70 research outputs found

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Simulated Annealing

    Get PDF
    The book contains 15 chapters presenting recent contributions of top researchers working with Simulated Annealing (SA). Although it represents a small sample of the research activity on SA, the book will certainly serve as a valuable tool for researchers interested in getting involved in this multidisciplinary field. In fact, one of the salient features is that the book is highly multidisciplinary in terms of application areas since it assembles experts from the fields of Biology, Telecommunications, Geology, Electronics and Medicine

    New insights into the methods for predicting ground surface roughness in the age of digitalisation

    Get PDF
    Grinding is a multi-length scale material removal process that is widely employed to machine a wide variety of materials in almost every industrial sector. Surface roughness induced by a grinding operation can affect corrosion resistance, wear resistance, and contact stiffness of the ground components. Prediction of surface roughness is useful for describing the quality of ground surfaces, evaluate the efficiency of the grinding process and guide the feedback control of the grinding parameters in real-time to help reduce the cost of production. This paper reviews extant research and discusses advances in the realm of machining theory, experimental design and Artificial Intelligence related to ground surface roughness prediction. The advantages and disadvantages of various grinding methods, current challenges and evolving future trends considering Industry-4.0 ready new generation machine tools are also discussed

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Optimum and Robust Design of Fibre-Reinforced Hybrid Composites with Manufacture Related Uncertainties

    Get PDF
    In this research, different methods are presented for design and multi-objective optimization of laminated hybrid composites when design variables are not deterministic due to manufacture related uncertainties. Since, flexural properties are more affected by hybridization of fibres, this research has focused on the design and optimization of laminated hybrid composites under flexural load. Robustness and hybrid effect are investigated with optimal and robust designs for carbon and glass fibre reinforced epoxy composites being presented

    Overview of Sensitivity Analysis Methods Capabilities for Traction AC Machines in Electrified Vehicles

    Get PDF
    © 2021 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.A robust design in electrified powertrains substantially helps to enhance the vehicle's overall efficiency. Robustness analyses come with complexity and computational costs at the vehicle level. The use of sensitivity analysis (SA) methods in the design phase has gained popularity in recent years to improve the performance of road vehicles while optimizing the resources, reducing the costs, and shortening the development time. Designers have started to utilize the SA methods to explore: i) how the component and vehicle level design options affect the main outputs i.e. energy efficiency and energy consumption; ii) observing sub-dependent parameters, which might be influenced by the variation of the targeted controllable (i.e. magnet thickness) and uncontrollable (i.e. magnet temperature) variables, in nonlinear dynamic systems; and iii) evaluating the interactions, of both dependent, and sub-dependent controllable/uncontrollable variables, under transient conditions. Hence the aim of this study is to succinctly review recent utilization of SA methods in the design of AC electric machines (EM)s used in vehicle powertrains, to evaluate and discuss the findings presented in recent research papers while summarizing the current state of knowledge. By systematically reviewing the literature on applied SAs in electrified powertrains, we offer a bibliometric analysis of the trends of application-oriented SA studies in the last and next decades. Finally, a numerical-based case study on a third-generation TOYOTA Prius EM will be given, to verify the SA-related findings of this article, alongside future works recommendations.Peer reviewe

    Nature-inspired optimisation: Improvements to the Particle Swarm Optimisation Algorithm and the Bees Algorithm

    Get PDF
    This research focuses on nature-inspired optimisation algorithms, in particular, the Particle Swarm Optimisation (PSO) Algorithm and the Bees Algorithm. The PSO Algorithm is a population-based stochastic optimisation technique first invented in 1995. It was inspired by the social behaviour of birds flocking or a school of fish. The Bees Algorithm is a population-based search algorithm initially proposed in 2005. It mimics the food foraging behaviour of swarms of honey bees. The thesis presents three algorithms. The first algorithm called the PSO-Bees Algorithm is a cross between the PSO Algorithm and the Bees Algorithm. The PSO-Bees Algorithm enhanced the PSO Algorithm with techniques derived from the Bees Algorithm. The second algorithm called the improved Bees Algorithm is a version of the Bees Algorithm that incorporates techniques derived from the PSO Algorithm. The third algorithm called the SNTO-Bees Algorithm enhanced the Bees Algorithm using techniques derived from the Sequential Number-Theoretic Optimisation (SNTO) Algorithm. To demonstrate the capability of the proposed algorithms, they were applied to different optimisation problems. The PSO-Bees Algorithm is used to train neural networks for two problems, Control Chart Pattern Recognition and Wood Defect Classification. The results obtained and those from tests on well known benchmark functions provide an indication of the performance of the algorithm relative to that of other swarm-based stochastic optimisation algorithms. The improved Bees Algorithm was applied to mechanical design optimisation problems (design of welded beams and coil springs) and the mathematical benchmark problems used previously to test the PSO-Bees Algorithm. The algorithm incorporates cooperation and communication between different neighbourhoods. The results obtained show that the proposed cooperation and communication strategies adopted enhanced the performance and convergence of the algorithm. The SNTO-Bees Algorithm was applied to a set of mechanical design optimisation problems (design of welded beams, coil springs and pressure vessel) and mathematical benchmark functions used previously to test the PSO-Bees Algorithm and the improved Bees Algorithm. In addition, the algorithm was tested with a number of deceptive multi modal benchmark functions. The results obtained help to validate the SNTO-Bees Algorithm as an effective global optimiser capable of handling problems that are deceptive in nature with high dimensions

    Algorithms and Methods for Designing and Scheduling Smart Manufacturing Systems

    Get PDF
    This book, as a Special Issue, is a collection of some of the latest advancements in designing and scheduling smart manufacturing systems. The smart manufacturing concept is undoubtedly considered a paradigm shift in manufacturing technology. This conception is part of the Industry 4.0 strategy, or equivalent national policies, and brings new challenges and opportunities for the companies that are facing tough global competition. Industry 4.0 should not only be perceived as one of many possible strategies for manufacturing companies, but also as an important practice within organizations. The main focus of Industry 4.0 implementation is to combine production, information technology, and the internet. The presented Special Issue consists of ten research papers presenting the latest works in the field. The papers include various topics, which can be divided into three categories—(i) designing and scheduling manufacturing systems (seven articles), (ii) machining process optimization (two articles), (iii) digital insurance platforms (one article). Most of the mentioned research problems are solved in these articles by using genetic algorithms, the harmony search algorithm, the hybrid bat algorithm, the combined whale optimization algorithm, and other optimization and decision-making methods. The above-mentioned groups of articles are briefly described in this order in this book
    corecore