708 research outputs found

    The Use of Accelerometers and Gyroscopes to Estimate Hip and Knee Angles on Gait Analysis

    Get PDF
    In this paper the performance of a sensor system, which has been developed to estimate hip and knee angles and the beginning of the gait phase, have been investigated. The sensor system consists of accelerometers and gyroscopes. A new algorithm was developed in order to avoid the error accumulation due to the gyroscopes drift and vibrations due to the ground contact at the beginning of the stance phase. The proposed algorithm have been tested and compared to some existing algorithms on over-ground walking trials with a commercial device for assisted gait. The results have shown the good accuracy of the angles estimation, also in high angle rate movement

    Inertial sensor-based knee flexion/extension angle estimation

    Get PDF
    A new method for estimating knee joint flexion/extension angles from segment acceleration and angular velocity data is described. The approach uses a combination of Kalman filters and biomechanical constraints based on anatomical knowledge. In contrast to many recently published methods, the proposed approach does not make use of the earth’s magnetic field and hence is insensitive to the complex field distortions commonly found in modern buildings. The method was validated experimentally by calculating knee angle from measurements taken from two IMUs placed on adjacent body segments. In contrast to many previous studies which have validated their approach during relatively slow activities or over short durations, the performance of the algorithm was evaluated during both walking and running over 5 minute periods. Seven healthy subjects were tested at various speeds from 1 to 5 miles/hour. Errors were estimated by comparing the results against data obtained simultaneously from a 10 camera motion tracking system (Qualysis). The average measurement error ranged from 0.7 degrees for slow walking (1 mph) to 3.4 degrees for running (5mph). The joint constraint used in the IMU analysis was derived from the Qualysis data. Limitations of the method, its clinical application and its possible extension are discussed

    A Preliminary Test of Measurement of Joint Angles and Stride Length with Wireless Inertial Sensors for Wearable Gait Evaluation System

    Get PDF
    The purpose of this study is to develop wearable sensor system for gait evaluation using gyroscopes and accelerometers for application to rehabilitation, healthcare and so on. In this paper, simultaneous measurement of joint angles of lower limbs and stride length was tested with a prototype of wearable sensor system. The system measured the joint angles using the Kalman filter. Signals from the sensor attached on the foot were used in the stride length estimation detecting foot movement automatically. Joint angles of the lower limbs were measured with stable and reasonable accuracy compared to those values measured with optical motion measurement system with healthy subjects. It was expected that the stride length measurement with the wearable sensor system would be practical by realizing more stable measurement accuracy. Sensor attachment position was suggested not to affect significantly measurement of slow and normal speed movements in a test with the rigid body model. Joint angle patterns measured in 10 m walking with a healthy subject were similar to common patterns. High correlation between joint angles at some characteristic points and stride velocity were also found adequately. These results suggested that the wireless wearable inertial sensor system could detect characteristics of gait

    Validation of an Inertial Sensor System for Quantifying Knee Function

    Get PDF
    Gait analysis has become a useful tool for clinicians in evaluating the progression of pathologies through functional analysis. The high cost and dedicated laboratories associated with the traditional camera-based motion analysis systems present the need for an alternative system. Direct measurement of kinetic parameters using inertial sensors (gyroscopes and accelerometers), in place of indirect calculations from position data obtained using cameras, has been shown effective in resolving important gait parameters. In order to directly compare gait parameters obtained using inertial sensors and a camera system, data was simultaneously collected from both systems for seven test subjects during normal gait. Three uni-axial gyroscopes and one tri-axial accelerometer were mounted on each subject\u27s right leg, as well as the reflective markers needed for the camera-based system. Knee flexion angle, angular velocities, and linear and angular accelerations were compared between the two systems. The similarities between the two methods validate the accuracy of the inertial sensor system with respect to the currently accepted camera-based method for some parameters. The errors found when comparing the two systems can be minimized by altering the number of sensitive axes of the sensors, as well as improving the accuracy of their placement. Such an inertial sensor system may provide an alternative that is suitable for use in a clinical setting

    Gait Analysis Using Wearable Sensors

    Get PDF
    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications

    The Use of Wearable Inertial Motion Sensors in Human Lower Limb Biomechanics Studies: A Systematic Review

    Get PDF
    Wearable motion sensors consisting of accelerometers, gyroscopes and magnetic sensors are readily available nowadays. The small size and low production costs of motion sensors make them a very good tool for human motions analysis. However, data processing and accuracy of the collected data are important issues for research purposes. In this paper, we aim to review the literature related to usage of inertial sensors in human lower limb biomechanics studies. A systematic search was done in the following search engines: ISI Web of Knowledge, Medline, SportDiscus and IEEE Xplore. Thirty nine full papers and conference abstracts with related topics were included in this review. The type of sensor involved, data collection methods, study design, validation methods and its applications were reviewed

    Wearable inertial sensors for human movement analysis

    Get PDF
    Introduction: The present review aims to provide an overview of the most common uses of wearable inertial sensors in the field of clinical human movement analysis.Areas covered: Six main areas of application are analysed: gait analysis, stabilometry, instrumented clinical tests, upper body mobility assessment, daily-life activity monitoring and tremor assessment. Each area is analyzed both from a methodological and applicative point of view. The focus on the methodological approaches is meant to provide an idea of the computational complexity behind a variable/parameter/index of interest so that the reader is aware of the reliability of the approach. The focus on the application is meant to provide a practical guide for advising clinicians on how inertial sensors can help them in their clinical practice.Expert commentary: Less expensive and more easy to use than other systems used in human movement analysis, wearable sensors have evolved to the point that they can be considered ready for being part of routine clinical routine

    Analysis of gait and coordination for arthroplasty outcome evaluation using body-fixed sensors

    Get PDF
    The importance of evaluation of an orthopedic operation such as hip or knee arthroplasty has long been recognized. Many definitions of outcome and scoring questionnaires have been used in the past to assess the outcome of joint replacement. However, these assessments are subjective and not accurate enough. In addition, orthopedic surgeons require now more subtle comparisons between potentially efficacious treatments (e.g. two types of prostheses). Therefore, the use of objective instruments that have a better sensitivity and specificity than traditional scoring systems is needed. Gait analysis is one of the most currently used instrumented techniques in this respect. However, a gait analysis system is accessible only in a few specialized laboratories, as it is complex, expensive, need a lot of room space and fixed devices, and not convenient for the patient. In this thesis, we proposed an ambulatory system based on kinematic sensors attached on the lower limbs to overcome the limitations of the previously mentioned techniques. Technically the device is portable, easily mountable, non-invasive, and capable of continuously recording data in long term without hindrance to natural gait. The goal was to provide gait parameters as a new objective method to assess Total Knee Replacement (TKR). New solutions to fusing the data of accelerometers and gyroscopes were proposed to accurately measure lower limbs orientations and joint angles. The methods propose a minimal sensor configuration with one sensor module mounted on each segment. The models consider anatomical aspects and biomechanical constraints. In the proposed techniques, the angles are found without the need for integration, so absolute angles can be obtained which are free from any source of drift. These data were then used to develop a gait analysis system providing spatio-temporal parameters, kinematic curves, and a visualization tool to animate the motion data as synthetic skeletons performing the same actions as the subjects. Moreover, a new algorithm was proposed for assessing and quantification of inter-joint coordination during gait. The coordination model captures the whole dynamics of the lower limbs movements and shows the kinematic synergies at various walking speeds. The model imposes a relationship among lower limb joint angles (hips and knees) to parameterize the dynamics of locomotion for each individual. It provides a coordination score at various walking speeds which is ranged between 0 and 10. An integration of different analysis tools such as Harmonic Analysis, Principal Component Analysis, and Artificial Neural Network helped overcome high-dimensionality, temporal dependence, and non-linear relationships of the gait patterns. In order to show the effectiveness of the proposed methods in outcome evaluation, we have considered a clinical study where the outcomes of two types of knee prostheses were compared. We conducted a randomized controlled study, including 54 patients, to assess TKR outcome between patients with fixed bearing and mobile bearing tibial plates of implants. The patients were tested preoperatively and postoperatively at 6 weeks, 3 months, 6 months, and 1 year. Various statistical analyses were done to compare the outcomes of the two groups. Finally, we provided objective criteria, using ambulatory gait analysis, for assessing functional recovery following TKR procedure. We showed significant difference between the two groups where the standard clinical evaluation was unable to detect such a difference
    • …
    corecore