation displays significant correlation in time and space and has a patchy

pattern that cannot be reproduced with simple multiplicative or additive perturba-

tions to spatially uniform nominal values. A more realistic option is to generate

small-scale replicates by downscaling (or disaggregating) larger-scale measurements

of real precipitation over both time and space (ivlargulis, 2004 [68]). Downscaling

relies on statistical models of small-scale variability.
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Figure 2-4: Spatial and temporal rainfall disaggregation model. (a) Rectangular
pulses model (RPM) for temporal disaggregation of daily rainfall, (b) multiplicative
cascade model for rainfall spatial disaggregation, and (c) one realization from the
random cascade model over a 32x32 grid

Our simulation experiment uses nominal precipitation data from the Global Pre-

cipitation Climatology Project (GPCP). These daily data are available in the SGP97

region at a spatial resolution of 1 degree (100 km by 100 km). The GPCP time series

for SGP97 during the 28 day time period of interest in our experiment is shown in
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Figure 2-4d. We need to downscale this GPCP data from daily to hourly values in

time and from 100 km by 100 km to 3.1 km by 3.1 km values in space, as indicated

in Figure 2-3.

Our temporal downscaling procedure is based on a probabilistic rectangular pulses

model (RPM) (Margulis and Entekhabi, 2001 [67]) that is constrained to reproduce

observed daily totals (see Figure 2-4a). The RPM treats rainfall events as random

rectangular pulses with an exponentially distributed constant intensity ir, and dura-

tion tr and a uniformly distributed arrival time between 0 and 24 - tr. Different RPM

replicates have different hourly rainfall values. A given replicate may have no rainfall

in any particular hour but its 24 hourly values must add up to the observed GPCP

daily value. In our experiment the RPM mean intensity is 3.2 mm/hr. for June and

2.3 mm/hr. for July and the mean time between storms is 5.0 hrs. for June and 8.0

hrs. for July. These were estimated from climatological data (Hawk and Eagleson,

1992 [51]).

The temporal downscaling procedure provides hr. precipitation replicates at

the 100 km by 100 km GPCP measurement scale. These coarse resolution replicates

can be downscaled to the 3.1 km by 3.1 km estimation pixel scale if we suppose

that rainfall follows a multiplicative cascade model that relates intensities at different

scales (Gupta and Waymire, 1993 [48]; Gorenburg et al., 2001 [46]). This model can

be portrayed as a 6 level tree composed of groups of pixels (nodes) covering regions

of different areas (see Figure 2-4b). The top (root) node defines the coarsest scale

(one GPCP pixel) while the bottom nodes define the finest scale (the 1024 estimation

pixels contained in the GPCP pixel). The rainfall value at a given node is obtained by

multiplying the value at the next coarsest node (the parent) by a random lognormally

distributed coefficient W(s):

W(s) = exp[w(s) - o,2 (s)/2] (2.25)

wherew(s) - N[0, al (s)], uw(S) = 2 -0.3(s - 1), and the scale index s increases from 1 at

the root node of the cascade to 6 at the finest scale. A typical realization from this
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random multiplicative cascade is shown in Figure 2-4c. The cascade model generates

rainfall that has a patchy pattern and is correlated over space.

In our simulation experiment the cascade model generates spatially downscaled

rainfall on a 32x32 grid with a finest scale resolution of about 3.1 kin, enforcing the

same spatial pattern for each replicate in each hour of a given rainy day but allowing

the rainfall intensity to change every hour. Rainfall intensities at the finest scale are

normalized for each replicate to insure that the total rainfall at this scale is equal the

total rainfall at the GPCP scale. A 6x6 portion of this grid provides the 3.1 km by

3.1 km rainfall data needed by the CLM model.

The CLM model is started at -10 days with random initial conditions generated

by perturbing uniform soil moisture and temperature profiles. Each replicate is run

forward with the model for 10 days to t = 0 to allow moisture in individual pixels to

redistribute in accordance with local soil properties. The resulting soil moisture and

temperature replicates initialize the SIR and Kalman filter ensemble simulations.

2.4 Simulation Experiment Specifications

For our synthetic experiment "truth" is defined by the state from a single CLM run

obtained for a particular set of soil, vegetation, meteorological, and initial condition

replicates, as described above. The CLM states and associated soil properties for this

"truth" replicate are then used in (2.22) to generate a synthetic brightness temper-

ature measurement at 15 UTC every day during the 28 day simulation period. This

measurement is defined at a coarser scale than the model states, reflecting the lower

resolution of anticipated satellite microwave radiometer measurements. In particular,

we assume that the microwave measurement covers an 18.3 km by 18.3 km area (6

by 6 pixels) and is the average of the 36 pixel-scale brightness values computed from

(2.22). At each measurement time a zero-mean normally distributed random pertur-

bation is added to the averaged brightness temperature to account for the effect of

measurement noise. This set of noisy measurements is provided to the two ensemble

filters.

63



2.5 Results of the Simulation Experiment

It is useful to start our comparison of the SIR and ensemble Kalman filters by examin-

ing surface (top layer) soil moisture, surface soil temperature, and evapotranspiration

replicates produced by the SIR filter at a typical pixel (pixel 9). These time series are

shown in Figure 2-5, together with the applicable 1 degree daily GCPC precipitation

record for the study period. The red line is the" true" replicate, the thick blue line

is the mean of the SIR filter ensemble, and the thin cyan lines are the individual SIR

filter replicates.
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- truth
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Figure 2-5: Ensembles from SIR solution at pixel 9 and the associated GPCP rainfall
data: (a) ensemble of the first layer soil moisture 0; (b) ensemble of evapotranspiration
and plus and minus one standard deviation of the ensemble; (c) ensemble of surface
temperature, and (d) GPCP IDD daily rainfall data time series. The asterisks on
time a...<is of (d) represent the measurement times.

Before t = 100 uncertainty in soil moisture, indicated by the ensemble spread,

is mainly due to uncertainties in initial conditions, soil properties, and LA!. After
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rainfall events occur, the uncertainties in surface layer soil moisture primarily reflect

uncertainties in precipitation. Note that the ensemble spread is narrower during the

dry periods, when the absence of rainfall makes it easy to infer that soil moisture

values are low, even without the added information provided by radiobrightness mea-

surements. By contrast, the ground temperature ensemble spread is wider during

dry periods and narrower during wet periods. The spread of the evapotranspiration

ensemble depends strongly on time of day, peaking just after noon. This is more

apparent in the evapotranspiration ensemble standard deviation plot included just

below the replicate plot. Replicates from the ensemble Kalman filter have a very

similar structure.

It is important that our comparison of the SIR and ensemble Kalman filters is

based on enough replicates to insure that sampling error is not a significant factor.

Figure 2.5 shows the spatial root mean squared error (RMSE) for the top layer soil

moisture, computed over all analysis times, where error is defined as the difference

between the analysis ensemble mean and the "true" value. Also plotted are error

bars that show plus or minus one standard deviation of the RMSE, computed over

q filter runs started with different filter ensemble random seeds. The truth and

measurements are kept the same for these runs. Clearly, the SIR filter needs more

replicates to converge, although it eventually gives nearly the same RMSE as the

Kalman filter. This is not surprising, considering that the converged SIR filter needs

to resolve higher-order distributional properties that are ignored by the Kalman filter.

Figure 2-7 shows marginal forecast (left) and analysis (right) probability densities

for pixel 9 surface soil moisture for some typical analysis times. Open loop (uncon-

ditional) densities are also shown for comparison. At the first analysis time, just

prior to the first measurement (t = 15 hrs.), both filters and the open loop share the

same forecast density with a skewness of 0.2 and kurtosis of 3.5 (since there have not

yet been any measurements). The difference in the SIR and Kalman filter analysis

densities at this time is minimal. The beneficial effect of the measurement is best

revealed by a comparison of the open loop and analysis densities.

The densities plotted at times t = 231 and 279 show conditions during two rainy
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Figure 2-6: Averaged spatial RMSE of surface layer soil moisture at measurement
times vs. replicate numbers. Error bars show plus or minus one standard deviation
of the RMSE, computed over q filter runs started with different filter ensemble random
seeds. For ensemble size n= 10, 80, 800, 3200, 32000, the run times q= 40, 10, 8, 6,
4 respectively.

periods. The skewness to the left in both of the forecast densities reflects the effects

of the preceding drydown. The measurements at both times move the density notice-

ably toward the wet end producing significant differences between the open loop and

filtered densities. Here again, differences between the SIR and Kalman filter analysis

densities are minor. Also, at t = 351, after a drydown period all of the forecast den-

sities reveal bimodal behavior. This bimodality is likely due to the properties of the

multiplicative cascade rainfall model, which tends to produce replicates with wet or

dry patches. The analysis densities for the SIR and ensemble filters at t = 351 are

noticeably different.

After a long period of drydown, at t = 471, the forecast and analysis densities
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Figure 2-7: Marginal forecast (left) and analysis (right) probability densities for pixel
9 surface soil moisture for some typical analysis times. Open loop (unconditional)
densities are also shown for comparison. Bottom panel shows daily rainfall series.

are all skewed to the dry end and the radiobrightness measurement does not provide

much additional information about the surface soil moisture.

The marginal densities shown in Figure 2-7 illustrate the advantages of taking a

distributional perspective in data assimilation. Ensemble means and even means plus

variances do not always tell the whole story. Physical conditions such as prolonged

wetting or drying can lead to skewed densities where the means are much differ-

ent than the most probable values (modes). Although SIR filters provide accurate

information on marginal distributions they are not practical for large problems. For-

tunately, the ensemble Kalman filter seems able to convey much of this distributional
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information, despite its simplifying normality assumptions. This is a direct result

of the ensemble Kalman filter's ability to update each replicate rather than just the

ensemble mean. Individual replicate updating is able to preserve some skewness and

multimodality, even when the analysis step is suboptimal.

In order to assess global performance, rather than performance at a single pixel,

we examine in Figure 2-8 the time series of the differences between the ensemble

mean and the "true" replicates for surface soil moisture, evapotranspiration, and

ground temperature, all averaged over the entire domain. The errors are shown for

the SIR filter, ensemble Kalman filter and open loop estimates. The abrupt change

in soil moisture error due to assimilation of brightness temperature can be observed

at analysis times for both filters but the impact of measurements is less clear for

the ground temperature. This reflects the fact that brightness temperature is more

sensitive to soil moisture than to ground temperature.

Although evapotranspiration is a diagnostic variable rather than an updated state

we can see that the SIR and ensemble Kalman estimates of evapotranspiration benefit

from radiobrightness measurements. Both of these generally have lower errors than

the open loop estimate. A closer look at the plots suggest that the study period can be

roughly divided into two stages, before and after at t=250. During the first stage, soil

moisture is relatively high, so the evapotranspiration is controlled by available energy

rather than soil moisture. Hence, the open loop estimates of evapotranspiration and

ground temperature are nearly as good as the filter estimates. During the second

stage, there is a long drydown period, evapotranspiration is moisture limited, and

open loop errors are larger than filter errors. Assimilation of brightness temperature

is clearly more beneficial during this stage.

Surface brightness temperatures can be used to estimate subsurface soil moisture

profiles that are difficult to observe at large scales. Figure 2-9 shows the ensemble

mean of the integrated soil water depth above 50cm deep over the entire domain. The

integrated soil water depth could be viewed as a rough measure of the water available

to a plant with a root depth of 50 cm. Here again, the ensemble Kalman filter gives

results that are nearly as good as the SIR filter.
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Figure 2-8: Time series of the differences between the ensemble mean and the" true"
replicates for (a) surface soil moisture, (b) evapotranspiration, (c) ground tempera-
ture, all averaged over the entire domain, and (d) GPCP rainfall time series.

Figure 2-10 provides some indication of the distributional differences between the

two filters by comparing time series of the higher order moments (standard deviation,

skewness, and kurtosis) of the surface soil moisture for pixel 9. Differences between the

higher-order moments produced by the two filters are greater than differences between

the means. Both filters are able to capture the significant reduction in variance and

increase in skewness experienced during the extended dry down period after t = 300.

Heavy rainfall events seem to reduce differences between the two filters. It should

be noted that the random pulse and multiplicative cascade models tend to generate

very non-normal surface soil moisture density functions, as shown by the skewness

and kurtosis in panel (b) and (c). The ensemble Kalman filter captures much of this

non-normal behavior, at least for our application.
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Figure 2-9: The ensemble mean of the integrated soil water depth above 50cm deep
over the entire domain

The results of our land surface data assimilation experiment are summarized in

Table 2.2, which lists root mean squared error values obtained from SIR filter, ensem-

ble Kalman filter, and open loop means for the four variables of most interest. It is

obvious that the SIR and ensemble Kalman filter errors are comparable in all cases.

Taken together, our results strongly support the use of the Kalman approximation in

land surface applications of ensemble data assimilation.

SIR EnKF Open loop
Top layer soil moisture 0.026 0.027 0.036
Evapotranspiration (w1m2) 10.3 10.1 19.5
Ground temperature (K) 0.5 0.5 1.1
Water depth above 50cm (mm) 2.2 2.4 4.3

Table 2.2: Root mean squared error (over time) of spatially averaged top layer soil
moisture, evapotranspiration, ground temperature, and water depth above 50cm with
respect to the true

2.6 Discussion and Conclusions

This paper considers the performance of the ensemble Kalman filter in a particular

context: land surface data assimilation. Land surface problems have several distinc-

tive characteristics. In particular, the state equation is nonlinear and dissipative and
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Figure 2-10: Time series of (a) standard deviation, (b) skewness, (c) kurtosis of
surface layer soil moisture at pixel 9, and (d) GPCP rainfall time series. The thick
straight line in (a) and (b) is to show the trend of standard deviation and skewness
during drydown period.

the states are confined to relatively small ranges, with probability distributions that

change over time and are often non-normal. Precipitation inputs are intermittent

and highly variable over space and time and other inputs, such as soil properties,

are uncertain and difficult to observe over large regions. The measurement equation

is also nonlinear. Ensemble Kalman filters have been applied to land surface data

assimilation with reasonable success, despite their dependence on assumptions that

may not apply. Our objective here has been to better understand the reasons for this

success and to obtain a more complete picture of the strengths and weaknesses of the

ensemble Kalman filtering approach.

The simple example described in Section 3 shows that the SIR filter's conditional
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moment and marginal density estimates are very close to their exact counterparts

if the replicate size is large enough. The ensemble Kalman filter's conditional mean

estimate is also quite close to the exact value but its marginal density and variance

are noticeably different. This example suggests that a converged SIR filter provides

a good basis for evaluating the ensemble Kalman filter when an exact solution is not

available.

Sections 4 and 5 describe a more realistic land surface estimation example that

relies on state and measurement models used in operational settings. In this Observ-

ing System Simulation Experiment we generate hypothetical true states and mea-

surements so that filter estimation errors can be evaluated exactly. The example

problem is kept small so that the SIR filter is computationally feasible. The number

of replicates needed for this filter to converge becomes very large when the state and

measurement dimensions increase much beyond the values used in our example. This

is why the ensemble Kalman filter, which converges for much smaller ensemble sizes,

is preferable to the SIR filter in practical applications.

The results of our land surface example reveal that the ensemble Kalman filter

performs nearly as well as the SIR filter for most conditions simulated. The surface

soil moisture forecast densities obtained from the Kalman filter can be quite skewed

and even multi-modal and are generally similar to those obtained from the SIR filter.

The univariate densities of Figure 2-7 make it clear that the normality assumptions

that must be met in order for the ensemble Kalman filter to yield optimal point

estimates do not prevent it from generating non-normal ensembles. This is further

emphasized in Figure 2-10, which shows that the skewness and kurtosis of the ensem-

ble Kalman filter soil moisture ensembles can differ significantly from those associated

with normally distributed variables,

The ensemble Kalman filter is especially good at reproducing the correct soil

moisture conditional mean. This appears to be a consistent result at all times and

pixels in our experiment and it is observed both at the surface (Figure 2-8) and

integrated over the soil column (Figure 2-9). Similar performance is obtained for

evapotranspiration, which benefits most from radiobrightness measurements when it
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is limited by soil moisture.

It is worth noting that the structure and timing of precipitation exert a dominant

influence on the land surface system. This influence tends to reduce differences be-

tween alternative data assimilation algorithms that make similar assumptions about

rainfall. The RPM and multiplicative cascade disaggregation models used here tend

to create very non-normal soil moisture during rainy periods. In these periods soil

moisture is skewed to the high end. As the surface moisture decreases through in-

filtration and evaporation, the skewness and kurtosis tend to decrease, making the

ensemble filter's normality assumptions more appropriate. However, the skewness

and kurtosis tend to increase again when soil dries and soil moisture is limited at the

low end.

Soil properties also have a strong influence on the behavior of the land surface

system and the performance of alternative filters. Open loop (unconditional) predic-

tions of soil moisture are usually better for rapidly infiltrating sandy soils than for

less permeable loam or clay soils. Also, soil moisture updates have less impact on

evapotranspiration for sandy soils. In such situations differences between optimal and

suboptimal filtering algorithms are less likely to be dramatic.

Even taking these distinctive problem features into account, our overall conclusion

is that the ensemble Kalman filter provides surprisingly good performance in the land

surface application. This applies both to the filter's ability to characterize non-normal

distributional properties and its ability to provide accurate conditional means. We

believe these results support previous studies that indicate the ensemble Kalman filter

is a good estimation option for land surface applications. It would be useful to see

the results of computational experiments similar to ours in other application areas.

Such experiments could provide better understanding of when and why the ensemble

Kalman filter can deal with nonlinearities and non-normal uncertainties.
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Chapter 3

Spectrum Diagnostics of Land

Surface System and its Implication

for Data Assimilation

In practice, data assimilation generally requires processing of large data sets with

computationally demanding models. The computational requirements of environ-

mental data assimilation problems are a direct result of the wide range of time and

space scales that need to be accommodated. The high dimensionality of the state and

measurement vectors does not necessarily reflect what might be called the intrinsic

size (i.e. number of independent variables) of a land surface assimilation problem.

This is because the states and measurements might be highly correlated or linearly

dependent. For example, soil moisture tends to be highly correlated both vertically

and horizontally after a prolonged wet period. In this case the number of indepen-

dent variables needed to properly characterize spatial variability over a specified grid

is smaller than the number of grid cells. On the other extreme, after a long drydown

period horizontal correlation tends to decrease, reflecting the effect of small-scale soil

variability. Then the number of independent variables is large but the resulting data

assimilation problem can be divided into many smaller independent problems, each

associated with a single isolated soil column. In either case appropriate reformulation

of the problem can yield a significant reduction in computational effort.
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The difficulty is that spatial correlation in a land surface problem changes over

time, sometimes rapidly. Highly efficient estimation algorithms must be able to adapt

to such changes, continually adjusting between the two extremes mentioned above.

Traditional model reduction algorithms are not able to do this, especially when the

system is nonlinear (Crommelin and Majda, 2004 [21]). Development of more flexible

and adaptive algorithms will require a careful look at the space-time structure of the

system states.

The space-time structure of soil moisture and related land surface states depends

strongly on meteorological forcing variables, particularly precipitation. Precipitation

is highly uncertain and intermittent, with a complex space-time correlation structure

that varies over a wide range of scales. Significant rainfall events tend to reinitialize

the near surface soil system, diminishing the influence of initial conditions. This be-

havior is not compatible with the simplified additive white noise input models used in

traditional estimation methods. In addition, land surface states such as soil moisture

and temperature are confined to relatively narrow ranges of values, but variations

within these ranges can have a significant impact on land-atmosphere fluxes. Con-

nections between these states and external meteorological inputs are complex and

nonlinear. The most obvious example is the two-way relationship between soil mois-

ture and evapotranspiration.

Another distinctive aspect of land surface data assimilation relates to the nature

of the measurements used to characterize system states. Traditional direct measure-

ments of land surface states such as soil moisture and of inputs such as precipitation

are expensive and sparsely distributed over time and space. Data sources such as

airborne and satellite-based remote sensing have more extensive coverage but much

coarser resolution. Remote sensing measurements are generally only indirectly related

to the states of interest and can be much less reliable than their in situ counterparts.

In either case, measurement errors depend on the measurement and estimation scales

as well as the intrinsic accuracy of the sensor.

In order to properly characterize the space-time structure of land surface vari-

ables we need realistic descriptions of input and measurement uncertainty. This is
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one reason why there has been much interest recently in ensemble forecasting and

data assimilation techniques for land surface applications (Reichle et al. 2002 [84],

Margulis et al., 2002 [70],;Crow and Wood, 2003 [23]). Generally speaking, ensemble

methods are able to accommodate a much richer set of uncertainty models than more

traditional estimation alternatives. However, these methods become more difficult

to use as dimensionality of the state vector increases since it becomes increasingly

difficult to properly describe the distributional properties of the state with a moder-

ate number of replicates (Silverman, 1986 [91] ). This issue is especially problematic

when the state is not normally distributed, as is often the case in nonlinear land

surface problems.

This chapter uses ensemble-based simulation experiments to gain insight about

connections between the space-time structure of soil moisture and computational

efficiency. In the next section we provide a probabilistic problem formulation that

sets the stage for our analysis. Then we describe the particular models used in the

simulation experiments. We examine ensemble forecasts from these models for a

particular land surface problem, focusing on the connection between spatial patterns

in rainfall, soil properties, and soil moisture. This is followed by an assessment

of two land surface data assimilation options, one that considers large-scale spatial

correlation but is computationally demanding and another that only considers local

correlation but is more computationally efficient. We conclude with a discussion of

the need for a more general estimation approach that is able to handle a range of

conditions without sacrificing either efficiency or accuracy.

3.1 Ensemble Analysis of Land Surface Estimation

Problems

It is helpful to begin with a general problem description, using approximate models

of the land surface system, associated sensors, and uncertain inputs. We assume

that the land surface model is discretized over both space and time. The spatial
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discretization uses a computational grid of pixels composed of a number of distinct

soil layers. The time discretization uses equal steps over a specified time interval

[0, T]. The states of land surface model typically include the bulk soil moisture

and average temperature in each layer of each pixel as well as various canopy states.

External inputs include precipitation, solar radiation, air temperature, and other

meteorological variables. Generally, speaking we have access to input measurements

(e.g station data at scattered locations) that give a partial picture of the spatial and

temporal variability of the uncertain inputs. We may also have output measurements

(e.g microwave radiometer observations) that are related, usually indirectly, to the

system states.

Suppose that the land surface states at time t are assembled in the n-dimensional

state vector xt and inputs are assembled in the vector ut. Diagnostic variables such

as evapotranspiration are assumed to be functions of xt and ut. Also, suppose that

we have a composite m-dimensional vector of output measurements yl:t, available at

specified times over [0, T] and related to the states through models of the relevant

sensors. We assume that the models can be expressed as follows:

xt+1 =- f(xt,ut) (3.1)

yt = h(xt) +vt (3.2)

Note that the measurement model of (3.2) includes an additive error vt(the additivity

assumption is made for simplicity and can be relaxed). We assume that the nonlin-

ear functions f(.) and g(.) are known but the inputs ut are uncertain. In practice,

uncertainties in the functions themselves are accounted for (in an approximate way)

by inflating input and measurement error uncertainties.

Given the importance of uncertainty it is reasonable to adopt a probabilistic char-

acterization of the land surface system. In particular, the unconditional probability

density p(xt) characterizes the state based only on prior statistical information and

input measurements, without the benefit of output measurements. The conditional

density p(xtjyl:t) characterizes the state given all measurements through T. Since
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these multivariate densities are cumbersome to work with we usually restrict our at-

tention to marginal (univariate) densities and lower-order moments. Here we focus

on the filtering problem, where t = T(i.e. the estimation time is at the end of the

measurement interval). However, most of the points made also apply to smoothing

problems, where t < T (i.e. the estimation time is inside the measurement interval).

The unconditional density p(xt) can be derived from the state equation and spec-

ified input density and initial condition densities p(u1, ... , ut) and p(x 0). Note that

there is no requirement here that the inputs at different times (say ut-1 and ut) are

independent. Although this independence assumption is frequently made in classical

filtering methods it is not required for the ensemble filtering approaches described

here. Calculation of p(xt) from p(u1 , ... , ut) and p(x 0) is a classical derived distrib-

ution problem that can only be solved exactly in certain simple cases. When exact

solutions are not feasible we can adopt an ensemble approach and randomly sam-

ple these densities to create an ensemble of equally likely initial condition and input

replicates and u', for i = 1,... ,N. Starting with t = 1, we then use the nonlinear

state equation (3.1) to compute replicates sequentially, at each time t from the value

at the previous time t-1:

xt (3.3)t = f (41, UD ; _1 xt-) m-1

This set of unconditional replicates is often called the "ensemble forecast" at t. Once

the replicates are generated the unconditional density may be approximated by a sum

of Dirac delta functions evaluated at the replicate values:

N

p(xt) E (xt - x) (3.4)

The integral of (3.4) yields a stepwise approximation of the continuous cumulative

distribution function t. The mean and other moments of p(xt) can be estimated

directly from the ensemble of x'.replicates. In particular, the sample unconditional
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mean and covariance are given by:

1 1
t = XtlN ; Cov[xt] = N- X'Xt (3.5)Xt=N N -i

whereXtand kt are n by N dimensional matrices whose columns are the original and

mean-removed unconditional replicates of xt, respectively, and 1 N is a column vector

of N ones.

Derivation of conditional densities such as p(xtlyl:t) is somewhat more compli-

cated. The extra effort is usually worthwhile, however, since the measurements in-

corporated into a conditional density enables it to provide a more accurate charac-

terization of the state. In filtering applications we construct p(xtlyl:t) recursively, in

a series of alternating propagate (forecast) and update (analysis) steps. That is, the

density p(xt-_Iy:t-_) of the state at t-1 conditioned on measurements through t-1

is propagated forward to measurement time t, giving p(xtjyl:t_). This propagated

density is updated with the new measurement att to give p(xtlyl:t) and the process is

repeated.

The propagate step is similar to the unconditional derived distribution problem

described above, except that p(xt_Iy:t_) replaces p(xt-1). This problem can also

be solved with an ensemble approach, using the same basic expressions as the uncon-

ditional ensemble forecast but with slightly different notation:

x2It- =f(xt_llt_l, U) ; xtt_ 1" P(Xt-1]Yl:t-i) (3.6)

N

p(Xtlyl:t-i :) 5(xt - Xttil) (3.7)
i--1

The mean and other moments of p(xt_jyl:t-l) can be estimated directly from the

ensemble of xtlt l replicates

The update step of the conditional density derivation is based on the following

version of Bayes theorem, which relates p(xtl yi:t) to p(xtyli:t-):

p(xtlyi:t) = P(Ytxt)p(xtYl:t-1) = cp(ytl Ixt)p(xt ly:tl-) (3.8)
P(Ytlyl:t-i)
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where c is a normalization constant selected to insure that p(xt Yl:t) integrates to one

and the likelihood function P(Ytl xt) is derived from the measurement equations and

the measurement error probability densities. A Bayesian update that satisfies (3.8)

exactly is difficult to implement for large problems, except for some important special

cases. In particular, if the states and measurement errors are jointly normal and the

measurement operator is linear p(xt Iyl:t) is normal and completely characterized by its

mean and covariance. In this case, (3.8) can be carried out by updating only the mean

and covariance of the state. In an ensemble approach we update probability densities

or moments by updating replicates and then computing sample statistics. That is, we

begin by deriving xl t from xtlt_. In the special jointly normal case mentioned above,

we can obtain asymptotically exact conditional density and moments by updating

each replicate with the ensemble Kalman filter described in section 1.5.1.

So we see that ensemble methods may be used to approximate the unconditional

and the conditional statistics of uncertain states. In principle this solves the ensemble

forecasting and data assimilation problems. But the computational requirements of

ensemble methods are considerable and the accuracy of the approximations needed

to obtain practical solutions is difficult to determine. It is convenient to investigate

these with a controlled simulation experiment.

3.2 Models Used for the Land Surface Ensemble

Experiments

In this section we describe the models used in our ensemble forecasting and data

assimilation experiments. Our objective is to characterize soil moisture and evapo-

transpiration on hourly time scales over a region of approximately 10,000 km2. Land

surface dynamics are described by the Community Land Model (CLM, version 2.0)

(Bonan, 1996, 2002 [5]). Radiometer measurements are described by a nonlinear ra-

diative transfer model (Njoku et al., 2002 [77]). These provide indirect information on

near surface soil moisture. Input uncertainties and measurement errors are described
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by statistical models that are intended to provide realistic representations of natural

variability. These models determine how the replicates of the simulation experiment

are generated. The input statistics are inferred from available meteorological and soil

measurements.

3.2.1 The Land Surface and Measurement Models

The CLM is a nonlinear spatially distributed model that describes energy, momen-

tum, water, and C02 exchange between the land and the atmosphere. Dynamic

inputs include precipitation, wind speed, air temperature, pressure, humidity, and

solar radiation. Time-invariant inputs include soil and vegetation classifications. The

model is discretized into square pixels that are each divided into several soil layers.

Moisture and heat can only move vertically within individual pixels. Further details

are discussed in Bonan (1996, 2002 [5]). Although moisture does not flow between

pixels the states in different pixels are correlated by virtue of their dependence on

spatially correlated inputs such as precipitation and vegetation.

The study region for our computational experiment reflects conditions at the

Southern Great Plains (SGP97) site in eastern Oklahoma. This 10,000 km2 (100x 100km)

region is defined by the corners (36 N, 99 W) and (37 N, 98 W), as shown in Fig-

ure 3-la. It is discretized over a 64 by 64 grid of 1.56 km by 1.56 km estimation

pixels with 8 soil layers in each pixel. The regions associated with each land use and

soil type are indicated in Figure 3-la. The soil layers have thicknesses (from top to

bottom) of 2, 3, 5, 8, 12, 20, 57, 88 cm respectively. The CLM model states consid-

ered in our ensemble analysis are the soil moisture values at the centers of the top

three layers, giving a total of 12,288 states in our 4096 pixel grid. The CLM derives

evapotranspiration from these states. The study period corresponds to a 23 day field

campaign conducted from June 16, 1997at 0 hrs. UTC through July 8, 1997 at 15

hrs. UTC (Margulis, 2002 [70]). Input data are generated and the CLM is run for a 1

hr. time step. Meteorological measurements are available at El Reno, in the SGP97

study area.

Synthetic radiobrightness measurements are calculated in the same way as that
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Figure 3-1: Inputs for the example simulation problem: a) 64x64 study domain,
showing estimation and measurement ( wave) pixels, b) soil type, c) vegetation clas-
sification.
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described in section 2.31. In this experiment, w, h, and b have the values 0.3kg/m 2 ,

0.1, and 0.04 respectively. The view angle 0 is set to 20° and the scattering albedo

is 0.03.

In our ensemble forecasting experiment "truth" is defined by the state from a single

CLM run obtained for a particular set of soil, vegetation, meteorological, and initial

condition replicates, as described above. In this case, it's equivalent to assuming the

error statistics of the system is perfectly known. The CLM states and associated soil

properties for this "truth" replicate are then used in (2.22) to generate synthetic L

band brightness temperature measurements at 15 hrs UTC at specified days during

the 23 day simulation period. These measurements are defined at a coarser scale than

the model states, reflecting the lower resolution of anticipated satellite microwave ra-

diometer measurements. In particular, we assume that each microwave measurement

covers a 4 by 4 pixel region (approximately 6 km by 6 kin), as shown in Figure 3-la.

The microwave measurement is an arithmetic average of the 16 pixel-scale brightness

values in this region. At each measurement time a zero-mean normally distributed

random perturbation is added to the averaged brightness temperature to account for

the effect of measurement noise.

3.2.2 Uncertain Model Inputs

The primary sources of input uncertainty in land surface applications are time-

invariant soil properties, time-dependent meteorological inputs, including precipita-

tion, and initial conditions. In the ensemble approach random replicates for each of

the uncertain inputs are provided to the CLM, which generates random replicates

of the land surface states. Corresponding radiobrightness values at the estimation

pixel scale are generated by the radiative transfer model of (24). The time-dependent

random inputs can cause the ensemble to spread during the propagation step while

assimilation of radiobrightness measurements can cause the ensemble to narrow at

the analysis step. These effects are moderated by the physics of the problem, which

constrains the states to lie in limited ranges (e.g. the volumetric soil moisture must

lie between 0.0 and the porosity, which is less than 1.0).
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The uncertain inputs are generated by transforming nominal input values to obtain

sets of physically realistic replicates. This is done is various ways, depending on the

variable. Table 3.1 lists the uncertain inputs and measurement errors considered

in our simulation experiment. Note that different methods are used to introduce

randomness for different inputs. The soil, vegetation, and precipitation inputs deserve

some elaboration.

In the CLM sand and clay fractions are used to calculate hydraulic parameters for

Richard's equation, which controls the vertical movement of moisture. Replicates of

these fractions are generated from the soil map shown in Figure 3-lb. Each soil type

is assigned nominal sand and clay fractions based on the soil triangle. Deviations

from these nominal values are normally distributed and uncorrelated. Details are

described in Table 3.1.

The vegetation types used in our simulation are shown in Figure 3-1c. CLM uses

these associates each type with particular values of the leaf area index (LAI) and

the stem area index (SAI). It uses these indices to compute various model vegetation

parameters that control net radiation, energy partitioning, and intercepted water

capacity. In our experiment LAI is assumed to be a spatially uncorrelated random

variable and SAI is deterministic. Nominal values for LAI and SAI and distributional

properties for LAI are given in Table 3.1.

There are many options for generating rainfall replicates for land surface appli-

cations. These range from simple statistical models to complex primitive equation

atmospheric models. Some of the basic requirements of a realistic rainfall model

include the ability to reproduce intermittency (extensive periods or regions with no

rainfall) and the ability to reproduce observed low-order statistics (such as means and

covariances over time and space). The rainfall model used here is based on a Poisson

cluster concept. It assumes that rainfall can be viewed as a superposition of circular

storm cells generated at random times and locations (Rodriguez-Iturbe et al., 1987

[87]).

Chatdarong et al (unpublished manuscript) put the basic Poisson model of Ro-

driguez et al. [87] in a recursive form that is convenient for continuous time ensemble
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Variable Specified Nominal Value Uncertainties in Replicates
Soil fractions Soil type obtained from Fig- Spatially uncorrelated additive
(sand-silt-clay) ure 2. Fractions: zero-mean normal deviations

Loam: 40/50/10 from nominal.
Loamy sand: 80/15/5 Standard deviations:
Sandy loam: 60/30/10 Clay: 10%
Silty loam: 22/61/17 Sand: 20%

3 fractions constrained to sum
to 1.0

Vegetation Cropland with: Spatially uncorrelated multi-
LAI=1.6, SAI=0.4 (June) plicative uniform noise U[0.85,
LAI-1.3, SAI=0.8 (July) 1.15] for LAI.

Humidity, solar Nominals from Oklahoma Spatially and temporally un-
radiation, wind Mesonet time series at El correlated multiplicative uni-
speed & direc- Reno, assumed to apply over form noise:
tion entire study region. Nominal Relative humidity: U[0.9, 1.1]

wind direction constant at Solar radiation: U[0.9, 1.1]
15° from east. Wind speed: U[0.7, 1.3]

Wind direction: U[0.7, 1.3]
Air tempera- Nominals from Oklahoma Spatially and temporally un-
ture Mesonet time series at El correlated additive uniform

Reno, assumed to apply over noise U[-4 K, +4 K]
entire study region.

Precipitation Poisson rainfall model parameters:
= 0.0024 cell km-2hr - 1, D= 6.25 km, a = 0.2 hr - 1.

Wind direction fixed, wind speed (m sec-1), E[io] (mm hr-lpsgnd cloud
cover obtained from meteorological time series at El Reno..

Initial volu- [0.35 0.35 0.35 0.35 0.30 0.30 Spatially uncorrelated additive
metric water 0.30 0.30] Gaussian noise N(0.0, 0.06).
content (at-23
days), by layer
Initial soil tem- [304 302 293 290 290 288 288 Spatially uncorrelated additive
perature - K 288] Gaussian noise N(0.0, 4 K).
(at -23 days),
by layer
Radiobrightness Simulated "true" value at 6 Temporally uncorrelated addi-
measurement km by 6 km scale tive Gaussian noise N(0.0, 4

K).

Table 3.1: Summary of uncertain inputs and measurement errors for the land surface
simulation experiment
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analyses: This model can be written as:

r(t + 1) = F[r(t)] + w(t) (3.9)

where r(t) is a vector of pixel rainfall intensities at time t; w(t) is a vector of forcing

terms that account for the birth of new raincells, and F(.) describes the effects of rain

cell advection and temporal decay. Equation (3.9) can be viewed as a state equation

for the rainfall intensity r(t) but we treat this variable as an input and do not update

it in the data assimilation process.

The rain cell birth process is best understood by first considering a Lagrangian

(cell-based) description, as illustrated in Figure 3-2a. Cells are only allowed to be born

in regions with cloud cover. Global cloud cover can be determined from Geostationary

Operational Environmental Satellite (GOES) infrared sensors. For our experiment we

inferred cloud cover from the rainfall time series at El Reno, as shown in Figure 3-2b.

The center of rain cell k follows a two-dimensional spatial Poisson distribution with

spatial density parameter . The birth time of each cell is uniformly distributed over

the time step [t, t+l]. The cell rainfall intensity ik(dk, t) at a distance dk from the

cell center at time t follows a Gaussian distribution in space and decays exponentially

in time at a rate a:

ik(dk, t) = ikO exp[-a(t- tbk)] exp[-d/27rD2] (3.10)

where tbk is the cell birth time. The cell center intensity ikO0 is exponentially distrib-

uted with mean E[iko] and D is a specified constant Values for a, A, and D are given

in Table 3.1. These are representative of the SGP97 site. The generated rain cells are

rigidly transported at a specified wind velocity (v, vy). In our simulation experiment

the wind direction is held fixed to emphasize the effect of raincell advection on the

spatial correlation of soil moisture. The nominal wind speed is derived from mete-

orological data at El Reno, with multiplicative perturbations drawn from a uniform

distribution, as indicated in Table 3.1.

The Eulerian rainfall intensity field ri at pixel i is the superposition of the La-
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Figure 3-2: a) Typical rain cells generated by the Poisson rainfall model during a one
hour period (each cell delineated by a 1 mm hr-l outer contour). Rainfall intensity
at any location is the sum of intensities contributed by the rain cells. Cell centers
and birth times are random. Cells have a fixed characteristic distance and decay in
intensity over time. Note that older cells are smaller and less intense. b) Cloudy
periods during the simulation experiment.
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grangian intensities produced by all cells in the domain, with the dk values set equal

to the distances between the center of pixel i and the center of cell k. The most

recently born cells closest to the pixel have the greatest effect. A typical replicate

generated from this Poisson rainfall model in a 64x64 cloudy domain is shown in the

intensity contour plot of Figure 3-3a. The rainfall time series at a typical pixel is

shown in Figure 3-3b. Note the spatial correlation revealed in the contour plot and

the intermittency that occurs in both space and time. Although the Poisson model is

simplified and cannot be expected to realistically represent all types of rainfall it does

give a reasonable statistical description of convective storms such as those commonly

encountered in Oklahoma during the summer (Rodriguez-Iturbe et al., 1987 [87]). It

also illustrates some of the flexibility that is possible when generating replicates for

ensemble land surface analyses.

The CLM is started at -23 days with random initial conditions generated by per-

turbing the soil moisture and temperature profiles listed in Table 3.1. Each replicate

is run forward with the model for 23 days to t = 0 to allow moisture and tempera-

ture in individual pixels to redistribute in accordance with local soil properties. The

resulting soil moisture and temperature replicates initialize the ensemble simulations.

3.3 The Ensemble Forecasting Experiment

Our ensemble forecasting experiment is intended to provide better understanding

about the space-time structure of soil moisture under certain conditions. In particular,

we consider the response of a region similar to SGP97 during a summer period when

several storms move in a fixed direction across the study domain. This simulation

enables us to investigate soil moisture at a level of detail and in a more controlled

way than would ever be possible in a field experiment. Of course, our conclusions are

limited by our models, which are approximate. But the ensemble analysis presented

here is intended primarily to reveal qualitative effects that should be valid if the

models provide at least a rough picture of reality.

One of the easiest ways to visualize land surface uncertainty is to examine a
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Figure 3-3: Typical rainfall replicate a) Rainfall intensity plot at a given time b)
Rainfall time series at a typical pixel
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time series of typical soil moisture replicates. Figure 3-4a shows the soil moisture

replicate we have designated as truth (black soild line), the replicates of the ensemble

(gray lines), and the ensemble mean (black dashed line) of the top layer volumetric

soil moisture for a typical pixel. Figure 3-4b shows the corresponding ensemble of

rainfall inputs (since these are clustered in cloudy periods it is difficult to distinguish

individual replicates). The spread in the ensemble reflects uncertainties from soil

properties, vegetation, rainfall, and other atmospheric forcing. During wet periods

after rainfall, the soil moisture ensemble is wider, reflecting the strong impact of

rainfall uncertainties in both timing and intensity. As the soil dries the replicates

become almost parallel. This suggests that the variability in soil moisture at the

beginning of the dry period is the dominant influence on ensemble spread during

drydown.

a)

--- - Replicates
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--- Ensemble Mean
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Figure 3-4: Ensemble time series at a typical pixel (a) The gray lines are individual
replicates of top layer soil moisture from the ensemble forecast. The thick black line
is the corresponding true top layer soil moisture. The dashed line is the ensemble
mean (b) Plot of the rainfall ensemble at the same pixel.
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Figure 3-5 provides useful insight on the connection between near surface soil

moisture and rainfall. Here we compare the cumulative rainfall through time t = 90

to the top layer soil moisture at that time. The diagonal patterns in both plots clearly

reveal the effect of advecting rainfall, which creates bands of wetter soil parallel to the

fixed wind direction. However, there is also significant smaller-scale variability due

to heterogeneity in soil properties (for example, areas with sandier soil are drier than

those with finer soils). Soil moisture provides a cumulative record of recent rainfall,

to varying degrees depending on soil type.
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Figure 3-5: (a) True cumulative rainfall (mm) over the domain at t = 90. (b) Corre-
sponding soil moisture.

The horizontal spatial structure of soil moisture changes significantly over time,

as revealed by the sample spatial correlation plots shown in Figure 3-6. These plots

display contours of the correlation between the top layer soil moisture in the center

of the domain with all other soil moisture values. Correlation values are derived

from the unconditional ensemble covariance matrix of (3.5). The correlation in all

of the plots falls off from 1.0 in the center to near zero at the edges. Figure 3-6a,

which applies at during the rainy period at t = 320, confirms the anisotropic diagonal

pattern of soil moisture observed in Figure 3-5. By contrast, Figure 3-6b indicates

that the soil moisture correlation is more localized and isotropic at t = 430, after a
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prolonged drydown. Figure 3-6c confirms that the rainfall correlation is isotropic. The

correlation scale of rainfall is roughly 20km. The anisotropy in the wet soil moisture

correlation plot reflects the soil's tendency to retain moisture as precipitation moves

across the domain. As drydown takes over this memory effect disappears.

Wet Dry

Carr. Coef. of 8M at t=320 Carr. Coef. of 8M at t=430 Carr. Coef. of rainfall
0.8 r----------, 0.8 r-----.--~ 0.8

a) b)

0.6

0.4

0.2 L....-.._~ ___'

c)
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Figure 3-6: The spatial correlation coefficient between the pixel (33, 33) at the center
of the domain and all other pixels. a) Top layer soil moisture at a wet time t=320; b)
top layer soil moisture at a dry time t=430; c) rainfall correlation at a typical time.

The spatial structure evident in Figures 3-5 and 3-6 raises the question of whether

we actually need 12,288 pixel-based moisture values to properly describe the soil

moisture field. It is possible to examine this question further if we consider a singular

value decomposition of the mean-removed ensemble matrixXt. This decomposition

provides a systematic way to develop a set of progressively accurate descriptions of

an uncertain state vector. In particular, the state vector at time t may be expanded

as follows:
n

Xt = Xt +L IjUtj
j=l

(3.11 )

Where Xtis the unconditional ensemble mean state vector, Utj is the jth n-dimensional

left singular vector of Xtand ltj is a random scalar. The Ut/s form an orthonormal

basis for the state space and the ltj are uncorrelated zero-mean random variables.

The magnitude of the jthsingular value is the standard deviation ofgAtj. If the

singular values are placed in order of decreasing magnitude [Alt, A2t, ... , And then the

first term of the basis expansion has the largest variance and the remaining terms
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have progressively smaller variances. So, if the leading singular value is much larger

than the others (3.11) may be approximated by:

(3.12)

In this case the ensemble mean accounts for the overall trend and the singular vector

term accounts for deviations around this mean Note that the left singular vectors

of Xt are equal to the eigen vectors of the sample covariance matrix Cxx defined in

(3.5) and the singular values of Xt are the square roots of the positive eigenvalues

of this covariance. Also, the eigen/singular vectors are frequently called empirical

orthogonal functions or principal components, depending on the field.
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Figure 3-7: Spatial structure of unconditional top layer soil moisture field at 6 typical
times. a): True soil moisture, b) Unconditional mean of soil moisture ; c) First
singular vector of the unconditional ensemble, d) Cloudy periods shown for reference
purposes. Truth is approximated by mean plus a random scaling of first singular
vector
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Figure 3-7 shows the true, ensemble mean, and first ensemble singular vectors of

the unconditional top layer soil moisture, plotted for several times by pixel for over

the domain of our simulation experiment. The ensemble mean reveals whether the

soil as a whole is wet or dry but does not capture smaller scale variations, including

the dominant diagonal structures mentioned earlier. At the first four times the first

singular vector adds to the mean in the top half of the region and subtracts from it

in the bottom half. This captures some of the anisotropic diagonal character of the

soil moisture field. The last time is after a long drydown period when the effects of

earlier rainstorms have dissipated. Consequently, the first singular vector does not

convey much spatial structure.

The relative importance of the different singular vectors can be determined if the

ordered singular values are all divided by At, and plotted vs j. Figure 3-8 indicates

that this singular value spectrum drops off more quickly at wet times, reflecting the

fast that soil moisture structures can be better characterized by a few singular modes

shortly after rainfall, when there are larger structures. After a long drydown at t=430

variations in soil moisture are smaller scale and the spectrum is flatter. Figure 3-8

indicates that about 50% of the total variability in soil moisture (as measured by the

area under the spectrum) can be explained by the first 15 singular modes during wet

periods. More modes are needed to achieve this explanatory level during dry periods.

A special case here is at t=160, even though the true soil moisture field is at the

same dry level as at t=430, the first singular mode is quite different. The reason is

that for t=160, the soil moisture is not dry enough to eliminate the rainfall structure.

While at t=430, there is a heavy rainfall at t=320, which is pretty uniform in space

and thus can removes any streak rainfall patterns at t=430, leaving soil properties as

the dominant factor. It's expected that after a long enough drydown period, all the

rainfall pattern would disappear and only soil pattern dominates.

Although the CLM only allows the soil water to moves vertically within each

pixel significantly horizontal correlation exists for some time after a rainfall event,

especially when the storm moves, as in our simulation experiment. This correlation

is not due to lateral subsurface water movement but is, rather, the consequence of
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Figure 3-8: a) Normalized singular values of the mean-removed forecast ensemble
(normalized by. the largest non-normalized singular value). b) Cloudy periods shown
for reference purposes.

96



an extensive moving storm system that wets some areas and leaves others relatively

dry. In answer to the question posed earlier, it appears that the essential structure

of the soil moisture field during wet periods can be captured by the unconditional

mean and a relatively small number of random singular vector coefficients. During

dry periods the potential for problem size reduction is less. It remains to be seen

how these features can be exploited in a land surface data assimilation system. We

consider this issue further in the next section.

3.4 Ensemble Data Assimilation Experiments

In data assimilation applications we are frequently forced to make compromises be-

tween accuracy and computational efficiency. Here we examine this tradeoff in a

simulated data assimilation experiment that is an extension of the ensemble fore-

casting experiment discussed above. In the forecasting experiment we considered the

unconditional soil moisture ensemble produced by a particular set of uncertain in-

puts. Now we consider conditional soil moisture estimates derived from the synthetic

L-band radiometer measurements described at the end of Section 3a. Our data assim-

ilation algorithm uses the ensemble Kalman filtering approach described in Section

2.

The ensemble Kalman filter's use of a finite population of replicates introduces

two sources of error: 1) sampling error and 2) rank deficiency. Sampling error enters

through the mean-removed ensemble matrices Xtlt_1 and Ytlt, which can be viewed as

noisy sample estimates of the square roots of the conditional covariances Cov[xtlt-l]

and Cov[h(xtt_)]]. Errors in the ensemble-based square root estimates influence the

Kalman gain and state updates through (1.28) and (1.30). As the number of replicates

increases the sampling error decreases and the filter's estimates converge to the values

that would be obtained with exact covariances. In land surface applications ensemble

sizes of hundreds appear to be satisfactory, especially if long range correlations are

small (refs .... ).

Rank deficiency is a source of error only when the number of replicates is less
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than the state dimension, N < n, which is usually the case in large problems. When

N < nthe matrix Xt lti has rank N and only its first N singular values are non-zero.

This has the effect of projecting the n dimensional state space onto the smaller N

dimensional subspace spanned by the replicates inXtlt_1. This subspace, which is

random and constantly changing, is the same as the subspace spanned by the first N

singular vectors. When N < n the ensemble Kalman filter is a, type of reduced rank

filter. Its' estimates are based on a low dimensional approximation and will generally

be less accurate than those of a full rank filter.

The analysis of the previous section suggests that the effects of rank deficiency in

land surface problems depend on the state of the soil. When the soil is wet and the

singular value spectrum falls off sharply a relatively small number of singular modes

(or replicates) can provide an adequate description of spatial variability, so long as

sampling errors are acceptable. On the other hand, when the soil is dry and the

spectrum is flatter more singular modes (or replicates) are needed.

This suggests two different ways to apply ensemble Kalman filtering to land surface

data assimilation (Reichle and Koster, 2004 [82]). In the first of these horizontal

correlation is accounted for and the entire n dimensional state vector is estimated

but the number of replicates is kept much smaller than n. This global filter can be

expected to work best after rain, when the surface soil moisture is correlated across

many pixels and the singular value spectrum falls off rapidly. It replaces the state

covariance matrix with an approximation that is reduced rank but not sparse.

An alternative (Margulis et al., 2002 [70]) is to divide the region of interest into

small blocks of pixels that are treated independently (see Figure 3-la). That is,

correlations within each block are considered but those between blocks are ignored (in

the limit each block could consist of a single pixel). The data assimilation problem is

then partitioned into n/nl independent sub-problems, where nlis the number of states

associated with each block. Each of the small sub-problems is solved with a separate

nl dimensional filter. These independent filters will each be full rank if N > n1 ,

which will generally hold if the block are reasonably small. Assuming this is the case,

the localized approach can be expected to work best during dry periods, when the
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singular value spectrum is relatively fiat but there is minimal correlation between soil

moisture in different blocks. The local filter replaces the complete state covariance

matrix with a sparse blocked approximation.

A variant on local filtering is the Schur product approach (Gaspari and Cohn,

1999 [40]; Houtemaker and Mitchel, 1998 [56]), which attenuates correlations be-

tween distant points in accordance with a specified weighting function. This miti-

gates the effects of spurious long distance correlations caused by sampling error. If

the weighting function goes to zero after some finite distance, the result is similar to

the clustering, technique, since the covariance matrix is again replaced by a sparse

blocked approximation.

The computational demands of the global and local filters are:

Global filter: 0 [n3 ] Local filter:O [-(n0) 3 ] = (nn)

When nj is much smaller than n the local filter is much more efficient. Also, this

filter scales linearly with the size of the domain (since nl is a constant). The cubic

scaling of the global filter makes it impractical for very large problems.

We can investigate the performance of the global and local filters by carrying out

two simulation experiments, with updates performed at wet and dry times, respec-

tively. This design tends to emphasize the difference between the two estimation

alternatives. The wet update times are at t = 50, 90, 320, and 460 while the dry

update times are at t = 165, 240, 430, and 515 (all times are indicated in Figures

3-10 and 3-11 with asterisks). The local filter uses blocks of 4 by 4 pixels, the same

size as the regions covered by the radiometer measurement, giving n = 48 states per

block (See Figure 3-la). In order to minimize the effects of sampling error we use an

ensemble size of N = 6000, which is smaller than n but large enough to enable the

global filter to properly account for horizontal correlation at all scales.

The top half of Figure 3-9 compares the spatial distribution of the true replicate

with the conditional means from the local and global filters, before and after updates.

The plots on the left half show results at t = 90 for the wet update strategy while

those on the right show results at t = 430 for the dry update strategy. The bottom

half of the figure shows similar plots for the conditional standard deviations.
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Figure 3-9: Comparison of global and local ensemble Kalman filters a) True soil mois-
ture and conditional ensemble means before (superscript -) and after (superscript +)
measurement updates at t = 90 (wet) and t = 430 (dry) b) Corresponding conditional
ensemble standard deviations.
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It is apparent that the difference between the two filters is greater at t = 90 (wet)

than at t = 430 (dry). At the wet time the local filter updated mean does not match

the true field as well as the global filter. It is also significantly more blocky, reflecting

the presence of discontinuities between the independent block estimates. The local

filter also gives a significantly higher updated conditional standard deviation than

the global filter. This is because it cannot benefit from potentially useful correlations

between states and measurements in different blocks. Such correlations are greater

during wet periods.

By contrast, the local and global filters behave nearly the same at the dry time.

After the long drydown the diagonal features induced by rainfall disappear and most

of the variability that remains is related to soil and vegetation heterogeneity. The

global filter's ability to account for horizontal correlation across longer distances is

no longer of much benefit. -

The time series of the spatial root mean squared error for the ensemble prediction

(unconditional mean) and the filter estimates (updated conditional means) are shown

in Figure 3-10. The top plot corresponds to the wet update strategy while the bot-

tom panel corresponds to the dry update. As expected, the difference between the

two filters is greater for the wet update strategy, when the global filter's ability to

accommodate horizontal correlation is more advantageous. The two filters are barely

distinguishable when all updates are at dry times. Figure 3-11 shows the increase in

root mean squared evapotranspiration error of the local filter estimate and ensemble

prediction over the error obtained from the global filter (the error increase plot re-

moves the confounding effect of diurnal fluctuations in evapotranspiration, which are

typically larger than the estimation errors). Here again, the difference between the

two filters is much more significant for the wet update strategy.

Overall, the local filter does quite well in these simulation experiments, especially

considering the substantial computational benefits it offers. It appears that most of

the information to be gained from microwave measurements is local, in the region

covered by the radiometer. Although some improvement can be achieved by account-

ing for longer range correlations at wet period updates, it is questionable whether
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this justifies the substantial increase in computational effort required by the global

filter.

3.5 Discussion and Conclusions

The simulation experiments presented here suggest that it should be possible to ob-

tain accurate estimates of soil moisture and evapotranspiration with efficient data

assimilation algorithms that adapt to changing land surface conditions. The alter-

native ensemble filters considered in Section 5 represent two extremes, one which is

efficient but sometimes oversimplified and one which is more nearly optimal but too

expensive to be practical for large problems. The relatively good overall performance

of the local ensemble Kalman filter suggests that this option is a good place to start

if we want to achieve performance improvements while preserving computational ef-

ficiency.

One possibility is to increase the size of the local blocks in the local filter during wet

periods, following some empirical adjustment rule. While this could probably provide

some performance improvement, it would also increase computational effort (since the

time required for each local filtering computation increases with the square of the local

state dimension n1). Moreover, the correlations that need to be accommodated are

typically anisotropic and not amenable to a simple blocking scheme. It is likely that

some overall improvement could be obtained by using a climatological correlation

function to derive a fixed (and possibly anisotropic) block geometry (Reichle and

Koster, 2004 [82]).

It also worthwhile to mention that the results from this chapter are dependent on

how the uncertainties in the system are assumed. Here soil properties with no local

correlation is used while rainfall creates soil moisture error correlation scale spanning

all over the domain. The rainfall storm size is large compared to the domain size

(1/5 of the domain size). It's reasonable to argue that for a large scale problem, say,

at scale of tens of thousands kilometers, this soil moisture error correlation structure

across domain might rarely occur, in which case local correlation assumption might

104



work well.

An ideal option would be an update algorithm that is able to automatically adapt

to the correlation structure implicit in the propagated ensemble. Such an algorithm

should be able to gradually make the transition from a reduced rank filter that only

requires estimation of a few leading singular vector coefficients (when there is sub-

stantial horizontal correlation) to a local filter with a small block size (when there is

very little horizontal correlation). It should also be able to attenuate the effects of

spurious long distance correlations due to small ensemble sizes. A filter with these

capabilities would be both accurate and efficient. It is possible that a wavelet-based

or multiscale approach could provide the flexibility needed for a truly adaptive land

surface estimation algorithm. The multiscale approach will be discussed in the next

chapter.
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Chapter 4

An Ensemble Multiscale Filter for

Large Scale Nonlinear Estimation

4.1 Background and Motivation

Recent developments in remote sensing and numerical modeling are rapidly improving

our understanding of the earth and our ability to predict the environmental conse-

quences of human activities. By using models to combine many different sources of

data we can obtain an internally consistent picture of global processes that extends

well beyond the capabilities of any single instrument. Data integration carried out at

global scales can be viewed as a large estimation problem, where the goal is to char-

acterize a very high dimensional spatially distributed system state. This problem is

challenging for a number of reasons. First, its sheer size places a high premium on

efficiency. Second, process and instrument nonlinearities are common. Third, model

and measurement uncertainties are significant but difficult to characterize. Together,

these problem features make conventional estimation methods infeasible for global

applications.

The estimation procedure described in this chapter deals with some of the is-

sues posed by large environmental estimation problems. It relies on an ensemble (or

Monte Carlo) approach that is sufficiently flexible to accommodate a wide range of

nonlinearities and uncertainties. Since ensemble methods tend to be computationally
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demanding it may seem that they are not appropriate for global environmental ap-

plications. This is certainly true if methods developed for small problems are applied

without modification to larger problems. But new variants of the ensemble approach

may make this option computationally feasible. The significant benefits of ensemble

methods, particularly for nonlinear systems, provide ample motivation for further

work on this topic.

The computational demands of distributed estimation problems arise both from

the cost of solving the model equations and from the cost of updating model pre-

dictions with measurements. Both increase rapidly with problem size. Distributed

environmental models tend to be expensive because they need to capture a wide range

of time and space scales. The desire to resolve small scale variability, which can have

large scale effects in nonlinear problems, creates continual pressure for higher res-

olution and larger grids in disciplines such as meteorology and oceanography. The

computational demands of'estimation algorithms also depend on the amount of data

to be processed. In the earth sciences there are always new sources of data to con-

sider, acquired at higher rates and higher resolution. So the trend is definitely towards

larger problems and more demanding computation.

Multiscale methods provide an attractive way to increase the efficiency of distrib-

uted modeling and estimation algorithms. Most of these methods have the ability

to discriminate between different scales of variability, applying only the level of res-

olution required at each scale. There has been a considerable interest in multiscale

methods for solving deterministic partial differential equations [9] and linear estima-

tion problems [101]. However, there has been relatively little research on multiscale

ensemble estimation, especially for nonlinear problems. This is the topic addressed

in our paper.

The ensemble estimation method described here is a filtering algorithm that di-

vides naturally into forecast and update steps. The forecast step proceeds in much

the same way as in other ensemble filters, propagating individual random replicates

forward in time with a nonlinear state equation discretized at a fixed fine scale. The

update step is carried out on a multiscale tree that is identified from the forecast
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ensemble. This approach combines the flexibility of traditional ensemble methods,

which can readily handle nonlinearities and complex error sources, and the efficiency

of multiscale methods, which can greatly reduce computational effort. In order to

make the multiscale update feasible for large problems certain approximations are

required. The impacts of these approximations, which can be positive as well as

negative, tend to be application-dependent.

Our discussion begins with a formulation of a general dynamic estimation prob-

lem and a brief review of the ensemble approach. This is followed by a survey of

some relevant multiscale estimation concepts. Next we show how ensemble concepts

and multiscale estimation can be combined and we illustrate the performance of the

resulting ensemble multiscale filter with two examples. We conclude with a review of

the advantages and limitations of the multiscale ensemble approach.

4.2 Ensemble Filtering

The inherent variability in natural processes as well as uncertainty in both models

and measurements provide good reason to consider a probabilistic approach to en-

vironmental estimation problems. Bayesian estimation theory provides a convenient

framework for such an approach. Suppose that we characterize the system of inter-

est by a large number of spatially and temporally discretized states collected in the

vector t, where the subscript t indicates time. For present purposes we suppose

that each element of this vector corresponds to a distributed variable (e.g. pressure,

temperature, velocity, etc.) evaluated at a particular cell on a fixed computational

grid. The discrete times indexed by t need not be equally spaced.

The Bayesian approach treats the state t at any given time as a random vector

which is fully characterized by a joint probability density. In the absence of measure-

ments the appropriate choice is the unconditional density p[xt]. When measurements

of the states or related variables are also available we can more precisely characterize

the uncertain state with conditional densities. Suppose the measurements available

at a given time T are collected in the vector ye. Then we write the conditional density
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of xt, given all measurements with T E [0, T], as p[XtIYO:T]. This density characterizes

everything we know about xt, given YO:T.

It is generally neither feasible nor desirable to derive the entire multivariate den-

sity of xt for large problems. In practice, we focus on certain properties of this

density, usually the mean, the mode, the variances and marginal univariate densities

of particular elements of xt, and the covariances between two different elements of xt.

Nevertheless, it is useful to consider p[xtIYO:T] during problem formulation.

Bayesian estimation reduces to the need to derive p[xtIYO:T] (or some of its proper-

ties) from specified probabilistic information about the state and the measurements.

There are a number of ways to do this, depending on the problem at hand. Here we

focus on filtering problems where the end of the measurement interval is the current

time (so T = t). To simplify notation we seek estimates only at measurement times.

In addition, we consider problems where the temporal evolution of the state and the

measurement process are described as follows:

X = ft(Xt-l, Ut) (4.1)

yt = ht(xt) + et (4.2)

where ut is a vector of random model inputs, which are not necessarily white or

additive; et is a measurement noise vector, which we assume to be zero-mean and

white in time; and xt has a random initial condition x0. The functions ft(') and ht(.)

represent time-dependent models of the system dynamics and measurement process.

The random initial state, input vector, and measurement noise are all characterized

by probability densities, which we assume to be given. We also assume that these

random vectors are independent of one another.

The sequential structure of the state equation in (4.1) enables us to solve the

Bayesian estimation problem recursively. In this case, the process of deriving the

probability densities of xt at t divides into two steps, a forecast from time t- to

time t, and an update at time t. At any given time t > 0 the forecast step derives the

forecast density p[xtyo:t-i] from the previously updated density p[xt_yo:t_-l]. This

110



can be done by solving the Fokker-Planck, or forward Kolmogorov, equation [60].

Exact solutions are possible only in certain special cases.

The update step at t derives the new updated density p[xtlyo:t] from the forecast

density p[xtiyo:t-i] and the likelihood p[ytlxt]. This can be done by applying a se-

quential version of Bayes' theorem [60]. Here again, exact closed form results can

only be obtained for special cases. In particular, exact results are obtainable when

the specified densities for xo, ut, and et are Gaussian and the functions ft() and gt()

are linear in all their arguments. In this case, t and Yt are jointly Gaussian with

densities that are completely defined by their means and covariances. The associated

sequential filtering algorithm is the well-known Kalman filter [41].

When Gaussian assumptions do not apply ensemble methods are the only solution

options that are both general and computationally feasible. Examples suitable for

filtering problems include particle filters [2, 45] and ensemble Kalman filters [33, 10].

Ensemble filtering techniques approximate p(xtlyo:t_1) and p(xtlyo:t) by weighted sums

of Dirac delta densities located at the randomly generated replicate values xtlt_ or

Xltlt-

N

p(xtlyo:t_l) = E Wtlt_l~(xtt_ 1 -Xtltl ) (4 3)
j=l
N

P(xtlyo:t) = wt 1t(xtlt - x.t) (4.4)p(xtlyot) = E ?i7it6 (Xtt -Xt (4.4)
j=l

Here and in the following discussion j = 1, . . ., N, where N is the number of replicates

in the ensemble. The weights wi and wit given to the N replicates must sum toWt~t_1 W t t

1.0.

In the forecast step the replicate values rather than the probability densities are

propagated with the state equation as follows:

(4.5)lt- = f(x 1-- ltu) (45)

where xi and ut are synthetically generated replicates drawn from the initial state
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and input probability densities. During the forecast step the weights generally remain

unchanged. The forecast replicates obtained from (4.5) can be used to approximate

p(xtlyo:t-i) and its properties.

The update step is more problematic since it is very difficult to generate an ensem-

ble of replicates that adequately approximates the unknown density p(xtlyo:t). One

attractive alternative is the ensemble Kalman filter. This filter uses uniform weights

of w3 t_=w = 1N throughout both the forecast and update steps and adjuststlt-1 tit

only the replicates. To simplify the discussion we make the optional but convenient

assumption that the measurement function is linear so that:

Yt Htxt +et (4.6)

The ensemble Kalman filter generates updated replicates from the following linear

transformation of the forecast replicates:

tt + X K[tt_1 [yt + et - tt-1] (4.7)

where lt-l is a measurement prediction replicate defined by:

lt-1 = tX (4.8)

and Kt' is the Kalman gain defined by:

I t = Cov[xt, HtxtIyo:t-1] [Cov[Htxtlyo:t-] + rt (4.9)

The vector e is a synthetically generated zero-mean random measurement perturba-

tion, drawn from the specified density of the measurement error et. The matrix rt is

the covariance of et.

Here and in the subsequent discussion Cov[u, viw] = E{[u-E(ulw)][v-E(vlw)] T Iw}

indicates the covariance of the two random arguments u and v, conditioned on w and

Cov[ujw] = Cov[u, ulw] . Cov[u, vlw] is a sample estimate of Cov[u, vlw] computed
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from N replicates of u and v, for a given w. This sample covariance can be written

as a matrix product of the following form:

Cov[u, vlw] = N- 1 (4.10)

where U is a matrix with column j the mean-removed replicate J and V is a matrix

with column j the mean-removed replicate vi, both computed for a particular value

of w.

In most ensemble estimation problems N is less than the dimensions of u and v

and the sample covariance is rank deficient. However, the matrix inverted in (4.9) is

full rank if rt is full rank. Also, note that the Kalman gain in the ensemble version of

the Kalman filter is a weak nonlinear function of past measurements since it depends,

through the sample covariances, on replicates derived from these measurements.

The linear update of (4.7) yields an ensemble that converges to the exact p(xtjyo:t)

if the state and measurement at t have a Gaussian joint conditional density p(xt, YtlYO:t-

If the state and measurement vectors are not jointly Gaussian an ensemble obtained

from (4.7) will not converge to the exact conditional density. However, the mean

of the updated ensemble converges to the minimum variance linear estimate and

the covariance of the updated ensemble converges to the associated estimation error

covariance, even for non-Gaussian problems.

For nonlinear problems the ensemble Kalman filter is a compromise that makes no

assumptions during the forecast step but makes implicit linear Gaussian assumptions

during the update step (note that the measurements and states are jointly Gaussian

only if the state is Gaussian and the measurement function is linear). Despite this

compromise, experience shows that the ensemble Kalman filter provides an acceptable

approximation in many applications. This issue is discussed in more detail in citations

provided in Evenson [34] as well as in [102] and in Chapter 2 of this thesis. There

is, of course, no guarantee that the assumptions made in the ensemble Kalman filter

will always be acceptable and caution must be used when applying this technique to

highly nonlinear problems.
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The ensemble Kalman filter has some features which can complicate its applica-

tion to large problems. First, it requires computation and manipulation of sample

covariance matrices which can be very large when the state and/or measurement

vectors are large. This problem can be mitigated somewhat by using numerical im-

plementations that are more efficient than the traditional approach given in (4.7)

through (4.10). However, these refinements still have the disadvantage of working

simultaneously with all the elements of a very large array of state replicates.

A second problem has to do with sampling error resulting from small ensemble

sizes. In large problems the number of replicates that can be feasibly accommodated

is small while the number of replicates needed to obtain accurate sample estimates

of the forecast covariances is large. So sampling errors are often a serious problem,

especially when estimating small but physically meaningful covariances [56]. One

popular solution to the sampling problem is to impose a spatial filter that essentially

ignores sample correlations over distances beyond some threshold. This so-called

localization approach presumes that long distance correlations are small and that high

magnitude sample correlations at such distances are spurious. Unfortunately, this is

not always the case. In some problems, long-distance correlations arise as a natural

result of physical processes. This is illustrated, for example, in [73] and in Chapter 3

of this thesis, where moving rain storms can induce long distance correlations in soil

moisture.

The ensemble multiscale filter described here provides an alternative approach

that deals with both the computational and sampling error issues of traditional en-

semble Kalman filtering algorithms. The multiscale filter adopts the same forecast

step as the ensemble Kalman filter but uses an update based on a multiscale tree

model. The tree model describes global relationships between the elements of xt in

terms of local relationships between nodes on the tree. This leads to a multiscale

ensemble update that is much more efficient than the classical covariance-based en-

semble Kalman update. In the multiscale approach a different tree model is identified

from the forecast ensemble at every update time, to provide for the time-dependent

nature of the problem. The identification step introduces approximations that have
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the effect of filtering errors in sample correlations. Since this filtering procedure is

accomplished with a truncation in scale rather than distance it is able to preserve

physically legitimate long-range correlations.

The next section describes how tree models may be used to efficiently describe

ensemble statistics for very large spatially distributed problems. This is followed by

a detailed discussion of the ensemble multiscale filter.

4.3 Multiscale Models

4.3.1 Multiscale Descriptions of Random Fields

A tree model consists of a set of related nodes that may be visualized as shown in

Figure 4-1. Groups of nodes are organized into scales distinguished as separate rows

in the tree diagram. The scale with the most nodes (at the bottom)is called the finest

scale while the scale with only one node (the root node at the top) is the coarsest

scale. Each node s is associated with a relatively small nodal state vector x(s) of

dimension n(s). The definition of each nodal state vector is a design decision that is

part of the modeling process.

SOa1 Soc 2 SOaq

Figure 4-1: A multiscale tree with scaling factor q

In the applications considered here the nodal state vectors are first defined at the

finest scale and then recursively identified for each of the coarser scale. Since the tree
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is designed to provide a compact representation of the ensemble propagated on the

computational grid it is convenient to associate each of the finest scale nodes with a

particular block of grid cells. The grid block is intentionally kept small (typically 4

to 32 cells) to limit the size of the nodal state vector. The nodal state vector X(s)

at finest scale node s, the n(s) elements of the mean-removed global state vector

associated with block s, are the elements of the global state vector xt that correspond

to grid block s.

In a tree model the finest scale nodes are not related directly to one another, as

they are in a typical computational grid. Instead, they are related indirectly through

their relationships with common nodes located higher up the tree. Each internal tree

node is related to a parent and to several children. The parent-child relationships are

indicated graphically by lines on the tree diagram. In order for the tree to serve as a

model of the forecast ensemble the local parent-child relationships need to properly

represent global correlations between the finest scale states. Methods for deriving

these relationships are discussed below.

Unless indicated otherwise we suppose that every node (except the finest scale

nodes) has q children and we represent the children of s by sao1 , sa2,... , saq. Also,

every node (except the root node) has a single parent s. The index m(s) indicates

the scale of node s (i.e. the row on the tree diagram containing s). This index

increases from 0 at the top of the tree (coarsest scale) to M at the bottom of the

tree (finest scale). The fluid mechanics example discussed in Section 5 has two scalar

states (the two components of velocity) per computational grid cell in a grid of or

524,288 (1024 by 512) cells giving a total of n(x) = 1,048,576 global states. The

corresponding tree has 8 scales. The coarsest scale has two children while all others

have 4 children, giving a total of 2 x (47) = 32768 finest scale nodes. Each finest scale

node has d = 32 local states associated with a small block of 16 grid cells. So the

tree also has a total of nM = 32 x (32768) states at the finest scale. It is apparent

that a tree with a relatively small number of scales and relatively small local state

vectors can accommodate large problems with large global state vectors.

A certain class of tree models called multiresolution autoregressive (MAR) models
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can be used to derive particularly efficient scale-recursive estimation algorithms. The

downward recursion used to describe an MAR model is:

X(s) = A(s)x(sy) + w(s) (4.11)

where x(sy) is the state at the parent sy of s, A(s) is a downward transition matrix

and w(s) is a zero-mean random scale perturbation with covariance Q(s). The ran-

dom root node state X(O) that initializes the recursion is zero mean with covariance

Cov[x(O)]. Together these assumptions imply that all the states on the tree are zero

mean. The w(s) values at different nodes are uncorrelated with one another and with

X(O). Note that the scale of the parent node s is m(sy) = rn(s) - 1.

An equivalent upward MAR model recursion is (4.11):

X(S7) = F(s)X(s) + w'(s) (4.12)

where F(s) is an upward transition matrix and w'(s) is a zero-mean random scale

perturbation with covariance Q'(s). This recursion is initialized with the random

finest scale state XM, which is zero mean with covariance Cov[xM]. If the model

is multiresolution autoregressive the w'(s) at different nodes must be uncorrelated

with one another and with XM. The transition matrices A(s) and F(s) and the

covariances Q(s) and Q'(S) are related to one another and to the specified finest

scale prior covariance Cov[XM], which can be viewed as a terminal condition for the

downward recursion and an initial condition for the upward recursion.

A tree that satisfies the scale recursions given in (4.11) and (4.12) has a number

of properties convenient for estimation. In particular, when these recursions apply it

is possible to carry out an optimal linear measurement update recursively, moving up

and then down the tree from scale to scale. At each step of the update algorithm, it

is only necessary to consider relationships between a particular node and its parent or

children. The associated computations deal only with local state and measurement

vectors, which are much smaller than their global counterparts. This makes the

multiscale update algorithm very efficient.
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4.3.2 Internal Models and the Scale-recursive Markov Prop-

erty

The process of identifying efficient tree models is greatly facilitated if we constrain

the model to have certain internal properties. To define these properties suppose

that x(s) is the state vector at node s at scale rm(s) and Xm(s)+l(s) is the vector of

all states at the children of s, which are all at scale m(s) + 1. The tree is said to be a

locally internal model if x(s) is a linear combination of the states at its children, for

all nodes on the tree. This requirement can be expressed concisely as follows [37]:

X(saj)

X(s) = V(S)Xm(s)+l = V(s) (4.13)

X(saq)

where V(s) is an n(s) by nm(s)+1 dimensional local internal matrix associated with

node s and nm(s)+l is the sum of the dimensions of the state vectors X(saCi) for i =

1, . . ., q. The set of V(s) matrices defines, through (4.13), all the coarser scale states

on the tree. Specification of the V(s) matrices is therefore equivalent to specification

of the scale transition and covariance matrices defined in (4.11) and (4.12).

The recursion of (4.13) may also be expressed as follows:

X(s) = W(s)XM(s) (4.14)

where XM(S) is the vector of states at all finest scale nodes (ie. at scale m(s) = M)

descended from s and W(s) is an n(s) by q[M-m(8)]dM dimensional finest scale internal

matrix. This matrix can be derived from the local internal matrices for s and its

descendants, using a recursion described in [101]. Note that (4.14) implies that all

states on the tree are zero mean since the elements of the finest scale nodal state

vector XM are constructed from mean-removed elements of the global state vector.

We impose the internality condition of (4.13) and describe tree structure in terms
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of the V(s) matrices in order to facilitate the process of identifying the recursions of

(4.11) and (4.12). The statistical assumptions that accompany (4.11) and (4.12) are

equivalent to a multiscale extension of the well-known Markov property of time series

analysis. The multiscale Markov property relies on the fact that any given node s at

scale m(s) partitions the nodes at the next finer scale m(s) + 1 into q + 1 sets. The

first q sets consist of the q children of s. The final set consists of the complementary

group of nodes that are not children of s. The multiscale Markov property holds for

locally internal models if and only if the vector of all states in any one of these q + 1

sets is conditionally uncorrelated with the vector of all the states in the remaining q

sets, given x(s) [37]. If the tree obtained from a particular set of V(s) matrices meets

this requirement it is possible to identify scale transition equations having the form

given in (4.11) and (4.12). This leads us to consider practical methods for identifying

the V(s) matrices.

4.3.3 Identification of Multiscale Tree Models

The objective of tree identification is to obtain a locally internal model (i.e. a

set of V(s) matrices) that satisfies the decorrelation requirements of the multiscale

Markov property. In order to obtain perfect decorrelation we often need to use high-

dimensional coarser scale nodal state vectors. This defeats the purpose of the tree,

which is to provide a concise and efficient alternative to traditional estimation meth-

ods. For practical applications we need to constrain state dimensionality at each

coarser scale node or, equivalently, we need to limit the number of rows in the cor-

responding V(s) matrix. Then the identification problem at node s reduces to a

search for the V(s) that minimizes the conditional covariance subject to the con-

straint n(s) < d(s), where d(s) is the maximum number of states allowed at s. This

requires a measure of conditional covariance that can be readily minimized.

The identification problem is easier to solve if the set of V(s) candidates is limited

to block diagonal matrices having the following form:

V(s) = diag[V (s), ... , V (s)] (4.15)
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The submatrix Vi(s) corresponds to child scei and has dimension di(s) by n(sai). The

block diagonal structure of V(s) implies that each row of x(s) is a linear combination

of states at a particular child of s. It also enables us to divide the V(s) identification

problem into q smaller problems that each focus on the covariance between a partic-

ular pair of state vectors. Frakt [37] discusses some of the attractive properties of

block diagonal V(s) matrices.

Focusing for the moment on the i t
h child of s, consider the conditional covariance,

given x(s), between the vector z(s) = X(Sai) composed of the states at child sai

and the complementary vector zi,(s) composed of the states at all other nodes at the

same scale.:

CoV[Zi(s), zi,(S)lx(S)] =

E [[zi - E[ziIx(s)]] [zi, - E[zicIx(s)]]T] -

E [[X(sai) - E[x(sai)X(s)]] [ic - E[ziIx(s)]]T] (4.16)1 ~(4.16)

This is one of q conditional covariances addressed in the scale-recursive Markov prop-

erty.

Our objective is to select a Vi(s) and the associated state x(s) = Vi(s)zi =

Vi(s)X(sai) that gives the smallest possible conditional covariance. Rather than min-

imize the conditional covariance directly the predictive efficiency method minimizes

a more convenient surrogate performance measure. This measure is related to the

mean-squared error of the following estimate of zi¢(s), derived from a linear function

of Zi(s).

z:i(s) = E[zic(s)lx(s)] = E[zi,(s)lV(s)zi(s)] (4.17)

When Vi(s) is an identity with the same dimension as zi(s) the mean-squared error

is minimized and the conditional covariance is zero (this is easily checked by sub-

stituting x(s) = zi(s) into (4.16)). For a general V(s) the mean-squared error will

be larger than the minimum value obtained when Vi(s) is an identity and the condi-
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tional covariance will not be zero. In this case, the departure from optimality can be

measured by the following relative mean-squared error expression [37]:

i[zic(S)Ix(s)] = trace { Cov[zic, zi]Cov [zi]Cov[zi, Zic]} -

trace { Cov[zic, zi]ViT [ViCov[zi]ViT] - 1 ViCov[z i, Zic]} (4.18)

In the predictive efficiency approach the best choice of Vi(s) is taken to be the one

that minimizes 4[zic(s)lX(s)] subject to the constraint n(s) < di(s). Frakt [37] shows

that this Vi(s) is given by the first di(s) rows of the following matrix Vi'(s):

V' (s) = UT(s)Cov[zi(s)] - 1/2 (4.19)

The columns of the matrix Ui(s) are the eigenvectors of the following n(sai) dimen-

sional square matrix:

Cov-1/2 [zi(S)]Cov[zi(8), Zic(S)]Cov [zi(S), Zic(S)]Cov-T/2[zi(s)] (4.20)

These eigenvectors are assumed to be arranged according to the magnitudes of the

corresponding eigenvalues, from largest to smallest.

The predictive efficiency method outlined above provides a local internal matrix

Vi(s) for each child of s. These q Vi(s) matrices can be assembled to form V(s),

as specified in (4.15). The total number of rows in the resulting V(s) may exceed

the total number of rows d(s) originally specified for V(s) in the nodal state vector

size constraint. Following Frakt [37], we deal with this issue by retaining only the

d(s) rows in V(s) that correspond to the d(s) largest predictive efficiency eigenvalues.

Note that this will generally result in some of the reduced Vi(s) matrices having more

rows than others. That is, some children will contribute more elements to (s) than

others.

Once an appropriate set of V(s) matrices has been identified it is possible to derive

the scale transition and covariance matrices that appear in (4.11) and (4.12). These

quantities can be written as functions of prior nodal state covariances, as follows:
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[37]:

A(s) = Cov[x(s), X(sy)]Cov-l[x(sy)] (4.21)

F(s) = Cov[x(sy)]A(s) T Cov-l [X(s)] (4.22)

Q(s) = Cov[x(s)] - A(s)Cov[x(s), X(sT)]T (4.23)

Q'(s) = Cov[x(sy)]- F(s)A(s)Cov[x(sy)] (4.24)

The covariances that appear on the right sides of these expressions can be derived

recursively from the V(s) matrices and the specified finest scale covariance [37]. This

is particularly convenient in an ensemble implementation where we rely on sample

estimates of the covariances. Further details are provided in the next section.

After getting the A matrices, the covariance between states at any two nodes s

and can be readily determined from the related A matrices and the covariance at

their closest common ancestor sAl according to

Cov(s, 1) = (s, s A l)Cov(s A )I)T(s, s A 1)

where ( = I if ¢ = s (4.25)

A(s) (sy, ~) where ¢ is an ancestor of s

The predictive efficiency identification process moves up the tree, starting at the

next to finest scale ((s) = M- 1) and ending at the root node ((s) = 0).

The V(s) computations at scale rm(s) node rely on the covariances Cov[zi(s)] and

Cov[zi(s),zi,(s)] between states at the next lower scale rm(s) + 1, as indicated in

(4.20). When the size of the vector zi(s) is large (as it typically is in practical appli-

cations) derivation of the cross-covariance Cov[zi(s),zi¢(s)] can be computationally

demanding. The effort required can be reduced dramatically if the cross-covariance

computation only considers correlations between states at nearby nodes. This is fea-

sible when the tree model is internal and the finest scale nodes are associated with

groups of nearby pixels, as is assumed in our application. Then the nodes at higher

scales correspond to spatial regions of increasingly larger size, with the region of each

node containing the regions associated with its children. This makes it possible to
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define a neighborhood Afh(s) of h nodes around any given node s at scale rm(s). Nodes

associated with Zic(s) are included in the calculation of Cov[zi(s), zic(s)] only if they

lie in .Afh(sai). Frakt [37] shows that the complexity of the tree identification algo-

rithm is O[n(x)2] if the entire cross-covariance is computed. This complexity reduces

to O[n(x)] if the neighborhood restriction is enforced, with the same h value used

at all scales. The result is a substantial savings in computational effort for large

problems.

Note that the use of a neighborhood screen for deriving Cov[zi(s),zic(s)] and

V(s) is not the same as the spatial localization approach proposed in [20]. The

neighborhood screening approximation suggested here preserves the ability to rep-

resent large-scale correlations since the tree still relates distant nodes through their

common ancestors. The state dimension truncation and neighborhood screening op-

erations used in the internal matrix calculations have the combined effect of filtering

spurious fluctuations such as sampling errors while retaining dominant long distance

correlations. The examples discussed at the end of this chapter illustrate this filtering

action, which is particularly useful in ensemble applications. Of course, if the state

truncation and neighborhood screening are too severe important information will be

lost and there will be a decline in performance. So some judgement is involved in

selecting the appropriate level of state truncation (d) and the neighborhood size (h)

for a given application.

4.4 A Multiscale Ensemble Update Procedure

The update step of the multiscale ensemble filter carries out the classical ensemble

Kalman filter measurement update described in (4.7) through (4.9) on a tree model

identified from the forecast ensemble. The multiscale measurement update at time t

consists of two basic tasks, each divided into a few subtasks:

1. Identify and initialize the tree model

(a) Construct a prior finest scale mean-removed tree ensemble X3M from the
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global forecast ensemble xtilt .tlt-1.

(b) Use the predictive efficiency approach and prior finest scale replicates to

identify the V(s) matrices, nodal prior replicates Xi (s), and scale transition

and covariance matrices for all nodes on the tree.

2. Update the prior nodal states with measurements

(a) Assign each measurement in the vector Yt to a tree node.

(b) Carry out an upward sweep to obtain a set of updated replicates Xj(sis) =

Xi(sly(Vs)) where y(Vs) is the set of measurements at all nodes Vs that are

at s or its descendants.

(c) Carry out a downward sweep to obtain a set of smoothed replicates Xi (siS) =

XJi(sly(V)) where y(V) is the set of measurements at all nodes V on the

tree.

(d) Construct the global updated ensemble x3lt from the smoothed finest scale

tree ensemble Xi (s IS), for m(s) = M, obtained at the end of the downward

sweep.

In order to maintain consistency with published discussions of static multiscale es-

timation finest and coarser scale nodal replicates derived directly from the forecast

ensemble are called "prior replicates" and their sample statistics are called "prior sta-

tistics". The above tasks are discussed in more detail in the following two sections.

4.4.1 Model Identification and Initialization

The ensemble version of the multiscale tree identification procedure is an upward

recursion based on the predictive efficiency approach described in Section 3.3, with

all the exact covariances replaced by sample estimates derived from replicates. The

process is initialized by assigning elements of each forecast replicate to the finest scale

nodes of the tree, using the grid blocking technique discussed earlier. The resulting

nodal replicates are represented by Xi(s) and the vector of all finest scale states is

represented by XJM.
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The internal submatrix V'(s) for each child sai of s is:

Vi(s) = lz (s)COV[z(s)1/2 (4.26)

where the columns of the matrix U(i(s) are the eigenvectors of the following matrix:

- -1/2 T -"- - T/2
Cov [zi(s)]Cov[zi(s), zic(s)]Cov [i(s), ziC(s)]Cov [Zi(s)] (4.27)

All of the replicates needed to derive the sample covariances appearing in (4.27)

are available from the previous identification iteration at scale rm(s) + 1, since the

components of the vectors zi and zi, depend only on states at scale rm(s) + 1.

The submatrices obtained for all q chidden of s are assembled in a larger internal

matrix V'(s) as follows:

V'(s) = diag[V[j(s), ..., Vq'(s)] (4.28)

The final internal matrix V(s) contains only the d(s) rows in V'(s) that correspond

to the d(s) largest predictive efficiency eigenvalues, as discussed in Section 3.3. This

insures that the size of the nodal state vector at s will not exceed the specified

dimensionality limit of d(s), while giving the best possible conditional decorrelation.

The identification calculations at node s are completed with the evaluation of the

state replicates at this scale, using the ensemble version of (4.13):

XJ(s) = V(s)XM(8)+1 (4.29)

When the V(s) and XJ(s) at all nodes at scale rm(s) have been evaluated the identi-

fication recursion moves to the next higher scale rm(s) - 1, moving up the tree. As

the recursion proceeds coarser scale prior replicates obtained from (4.26) are used

to derive sample estimates of the covariances appearing on the right sides of (4.21)

through (4.24). These equations are then used to obtain approximate values for A(s),

F(s), Q(s) and Q'(s).
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4.4.2 Measurement Update

At the beginning of the update step at t we are given the prior finest scale ensem-

ble X'M, constructed from the global forecast ensemble xtlt-l. This prior ensemble

approximates the forecast density p(xtlyo:t_) conditioned on all measurements taken

through t- 1. The goal of the update step is to produce a new ensemble Xl t that

approximates the density p(xtlyo:t) conditioned on all measurements taken through t.

It does this by updating each of the finest scale replicates to reflect the information

contained in the new measurement t obtained at t. In order to use a tree-based

update measurements contained in the vector Yt must be associated with particular

nodes on the tree. There is generally a straightforward procedure, as discussed below.

Willsky [101] and a number of references he cites describe in detail a static multi-

scale estimation algorithm that derives the Gaussian conditional mean and covariance

(or the minimum variance linear estimate and estimation error covariance) for states

and measurements distributed on a multiscale tree. Here we present an adaptation

of this algorithm suitable for ensemble applications. In such applications the primary

focus is on the replicates of the ensemble, rather than the moments, which may always

be estimated from the ensemble.

The ensemble multiscale update at t consists of two sweeps that are analogous

to the forward and backward sweeps of the Rauch-Tung-Striebel algorithm used to

compute smoothed time series estimates [41]. The first sweep is a recursion that

moves upwards through the tree, starting at the finest scale nodes and ending at the

root node, while the second sweep is a recursion that moves downward, from the root

node back to the finest scale. Further details are provided in the following sections.

Upward Sweep

The ensemble Kalman filter, in either its traditional or multiscale form, does not

require that the temporal dynamics described by the state equation of (4.1) be linear.

However, its update relies on linear theory that is easier to apply if we assume that

the measurements used for updating are linear functions of the global state vector xt.
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Consequently, we adopt the linear measurement function already introduced in (4.6):

Yt = Htxt + et (4.30)

where Ht is a global measurement matrix and et is a zero mean random measurement

noise vector with a specified covariance rt. In the subsequent discussion we drop time

subscripts unless required for clarification, since all update computations are carried

out at time t.

In order to use a multiscale framework we need to locate the global measurements

in the vector Yt on the tree constructed in the identification step. If the measurements

used for updating have spatial supports that are coarser than the finest scale of the

tree it is convenient to locate these measurements at coarser scale nodes. In particular,

if a particular measurement depends on states at nodes that are descended from node

s it may be expressed as:

y(s) = h(s)XM(s) + e(s) (4.31)

Here y(s) is a subset of the global measurement vector y, located for convenience at

node s, and XM(S) is the vector of finest scale states descended from s. The local

measurement error vector e(s) has a specified covariance r(s).

The upward sweep of the ensemble multiscale update algorithm derives at each

node s a set of updated replicates xj(sls) that depend on measurements located at

s and its descendants. This upward sweep is formulated here as a recursion that

moves progressively from the finest to coarsest scales. Appendix A demonstrates that

the sample mean and covariance of the replicates produced on the upward ensemble

converge to the corresponding exact Gaussian conditional mean and covariance.

The update for the replicate at node s is proportional to the difference between

an augmented perturbed measurement vector YJ(s) and an augmented measurement

prediction vector Yi(s). At the finest scale these are defined as in the traditional
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ensemble Kalman filter [34].

YJ(s) = y(s) + el(s) ; m(s) = M (4.32)

Y'Ji(s) = h(s)XjM(s) ; m(s) = M (4.33)

The zero mean random measurement perturbation ej (s) has the same covariance r(s)

as e(s) in (4.31) and is included to insure that the update algorithm yields the correct

conditional covariance.

At scales rm(s) < M above the finest scale the perturbed and predicted measure-

ment vectors are constructed as follows:

K'(sal)YJ(sal)

Ky(sq)y + (Sq)
y (S) + e (S) 

K'(soe)YJ(sao)

K'(salq)f'j(Salq)

h(s)XI.&I(s)

;rn(s) < M (4.34)

; rm(s) < M (4.35)

where the K'(sai) are Kalman gain matrices defined below. Note that the perturbed

measurement and measurement prediction vectors at s are augmented with linear

functions of the corresponding vectors at the children of s. The augmented vectors

convey, in an aggregate way, all the information from measurements at scales below

rm(s). Also, note that YJ(sai) and K'(sai) are available from previous iteration of

the upward sweep.

The Kalman gains appearing in (4.34) and (4.35) are computed with the following
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recursion:

R(s) = r(s) ; m(s) = M (4.36)

K'(s) = Cov[x(s), V(s)] [Cov[Y(s)] + R(s)] ; m(s) = M (4.37)

R(s) = diag[K'(sal)R(sl)K'T(sal),...,

K'(sOq)R(saOq)K'T(Saq), r(s)] ; m(s) < M (4.38)

K'(s) = Cov[x(s), Y(s)] Cov[I[(s)] + R(s)] ; m(s) < M (4.39)

Here diag[.] represents a square matrix with q + 1 by q + 1 square blocks. Diagonal

blocks i = 1, . . ., q have dimension n(sai) and diagonal block q + 1 has dimension

n[Yi(s)]. All off-diagonal blocks are zero. The significance of the matrix R(s) is

discussed in Appendix A. This matrix depends only weakly on the replicate values

(through its dependence on the sample Kalman gains and sample covariance matrices)

and will generally be full rank. In this case the matrices to be inverted in (4.37) and

(4.39) are non-singular, even for small N.

The prior replicates Xj(s), Kalman gain K'(s), perturbed measurement vector

Yi (s), and measurement prediction vector Yj (s) are combined to give the state update

at node s:

XJ(sls) = XJ(s) + K'(s) [Yj(s)- Yi(s)] ; rn(s) < M (4.40)

The upward sweep algorithm given here does not make explicit use of the upward

multiscale transition equation but it does reply on the V(s) matrices, which convey

equivalent information.
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Downward Sweep

The downward sweep of the ensemble multiscale update algorithm derives at each

node s a set of smoothed replicates Xi(sJS) that depend on all measurements on the

tree. The downward sweep is formulated here as a recursion that moves progressively

from the coarsest to finest scales. Appendix B demonstrates that the sample mean

and covariance of the replicates produced on the downward sweep converge to the

corresponding exact Gaussian conditional mean and covariance. The ensemble down-

ward update is a direct extension of the moment-oriented downward update described

in Willsky [101]:

At the end of upward sweep, the updated root node replicates XJ(010) = Xi(0[S)

incorporate all measurements on the tree and so already constitute a smoothed en-

semble. At any node s below the root smoothed replicates Xi(sIS) are obtained by

adjusting the corresponding updated replicates Xi (sis) from the upward sweep. This

requires computation of a set of projected replicates Xj (spyls) at sy that characterize

the state at the parent of s, given measurements at s and its descendants:

xJ(s7ys) = F(s)xi(ss) + w'i(s) ; m(s) > 0 (4.41)

where the random perturbation is added to insure that the sample statistics are

consistent with the scale transition equation of (4.12). Note that a different set of

projected replicates is obtained at at sy from each of the q children of sy.

The updated replicates at s, the projected replicates at sy, and F(s) are used to

compute a smoothing gain J(s) as follows:

J'(s) = Cov[x(s)ls]FT(s)Cov [X(sy)Is (4.42)

This gain is then used to derive the smoothed replicates at s:

xI(sIS) = x8(sIs) ; s = rm(s) = 0 (4.43)
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xI(SIS) = xV(SIs) + J'(S)[x'(s-YIS) - (sYls)] ; m(s) > (4.44)

The adjustment at s to the replicate obtained from the upward sweep is proportional

to the difference between the projected replicate xi (syls) and the smoothed replicate

xi(s'yIS) at sy. This difference reflects the new information available from measure-

ments at nodes that are not descendants of s. Note that XJ(sIylS) is available from

the previous iteration of the downward sweep.

Computational Complexity

The complexity of the multiscale update depends on both tree identification (which

must generally be performed at every update time) and the measurement update. The

cost of model identification can be decomposed into two parts: 1) computation of the

local covariances needed for the singular value decomposition and 2) the singular

value decomposition proper.

In order to obtain some order of magnitude estimates of computational complexity

suppose that the state dimension at every node is d, every state is measured, each

parent has q children, and there are M + 1 scales. At tree model identification step,

the complexity of the local covariance calculation is O(qh(d 2 N)) for each parent node.

The complexity for the singular value decomposition is O(qd3 ) for each parent node.

So the total complexity for identifying the entire tree is O(qM (hd2 N + d3 )). At the

update step, the complexity for the upward sweep, which includes the Kalman gain

calculation, is O(qm(d 2N + d3)), while the complexity for the downward sweep is

O(qM(d 2 N + d3)). Therefore, the overall complexity of the multiscale update scheme

is O(qm(hd 2N + d3)). The memory requirement for the update scheme is as much as

2qM times of the storage requirement for one finest scale node.

For comparison, the traditional ensemble Kalman filter has complexity of O(q3 Md3).

This is much more expensive than the multiscale update, whose total complexity is

on the order of O(qM+2d3) if we make the reasonable assumptions that N = d and

h = q2.
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4.5 Application of the EnMSF to Navier-Stokes

Equations

4.5.1 State Equation: Navier-Stokes Equations

To demonstrate the performance of the ensemble multiscale filter, Navier-Stokes equa-

tion for a 2-D incompressible viscous fluid with constant density is used. For such a

fluid the evolution of velocity field [u v]T, pressure field p defined at location (x, y)

and time t on some domain Q follow

Ou O u Ou aOp 02u 02u +

+u, + v, --, + 7(- + a )(4.45)Ov Ov Ov_ - p 2v 02v (.6
Ot O9x O9y 9 9X a

These equations are highly nonlinear, so it's hard to be used as the state equation

for the extended Kalman filter. However, the ensemble multiscale filter is capable of

dealing with such high nonlinearity since it doesn't require linearization of the state

equation. Also, the boundary layers and vorticity generation near solid boundaries

governed by Navier-Stokes equations can give features at a wide range of spatial

scales, which offers an advantage for using multiscale filters. The equations can

be solved by Gerris [80], which is an Open Source Free Software library for the

solution of the partial differential equations describing fluid flow. Gerris uses adaptive

mesh refinement method to discretize the spatial domain, adapted to the the spatial

scale and temporal evolution of flow structure. Computational resources are only

focused on those regions with small scale features rather than those region with large

smooth features. It combines a quad/octree discretization, a projection method and

a multilevel Poisson solver. Advection terms are discretized using the robust second-

order upwind scheme and complex solid boundaries are treated through a Cartesian

volume-of-fluid approach.
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4.5.2 Experiment Description

In this section, the first experiment is to demonstrate the tree model's ability to

approximate covariance matrix and remove sampling error. The second experiment

is to show that the multiscale filter's application to a high dimensional problem.

In the following discussion, the Naiver-Stokes equation is dimensionless. A rectan-

gular domain enclosed by four corners located at (-0.5,-0.5),(-0.5,0.5),(1.5,0.5),(1.5,-

0.5) is chosen for study. There is a solid rectangular barrier centered at (-0.22,0) with

width 0.14 and length 0.23. The left boundary of the domain is a type of Dirichlet

boundary defined as

u(0 y, = {5 if y E [c(t) - 0.12, c(t) + 0.12] (
0 otherwise

v(0, y, t) = 0 (4.48)

where c(t) = 0.9c(t- 1) + w(t), w(t) is white noise with zero mean and standard

deviation 0.04. The right boundary is Neumann boundary with zero u and v gradient.

The top and bottom boundaries are solid walls with slip conditions, i.e. af = a = 0.9y -ay

Initial condition is zero u and v everywhere. The viscosity parameter r arises from

numerical viscosity implicit in the solver.

4.5.3 Tree Representation of Sampling Covariance

Since the performance of the EnMSF depends on the realized tree representation of

the covariance matrix, it is important to check the identified tree first. In order to

compare the tree representation of a sampling covariance matrix against the true

covariance matrix, the domain is discretized into a coarse 64 x 128 grid to allow for

large ensemble calculation. At each time step u, v at the 64 x 128 grid points are

derived from those over the irregular grid generated by the adaptive mesh refinement

method in Gerris.

As stated in the previous sections, statistics approximation of the predicted en-

semble using a tree model needs the following major parameters: the size of state
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vector at each finest scale node dM, scaling factor q, neighbor screening size h, and

state dimension d at coarse scales. The quality of the identified tree model and es-

timation largely depend on these parameters. As [37] pointed out, the state size at

the finest scale should be large enough to reduce the difference between the realized

covariance matrix and the original covariance matrix. In this experiment, state di-

mension of each node at the finest scale is set to 32, which corresponds to a 4x4 block.

The used scaling factor q = 4 for all the non-root nodes, q=2 for the root node. The

neighbor screening size h is set to 4 neighboring nodes. At different scales, the actual

spatial length corresponding to the neighbor size is different.

For the 64 x 128 domain, using the tree model representation with parameters

specified above, the total scale number 6. On the tree, the domain size at the finest

scale becomes 16 x 32. The state dimension d of a node at coarse scales is 11. For

comparison, a 6240 replicate ensemble is created to calculate the "true" correlation

between pixel A at (8,8) and all the pixels at t = 0.84 (pixel (1,1) is the upper

left corner of the domain). Then an ensemble with 52 members is run to provide an

ensemble snapshot also at t = 0.84, which is used for the multiscale tree identification.

On the tree, the correlation between this pixel and all the pixels in the domain

is calculated from the realized tree using equation (4.25). The same procedure is

repeated for pixel B at (88,56) at t = 0.84. The results are plotted in Figure 4-2 and

Figure 4-3.

For pixel A, since it's close to the jet input disturbance at the left boundary, the

spatial patterns of u and v tend to be smaller than those for pixels far away from

the left boundary, such as pixel B. Thus, the spatial correlation length in u and v is

relatively smaller than that for pixel B as shown in Figure 4-2 and Figure 4-3. In both

figures, comparing to the true correlation as shown in the third rows, there exist some

high frequency noise with relatively large magnitude in the first rows. These noise

are sampling error due to inadequate ensemble size. However, in the second rows

the tree representation of the ensemble reduces these spurious high frequency noise

and keep large scale correlation in the prior ensemble, which is especially obvious for

the v component. For u component, the tree model eliminates some sampling error
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but also introduces a little large scale structure error. This is consistent with the

tree model identification procedure since only high frequency components are thrown

away which helps reduce small scale error. Also, the realized correlations from the

tree model bears error due to the selected tree structure, as is evident in the tree

realized correlation of u as in Figure 4-3. However, the general spatial correlation

pattern still follows the truth. The cross correlation between u and v at the same

two pixels are shown in Figure 4-4 and 4-5. These cross correlation figures have the

similar feature as discussed for the correlation figures. In Figure 4-4 the tree model

can only pick up big features in the sampling covariance, which is different than the

true one especially around point A and B.
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Figure 4-2: u and v correlation coefficients p between point (8,8) and all the pixels
over a 64 x 128 domain at t = 0.84. First row: sampling p from an ensemble with 52
replicates; Second row: the realized p by the tree model using the same ensemble as
in the first row; Third row: true p from an ensemble with 6240 replicates
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Figure 4-3: u and v correlation coefficients between point (88,56) and all the pixels.
Configurations are the same as in Figure 4-2
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Figure 4-5: u and v cross correlation coefficients Px between point (88,56) and all the
pixels. Configurations are the same as in Figure 4-4
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4.5.4 High Dimensional Estimation

The multiscale filter is primarily designed for efficient high dimensional nonlinear es-

timation. To demonstrate this ability, the domain is discretized into a 512 x 1024 grid,

with 1048576 state variables. For experimental convenience, controlled experiment

approach is taken to simulate the truth and synthetic measurements.

First conducted is- a truth run using the discretized model with one replicate of

boundary conditions drawn from their distributions. The resulted u, v are regarded

as the truth, which is observed at the specified scattered locations as shown in Figure

4-6 every time interval of 0.21, using measurement model

y(t) = u(t) + e(t) (4.49)

where e(t) is a vector with uncorrelated elements, each of which follows Gaussian

distribution with zero mean and standard deviation 1.5. Then the simulated mea-

surements are assimilated with the multiscale filter. In this experiment, dM, the

state dimension of each node at the finest scale is set to 32, which corresponds to a

4 x 4 block with 2 states in each pixel. The scaling factor q = 4 for all the non-root

nodes, q = 2 for the root node. The neighbor screening size h is set to 4 neighboring

nodes. The state dimension d of a coarse scale node is 16. The estimation results are

compared against the simulated truth to assess the filter's performance.

Barrier Observation block

Figure 4-6: Experiment Domain and Observation Locations

For pixel-wise check, only the ensemble of u time series for pixel (276,472) and
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(440, 296) are plotted in Figure 4-7. The ensemble mean and truth are also plotted.

Since the first pixel is within the observation block as shown in Figure 4-6, measure-

ment would provide sufficient information to adjust the ensemble towards the truth

at each measurement time. While the second pixel is not measured, the update only

comes through correlation between this pixel and those directly observed pixels. At

t = 0.63 and t = 0.84 the update is even away from the truth. This might be due to

the residual sampling error or tree model error or normality assumption in the prior.

--Ensemble
--Truth
-- EnsembleMean

0.80.60.2

::l

0.80.60.40.2o

-5

o

Figure 4-7: Fi~tered replicates, ensemble mean, and truth u time senes at pixel
(276,472) (left) and (440, 296) (right)

At every measurement time, the spatial distribution of mean and standard devi-

ation of u and v are plotted in Figure 4-8 and 4-9. Before each update, the ensemble

mean and standard deviation reflects all the information in the model prediction and

all the previous measurements. After each update, the latest information from the

new measurement is assimilated. We can see the estimated mean of u and v after

each update become closer to the truth and the uncertainties in the estimate as indi-

cated by the standard deviation plots in the 4th and 5yh column of these two figures

also become smaller. It is also noticeable that for the directly measured blocks, the

uncertainty reductions are smaller than those unobserved pixels. The blockiness in

the ensemble mean after update is due to the tree structure error in representing the

covariance. It can be solved using overlapping tree as discussed in [58]. While the

blockiness in the standard deviation after update is due to the scattered measurement

pattern. To look at the errors in the ensemble mean closer, the time series of spatial

RMSE is calculated between the ensemble mean and truth for both u and v, which
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is plotted in Figure 4-10. The merit of updating u using data is obvious in the left

panel. But for v, the unobserved state variable, although the spatial patterns shown

in Figure 4-9 become closer to the truth after update, for the first three updates the

benefits from data are not as obvious if using RMSE as a metric. Some investigation

is needed in this aspect. Methods like field alignment might be helpful.
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Figure 4-8: Ensemble mean of u before (1st column) and after (2nd column) update
at measurement times, and the corresponding truth (3rd column); Also plotted are
the ensemble standard deviation of u before (4th column) and after (5th column)
update
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with u
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Figure 4-10: RMSE of the ensemble mean of u and v with respect to the truth over
the entire domain; Please note that v is unobserved and got updated through its
correlation with u

4.6 Application of the EnMSF to a Nonlinear Dif-

fusion System

4.6.1 Nonlinear Diffusion Model with Random Boundary Con-

ditions

The other dynamic system used to show the performance of EnMSF is a 2-D nonlinear

diffusion equation of O(x, y, t):

ao = ~D(O)ao ~D(O)ao aK(O) (t)
at ax ax + 8y ay + ay + W

in which y is positive upward, w(t) is Wiener process, and

(4.50)

K(O) - 2.44( :. )'.52 (4.51)

D(O)
02.26

(4.52)- 0.0814 0;.26 K(O)
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0s is a static parameter and uniformly distributed between [0.422 0.443] and 0 < 9 <

Os. The initial condition of 0(x, y, 0) follows Gaussian distribution N(0.3,0.02). The

boundary condition is random and specified as for i = 1,2 and j = 1,2,3,

09(x, 0, t) { Pi, if x e [xj xij + L] and t e [tij ti, + di,]; (453)
y I0, Otherwise.

0(x, L, t) 0a(0, y, t) 0(L, y, t) 0 (4.54)
Oy Ox Ox

where L is the width of the domain, Pi is uniformly distributed between [1.5 1.8],

xij is uniformly distributed between [0 L], tij is uniformly distributed between

[(j-1)T (j-1)T+DT], and dij is uniformly distributed between [S1 S2]. T, DT, Si, S2

are specified parameters. The reason to use such boundary conditions is to create

random fields with dynamically changing covariance structure. The non-Gaussianity

of 0 results from the nonlinear effects of parameters K(O) and D(0) in equation (4.50).

Two sets of the synthetic experiments similar to that in the last section are con-

ducted. For both cases, diffusion equation (4.50) is explicitly discretized. The time

step is set to 0.0021 and spatial step is set to 0.1 in both x and y directions. The first

experiment has a 32 x 32 domain with L = 3.2 and the state dimension of 1024 which

allows enough replicates to compare the EnMSF solution against the EnKF solution

without worrying about the sampling errors, while the second one has a 512 x 512

domain with L = 51.2 and the state dimension of 262144 which is to show EnMSF

can handle large scale problems.

For both cases, first conducted is a truth run using the discretized model with one

replicate of 09, initial, and boundary conditions drawn from their distributions. The

resulted O(x, y, t) is regarded as the truth, which is observed at all the pixels every T

steps using measurement model

y(t) = 0(t) + e(t) (4.55)

where e(t) is white Gaussian noise vector with each element following N(0, 0.05).
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For the 32 x 32 domain, parameters in (4.53) are set as T = 0.21, DT = 0.042, S1 =

4, S2 = 5. For the 512 x 512 domain, T = 1.26, DT = 0.42, S1 = 40, S2 = 50. And

the dimension of y(t) is 1024 for the 32 x 32 domain and 262144 for the 512 x 512

domain at each measurement time.

4.6.2 Tree Model Performance

In the following two experiments, state dimension of each node at scale M is set to

16, which corresponds to a 4 x 4 grid at scale M. The scaling factor q = 4, which

means the tree is a quadtree; The neighbor screening size h is 4 neighboring nodes.

For the 32 x 32 domain, using the tree model representation with parameters

specified above, the total scale number is 4. The domain size at scale Ml is 8 x 8

with finest scale state dimension of 16. The state dimension d at coarse scales is set

to 7. To examine how good the tree model is at representing the prior ensemble,

the realized correlation coefficient p between point (17,17) and all the other points

at two typical times are plotted in figure (4-11). Column (a) shows the sampling p

with an ensemble of 40 replicates. Column (b) shows the true p with an ensemble

size of 10000. Column (c) shows the realized p using a tree model for the same

ensemble used in column (a). At t = 0.42, the spectrum is pretty sharp and long

range correlation exists due to the apparent 0 front. At t = 1.26, the spectrum of the

covariance is flatter than at time t = 0.42, and variance is more evenly distributed

among the modes. At both times, column (a) is much noisier than column (b). The

high frequency noise are all due to sampling error. However, the tree representation

of the ensemble obviously reduces the high frequency noise and the enhanced spatial

correlation structure becomes closer to the true correlation structure as in column

(b).

For a tree representation of the covariance matrix, the state dimension at the

coarse scales determines how much variance is retained to decorrelate children. The

percentage of the variance retained in a parent with a fixed state dimension at coarse

scale may explain how the dynamics is changing and provide guidelines for controlling

the tree structure. Also, by changing the state dimension, thus the percentage of the
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Figure 4-11: (a) Sampling correlation coefficient p between point (17,17) and the
entire domain, from an ensemble with 40 replicates , (b) true p from an ensemble
with 10000 replicates, and (c) the realized p by the tree model for a 32 X 32 domain
at t = 0.42 and t = 1.26

retained variance, one can control the retained magnitude of the sampling error.

Define the fraction of the retained variance in one parent as

""q ""d(l) A
Q = L..-I=l L..-m=l I,m

,",q ""n(l) A
L..-l=l L..-m=l l,m

(4.56)

where Al,m is the mth diagonal elements of the eigenvalue matrix of (4.27) for the [th

child of this parent node. If a = 1 then the parent node can completely decorrelate

its children. If all the parents has Q = 1, then the tree model can exactly reproduce

the covariance matrix. Since rd( l) ~ n( l), a is usually less than one. For an ensemble

with infinite replicates, we want a to be as close to 1 as possible for each parent node.

But for an ensemble with limited replicates, Q closer to 1 is not a good choice. In

this case, an lower Q can truncate the modes with small variance, which are usually

the modes reflecting high variability in space.

To illustrate the points, two groups of lists showing a for each node at scales

s = 2,1,0 for ensembles used in column (a) of Figure 4-11 are given below. The left

list is for t = 0.42 and the right for t = 1.26:
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0.80 0.76 0.74 0.76

0.75 0.72 0.72 0.72 0.80 0.80
0.82

0.64 0.66 0.65 0.60 0.77 0.76 s=0

0.48 0.49 0.47 0.48 s=1

s=2

0.32 0.25 0.23 0.29

0.28 0.20 0.21 0.24 0.50 0.53
,0.65

0.23 0.20 0.19 0.22 0.48 0.55 s=0

0.25 0.23 0.22 0.21 s=l

s=-2

At t = 0.42, at scale s = 2, the nodes corresponding to the top two rows in the

left list keep more variance than those at the bottom two rows. The reason is that

for the top two rows there exists more spatial correlation so the the spectrum of the

covariance matrix is sharper thus the high modes thrown away don't contain much

variance. While for the bottom two rows which correspond to the low half part of

the domain, they are still under the influence of white noise. So the spectrum is

flatter, and the high modes thrown away contain much variance. For the fixed state

dimension of 7, a is then different depending on the dynamics. By checking the

fraction we have a sense of how fast the front is moving. At scale s = 1 and s = 0

the retained variance is about 80%, which is good for the tree model to be able to

describe long range correlation as is shown in the first row of Figure 4-11. While at

t = 1.26, the retained variance is only about 20-30% at scale s = 2 as shown in the

right list. This is because very little fine scale correlation exists. at scale s = 1

and s = 0 are also low compared to those at t = 0.42, which means the large scale

correlation is also very little. In both cases, if the state dimension is increased, then

the retained variance would explain more sampling error which are revealed as the

noise in Figure 4-11.

For the 32 x 32 domain, the tree model approximate the predicted ensemble very

well and reduce the sampling error at the same time. For the much larger 512 x 512
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domain, the tree performance is also examined. Using q=4 and the state dimension

of 16 at the finest scale, the tree has the total scale number of 8. The domain size

at the finest scale on the tree is 128 x 128. The coarse scale state dimension d is

set to 10. From an ensemble with 80 replicates at t = 1.26, the sampling correlation

coefficient p between pixel (128, 320) and all the other pixels is plotted in column

(a) of Figure 4-12. The realized p is plotted in column (b). It is obvious that even

though the used state dimension at the finest scale is 16, it is still able to capture

both short and long range correlation. The realized p is smoother than the original

sampling correlation coefficient, and most of the the sampling error located below the

() front is removed.

(a) (b)

Figure 4-12: (a) Sampling correlation coefficient p between pixel (128,320) and the
entire domain, from an ensemble with 80 replicates at t = 1.26, and (b) the realized
p by the tree model for a 512 x 512 domain at t = 1.26

4.6.3 Data Assimilation Experiments

To ensure the EnMSF update is correct, EnMSF and EnKF are both applied to the

32x32 domain. An ensemble of 10000 replicates are used in this experiment, for which

the sampling error can be ignored. All the tree model parameters are the same as

those specified in the preceding section. Every 100 steps, the simulated observation

is assimilated with both filters. The ensemble mean of the updated () from EnMSF

and EnKF at t = 0.42 and t = 1.26 compared to the truth are shown in Figure 4-13.

The two filters almost give the same estimate at both times even though the spatial
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correlation for t = 1.26 is lesser than at t = 0.42. The resulting RMSE time series of

the ensemble mean with respect to the truth are plotted in Figure 4-14. The black

EnMSF EnKF Truth

~IIIIIIF
0.2

~~"~ ~- :
h f ~

0\ • .a- .

Figure 4-13: Ensemble mean of the updated () from EnMSF and EnKF compared to
the truth at t = 0.42 and 1.26
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- EnKF-40
- EnMSF-100oo
- EnKF-10000

0.005

0.2 0.4 0.6 0.8
Time (hr)

1.2

Figure 4-14: RMSE time series of the ensemble mean of the updated () with respect
to the truth for EnMSF and EnKF, 40 or 10000 replicates are used

line (EnMSF ) and red line (EnKF) are almost indistinguishable from each other.

Since the tree representation of the state ensemble can capture the correlation

structure and remove part of the sampling error for small ensemble size as shown

in the preceding section, it is expected to perform well for small ensemble size. An

ensemble of 40 replicates are then used to test the EnMSF performance for the 32 x 32

domain. The used truth and measurements are exactly the same as the one used for

the large ensemble. The resulting RMSE time series of the ensemble mean with
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respect to the truth is plotted in Figure 4-14. After each update time, the estimated

0 from EnMSF always performs better than that given by EnKF. At t = 0.84,1.05,

and 1.26, the RMSE from EnKF estimate even increases because of the sampling

error. While for EnMSF estimate, the RMSE is always closer to the black line which

has the least RMSE one can get using EnKF or EnMSF.

4.7 Discussion and Conclusions

A new ensemble multiscale filter is proposed to solve large scale nonlinear estima-

tion problem. The general prediction and update two stages of EnMSF are similar

to EnKF. Some replicates of the state variables are propagated using a fine reso-

lution dynamic model to provide prior information. Any nonlinear dynamic model

and parameter uncertainties model can be used at this step to generate a reasonable

ensemble. All the statistical information required for prediction and updating are

embedded in the generated ensemble, but only second order moments are used in the

filter. When observation is available, multiscale update is used to assimilate all the

available (multiresolution) data. At update times, first it uses Predictive Efficiency

method to identify a multiscale tree to approximate the full covariance matrix given

by the propagated ensemble. The specified tree model parameters dM, h, d, q control

the degree of approximation and sampling error. Then upward and downward sweep

update is performed on the identified tree using the available data. Both model iden-

tification and two sweep update are based on the ensemble statistics. The estimation

on the tree ensemble is helped with the scale recursive measurement prediction and

the tree model internality. The performance from this new filter mainly depend on

quality of the identified tree.

The application of the EnMSF to Navier-Stokes and nonlinear diffusion equations

show that the EnMSF can eliminate some high frequency sampling error. The reason

is that high frequency noise are ignored at the tree identification step. Also, local

approximation of a covariance matrix in the tree identification step usually has full

rank at any node on the tree, thus reducing the sampling error. A crucial advantage
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of tree model is that the local operations on the full covariance matrix is still able

to capture the large scale correlation feature. So the applicability of the EnMSF to

a dynamic system should be widely broad considering the ability of tree model to

represent any covariance even if using limited state dimension at coarse scale nodes.

Based on the tree model ability to represent the full covariance matrix and reduce

sampling error, the multiscale update is especially appealing to large scale filtering

problem since it has the complexity of O(qM(hd2n + d3)). The computational effi-

ciency mainly depends on the specified state dimension d and ensemble size. Since

the tree identification is essentially local, in practice it is highly parallelizable to im-

plement. In fact, the state dimension d at coarse scales does not have to be specified.

It can be adaptively changed based on a specified value of percentage of the retained

variance at each parent node. This way it is possible to use low dimensional coarse

resolution states to decorrelate the children nodes. Whether the tree structure para-

meters should be specified or dynamically changed based on a fixed retained variance

ratio should be application dependent.
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Chapter 5

Application of the EnMSF to U.S.

Great Plains Evapotranspiration

Estimation

Evapotranspiration (ET) is a key factor that links water and energy transfer between

land surface and atmosphere. ET provides the boundary condition for water fluxes

from earth to atmosphere, so it is of crucial importance to weather forecast. ET is

controlled by available energy, sil water supply, turbulent transport condition, and

vegetation characteristics. The energy control on ET is usually parameterized in the

form of potential ET in most of the land surface models. Actual ET is a fraction

of the potential ET due to soil moisture stress. Soil and vegetation controls are

usually dependent on land cover characteristics such as the density of plant coverage,

root distribution, roughness,etc. Many antecedent studies have given accurate ET

estimation using surface meteorological and radiosonde observations. Most of these

studies usually focus on scattered locations. As for the large scale ET, it has been

difficult to develop models suitable for its prediction. This is partly because of the

lack of direct measurement of large scale ET processes.

Currently, the often used two methods for calculating the regional evapotranspira-

tion are the Priestley and Taylor method [81] and the complementary relationship of

Bouchet [7], further developed by Morton [75]. Both methods are based on heuristic
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arguments, but they have often been applied successfully [63]. Additionally, using

satellite remote sensing data is another very attractive approach as it enables a wide-

spread area coverage and a higher repetition rate. However, direct measuring of ET

through satellite remote sensing is hardly possible as the phase change of water mole-

cules produces neither emission nor absorption of an electromagnetic signal. So large

scale ET has to be derived by some indirect means. A possible approach is to use

a physical model that links ET with other physical proxy quantities that are more

easily to obtain using satellite. By updating the related quantities, ET can be driven

close to the truth.

As an important component of the hydrological cycle, soil moisture can be such a

candidate proxy quantity. It determines evapotranspiration, infiltration, and perco-

lation. Changes in soil moisture storage are caused by precipitation, evapotranspira-

tion, lateral flow or vertical drainage. Complicating factors influencing soil moisture

include vertical and horizontal changes in soil composition, variations in drainage

and slope of the terrain, spatial and temporal changes in vegetation, and intermit-

tent precipitation. Soil moisture varies both temporally and spatially in response to

many processes acting over a variety of scales. It has a memory effect of the forcing

states, especially rainfall. In other words, soil moisture at a given location and at

any given time reflects all the historical hydrological processes that have occurred.

This soil moisture memory may have profound implications for long-term weather

prediction through land-atmosphere feedback [66]. Also for data assimilation prob-

lems, the effects of the soil moisture memory on generating spatial error correlation

have also been demonstrated in the last chapter. By exploiting the memory effects,

it's expected that soil moisture observation would provide valuable information of the

antecedent precipitation so as to enhance the ET prediction.

To test the utility of data assimilation techniques for understand the large scale

hydrological processes, this chapter will attempt to use EnMSF to assimilate multi-

sensor soil moisture measurement to obtain better soil moisture estimate and then

use CLM to predict the evapotranspiration.
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5.1 Experiment Description

5.1.1 Computational Domain

The spatial domain of interest is the U.S. Great Plains region, located between

(25.86° N, 114.07°W) and (49.01° N, 90.12°W), delineated by the USGS hydrological

unit boundaries as shown in Figure 5-1.The time domain of interest is chosen between

June 1 GMT 0:00 and June 31 GMT 23:00 in 2004. The large scale spatial span allows

examination of the scales effects of rainfall on soil moisture and evapotranspiration.

The time window is mainly chosen to avoid snow and ice.

Figure 5-1: The Great Plains experiment region

5.1.2 Atmospheric Forcing and Land Surface Data

As a dominant forcing for land surface system, rainfall determines the top boundary

of soil moisture transport. Temporally, the highs and lows of soil moisture reflects the

antecedent rainfall history. Spatially, after rainfall events the spatial pattern of soil

moisture may imply the cumulative rainfall spatial distribution. Due to rainfall inter-

mittency, the soil moisture probability distribution would also bear some nonnormal

features. Since data assimilation methods are built on quantification of various un-

certainties, the rainfall error is critical in determining the data assimilation methods
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suitable for soil moisture estimation. As shown in the last chapter, the horizontal er-

ror correlation in the top layer soil moisture reveals dominant rainfall patters during

wet periods. In chapter 2, a primitive rainfall model and wind velocity field demon-

strated the rainfall error model influence on soil moisture spatial error correlation.

The rain storm size, intensity, and moving direction are all recorded in soil and create

anisotropic spatial error correlations. Realistic rainfall replicates generation is not a

trivial task since it involves high dimensional measurement conditioning and strong

non-Gaussianity. Chatdarong et al [15] developed a rainfall replicate generation sys-

tem, conditioned on cloud measurements, ground station rain gauge measurements,

remote sensing rainfall measurements from SSM/I, TRMM and AMSU, and a rainfall

advection model. The replicates used in this thesis are directly from his work for the

Great Plains region.

Other forcing such as solar radiation, wind speed, air temperature, and air hu-

midity are from NCEP 6 hourly reanalysis data [1] interpolated to 0.5 degree grid.

For simplicity there is no error added to these forcing variables.

The required land cover data are aggregated to the desired resolution (2km for

truth generation/5km for data assimilation test) from the 1-km resolution global land

cover characteristics database prepared by the U.S. Geological Survey, the Univer-

sity of Nebraska-Lincoln, and the European Commission's Joint Research Centre,

as shown in Figure 5-2. This global land cover data set is based on 1-km Advanced

Very High Resolution Radiometer (AVHRR) data spanning April 1992 through March

1993. The derived NDVI dataset during the same period is also used in remote sensing

forward model.

The soil texture map comes from the USDA State Soil Geographic Database

(STATSGO) as shown in Figure 5-3. At each pixel of the computational domain,

the uncertainties in soil properties enter CLM in the form of random sand and clay

fractions, which are generated by using MCMC mehods as discussed in Appendix

D. There exists spatial error correlation between the sand/clay fractions at different

pixels. A sample of the clay fraction is shown in Figure 5-4

The leaf area index (LAI), stem area index (SAI), vegetation canopy top and
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Figure 5-2: The land cover type over the domain
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Figure 5-3: The soil type over the domain
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Figure 5-4: A replicate of clay fraction field generated by MCMC method.
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bottom height required by CLM are obtained by looking up the tables used in NCAR

Land Surface Model [5]. Each land cover has such a set of corresponding parameters.

These variables are not perturbed. All the parameter tables are listed in Table E.2-E.4

5.2 Observation System Simulation Experiment

5.2.1 Synthetic Truth Run

To assess the performance of the EnMSF in large scale land surface applications, it's

better to have a truth data to compare against. The synthetic experiment approach

serves well for this purpose. The truth run provides all the true soil moisture, evapo-

transpiration, ground temperature, and so on. The time step size is set to 15 minutes

for both the spin-up run and the truth run, and the spatial resolution of the grid pixel

is chosen as- 2km. The finer spatial and temporal resolution is regarded as the "true"

physical resolution. The 5km land surface model resolution for the data assimilation

experiments is coarser than the truth resolution so it can't capture certain fine scale

processes, which is always the case for any land surface model. The scale disparity

between model resolution and real physical processes would cause model error, which

is hard to be quantified as simple additive error. In this chapter, the scale error is

not explicitly treated. So in some sense this chapter is also a test of the tolerance of

the EnMSF to error in the model errors, which is ubiquitous in any data assimilation

experiment.

To make the data assimilation more realistic, the true rainfall is also carefully

chosen so that it is not a direct rainfall replicate given by Chatdarong's model in [15].

This is equivalent to assuming the rainfall input error in the assimilation experiments

is not perfectly known. WSI-NOWRAD dataset between June 1 and June 30 2004 [36]

is used as rainfall input for the truth. NOWRAD is a radar image product generated

by WVeather Services International Corporation (WSI) of Andover, M.A., U.S.A. Using

the WSR-88D Next-Generation radars that form the NEXRAD mosaic, NOWRAD

algorithms remove ground clutter, anomalous propagation and other radar-induced
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artifacts that mar data validity to produce a reflectivity product of 15-min temporal

and roughly 2 km spatial resolution covering almost the entire continental U.S. A

combination of automated modification and manual adjustments by trained radar

meteorologists at WSI serve to enhance the raw NEXRAD imagery [36]. Further

discussion of WSI-NOWRAD data can be also found in [47]. All the other forcing

variables are interpolated from NCEP reanalysis dataset [1]. Land cover data is

resampled from the km USGS global dataset using nearest neighbor approach. Soil

texture is also interpolated from STATSGO dataset. No perturbation is added to all

these data. To generate the initial condition, the same set of forcing and land surface

data is used to spin up CLM started with volumetric soil moisture profile [0.35 0.35

0.35 0.35 0.31 0.31 0.31 0.31], soil temperature profile [304 302 293 290 290 288 288

288]K, vegetation canopy temperature 305K for 3 months. The resulting soil moisture

and temperature and canopy temperature are then used as the initial condition for

the truth run.

5.2.2 Measurement Models

As a well studied means of observing large scale soil moisture, microwave remote sens-

ing has many advantages. Microwave measurement is not affected by cloud coverage

and variable surface solar illumination. In the absence of dense vegetation cover,

soil moisture has the dominant effect on the received signal [76]. For soil moisture

measurement, the best microwave frequency is between 1-3Ghz, since it has reduced

cloud attenuation and larger vegetation penetration capacity.

L band remote sensing instruments have already been used to collect data in field

experiments such as SGP97, SGP99, SMEX01, and the followups and been proved

promising in retrieving soil moisture. In the near future, L band soil moisture remote

sensing data from HYDROS [32] will be available. That will be the best data available

for large scale soil moisture estimation.

Categorizing by sensor type, there are two kinds of microwave instruments: one

is passive sensors and the other is active sensors. Passive soil moisture sensor (Ra-

diometer) usually has a coarse resolution for space-borne systems, and it has greater
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sensitivity to soil moisture in vegetated regions. While active sensor (Radar) has

higher measurement resolution but lower sensitivity to soil moisture in vegetated re-

gions due to vegetation volume scattering. It is likely to combine these two sets of

data to a moderate resolution appropriate for weather forecasting and hydrological

application with low uncertainties. Both sensor will be used in this study to demon-

strate the advantage of using the multiscale filter to fuse the multiresolution data.

1). Radiometer Models

The radiometer models are slightly different from those in chapter 2 and 3. Here

the models obey the HYDROS forward model [22]. The nadir vegetation opacity is

related to the columnar vegetation water content W(kgm - 2) by

T=boW (5.1)

The coefficient b depends on vegetation type. The vegetation water content W is

considered as an average value over a computational pixel, i.e., there is no attempt to

model fractional vegetation cover within a pixel. A bare soil surface is thus represented

by W = 0. At L-band the roughness effect is:

rp = r8pexp(-h) (5.2)

The parameter h is related empirically to the RMS surface height s. The reflectivity

of a smooth soil surface, rp is determined by the soil dielectric constant e using

the Fresnel equations. The dielectric constant is related to the soil moisture content

through empirical relationships that have a parametric dependence on soil texture

(sand fraction, and clay fraction) and other characteristics, including bulk density

and specific particle density (Dobson et al., 1985 [26]).

The canopy (foliar) vegetation water content Wc(kgm- 2) was obtained from the

NDVI database, as shown in Figure 5-5 using the relationship suggested for grassland
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Figure 5-5: The June NDVI
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by Jackson et al. (1999)

Wc = 0.3215NDVI + 1.9134NDVI2 (5.3)

The computed Wc using (5.3) gives slightly negative values for NDVI < 0.168. In

this case Wc is set to zero (assumed bare soil). Since the NDVI is sensitive to

vegetation greenness it responds primarily to the foliar canopy and not the woody

components of the vegetation. Hence, a woody component fraction fT is used to

scale the foliar water content derived from (5.3) to a total vegetation water content

W

W = Wc/(1 - fT) (5.4)

(5.4) assumes values for fT are given in Table E.1.

Also included in Table E.1 are the other static parameters used for simulation:

surface roughness (h), single scattering albedo (w), vegetation opacity coefficient (b0 ).

2). Radar Backscatter Models

The fundamental basis of active remote sensing is similar to the passive remote sens-

ing. For active remote sensing, the received electromagnetic signal is also a function

of the dielectric constant of soil which is affected by soil moisture. The signal is quan-

tified as the backscattering coefficient a °, which is a unitless quantity representing the

radar cross-section of a given pixel on the ground per unit physical area of that pixel.

Due to its dramatic dynamic range, it is usually presented in decibels (dB). Accord-

ing to Hoeben et al., (1997) [54], a variation of relative dielectric constant between

3 and 30 (a shift in volumetric moisture content between approximately 2.5% and

50%, depending on frequency and soil texture) causes an 8 to 9 dB rise in backscatter

coefficient for vv (vertical transmit vertical receive) polarization.

Besides soil dielectric constant, the surface scattering behavior is also governed by

topography, vegetation cover, surface roughness, observation frequency, wave polar-
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ization and incidence angle. The relationship between backscattering coefficient and

dielectric constant is non-linear, having a higher sensitivity at low dielectric values.

Currently available backscattering models include the empirical model (EM) of Oh

et al. (1992) [78]; the theoretical integral equation model (IEM) of Fung et al. (1992)

[39]; and the semi-empirical model (SEM) of Oh et al. (1994), model of Dubois et al.

(1995) [28], Chen et al. (1995) [16] and Shi et al. (1997) [90]. Walker [100] provides

a comprehensive review of the first 3 active remote sensing models.

In this thesis, the soil-vegetation radar backscatter model also follows the HY-

DROS specification and is expressed as the sum of three components:

at= a exp(-2To/cosO) + aV + a" (5.5)

In this expression, a t represents the total radar scattering cross-section, a' represents

the scattering cross-section of the soil surface modified by the two-way vegetation

attenuation, ajV is the scattering cross-section of the vegetation volume, and av" rep-

resents the scattering interaction between the soil and vegetation. Empirical models

are used to relate the scattering components a*,aV, and a"v to the soil moisture and

vegetation characteristics.

For soil, the Dubois et al [28] model is used for the co-polarized backscatter,

expressed as:

rY~h= 1-Z7C051'50 56s = 10-2.75 9i 100.028E'tanO(ks . sino)14 A0 7 (5.6)

where, A (cm) is the wavelength, k = 27r/A (cm -1 ) is the wave number, s (cm) is the

surface RMS height, and e' is the real part of the dielectric constant.

For vegetation, it's assumed that over the spatial extent of the HYDROS 3-km

radar footprints, the scattering is dominated by randomly-oriented components. Mod-

els for the co- and cross- polarized backscatter from vegetation represented as ran-

domly orientated disks are given by Ulaby et al. (1986) [97]. The expressions for the

volume scattering and surface-volume interaction terms are shown below.
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Volume contribution:

Uhh = 0.74wcos1[l + 0.54wTo - 0.24(-o) 2] [1 - exp(-2.12T-sec9)] (5.7)

Surface-volume interaction contribution:

a" =l.9wcosO[1 + 0.9wTO + 0.4(wTo)2][1 - exp(-1.93To0 secO)] (5.8)hh ~~~~~~~~~~~~~~~~~~(5.8)
exp(- 1.37T- '12 secO)exp(-0O.84(ks)2cosO)rsp

3). Synthetic Measurement and the Measurement Errors

As for the measurement error, it includes instrument noise (that limits the mea-

surement precision) and calibration relative error. It is assumed that the absolute

calibration errors (static or slowly-varying bias components) can be removed in the

HYDROS post-launch processing and are not considered.

For passive sensor, the two other key factors contributing the relative calibration

error include the signal attenuation by vegetation and the interplay between nonlinear

retrieval physics and the relatively poor spatial resolution of microwave space-borne

sensors for heterogenous surface and subsurface conditions. To generate radiometer

measurement error, according to [32] spatially independent Gaussian random vari-

ables with zero mean and standard deviation K is added to the 40km radiometer

measurements aggregated from the 2km true radiometer measurement. A sample of

the synthetic radiometer measurement is shown in Figure 5-6.

The radar measurement precision depends on the signal-to-noise ratio (SNR) and

the number of independent samples or 'looks' averaged in each measurement. As-

suming that in most situations the error is determined primarily by the number of

looks and is not limited by the SNR, the average error across the hi-res swath is 0.15.

To generate radar measurement error, Gaussian random variables with mean and

standard deviation 0.15 is multiplied to the 5-km radar backscatter coefficients (in

units of linear power ratio not dB) aggregated form the 2km true radar measurement.
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Figure 5-6: A sample of synthetic passive measurement (K)
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Figure 5-7: A sample of synthetic active measurement (dB)
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5.3 EnMSF Experiments with CLM and L-Band

Microwave Soil Moisture Measurements

In the following experiments, to assess the ability of EnMSF to assimilate microwave

measurements, CLM is used. Initial condition for the assimilation is obtained from a

one month spin-up run with the same set of June NCEP reanalysis forcing as in the

truth run, June rainfall replicates from Chatdarong [15], spatially uniformly distrib-

uted random initial soil moisture and temperature condition, the mean of which are

the same as that in the spin-up run for the truth generation. Standard deviation for

soil moisture and temperature profile is 0.1 and 4K respectively. For all the assimila-

tion experiments here, a quad-tree is used. A node at the finest scale represents a 2 x 2

group of pixels. For each pixel, only the first 3 layers of soil moisture are updated.

So the total number of state variables is 3x463x479=665331. Coarse scale state di-

mension d = 20 if at the second finest scale, d = 4 if above the second finest scale.

Cutoff region size h = 2. The active and passive measurement resolution is 5km and

40km respectively, so the active measurements are associated with the finest scale

nodes, and passive measurements are associated with the third finest scale nodes. At

measurement times, both measurements are placed on the corresponding nodes on the

tree, which forms a multiresolution estimation problem. Because in real applications

the microwave measurements over forests are problematic, only pixels without forest

land coverage are observed and updated. For all the runs only 50 replicates are used.

5.3.1 Soil Moisture Estimation

To examine the value of passive and active measurements for estimating soil moisture,

four different scenarios are run. First is the soil moisture estimation unconditioned on

microwave measurements, the second is the assimilation with passive data only, the

third is with active data only, the fourth is with both passive and active measurements.

The same tree structure is used for all the scenarios. The spatial RMSE of the

ensemble mean of soil moisture with respect to the true soil moisture at 5km resolution
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is plotted in Figure 5-8, in which the" N" on x-axis represents UTC noon time .
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Figure 5-8: Top layer soil moisture RMSE of ensemble mean with respect to the truth
over the whole domain. "N" on x-axis represents UTC noon time.

The RMSE figure shows that using both active and passive measurement is consis-

tently better than using either of them. This is because coarse passive measurements

provides better sensitivity to soil moisture and fine active measurements provide more

spatial details. Also, using any measurement is better than the unconditional esti-

mate. The reduction of RMSE is more obvious right after rainfall when the uncer-

tainties introduced by the rainfall replicates are significant.

The effects of assimilating microwave measurements can also be assessed from the

soil moisture time series at some pixels. The updated ensemble of soil moisture at

some pixels shown in Figure 5-11 are plotted in Figure 5-9 and Figure 5-10. The yellow

color in Figure 5-11 represents the pixels with both passive and active measurements,

while the cyan color represents the those with active measurements only.
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Figure 5-9: Soil moisture ensemble of pixel 1-9 from EnMSF update. " N" on x-axis
represents UTe noon time. Panel title is the pixel number in Figure 5-11.
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Figure 5-10: Soil moisture ensemble of pixel 10-18 from EnMSF update. " N" on
x-axis represents UTe noon time. Panel title is the pixel number in Figure 5-11.
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In general soil moisture estimation of the pixels without radiometer measurements

are inferior to those with. The unobserved pixels are even worse compared to those

measured ones. At some measurement times, the soil moisture field estimate after

update are shown in Figure 5-12. In Figure 5-12 the error is defined as the ensemble

mean of the estimate minus the truth. The improvements of the spatial pattern from

assimilating microwave measurement is obvious at all the tree times.

Figure 5-13 shows the standard deviation of top layer soil moisture estimate with

both sensors before and after update at three typical measurement times. The un-

certainty reduction from measurements largely reside in the regions with precedent

rainfall. For those dry regions, the reduction of standard deviation is very limited

due to the narrow ensemble spread.

Figure 5-11: Locations of pixels 1-18 with ensemble soil moisture and evaporative
fraction output
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Figure 5-12: Top layer soil moisture field estimation compared with the truth and
unconditional estimation at three measurement times. The error is defined as the
ensemble mean of the estimate minus the truth.
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at three measurement times
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5.3.2 Evapotranspiration Estimation

ET is an inferred quantity from soil moisture by the means of CLM prediction. The

utility of microwave soil moisture measurements for ET estimation is also examined

for the same four scenarios as in the previous section. The spatial RMSE of the

ensemble mean of ET with respect to the true ET at 5km resolution is shown in 5-14.

The diurnal pattern of ET is dominant in Figure 5-14. The update time is 12:00

UTC, but the difference of ET between the unconditional estimate and conditional

estimate is most significant around noon local time. At night times, there is very

little difference in the ET RMSE. Also, for ET estimation, either passive or active

measurement is adequate compared to the passive+active case.
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Figure 5-14: RlVISE of evapotranspiration ensemble mean with respect to the truth
over the whole domain. "N" on x-axis represents UTC noon time.

To better present ET estimate, the diurnal pattern of it can be eliminated by

using daytime evaporative fraction (EF) rather than ET itself. The daytime (between

13UTC and 23UTC) EF is defined as

EF =. daytime latent h~at flux
daytIme latent heat flux+daytIme sensible heat flux

The RMSE between EF ensemble mean and the true EF is plotted in Figure 5-

15. In general, the EF estimate with soil moisture measurement is better than the

unconditional one, which is consistent with the ET estimate. EF from the active
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Figure 5-15: RMSE of evaporative fraction ensemble mean with respect to the truth
over the whole domain

only case is worse than either passive or passive+active case. The difference between

passive and passive+active is not that much.

The ensemble of EF at pixels in Figure 5-10 updated with the EnMSF and pas-

sive+active data are also plotted in Figure 5-16 and Figure 5-17. During the wet

periods, available energy is mostly used for evaporation, so EF is close to 1. The

difference in the EF ensemble mean and the truth is not much if there is no un-

certainties associated with radiation input to eLM. While in dry periods, when ET

is controlled by soil moisture availability, the microwave measurements helps a lot.

EF of the pixels observed are generally much better than those unobserved, which is

consistent with the soil moisture estimate. EF estimates at noon local time on the

same tree days as in Figure 5-12 are shown in Figure 5-18. The error is defined as the

ensemble mean of the estimate minus the truth. The spatial pattern improvements

of the conditional EF estimate can be easily observed in Figure 5-18. The improved

spatial pattern can be completely attributed to the improved soil moisture estimate.
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179



5.3.3 Root Zone Soil Moisture Estimation

Root zone soil moisture over vegetated areas is an important variable for many ap-

plications such as short and medium term meteorological, climate modelling, and

hydrological studies. It is very hard to observe over large scale domain. However, it

is directly related to surface soil moisture which can be observed. The effects of the

observed surface soil moisture on root zone soil moisture estimation is examined in

this section. Here the root zone soil moisture is defined as the soil water depth (mm)

above 1.06m deep (top 7 layers in eLM). Figure 5-19 shows the RMSE of the root

zone soil moisture ensemble mean with respect to the truth. The conditional esti-

mation is consistently better than the unconditional mean. Also, the passive+active

data helps the most. The downward trend of the RMSE reflects the stabilization of

the error in the initial condition.
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Figure 5-19: Root zone soil moisture RMSE of ensemble mean with respect to the
truth over the whole domain.

The root zone soil moisture field estimation at three different times are shown in

Figure 5-20. The error is defined as the ensemble mean of the estimate minus the

truth. It can be seen that the error in the spatial distribution pattern decreased as

time increases. The difference between the conditional and unconditional estimate is

also obvious.
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5.3.4 Tree Performance Assessment

The performance of the EnMSF for estimation largely depends on how well the tree

structure keeps error correlation structure and discards the sampling error. To assess

if the selected tree structure works, the top two layers of soil moisture error correlation

realized from the tree model and sampling covariance at pixel (148,264) are plotted at

two typical times right before EnMSF update. The soil moisture at these two times

are shown in Figure 5-21.
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Figure 5-21: Soil moisture mean field before update with both sensors and EnMSF
at 12:00 on June 4th and 15th

In Figure 5-22, the pixels far away from the target pixel (148, 264) nearly has

no error correlation with it in the tree realized error correlation, which is reasonable.

It indicates the tree model is capable of deleting spurious error in sampling error

correlation. This is consistent with the dry soil moisture mean field in Figure 5-21,

which leads to local error correlation structure. While in Figure 5-23 with the same

tree structure, there is some realized large error correlation structure attributed to

the precedent rainfall. Figure 5-21 shows that at 12:00 June 15th the soil moisture

error correlation is also consistent with the soil moisture mean field due to the large

scale rainfall input. However, in the original sampling error correlation map, this

structure is not so clear. In other words, the tree model has the ability of extracting

information from the noisy data in some sense. The corresponding standard deviation

of top layer soil moisture change at this two times are shown in Figure 5-13.

Also, the error correlation structures shown in Figure 5-22 and 5-23 are different
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Figure 5-22: The sampling error correlation and the realized error correlation for a
pixel at 12:00 on June 4th

than Figure 4-3 in chapter 4. The anisotropic error correlation structure shown in

chapter 4 is not so obvious here. Most of the error correlation structure are local

for the Great Plains case. This is because the scale of domain in chapter 4 is rather

small compared to the rainfall scale. The soil moisture error correlation largely reflects

rainfall error correlation. Here the rainfall scale is much smaller than the domain size.

The dissipation of soil moisture in the interstorm periods dominate the majority of

the time, which implies soil properties control most of the uncertainties and thus

leading to local error correlation structure.
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Figure 5-23: The sampling error correlation and the realized error correlation for a
pixel at 12:00 on June 15th

5.4 Discussion and Conclusions

In this chapter, the EnMSF is successfully applied to a large scale land surface system

CLM to estimate soil moisture and evapotranspiration using synthetic microwave sen-

sor measurements. Compared to the Navier-Stokes equations in the last chapter, the

system dynamics is significantly different. The land surface system is mainly driven

by exogenous rainfall and radiation. The uncertainties in the soil properties controls

the uncertainties of soil moisture especially in the interstorm periods. The difference

in the dynamics is evident in the sampling spatial error correlation structures. In the

previous chapter, there exists significant large scale and small scale features that are

created by the vortices. But for the large scale land surface problem, the error corre-

lation structure is largely local, resulting from the complicated effects of atmospheric
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forcing, soil, and vegetation properties. For both type of systems, the tree algorithm

can handle the error correlation structure quite well while the tree structure is very

different.

For soil moisture estimation, the results show that using both active and passive

measurement is better than using either of them and using any measurement is better

than the unconditional update. The reduction of RMSE is more obvious right after

rainfall when the uncertainties introduced by the rainfall replicates are significant.

The results also proves that the improved soil moisture estimation by using microwave

measurements helps with the ET and root zone soil moisture estimation.

By checking the error correlation structures at most of times (not shown in figures),

we can find the error correlation structure is like the error correlation in Figure 5-22.

So they can be roughly approximated with local isotropic error correlation structure

if using the current random replicates generation approaches for soil and rainfall.

The nearly isotropic error correlation structure implies Schur product method as for

the traditional EnKF assuming local isotropic error correlations might work well.

However, it might be problematic for a general application when error correlation

structure can't be assumed isotropic and hard to know the error correlation scale. The

tree models can identify any error correlation structure, regardless whether the field

is highly correlated or independent. It is not a tailored algorithm to any particular

application but a general filtering technique. Although the tree structure assumption

is independent of any structure assumption but any prior knowledge of the error

correlation structure would definitely help to design a more efficient tree structure.

There are several other facts about the land data assimilation that deserve at-

tention: (1) For land surface system, once the rainfall is overwhelming, it can help

reduce the difference in the estimates from different filters. (2) The performance of

evapotranspiration estimate is different for wet or dry soil moisture regime. During

wet period the evapotranspiration is basically controlled by available energy rather

than soil moisture. The benefits from microwave soil moisture measurements can't

immediately appear. But it can help shorten the time to get to the transition period

from wet to dry during or after which updating soil moisture would have great impact
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on evapotranspiration. (3) For different soil properties, a filter might have different

performance. For instance, model prediction of soil moisture for sandy soil usually

is very confident compared to loam or clay soil. Microwave measurements can't help

much. So is any filer. Also, the response function of latent heat flux to soil moisture

is different. For sandy soil the update in soil moisture has less impact on evapotran-

spiration. (4) For a large scale land surface problem, the state vector size would be

as large as few millions. Because soil temperature is not a key factor, only including

soil moisture in the state vector can reduce the dimension of state vector size and

save computational cost.
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Chapter 6

Future Research Directions

6.1 Simple Dynamic Model

As discussed in the first chapter, the basic dynamic system in land surface data as-

similation problem is composed of nonlinear water and heat transfer equations. The

CLM model used in this thesis directly solves Richard's equation at coarse resolution

vertically. The empirical parameterizations in this model require a number of land

cover parameters, soil parameters for the empirical models and forcing inputs. For ex-

ample, it includes canopy radiative model, surface albedo models, sensible and latent

heat models, soil thermal and hydraulic parameter models, stomatal resistance and

photosynthesis models, etc. Such a huge collection of the parameterizations make the

model structure rather complex. The model complexity effects on data assimilation

are twofold. First of all, a complex model would increase the computational burden

especially for Monte Carlo simulations. Although the land surface simulation essen-

tially is pixel by pixel, a complex model is still rather expensive to compute even for

one pixel due to the iterative approach for solving the latent and sensible fluxes. On

the other hand, the current land surface data assimilation techniques usually takes

a LSM and perturb the parameters and inputs while the model structure is fixed.

When observation becomes available, the state variables are updated based on the

new measurement. Sometimes updating state variables is not adequate. If the model

structure or the parameters are wrong, the estimates would quickly deviate from the

187



true state during the propagation steps, which would give incorrect prior ensemble

for the next update. For example, if the soil type is sand, but in the model it's

specified as clay, one will never get the correct soil moisture trajectory. Since this

is very common in land surface data assimilations, an reasonable way to deal with

this is to allow the model parameters to be updated with measurement. Then data

assimilation becomes a state AND parameter estimation problem, or a system identi-

fication problem. Since the land surface system is a nonlinear dissipative system with

many inputs and parameters and spatially and temporally sparse measurements, it

is almost impossible to use the traditional system identification techniques to solve

for all these parameters. A tangible way to identify the system is to use some simply

structured model relatively easier to identify. Another advantage of using a simple

model is that it is easier for variational approaches to solve for model parameters.

Another system model related issue is the bias and model error estimation. As

stated above, model structure error might lead to wrong prior information in the

ensemble. A direct consequence of this is bias in the states would arise. An easy way

to deal with the bias estimation is to model it as an additive term in the right hand

side of the state equation. Then formulate the problem in a variational framework

and solve for the bias as the control variable. Or treat the bias as a state variable in

the state space framework, and use the filtering techniques to solve for it.

6.2 Error Models for Soil and Vegetation

According to equation (1.25), given Xtl i=1, 2, ... N the prediction ensemble

xl 1 only depends on ui and the land surface model f(.). In real problems ut canxtlt_1 onydpnso t

be correlated in space and time. It might also be state dependent. The "closeness"

of the updated ensemble to the true uncertainties of the physical states relies on the
iability of the predicted ensemble Xtlt_ to represent the true uncertainties in model

parameters and inputs. To obtain a physically realistic ensemble, firstly a proper

uncertainty model of ut should be able to describe its mean and variance. Secondly,

a proper uncertainty model of ut should also be able to describe spatial and temporal
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correlation structure. Such ut not only can help get a realistic prior ensemble but

also can help the filter transfer the measurement information in one pixel to other

correlated pixels, thus improving the accuracy of the estimation. An advantage of

the ensemble filtering approaches is that any reasonable distributions for ut can be

utilized. In this thesis only temporally and spatially correlated rainfall replicated are

used, while other forcing variables, soil, and vegetation parameters are simply treated

as deterministic variables. Ideally, other forcing variables and vegetation parameters

should be temporally and spatially correlated random variables as well, while soil

parameters should be spatially correlated. However, generating these correlated ran-

dom field is not an easy task, especially soil and vegetation parameters. In order to

generate these random fields, some constraints should be satisfied. For example, the

sum of sand and clay fraction can not exceed 1; vegetation canopy top height should

be greater than bottom height, etc. For soil, the spatial correlation structure should

be a function of soil type or topography due to geomorphological reasons. Further

more, vegetation and soil might also be correlated through the link of soil nutrition.

A possible approach to deal with these issues is to use Markov Monte Carlo Chain

(MCMC) method for the random field generation. However, MCMC method is it-

erative and also relies on the solution to filtering problems, which is hard for any

non-Gaussian random field. This is because if use filters with Gaussian assumptions

the error due the approximation to non-Gaussian problems would accumulate in the

iteration procedure.

6.3 Sampling Issues in Ensemble Filters

For all the Monte Carlo type methods, a fundamental problem is to reduce the sam-

pling error. Since the sampling standard deviation is proportional to the inverse

of the square root of the sampling size, to reduce the standard deviation measures

have to be taken. To obtain correct sampling correlation and high order moments,

the required sample size would dramatically increase. Traditional variance reduction

methods include control variate, antithetic methods, quasi random sampling, impor-
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tance sampling, etc. There are already some applications of these methods, such as

[52, 27]. These belong to the control variate method. For the quasi random sampling

and antithetic methods, the generated samples are correlated, so they are problematic

for all the variance based methods. But they should be helpful for simulation based

methods. In the multiscale tree approach described in Chapter 4, the basic idea is

to reduce the high frequency noise and pick up as much the large scale correlation

as possible which require less sampling size. This results from the conditional decor-

relation requirements in the tree identification step. The high frequency noise are

simply discarded. In this case, if the true signal is in the high frequency range, and

the noise is in the low frequency then this tree approach would also be problematic.

In this case, to separate the noise and signal, it is better to have some sort of prior

knowledge of signal and noise. In order for the tree to satisfy the scale Markovianity,

a new approach should be investigated.

6.4 Nonlinear Measurement Model and Nonnor-

mal State Effects in the EnMSF

In the theoretical multiscale filter development, the measurement model is linear with

additive Gaussian error and the prior distribution of the state variables is assumed

Gaussian for the derivation of the optimality. For the land assimilation applications,

the measurement model is nonlinear and the measurement error might be multiplica-

tive, such as the Radar measurement of soil moisture. Also, the state variable is

rarely Gaussian. To what extend the nonlinearity in the measurement model and

additive Gaussian assumption would affect the result is still unknown. Heuristically,

the state variable distribution tends to be more Gaussian as one goes upward the tree

due to central limit theorem, which makes the multiscale tree model more favorable

at coarse scales. At fine scales, the effects of the nonnormality in the prior ensemble

on tree model performance should be closely related to the case in Chapter 2 since

the tree update is derived from the EnKF. To study these problems, a large ensemble
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size experiment must be done.

6.5 Graphical Models for Large Scale Nonlinear

Estimation

Although tree models are powerful for large scale estimation, its ability to represent

the true covariance is impaired by the induced structure error (blockiness as seen

in Figure 4-8). Some approaches have been developed to resolve this problem. In

[58], this blockiness is eliminated by discarding the standard assumption that dis-

tinct nodes on a given level of the multiscale process correspond to disjoint portions

of the domain; instead, overlapping portions of the domain are allowed. In [92] ad-

ditional edges are added to the tree to make the tree a graph with cycles. This

complicates the model structure and estimation, but the blockiness from tree can be

drastically reduced to the additional edges. For the graph with cycles, embedded

trees approaches are employed to iteratively solve the estimation problem. For a tree

derived from samples, the overlapping tree approach seems more promising than the

graph models. This is because the sampling error due to small ensemble size in a

large scale problem might accumulate in the iterations. Further study in this area is

needed.
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Appendix A

Convergence of the Upward Sweep

of the Ensemble Multiscale Filter

Update

A.1 Introduction

The upward sweep of the ensemble multiscale filter update is designed to produce a

set of replicates Xj (sis) that approximates the mean and covariance of the Gaussian

random state x(s), given all measurements at or below s. The error in the sample

mean and covariance estimates should converge to zero in the limit as the number of

replicates approaches infinity.

A.2 Exact Ensemble Mean and Covariance for the

Upward Sweep

Define x(sIs) = E[x(s)ly(V)] = E[x(s)ls], where V is the set of nodes consisting of

s and all its descendants. So (sIs) is the mean of x(s) conditioned on all measure-

ments at or below s. The corresponding conditional covariance is Cov[x(s)ly(V])] =

Cov[x(s) s]. We wish to approximate these two moments, for the Gaussian case, with
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sample estimates from an updated ensemble Xi(s Is) derived from (4.40).

We adopt a recursive definition of an augmented measurement vector Y(s) as

follows:

Y(s) = (s) ;m(s) = M

Y(s) =

j(sai lsai)

X(saqlsaq)

y(s)

; m(s) < M

(A.1)

(A.2)

where the state estimates i(sailsai) at the chidren of s are defined by (A.6) below.

The vector y(s) is the local measurement at s, defined as in (4.31):

y(s) = h(s)XM(s) +e(s) (A.3)

The linear structure of the internal model enables us to write a similar measurement

equation for the augmented vector Y(s):

Y(s) = H(s)XAI(s) + e(s) (A.4)

where H(s) is a global measurement matrix. The augmented measurement error

vector (s) has a covariance R(s) which is defined by the recursion given in (A.12)

and (A.13). We do not need an explicit expression for H(s) for this derivation.

The estimates i(sailsai) appearing in the Y(s) definition are derived from mea-

surements y(Vsaj) at or below sai. It follows that the conditional mean E[x(s)ly(Vs)]

is equal to the conditional mean E[X(s)IY(s)], since Y(s) is completely determined

from y(Vs). That is, conditioning on Y(s) is the same as conditioning on y(V).

If all the states x(s) and measurement errors e(s) are jointly Gaussian and the
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e(s) are uncorrelated with one another the desired conditional mean is given by [89]:

;(sls) = E[x(s)lY(s)] = K(s)Y(s) = K(s)y(s) ; mr(s) = M

(sal 1sal)

j(sjs) = E[x(s)IY(s)] = K(s)Y(s) = K(s)
j(SaqjIsaq)

y(s)

;rm(s) < M

(A.5)

(A.6)

where K(s) is an augmented Kalman gain matrix defined as:

K(s) = Cov[x(s), Y(s)]Cov-l[Y(s)] =

Cov[X(s), H(S)XM(S)] [(s)Cov[XM(S)]H T (s) + R(s)] -1

;m(s) < M (A.7)

Here Cov[x(s), Y(s)], Cov[Y(s)], Cov[X(s), H(s)XM(s)], and Cov[XM(s)] are all prior

covariances that may be derived from the covariance of the propagated state x(tlt- 1)

and the specified error covariances for the measurements in Vs. Note that i(sIs) is

the minimum variance linear estimate, even when x(s) and e(s) are not Gaussian.

In order to evaluate R(s) use (A.4), (

pression for Y(s):

Y(s) = y(s)

A.5) and (A.6) to obtain the following ex-

;r m(s) = M (A.8)
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K(saq)Y(saq)

y(s)

K(sai )H(sai)XM(sal)

K(saq)H(saq)XMI (Saq)

h(s)X(s)

+-

K(sal)e(sao)

K(saq)c(saq)

e(s)

;m(s) < M

The first part of this expression defines an alternative Y(s) recursion and confirms that

the augmented measurement vector at s is a linear function of all the measurements

in Vs. The second part defines the following recursion for e(s).

c(s) = e(s) ;m(s) = M (A.10)

K(sal)e(saj)

K(saq)E(saq)

e(s)

;m(s) < M

This gives a recursion for

e(s):

the covariance R(s) of the augmented mesurement error

R(s) = Cov[e(s)] = r(s) ; m(s) = M

R(s) = diag[K(sal)R(sai)KT (sal),...,

K(saq)R(saq)KT(saq), r(s)] ; m(s) < M

(A.12)

(A.13)
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where diag[.] represents a square matrix with q + 1 by q + 1 square blocks. Diagonal

blocks i = 1,..., q have dimension n(saoi) and diagonal block q + 1 has dimension

n[YJ(s)]. All off-diagonal blocks are zero.

The updated state covariance is obtained from the estimation error, which may

be written as:

X(s) - j(s1s) = X(s) - K(s)Y(s) =

x(s) - K(s)[H(s)XM(s) + E(s)] =

[W(s)-K(S)H(s)]xM(s) - K(s)e(s) ; m(s) < M (A.14)

This expression yields the following error covariance, which is also the updated co-

variance for the Gaussian case:

Cov[x(s)ls] = E [[x(s)- j(sjs)][X(s) - (sIs)]T] =

[W(s)- K(S)H(s)]Cov[xM(s)][W(s) - K(S)H(s)]T +

K(s)R(s)KT(s) ; rm(s) < M (A.15)

A.3 Sample Mean and Covariance for the Upward

Sweep

The proof that the sample multiscale mean and covariance from the upward sweep

converge to the exact expressions obtained above follows the analogous proof for

the classical ensemble Kalman filter with perturbed measurements. We begin by

noting that the sample prior covariance estimates Cov[x(s),Y(s)] and Cov[Y(s)]

used to compute the sample Kalman gain K'(s) in (4.37) and (4.39) are consistent

and converge to the corresponding exact prior covariances as N --+ o. It follows

that K'(s) converges to the exact Kalman gain K(s) of (A.7) as N - oc. With

this in mind we set K'(s) = K(s) and can consider the convergence properties of the

updated sample mean and covariance.
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The expression given in (4.40) for the update of the replicates at node s is:

xi(sls) = Xi(s) + K(s) [Yj(s) - Yi(s)] ; (s) < M

We seek the sample mean xj(sls) of XJ(sls), where the overline indicates the arith-

metic average. In order to evaluate Xi (s Is)) we define an ensemble d (s) of augmented

measurement error replicates, by analogy with (A.10) and (A.11):

0i(s) = el(s) ; m(s) = M (A.17)

K(sa)O (saj)

K(saq)Cj(Saq)

ei(s)

; (s) < M

Note that the eJ(s) have sample means of zero at all nodes.

The perturbed measurement ensemble constructed in (4.32) and (4.34) has the

following property:

Yi(s) = Y(s) + e3 (s) ; (s) < M (A.19)

We prove this by induction, noting that if (A.19) holds for the children of s, starting

with the finest scale, then the definitions of Y(s) from (A.8) and (A.9) and of ei(s)

from (A.17) and (A.18) imply:

Yi(s) = y(s) + e(s) = Y(s) + (s) ; m(s) = M (A.20)
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K(scyi)Yj (sa1 )

K(saq)yj (Saq)

y(s) + ei(s)

K(sal )Y(sal)

K(soaq)Y(soq)

y(s)

+

K(sai),O(Sai)

K(saq)Ej (saq)

e 0(s)

= Y(s) + J(S)

Using the same approach it also can be shown that:

; m(s) =M

Y,(s)

K(scai )Yj (s 1 )

K(saq)yj (Sq)
h(s)Xj(s)

K(soal)H(scej)X' (sa>l)

K(saq)H(saq)XiDj (saq)

h(s) I (s)

(s)X'M(s) ; m(s) < M

It follows from (A.19) that:

YJ(s) = Y (s) + EJ(s) = Y(s) ; (s) < M
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;r m(s) < M

Yi (s) = h(s)x (s)

(A.21)

(A.22)

(A.23)

(A.24)

= H



Also, (A.22) and (A.23) imply that:

Yj(s) = H(s)X3M(s) = 0

The desired sample mean of Xj(sls) is then:

xj(sls) = K(s)Y(s) = i(sis)

; (s) < M

;m(s) < M

So the sample mean of the updated ensemble converges to the exact condition mean

I(o).

In order to examine convergence to the conditional covariance we compute the

deviation of the updated replicate from its sample mean:

xI(sls) - Xi(lS) =

X (s) + K(s) [Yi (s) - i (s)] - K(s)Y(s) =

xI(s) + K(s)[Y(s) + ,l(s) - H(s) (s)] - K(s)Y(s) =

Xi(s) + K (s)cJ(s)- K () H (s)xI(s) =

[W(s)- K(s)H(s)]xiM(s) + K(s)dJ(s)

The sample covariance is then:

Cov[X3(ss)] = N- 1 [x(s) - xj(sls)][xj(sl) - xi(slS)]T =

N
N- [We)- K(s)H(s)]xAX3 7[W(s) - K(s)H(s)]' +

N
N - 1 K(s)eJ(s)eJT(s)KT (s) ; (s) < M

When the number of replicates approach infinity the arithmetic averages in this ex-
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(A.26)

; m(s) < M (A.27)

(A.28)



pression can be replaced with expectations so (A.28) becomes:

Cov[x() - (SIs)] =

[W(s)- K(s)H(s)]Cov[xM(s)[W(s) - K(s)H(s)]T + K(s)R(S)K T (s)

; m(s) < M (A.29)

This is the same as the updated Gaussian covariance expression given in (A.15).

From these proofs we conclude that the first two sample moments of the ensemble of

replicates xJ(sIs) generated by the upward sweep of the multiscale update algorithm

converge to the corresponding exact updated moments of X(s).
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Appendix B

Convergence of the Downward

Sweep of the Ensemble Multiscale

Filter Update

B.1 Introduction

The downward sweep of the ensemble multiscale filter update is designed to produce a

set of smoothed replicates Xj (slS) that approximates the Gaussian conditional mean

and covariance of x(s), given all measurements on the tree. The error in the sample

mean and covariance estimates should converge to zero in the limit as the number of

replicates approaches infinity.

B.2 Exact Ensemble Mean and Covariance for the

Downward Sweep

The exact smoothed conditional Gaussian mean (sIS) = E[X(s)ly(V)] and covari-

ance Cov[x(s)IS] = Cov[x(s)jy(V)] are given in [101]:

i(sjS) = (sls) ; rm(s) = 0 (B.1)
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I(sS) = i(sIs) + J(s)[(sYIS) - i(s7ys)]; m(s) > 0

Cov[x(s)IS] = Cov[x(s)Is] ; (s) = 0

Cov[x(s)lS] = CoV[x(S)Is]+

J(s) [Cov[x(s)lS)] - Cov[x(sy)ls)]] JT (s) ; m(s) > 

J(s) = Cov[x(s) s]FT(s)Cov- [x(s71s)]

(B.4)

; (s) > 0

The matrix J(s) is a smoothing gain analogous to the Kalman gain K(s).

The updated estimate (sIs) and covariance Cov[x(s)ls] appearing in (B.2) and

(B.4) are defined by the upward sweeep. The smoothed mean (sIS) and covariance

Cov[x(s-y)lS] are defined by the previous iteration of the downward sweep. The fine

to coarse projection mean i(sy Is) and conditional covariance matrix Cov[x(s/) s] are

defined by:

j(sjyls) = F(s)j(sls) ; rm(s) > 0 (B.6)

(B.7)

Cov[x(sy)lIs] = F(s)Cov[x(s)Is]F(s)T + Cov[x(sy)]-

F(s)A(s)Cov[X(sQ)] ) 

= F(s)Cov[x(s)[s]F(s)T + Q'(s); m(s) > O
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B.3 Sample Mean and Covariance for the Down-

ward Sweep

First we consider the value of the gain J'(s) computed from sample covariances.

Unless otherwise noted all expressioins apply for m(s) > 0:

J'(s) = Cov[x(s)ls]F T (s)Cov [x(s-)ls] (B.8)

Appendix A shows that the sample covariance Cov[x(s)ls] obtained during the up-

ward sweep converges to the corresponding exact covariance Cov[x(s)ls] in the limit

as N -- oc. The upward projection sample covariance Cov[x(s-y)ls] can be written

as:

Cov[x(syls)] = F(s)Cov[x(sls)]FT(s) + Cov-[w'(s)] (B.9)

Since Appendix A shows that Cov[x(s s)] converges to Cov[x(s)ls] and since w'(s)

is generated to insure that Cov[w'(s)] converges to Q'(s) it follows that Cov[x(sy)ls]

converges to the value of Cov[x(sy)Is] given in (B.7). Therefore, J'(s) converges to

the exact gain J(s) of (B.5) as N - o. With this in mind we set J'(s) = J(s) and

consider the convergence properties of the smoothed sample mean and covariance. For

completeness, note that Cov[x(s-y))S] converges to Cov[x(sy))lS]. This follows by

applying induction to (B.4), using the fact that Cov[x(s)IS] converges to Cov[x(s)IS]

at the root node s = 0 and all the other sample covariances appearing in (B.4)

converge to their exact counterparts.

Equation (4.44) describes the replicate update on the downward sweep:

x3 (slS) = xJ(sls) + J'(s)[XJ(s'ylS)- xJ(s-yls)] (B.10)

We seek the sample mean Xj(slIS) of Xj(sIS), where the overline indicates the arith-
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metic average. Taking the sample mean of both sides of (B.10) gives

xi(sIS) = xiJ(ssI) + J'(s)[xi(sylS) - xJi(sls)

= k(SIs) + J(s)[XJi(slS) - xi(s*ls)] (B.11)

where the second equality relies on the proof from Apppendix A that shows that the

updated sample mean on the upward sweep converges to the exact updated mean.

The projected replicate xi(s'y7ls) appearing in (B.11) is given by (4.41):

x3 (s-yls) = F(s)X;(sls) + w'(s) (B.12)

The sample mean of this expression is:

xi(s-,Is) - F(s)XJ(sls) + w' i(s)

= F(s) (sls)

= (S-YjS) (B.13)

where the second equality follows from Appendix A and the third equality follows

from (B.6).

Since Appendix A confirms that Xi(sIS) converges to j(sS) = (sls) at s = 0 it

follows from induction that (B.11) can be written:

xiJ(S IS) = Q(sls) + J'(s)[X(slS) - V(syls)]

= (sIlS) (B.14)

So the sample mean of the smoothed ensemble generated on the downward sweep

converges to the corresponding exact mean.

In order to examine convergence of the sample covariance rearrange (4.44) as

follows:

x3(sfS) - J(s)x(s-Yls) = xi(s ls) - J(s)xJ(syls)
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Subtract the sample mean of (B.15) from each side, multiply the result by its trans-

pose, and take the sample mean of the product expression to get:

Cov[x(s)IS] + J(s)CoV[X('y)IS]J(s) - D 1T =

CoV[X(s)Is] -D2 - D2 + J(s)Cov[x(sY)Is]J(s)T (B.16)

where the temporary matrices D1 and D2 account for the cross-covariances generated

by the multiplication:

D1 = J(8)i(s$yS)~iT(SIS) (B.17)

D2 = J(s)i(sfIs);iT(s[s) (B.18)

Here the symbol represents the deviation of the indicated replicate from its sample

mean.

The first step in evaluating the terms D1 and D2 is to use (B.10) to write an

expression for the deviation of the smoothed replicate from its mean:

;3(slS) = i(SIs) + J(s)(:i(sylS) - ix(s-YIs)) (B.19)

Then substitute (B.19) into (B.17) to get:

D1 = J(s) [Vi(syIS) iT(s I) - i(sT[S)xiT(syIs)JT(s)]

+J(s)Cov[X(sY)IS] J3T (s) (B.20)

The next step is to evaluate the individual overbarred terms in this expression.

To do this, note that the exact smoothed conditional mean (s7JS) depends on

all the measurements on the tree. Consequently, it may be written in a batch form.

The batch expression for (syS) is just the conditional expectation of the variable

x(sy) given the vector of all measurements y(V). This conditional expectation has
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the form:

j(syS) = j(s-yjy(V)) = K(sy)

vm(sy)

v2(sa)

Vm (sy)

(B.21)

where vi(sy), i = 1, 2,... , m are the deviations (or innovations) of the m measure-

ments in V from the corresponding measurement predictions and K(sy) is an n(s-y)

by m dimensional block diagonal gain matrix. The measurement predictions used to

obtain the vi(s-y)'s are based on the updated state estimate obtained from the upward

sweep.

With suitable rearrangement and an orthogonalization transformation of the in-

novations elements (B.21) may be written as:

;(syjS) = K(s7) v ] = KSv + Kvscs (B.22)
Vsc

where the innovations elements in vs are linear functions of the measurements at nodes

below sy while those in vs, are linear functions of measurements at all other nodes,

including sy. These two subvectors are orthogonal by construction so E[vsvT] = 0.

The matrix K(s-y) is the corresponding transformed gain matrix, constructed from

the elements of K(s-y). From the definitions of v(syls) it follows that:

i(syls ) = Ksv, (B.23)

j(s7yIS) = j(s7 ls)+KScvs (B.24)

The ortogonalization operation leading to (B.23) and (B.24) is discussed in more

detail in [35].

The exact smoothed conditional mean can be approximated with an ensemble

Kalman filter update that has exactly the same form as (B.23) and (B.24), but is
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applied to individual replicates:

XI(syls) = K'v8 (B.25)

XJ(slS) = Xi(slIs) + K'scVc (B.26)

where K's and Ki'sc are sample approximations of Ks and Ksc. Using arguments sim-

ilar to those used for the Kalman and smoothing gains on the upward and downward

sweeps we can show that these batch sample Kalman gains converge to their exact

counterparts as N - oo. So in the following we set K's = Ks and K'sc = Ksc.

Now subtract the sample mean of (B.25) from (B.25)to get:

(s-yIS) = i(syls) + KcIsc (B.27)

Substitute (B.27) into (B.20)to get:

D1 = J()X(s)xT(s ) + J(s)KscfJciJT(sl)-

J(s)i(s-Ys)VjT(s-ys)JT (s) - Kv, (

+J(s)Cov[X(sy) IS]J(s) T (B.28)

Then apply the definition of D2 from (B.18):

D = D2 + J(s)KseV iT(s8s)

J(S)COV[X(sY)Is]JT(s) - J(S)Kscic~iT(Srs)JT(s)

+J(s)Cov[X(sy) IS]J(s)T (B.29)

Since v8 and vsc are orthogonal by construction and (syls) is proportional to both v8

and to i(sjs) the vectors vsc and ;(sIs) are also orthogonal. That is, E[v8 ijT(s s)] =

0. Since the 5SCijT(sjs) term appearing in (B.29) converges to E[v8ciT(sIs)] it is zero

in the limit.

The term 'sCijT(sys) also appearing in (B.29) involves the deviation of the pro-

jected replicate XJ(s-yls) from its mean. Subtract the first line of (B.13) from (B.12)
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to obtain the following equation for this deviation:

Xi(s-yls) = F(s)VJ(sls) + w' i(s) (B.30)

Multiply the transpose of this equation from the left by i3c and take the sample mean

to get:

iVi(s'yjs) = j5bijT(sIs)FT(s) + icw'i(s) (B.31)

As N -- oc the sample mean in the first term approaches zero because its limit

E[jBT(SIS)] is zero by by

construction of vs,. The second term approaches zero because the random per-

turbation at s is uncorrelated with the states and measurements that i5c depends

upon.

If we substitute (B.29) in (B.16) and take the limit, noting that the terms con-

taining Di, go to zero and the sample covariances approach the true covariances, as

discussed earlier, we obtain the exact smooting covariance from (B.4)

Cov[x(s)lS] = Cov[x(s)ls]+

J(s) [Cov[x(sY)IS)] - Cov[x(s)[s)]] JT (s) (B.32)
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Appendix C

Proof of the universal downscaling

matrix

Denote ( , the prior states of two nodes at fine scale, as X, the coarse resolution
X2

state x0 is a linear transform of its children X: xo = AX. The observation equation

of the coarse scale state is y = Hxo + v, where v is uncorrelated with any state with

error covariance R. Suppose the actual measurement is y, we need to estimate fine

scale states X. According to linear estimation theory the linear least square estimate

of the fine scale states follows

X = X + K(y°-Hxo) (C.1)

where

K = PxATHT(HPxoHT + R)-1 (C.2)

Rewrite K in (C.2) as

K = PxAT(PolP )HT(HPo HT + R) - 1 (C.3)

= PXA PXo[PxoH(HPxoH + R)- 1 (C.4)

211



Since at coarse scale the optimal estimate is

(C.5)x = o + ko(y - Hxo)

where

ko = PxoHT(HTPxoHT + R) -

Using C.6, C.5, C.4, and C.1 we have

x = X + PxATpxolko(y° - Hxo)

= X+J(io-xo)

where the optimal downscaling matrix J is defined as

J = PxATPo-1

(C.6)

(C.7)

(C.8)

(C.9)

Hence, as long as the optimal estimate of the coarse scale states are available, the

optimal fine scale states can be obtained using (C.8)
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Appendix D

Conditional Simulation of Soil

Properties Using MCMC Method

D.1 Gibbs Sampler

Markov chain Monte Carlo (MCMC) method [42] is a useful tool for the simulation

of any distribution on a finite-dimensional state space specified by any unnormalized

density. It draws samples from approximate distributions and then corrects those

draws to better approximate the target distribution. The samples are drawn sequen-

tially, with the distribution of the sampled draws only dependent on the last draw.

Hence, the draws form a Markov Chain. The markovianity helps prove the conver-

gence of the sampling distribution to the true target distribution. The key to the

success of the simulation is that every time the samples are corrected. A sufficient

condition for a Markov chain having a unique stationary distribution is that the

detailed balance equation (reversibility condition) holds:

T(xj, Xk)Wrj = T(xk, j)rk

where T(xj, Xk) is the transition probability from xj to Xk, rk is the event probability

of event xk.

Among many MCMC techniques, the Gibbs sampler [43], the Metropolis and
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Metropolis-Hastings algorithms [50] are popular.

Suppose we want to draw sample from any pdf p(x). One can construct a transition

function T(xt- 1 , xt) for a Markov process as follows:

* Start with any reasonable initial guess x0.

* For t=l:T Sample a new x* from a proposal density J(xtlxtl), accept x* as a

new sample xt from p(x) with probability min(r,1)

P(xt*)/J(xt*lxt-1)r=
p(xt_l)/J(xt- l1t)

Otherwise, xt = xt-1

This is the Metropolis-Hastings algorithm. If we use a special proposal distribution

J(xtlxt-1), the algorithm is called Gibbs sampler. Then

if x*_j,t = x-j,t-1
Jj,t(xlIxt-1) P(X'tlx-Jt-i) if 

0 otherwise

where subscript j is the jth component of x,-j are the rest components, t is the

iteration number, each component has its own proposal density Jj,t, which essentially

only updates jth component conditioned on all the rest states. In this case, acceptance

ratio r is

r = P(X)t(lxt-) = P(X1) /P( Xjtlx-J1t-1) (D.1)
p(xt-1)/Jj,t(Xt-Ixt) p(xt- 1)/p(xj,t-l X*-j,t)

P(X* t' X**j't)/P(X*tlX-j't-1) (D.2)

p(xj,t- , X-jt-1) /p(xj,t-1 I X*_t)

-- p(xjt x-j't-1)/P(x'tlx-j't-1) (D 3)
p(Xjt-1, X-j,t-l)/p(xj,t-i 1x-j,t-1)

_ P(x-j,t-)--1 (D.4)
P(X-j,t-i )
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D.2 Gaussian Markov Random Field

A Markov random field is a field which satisfies the conditional independence property:

where A\ {( i, j) represents all the pixels in the full domain A excluding pixel (i, j),

8i,j is the neighbor of pixel (i, j). In Figure one can assume a particular pixel a only

has neighbor size of 2, pixel (3 has neighbor size of 1.

Figure D-1: Markov random field

A Gaussian field is a random field which can be described using a multivariate

Gaussian distribution. Mean and covariance completely determine the distribution.

If the field is also Nlarkov, it is called a Gaussian Markov random field. For a GRMF,

the PDF of x follow

where C is the covariance matrix of the random field. Given the value of a part of

the field, say B, the distribution of the rest of the field, say A, follows

(D.5)

To generate a Gaussian Markov random field, using Gibbs sampler one can do

blockwise update. The field shown in Figure D.2 is first broken into 9 blocks, and

215



use the neighbor size of 2. Then draw a random sample for all the pixels from any
distribution to initializethe field.

For iteration i = 1 :T

for b=1:9
Do conditional simulation for block b based on its latest
neighbor using the conditional distribution (D.5) ,

end
End
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D.3 Simulation of Spatially Correlated Random
Field of Soil Properties

To generate spatially correlated soil random field, we can use the Gibbs sampler
and G MRF approximation. In this thesis only sand and clay fraction need to be
generated. Suppose we want a Gaussian random field for the fraction. Since the
fraction must be greater than zero and the sum of clay and sand must be less than
one, the joint PDF of sand and clay fraction to be sampled from is a truncated
Gaussian distribution. In this case, the conditional distribution in (D.5) is only an
approximation. Assume a spatial correlation function and calculate C ABCli1 and
CAA - CABCB1cBA beforehand based on the spatial correlation function. The mean
of the random fieldisdetermined by the specificSTATSGO soiltype of that particular
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pixel. For a particular soil type, the sand and clay fraction of the center point of the

portion in the soil triangle is used. The standard deviation of clay and sand fraction

is set to 0.1 and 0.2 respectively. The reason of using different standard deviation

for sand and clay is because this helps convergence of the simulation. A spherical

correlation function is used to model the correlation of sand or clay fraction. Here is

the procedure for doing the conditional simulation for one replicate:

For iteration i = 1 : T

for b=1:9

while(stop==O)

Do conditional simulation for block b based on its

latest neighbor using the calculated coefficients,

If(sand fraction>O and clay fraction>O and sand fraction +clay fraction<1)

stop=l;

end

end

end

end

Since this approach is an iterative approach, and there is an approximation in

the conditional update, as the total number of iteration increases, the error would

accumulate. So T is set to a small number 200. Usually this is not the converged

solution, whatever the random field is like at this stage would be used as the final

sample. Thus, the sampling statistics would deviate away from the specified variance

and correlation structure. However, the random field looks still reasonable. A further

study of this is still needed.
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Appendix E

Vegetation Parameters

Type Category name s(cm)h w b bv bh fT

0 Bare soil ------
1 Temperate needleleaf evergreen tree 1 0.1 0.12 0.1 0.12 0.08 0.8
2 Boreal needleleaf evergreen tree 1 0.1 0.12 0.1 0.12 0.08 0.8
3 Boreal needleleaf deciduous tree 1 0.1 0.12 0.1 0.12 0.08 0.8
4 Tropical broadleaf evergreen tree 1 0.1 0.12 0.12 0.144 0.096 0.8
5 Temperate broadleaf evergreen tree 1 0.1 0.12 0.12 0.144 0.096 0.8
6 Tropical broadleaf deciduous tree 1 0.1 0.12 0.12 0.144 0.096 0.8
7 Temperate broadleaf deciduous tree 1 0.1 0.12 0.12 0.144 0.096 0.8
8 Boreal broadleaf deciduous tree 1 0.1 0.12 0.12 0.144 0.096 0.8
9 Broadleaf evergreen temperate shrub 1 0.1 0.12 0.11 0.21 0.0990
10 Broadleaf deciduous temperate shrub 1 0.1 0.12 0.11 0.121 0.099 0
11 Broadleaf deciduous boreal shrub 1 0.1 0.12 0.11 0.121 0.099 0
12 c3 grass 1.2 0.12 0.05 0.13 0.143 0.11 7 0 .1
13 c3 arctic grass 1.2 0.12 0.05 0.13 0.143 0.117 0.1
14 c4 grass 1.2 0.12 0.05 0.13 0.143 0.117 0.1
15 Crop 1 (e.g. corn) 1.2 0.12 0.05 0.13 0.143 0.117 0.1
16 crop 2 (e.g. wheat) 1.2 0.12 0.05 0.13 0.143 0.117 0.1
21 Water ------
22 Wetlands . .
23 Urban and built-up . .
24 Snow and ice . .

Table E.1: CLM land cover classifications and representative roughness and vegeta-
tion parameters
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Type___ Month
Type1 2 3 4 5 6 7 8 9 10 11 12

1 4.1 4.2 4.6 4.8 4.9 5.0 4.8 4.7 4.6 4.2 4.0 4.0
2 4.1 4.2 4.6 4.8 4.9 5.0 4.8 4.7 4.6 4.2 4.0 4.0
3 0.0 0.0 0.0 0.6 1.2 2.0 2.6 1.7 1.0 0.5 0.2 0.0
4 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
6 0.8 0.7 0.4 0.5 0.5 0.7 1.7 3.0 2.5 1.6 1.0 1.0
7 0.0 0.0 0.3 1.2 3.0 4.7 4.5 3.4 1.2 0.3 0.0 0.0
8 0.0 0.0 0.3 1.2 3.0 4.7 4.5 3.4 1.2 0.3 0.0 0.0
9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
10 0.9 0.8 0.2 0.2 0.0 0.0 0.0 0.2 0.4 0.5 0.6 0.8
11 0.0 0.0 0.0 0.0 0.0 0.2 1.4 1.2 0.0 0.0 0.0 0.0
12 0.4 0.5 0.6 0.7 1.2 3.0 3.5 1.5 0.7 0.6 0.5 0.4
13 0.4 0.5 0.6 0.7 1.2 3.0 3.5 1.5 0.7 0.6 0.5 0.4
14 0.4 0.5 0.6 0.7 1.2 3.0 3.5 1.5 0.7 0.6 0.5 0.4
15 0.0 0.0 0.0 0.0 1.0 2.0 3.0 3.0 1.5 0.0 0.0 0.0
16 0.0 0.0 0.0 0.0 1.0 2.0 3.0 3.0 1.5 0.0 0.0 0.0

Table E.2: Monthly Leaf Area Index (LAI) for CLM land cover type

Type_ Month
Type1 2 3 4 5 6 7 8 9 10 11 12

1 0.4 0.5 0.4 0.3 0.4 0.5 0.5 0.6 0.6 0.7 0.6 0.5
2 0.4 0.5 0.4 0.3 0.4 0.5 0.5 0.6 0.6 0.7 0.6 0.5

3 0.3 0.3 0.3 0.4 0.4 0.4 1.7 1.2 1.0 0.8 0.6 0.5
4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
6 0.4 0.3 0.5 0.3 0.3 0.3 0.3 0.7 0.7 1.1 0.9 0.2
7 0.4 0.4 0.4 0.4 0.5 0.4 0.9 1.4 2.6 1.4 0.6 0.4
8 0.4 0.4 0.4 0.4 0.5 0.4 0.9 1.4 2.6 1.4 0.6 0.4
9 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
10 0.1 0.2 0.6 0.1 0.6 0.0 0.1 0.1 0.1 0.1 0.1 0.1
11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 1.4 0.1 0.1 0.1
12 0.3 0.3 0.3 0.3 0.3 0.4 0.8 2.3 1.1 0.4 0.4 0.4
13 0.3 0.3 0.3 0.3 0.3 0.4 0.8 2.3 1.1 0.4 0.4 0.4
14 0.3 0.3 0.3 0.3 0.3 0.4 0.8 2.3 1.1 0.4 0.4 0.4
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table E.3: Monthly Stem Area Index (SAI) for CLM land cover type
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Type Top (m) Bottom(m)
1 17.0 8.5
2 17.0 8.5
3 14.0 7.0
4 25.0 1.0
5 25.0 1.0
6 18.0 10.0
7 20.0 11.5
8 20.0 11.5
9 0.5 0.1
10 0.5 0.1
11 0.5 0.1

12 0.5 0.0
13 0.5 0.0
14 0.5 0.01
15 0.5 0.0
16 0.5 0.0

Table E.4: Vegetation canopy top and bottom height (m) for CLM land cover type
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