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1. Introduction

This Special Issue is a collection of some of the latest advancements in designing and
scheduling smart manufacturing systems. The smart manufacturing concept is undoubt-
edly considered a paradigm shift in manufacturing technology. This conception is part of
the Industry 4.0 strategy, or equivalent national policies, and brings new challenges and
opportunities for the companies that are facing tough global competition. Industry 4.0
should not only be perceived as one of many possible strategies for manufacturing compa-
nies, but also as an important practice within organizations. The main focus of Industry 4.0
implementation is to combine production, information technology, and the internet [1].
Therefore, an introduction of smart manufacturing systems is primarily associated with
the adaptation of the Internet of Things, cyber physical systems, artificial intelligence,
advanced robotics, cloud technology, and so forth. In particular, web technologies act as
enablers of smart manufacturing that can promote a disruptive innovation in small and
medium enterprises. However, some recent studies (see, e.g., [2–4]) have shown that pre-
existing managerial methods and philosophies such as lean manufacturing, reconfigurable
manufacturing systems, or cellular manufacturing systems are of utter importance for
the concept of smart manufacturing. In this context, manufacturing system design and
scheduling methods also play a vital role in the era of the fourth industrial revolution. It is
particularly evident from the link between Industry 4.0 and lean manufacturing that both
domains are strongly interrelated [5]. Thus, we hope that this Special Issue may be helpful
in solving the particular problems which are related to smart manufacturing systems and
advanced manufacturing technologies.

2. Description of the Papers

The presented Special Issue consists of ten research papers presenting the latest works
in the field. The papers include various topics, which can be divided into three categories—
(i) designing and scheduling manufacturing systems (seven articles), (ii) machining process
optimization (two articles), (iii) digital insurance platforms (one article). Most of the
mentioned research problems are solved in these articles by using genetic algorithms, the
harmony search algorithm, the hybrid bat algorithm, the combined whale optimization
algorithm, and other optimization and decision-making methods.

The above-mentioned groups of articles are briefly described in this order in the rest
of this editorial paper.

The paper written by J.S. Park, H.Y. Ng, T.J. Chua, Y.T. Ng, and J.W. Kim [6] presents
a novel genetic algorithm approach that utilizes a multiple chromosome scheme to solve
the flexible job-shop scheduling problem which involves two kinds of decisions—machine
selection and operation sequencing. This novel genetic algorithm approach enables the
application of an identical crossover strategy in the categorical and sequential parts. The
authors used this unified approach for the extension of the existing candidate order-based
genetic algorithm to the unified candidate order-based genetic algorithm to solve flexible
job-shop scheduling problems.
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The other paper titled “Calibration of GA parameters for layout design optimization
problems using design of experiments” [7] focuses on finding out how the solutions of
the cell formation problem are influenced by a set of probability parameters of genetic
operators, namely crossover and mutation, including balanced weight factors. In view
of this, the presented work attempts to employ the Taguchi approach to find an optimal
combination of parameters that impact the efficiency of the genetic algorithm and to explore
whether the optimal combination of the genetic operators for the given type of machine-cell
formation problems can be influenced by the magnitude of the noise factors.

The next paper [8] introduces a robust cluster algorithm based on the concept of
group technology. The paper is written by L.M. Li and its originality lies in its use of the
algorithm to balance an assembly line by matching operators to workstations so that the
line’s workstations achieve the same targeted output rates. It enables managers to solve the
problem of worker absences by assigning more than one operator with the required skillset
to each workstation and rearranging them as needed. This algorithm has been applied to
cellular manufacturing system problems. Four examples were presented to implement and
validate this algorithm, where training time was reduced by matching operators’ training
and skills according to the workstations’ skill requirements.

The paper written by L. Nagarajan, S.K. Mahalingam, S. Salunkhe, E.A. Nasr, J.P. Davim,
and H. Hussein [9] proposes a novel methodology for simultaneous minimization of manu-
facturing objectives in tolerance allocation of complex assembly tasks. The methodology
consists of a two-step process. For this purpose, a heuristic approach was applied to
determine the best machine for each process. Subsequently, it applies a combined whale
optimization algorithm with a univariate search method to allocate optimum tolerances
with the best process selection for each sub-stage/operation. The proposed methodology
was validated by solving two typical tolerance allocation problems of complex assemblies:
a wheel mounting assembly and a knuckle joint assembly. Authors also compared their
approach with existing ones. The comparison results showed that the proposed approach
considerably reduces tolerance cost and machining time.

The next paper which is authored by S.K Mahalingam, L. Nagarajan, S. Salunkhe,
E.A. Nasr, J.P. Davim, and H. Hussein aims to acquire the maximum number of non-
linear assemblies with closer assembly tolerance specifications by mating the different
bins’ components [10]. Their proposed approach is based on using the combination of the
univariate search method and the harmony search algorithm. The efficacy of the proposed
method is demonstrated by showing 24.9% of cost savings while making overrunning
clutch assembly in comparison with the existing method. Based on the obtained results
in this work, the contribution of the proposed novel methodology is legitimate in solving
selective assembly problems.

The originality of the following paper written by Zheng J. and Wang Y. [11] lies in
an application of the hybrid bat optimization algorithm, which is based on the variable
neighborhood structure, and two learning strategies to solve a three-stage distributed as-
sembly permutation flow shop scheduling problem (DAPFSP) with the aim to minimize the
makespan. The proposed algorithm is firstly designed to increase the population diversity
by classifying the populations which solves the difficult trade-off between convergence
and diversity of the bat algorithm. Secondly, a selection mechanism is used to update the
bat’s velocity and location, solving the difficulty of the algorithm trade-off of exploration
and mining capacity. For this purpose, the Gaussian learning strategy and elite learning
strategy assist the whole population in jumping out of the local optimal frontier. Based
on the obtained simulation results, this algorithm can solve the DAPFSP problem well. In
comparison with other metaheuristic algorithms, it provides better performance than the
compared ones; thus, it is suitable to find the optimal solution(s).

The brief overview of the further paper titled “A multi-criteria assessment of man-
ufacturing cell performance using the AHP method” [12] is as follows. It introduces the
solution for how to find the optimal manufacturing cell design from alternative designs
by using a multi-criteria evaluation. Alternative design solutions are mutually compared
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by using the selected performance criteria, namely operational complexity, production
line balancing rate, and makespan. Then, multi-criteria decision analysis based on the
analytic hierarchy process method is used to show that two more-cell solutions better
satisfy the determined criteria of manufacturing cell design performance than three less-cell
solutions. The main benefit of this approach lies in the exactly enumerated values of the
selected criteria, according to which the points from the mentioned scale are assigned to
the alternatives.

The first paper of the second group of articles is titled “Meta-heuristic technique-based
parametric optimization for electrochemical machining of Monel 400 alloys to investigate
the material removal rate and the sludge” [13]. The authors investigate in this work the
predominant electrochemical machining process parameters, namely applied voltage, flow
rate, and electrolyte concentration, and their effects on the performance measures, i.e.,
the material removal rate and the nickel presence. For this purpose, authors used a meta-
heuristic algorithm named as the grey wolf optimizer for the multi-objective optimization of
the process parameters for electrochemical machining. The obtained results were compared
with the moth–flame optimization and particle swarm optimization algorithms. Based on
the obtained results, it was observed that all the process variables significantly influenced
the objectives. Then, it is confirmed that these metaheuristic algorithms—the moth–flame
optimization algorithm and the grey wolf optimizer—are suitable for finding the optimum
process parameters for machining Monel 400 alloys with electrochemical machining.

The second paper of this group is named “Optimization of process parameters for turn-
ing Hastelloy X under different machining environments using evolutionary algorithms:
A comparative study” [14]. In their research, the authors investigated the machinability
of turning Hastelloy X with a PVD Ti-Al-N coated insert tool in dry, wet, and cryogenic
machining environments. The machinability indices, namely cutting force, surface rough-
ness, and cutting temperature, are studied for the different set of input process parameters
such as cutting speed, feed rate, and machining environment. They used the experiments
conducted as per L27 orthogonal array. The authors proposed the moth–flame optimization
to identify the optimal set of turning parameters through the multiple linear regression
models, in view of minimizing the machinability indices. The effectiveness of the proposed
algorithm is evaluated in comparison to the findings of genetic, Grass–Hooper, grey wolf,
and particle swarm optimization algorithms. Based on the obtained results, this algorithm
outperformed the others.

The last article in the given order is titled “Reflections on the customer decision-making
process in the digital insurance platforms: An empirical study of the Baltic market” [15].
It aims to expand upon the existing scientific knowledge of end-user behavioral patterns
and process frameworks in the Baltic insurance market, by including and examining
a factor group of technological enablers. This paper is focused on research results in
digitalization, personalization, and customization levels within the Baltic non-life insurance
market in Estonia. There are also three major factor groups and process stages identified
which influence insurance purchase decision-making in digital insurance platforms in the
Baltic market.

3. Conclusions

It is believed that the collection of the ten papers in this Special Issue will be beneficial
to readers who are interested in applying modern algorithms and methods for designing
and scheduling smart manufacturing systems and related problems. Although this Special
Issue has been closed, the current market challenges justify the need for an additional
in-depth research in this domain.

Author Contributions: Conceptualization, V.M. and Z.S.; formal analysis, V.M. and Z.S.; writing—
original draft preparation, V.M. and Z.S.; writing—review and editing, V.M. and Z.S. All authors
have read and agreed to the published version of the manuscript.
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Abstract: This paper proposes a novel genetic algorithm (GA) approach that utilizes a multichromo-
some to solve the flexible job-shop scheduling problem (FJSP), which involves two kinds of decisions:
machine selection and operation sequencing. Typically, the former is represented by a string of
categorical values, whereas the latter forms a sequence of operations. Consequently, the chromosome
of conventional GAs for solving FJSP consists of a categorical part and a sequential part. Since these
two parts are different from each other, different kinds of genetic operators are required to solve the
FJSP using conventional GAs. In contrast, this paper proposes a unified GA approach that enables the
application of an identical crossover strategy in both the categorical and sequential parts. In order to
implement the unified approach, the sequential part is evolved by applying a candidate order-based
GA (COGA), which can use traditional crossover strategies such as one-point or two-point crossovers.
Such crossover strategies can also be used to evolve the categorical part. Thus, we can handle the
categorical and sequential parts in an identical manner if identical crossover points are used for
both. In this study, the unified approach was used to extend the existing COGA to a unified COGA
(u-COGA), which can be used to solve FJSPs. Numerical experiments reveal that the u-COGA is
useful for solving FJSPs with complex structures.

Keywords: flexible job-shop scheduling problem; combinatorial optimization; genetic algorithm;
candidate order-based genetic algorithm; multichromosome

1. Introduction

Production scheduling is one of the most important decision-making procedures
on manufacturing shopfloors, as it helps to utilize resources efficiently and maintain
competitiveness in manufacturing companies [1–3]. Most production scheduling problems
are NP-hard combinatorial optimization problems such that the optimal schedules are
hard to find in polynomial time [4]. In this context, metaheuristic algorithms that can be
used to find near optimal schedules in practical time are popular in production scheduling
literature [5]. Examples of metaheuristic algorithms for solving production scheduling
problems are the genetic algorithm (GA) [6], tabu search (TS) [7], simulated annealing
(SA) [8], and particle swarm optimization (PSO) [9].

This paper aims to develop a novel GA for solving the flexible job-shop scheduling
problem (FJSP). The classical job-shop scheduling problem (JSP) is one of the most well-
known production scheduling problems. It consists of m machines and n jobs. A job
contains a number of operations to be processed in a fixed order. In the JSP, each operation
can be processed by one specific machine [10,11]. The FJSP is an extension of the classical
JSP, which allows an operation to be processed by one of two or more machines. In other
words, an operation is processed by one of alternative machines in the FJSP [12]. Since
a machine for a specific operation is predetermined, the JSP can be solved by specifying

Appl. Sci. 2021, 11, 6454. https://doi.org/10.3390/app11146454 https://www.mdpi.com/journal/applsci5
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the priorities of given operations such that a high-priority operation precedes others with
lower priorities in the queue for given machines. Thus, the JSP can be regarded as a
sequencing problem [13,14]. In comparison with the JSP, the FJSP requires an additional
decision related to which machine is used to process a specific operation. Consequently,
two kinds of decisions, i.e., operation sequencing and machine selection, are required to
solve the FJSP [1].

GA has been a popular metaheuristic algorithm for solving the JSP and FJSP in recent
decades [10–12,15]. In order to apply GA, a solution of the given problem must be encoded
in the form of a string, known as a chromosome [6]. One issue is that a chromosome for the
FJSP must consist of two subchromosomes to account for the operation sequence (OS) part
and the machine selection (MS) part. In other words, existing GAs for the FJSP are based
on a multichromosome. Typically, the MS part is represented by a string of categorical
values, whereas the OS part forms a sequence of given operations. Since the MS and OS
parts have quite different structures, it is difficult to apply an identical genetic operator
to both of them. Consequently, the MS and OS parts are separately evolved by different
kinds of genetic operators in existing GAs for the FJSP. This traditional approach has the
following limitations: First, it makes the GA hard to implement since different kinds of
genetic operators should be applied. In particular, crossover operators for sequencing
problems are a lot more complicated than simple one-point or two-point crossovers [16].
Second, there is no correlation between the order and machine in a single operation. In
other words, the evolution of the MS part occurs independently from that of the OS part.
Assume that an operation has the optimal order and is assigned to the optimal machine in
a chromosome. Then, it is desirable that this combination of order and machine should also
be maintained in the chromosome’s offspring, which is hard to achieve using the traditional
approach. Consequently, the traditional approach can cause a loss of good combinations in
chromosomes and unnecessary diversity in the population. To this end, this paper poses
two research questions: how can we reduce the number of genetic operators in the GA for
the FJSP, which will have a significant impact on the complexity of the GA? Can the GA
with a reduced number of genetic operators, designed to maintain good combinations of
OS and MS genes, deal with the FJSP effectively?

In order to overcome the limitations of the traditional approach, this paper proposes
a novel unified GA approach for the FJSP, which enables the application of an identical
crossover operator to both the OS and MS parts. The main idea of the proposed approach
is to apply a candidate order-based GA (COGA) based on an identical crossover point to
both the OS and MS parts. The COGA is a type of GA developed for solving sequenc-
ing problems. The most distinguished feature of the COGA is that simple point-based
crossover strategies, including one-point and two-point and uniform crossovers, can be im-
plemented [14]. This enables the application of an identical point-based crossover strategy
with an identical crossover point to the OS and MS parts, which may help to maintain the
combinations of good order and good machine in parent solutions.

The remainder of this paper is organized as follows: In Section 2, a literature review
concerning the GA for the FJSP and COGA is provided. Section 3 outlines the concept
of the unified GA approach, and procedures and genetic operators of the unified COGA
(u-COGA) are introduced. Section 4 presents the experimental results obtained by applying
the u-COGA to various benchmark FJSPs. Finally, Section 5 concludes the paper.

2. Research Background

2.1. Genetic Algorithm for Solving the Flexible Job-Shop Problem

FJSP is a well-known extension of the JSP, a classical production scheduling problem.
During the past decades, GAs have been widely used to solve production scheduling
problems, such as the JSP and FJSP [15]. Typically, a GA chromosome for the JSP contains
only OS-type genes, since a solution for the JSP can be generated using a sequence of given
operations [10,11,13,17]. In contrast, a GA chromosome for the FJSP typically consists of
two types of genes: MS genes and OS genes, which are manipulated by applying different
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kinds of genetic operators. Genetic operators adopted by previous research papers on the
GA for the FJSP are summarized in Table 1.

Gao et al. [18] used extended order crossover (OX) and uniform crossover for the OS
and MS parts, respectively. Furthermore, the authors proposed two kinds of mutation
operators: random alternative for the MS part and immigration for the OS part.

In Pezzella et al. [19], the MS part is manipulated by assignment crossover and two
mutation operators: random alternative mutation and greedy mutation. Assignment
crossover is designed to exchange machine assignment information for certain operations.
In other words, only some of the MS genes in a chromosome participate in a single assign-
ment crossover. Random alternative mutation is used to assign an operation to a machine
randomly chosen from the set of all alternative machines that process the operation. On the
contrary, greedy mutation assigns an operation assigned to the machine with the maximum
workload to the machine with the minimum workload. On the contrary, precedence pre-
serving order-based crossover (POX) and precedence preserving shift (PPS) mutation were
applied to the OS part. Pazzella et al. [19] used a GA with the aforementioned operators to
minimize the makespan of FJSP. Moreover, Defersha and Chen [20] utilized a similar GA
for the purpose of minimization of the makespan of the FJSP with sequence-dependent
setup times.

Lei [21] applied the GA to solve the FJSP with fuzzy processing times. A two-point
crossover operator was adopted for the MS part, whereas two kinds of sequencing crossover
operators, i.e., generalized position crossover (GPX) and generalization of the precedence
preservative crossover (GPPX), were used to recombine the genes in the OS part. Swap
mutation was used to randomly modify the OS part; however, the GA in Lei [21] did not
contain the mutation procedure for the MS part.

Wang et al. [22] applied multipoint preservative crossover (MPX) to the MS part and
improved precedence operation crossover (IPOX) to the OS part. They used random alter-
native mutation and greedy mutation to randomly modify the MS part in the chromosome.
The authors proposed a greedy mutation operator designed to assign an operation to a
machine that provides the shortest processing time (SPT). For the OS part, conventional
insertion mutation was adopted.

Zhang et al. [1] used classical two-point crossover and uniform crossover operators to
recombine the genes in the MS part of parent solutions, while the genes in the OS part are
recombined using preserving order-based crossover (POX). As in Wang et al. [22], the genes
in the MS part are mutated by greedy mutation based on an SPT machine. In contrast, the
mutation for the OS part is performed by applying swap mutation.

Jiang and Du [23] used two-point crossover for the MS part and POX for the OS part.
The mutation operations for the MS part and OS part were random alternative and swap
mutation, respectively.

Türkyılmaz and Bulkan [24] adopted three types of crossover operators for solving
the FJSP. Uniform crossover was used to perform the crossover operation for the MS part,
while two variations of POX, modified-1 POX (MPX1), and modified-2 POX (MPX2), were
applied to the OS part. The mutation operators for the MS part and the OS part were
random replace and swap mutation, respectively.

Zhang et al. [25] used two-point crossover for the MS part and POX for the OS part.
In order to maintain diversity in the population, the authors applied greedy mutation
based on an SPT machine to the MS part. Moreover, they introduced a local search-based
mutation operator called the adaptive neighbor search method for the mutation of the
genes in the OS part.

Table 1 shows that the minimization of the makespan is the most popular objective
function in the FJSP literature. This paper also considers minimization of the makespan of
the FJSP. In addition, all of the previous research papers utilized a multichromosome that
contains the MS and OS parts, which is also the case in this paper.

Most of the relevant research papers applied different crossover operators to the OS
and MS parts of the FJSP multichromosome. Various previous research papers applied a
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GA with a single crossover operator to the FJSP [26–28]. However, they typically focused
on one of the OS and MS parts, and details of the other part are missing. In such papers,
the issue of genetic operators for the multichromosome was not discussed appropriately.
In contrast, this paper applies a single crossover operator to the OS and MS parts in an
evident manner.

Table 1. Existing GAs for solving the FJSP.

Researchers
Chromosome

Structure
Crossover Mutation Objective

Gao et al. [18] MS + OS MS: uniform
OS: extended OX

MS: random alternative
OS: immigration

Min. makespan,
Min. maximal

machine workload,
Min. total workload

Pezzella et al. [19] MS + OS MS: assignment
OS: POX

MS: random alternative,
greedy (min. workload)

OS: PPS
Min. makespan

Defersha and
Chen [20] MS + OS MS: assignment

OS: POX

MS: random alternative,
greedy (min. workload)

OS: PPS
Min. makespan

Lei [21] MS + OS MS: two-point
OS: GPX, GPPX

MS: N/A
OS: swap

Min. Maximum fuzzy
completion time

Wang et al. [22] MS + OS MS: MPX
OS: IPOX

MS: random alternative,
greedy (SPT machine)

OS: insertion

Min. makespan,
Min. total workload

of machines,
Min. critical

machine workload

Zhang et al. [1] MS + OS MS: two-point, uniform
OS: POX

MS: random alternative,
greedy (SPT machine)

OS: swap
Min. makespan

Jiang and Du [23] MS + OS MS: two-point
OS: POX

MS: random alternative
OS: swap Min. makespan

Türkyılmaz and
Bulkan [24] MS + OS MS: uniform

OS: MPX1, MPX2
MS: random alternative

OS: swap Min. total tardiness

Chang et al. [29] MS + OS MS, OS: two-point,
uniform

MS: random alternative
OS: neighborhood search Min. makespan

Chen et al. [30] MS + OS + TC MS, TC: two-point
OS: POX

MS: random alternative
TC: swap
OS: shift

Min. average earliness
and tardiness

Driss et al. [31] MS + OS MS: uniform
OS: POX

MS, OS:
values mutation Min. makesapn

Ishikawa
et al. [32] MS + OS MS: uniform

OS: POX
MS: random alternative

OS: inversion Min. makespan

Wang et al. [33] MS + OS MS: two-point
OS: POX

MS: shift
OS: swap Min. makespan

Zhang et al. [25] MS + OS MS: two-point
OS: POX

MS: greedy (SPT machine)
OS: adaptive neighborhood

search

Min. makespan,
Min. total setup time,

Min. total
transportation time

This paper MS + OS
MS, OS: COGO

(one-point, two-point,
uniform)

MS: random alternative
OS: COGO Min. makespan
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Certain research papers developed GA hybrid solution methods and other algorithms
for solving the FJSP, which are not considered in Table 1. Similar to the GAs in Table 1,
almost all of the hybrid methods also adopted different genetic operators to handle the MS
and OS parts.

The most important GA feature proposed in this paper is that crossover operations for
both the MS and OS parts are performed by applying an identical operator: the candidate
order-based genetic operator (COGO) provided by COGA. This can help to maintain a
combination of a good MS gene and a good OS gene in a single operation during the search
procedure. Moreover, we can see that the mutation for the OS part is also performed using
the COGO. Note that the original version of the COGO is an integrated genetic operator,
which can be used for the purposes of both crossover and mutation [14]. Consequently,
the u-COGA for the FJSP can be developed by using only two kinds of genetic operators:
the COGO and a mutation operator for the MS part. In other words, the structure of the
u-COGO is simpler than that of previous GAs for the FJSP.

2.2. Candidate Order-Based Genetic Algorithm

The COGA is a type of GA that is based on the candidate order approach (COA). The
main idea of the COA is to generate a feasible sequence of given items by appending one
item at a time. Moreover, which item to append is chosen from a set of candidates; an item
is a candidate if it is not appended to the sequence under construction and no constraints
are violated after its appending [34]. COA can be used to develop metaheuristic algorithms
for solving the sequencing problem.

The first example of a COA application is the COGA for solving the classical JSP
(Kim, 2014). As a result of its flexibility, the COGA is quite effective for solving sequenc-
ing problems with additional constraints. Kim [14] applied the COGA to solve the job
sequencing problem and the traveling salesman problem with precedence constraints. Kim
and Kim [35] developed COGA for solving a variant of shortest path problem. Another
important benefit of COA is that it can be integrated with various metaheuristic algorithms.
For instance, Kim [34] developed a candidate order-based tabu search (COTS) for solving
the job sequencing problem with precedence constraints. Kim and Kim [36] introduced the
concept of the latest order constraint and applied COTS to solve the latest order constrained
sequencing problem.

Typically, metaheuristic algorithms for solving sequencing problems have complex
structures. However, COA-based metaheuristic algorithms are easier to implement than
conventional metaheuristic algorithms. In particular, the COGA provides a distinguishing
genetic operator called COGO, which has two important features. First, the COGO enables
the application of simple point-based crossover strategies to sequencing problems, includ-
ing one-point, two-point, and uniform strategies. Thus, both crossover operations for the
MS and OS parts in a GA chromosome for the FJSP can be performed using the COGO.
Second, the COGO also can be used to mutate a GA chromosome for the sequencing
problem. The COGO generates a feasible sequence of given items in a constructive manner,
which means a sequence is obtained by iteratively appending one item at a time. The item
to be appended is chosen from a set of candidates. The objective of crossover, which is to
create offspring similar to the parents, can be achieved by choosing an item with an earlier
reference position. Note that the reference position of an item is its order in the parent
solution. In contrast, the COGO performs the mutation by choosing an item with a later
reference position, since the objective of the mutation is to create offspring dissimilar to the
parents [14].

The main contributions of this paper are as follows. Firstly, we can implement the GA
for solving the FJSP with only two genetic operators: the COGO and an additional operator
for the mutation of the MS part. In other words, the u-COGA is easier to implement than
previous GAs for the FJSP. Secondly, various kinds of crossover strategies, such as one-
point, two-point, and uniform strategies, can be applied to the u-COGA. Thirdly, numerical
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experiments reveal that uniform crossover is the best crossover strategy for the u-COGA
for the FJSP.

3. Unified Candidate Order-Based Genetic Algorithm

3.1. Existing GAs for the FJSP

Table 2 provides an example of the FJSP with three jobs (J1, J2, and J3) and three
machines (M1, M2, and M3). Each job consists of two operations that should be processed
in sequence, and jth operation of Ji (i = 1, 2, 3) is denoted by oij. An operation is processed
by one of its alternative machines. For example, o11 has three alternative machines (M1, M2,
and M3). Different alternative machines can have different processing times for a single
operation. In Table 2, M2 is the SPT machine for o11 such that its processing time is shorter
than other machines. In contrast, o12 has only two alternative machines (M2 and M3), since
M1 is not available for this operation.

Table 2. An example of the FJSP.

Job Operation
Processing Time

M1 M2 M3

J1
o11 4 3 5

o12 N/A 6 8

J2
o21 10 N/A 8

o22 5 6 4

J3
o31 7 10 N/A

o32 3 4 5

In order to create a schedule for the FJSP, two kinds of decisions are needed. First, each
operation should be assigned to one of its alternative machines. Second, operations should
be sequenced. Typically, GAs for the FJSP utilize a multichromosome that consists of the
OS part and the MS part for representing the operation sequence and machine assignment,
respectively. An example of a multichromosome for the FJSP is shown in the upper part of
Figure 1. Let MS

(
oij
)

denote the machine to be used to process oij. It is clear that MS
(
oij
)

must be an element of a set of alternative machines for oij.

Figure 1. Decoding the multichromosome representation for the FJSP.

In this paper, a sequence of operations indicates the assignment orders. Let OS
(
oij
)

denote the order of oij in a sequence of given operations. Note that the encoding scheme for
the OS part is the position listing representation, in which each gene specifies an order of
the associated item. Thus, the OS part in Figure 1 can be converted into a sequence of given
operations, 〈os11, os12, os21, os31, os32, os22〉. An operation oab is scheduled prior to ocd if
OS(oab) < OS(ocd). For instance, o11 is the first operation to be scheduled in the Gantt chart
in the lower part of Figure 1, since OS(o11) = 1. Moreover, we can start o11 at time t = 0.
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The order of given operations, OS
(
oij
)
s, must satisfy the precedence relationships among

operations within a single job. In other words, OS
(
oij
)

must be smaller than OS(oik) if j < k.
In Figure 1, o12 is the second operation (OS(o12) = 2) of a job and its start time is 4, because
we can start o12 after its predecessor, o11, is completed. Valid MS

(
oij
)

and OS
(
oij
)

values
yield a feasible schedule for the FJSP, which can be represented in the form of a Gantt chart,
as shown in Figure 1.

The crossover operation is the “backbone” of the GA, and crossover operators are
designed to generate two offspring solutions by recombining the genes of two parent solu-
tions. The offspring solutions inherit the features of their parents. In other words, crossover
operators should generate offspring solutions similar to their parents. However, this is
difficult to achieve when solving the FJSP by applying a GA based on a multichromosome.

An example of a crossover operation of the existing GA for the FJSP is illustrated
in Figure 2. Consider two parent solutions, P1 and P2, in panel (a) in Figure 2. Typically,
existing GAs for the FJSP apply different kinds of crossover operators to the OS and MS
parts of parent solutions. In panel (b) in Figure 2, POX and classical one-point crossover are
applied to the OS and MS part, respectively. POX is a well-known crossover operator for
sequencing problems. In panel (b), the OS parts of the solutions are represented in the form
of a sequence of operations, in order to apply POX. Job set 1 indicates that an operation
oij has an identical position OS

(
oij
)

in both Px and Cx (x = 1, 2) if it belongs to J3, where
Cx denotes an offspring solution. In contrast, job set 2 means C1 (C2) inherits precedence
relationships among operations of J1 and J2 from P2 (P1).

Figure 2. An example of crossover for an existing GA for solving the FJSP.

The one-point crossover operator divides a chromosome into two subparts, i.e., the
earlier part and later part, and generates C1 (C2) by combining the earlier part of P1 (P2) and
the later part of P2 (P1). Panel (c) in Figure 2 shows a multichromosome representation of C1
and C2, obtained by applying POX and one-point crossover. Similarly, most existing GAs
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for solving the FJSP use different crossover operators to recombine the multichromosome,
which consists of the OS and MS parts.

In Figure 2, we can see that the OS part and MS part evolve separately. That is, the
crossover procedure of the OS part is not correlated with that of the MS part. In this context,
the traditional approach based on two different crossover operators is called the separate
evolution strategy in this paper. This strategy has a critical limitation, i.e., a combination of
the OS gene and MS gene for an identical operation can be easily broken. For instance, o31
has two associated genes: OS(o31) and MS(o31). For P1 in panel (a) in Figure 2, OS(o31) = 1
and MS(o31) = M2. If these two genes indicate the optimal assignment order and machine
for o31, the combination of OS(o31) = 1 and MS(o31) = M2 should be preserved during the
crossover procedure. However, this combination is not found in offspring solutions C1 and
C2 in panel (c) in Figure 2. In more detail, OS(o31) of P1 is inherited to C1, whereas MS(o31)
of P1 is inherited to C2. The u-COGA proposed in this paper is designed to overcome the
limitation of the traditional separate evolution strategy for the FJSP.

3.2. Crossover of Unified COGA

This section outlines crossover procedure of the u-COGA. The COGO enables the
application of simple crossover strategies to sequencing problems, such as one-point, two-
point, and uniform crossovers. Thus, a solution of the FJSP is converted into a sequence of
operations in order to apply the COGO, as shown in Figure 3. Note that an operation in
the FJSP has an additional attribute, MS

(
oij
)
, as shown in panel (b) in Figure 3.

Figure 3. Reference set assignment for parent solutions in the form of a sequence.

The COGO generates a solution in a constructive manner, which means that one
operation is appended to a new solution at a time. An operation to be appended to a specific
position is chosen with consideration of the reference solution, one of the parent solutions.
Thus, the COGO determines the reference solution for each position in a sequence before
generating a new solution. An important feature of the COGO is that simple crossover
strategies can be used to determine reference solutions. In panel (b) in Figure 3, each
sequence is divided into two parts, i.e., the earlier part with the first two operations and
later part with the other four operations, by adopting the conventional one-point crossover
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strategy. We can see that P1 (P2) and P2 (P2) are used as reference solutions for the earlier
part and later part of C1 (C2), respectively.

An operation to be used as the pth position of a new solution is determined after the
p − 1th operation is appended. An operation to be the pth operation is chosen from a set of
candidates; an operation is a candidate if and only if it has not been appended to the new
solution under construction and no constraints are violated by appending the operation
to the pth position. The main idea of the COGO is that the objectives of crossover and
mutation can be achieved by choosing the appropriate operation from the set of candidates.

Figure 4 illustrates a procedure for generating the earlier part of C1, an offspring of
P1 and P2 in Figure 3. Let RP

(
oij, X

)
denote the reference position of an operation oij in

a solution X. In other words, oij is the RP
(
oij, X

)
th operation in X. The main idea of

the COGO is that the objectives of crossover and mutation can be achieved by choosing
candidates with the smallest and the largest reference position values, respectively. For
the first position in C1, all operations are candidates, since no operation is appended to C1,
yet. Among the candidates, an operation with the smallest reference position regarding
P1, o31 is chosen as the first operation. Similarly, o11 is appended to the second position in
C1. Note that MS

(
oij
)
s of the offspring are inherited from the associated reference solution.

That is, MS(o31) and MS(o11) of C1 are the same as those of P1.

Figure 4. Generating the earlier part of the offspring solution.

Figure 5 shows the crossover procedure for the later part of C1, where P2 is used as the
reference solution. We can see that the positions of o12, o21, o22, and o32 in the later part of
C1 are different from those of P2. Nevertheless, the precedence relationships among them
in P2 are also maintained in C1. Moreover, MS

(
oij
)
s of the operations in the later part are

inherited from P2. Consequently, C1 inherits from both P1 and P2. Since the MS
(
oij
)

value
of the reference solution is maintained in the offspring solution, the crossover procedure
described in Figures 3–5 helps to preserve a combination of the OS and MS genes.

In contrast, the mutation operation for the pth position of a new solution is performed
by choosing a candidate with the largest reference position in the COGO procedure. That
is, crossover and mutation are integrated in the COGO. Assume that oij is the candidate
with the largest reference position for the pth position of a new solution chosen by the
COGO in mutation mode. Then, OS

(
oij
)

of the new solution is likely to be dissimilar to
that of the reference solution. However, MS

(
oij
)

is not affected by the mutation procedure
provided by the COGO. Hence, we need an additional mutation operator for MS

(
oij
)
, and
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this paper applies random alternative mutation to the MS part of the multichromosome for
the FJSP.

 
Figure 5. Generating the later part of the offspring solution.

3.3. Initialization, Fitness Function, Selection, and Elitism

Population initialization is the first step in the GA. Population can be defined as a set
of chromosomes. There are several ways to initialize the population in the GA; however,
the solutions in the initial population are randomly generated in this paper.

The fitness function of the GA is an objective function that needs to be maximized. In
order to minimize the makespan of the FJSP, we use the reciprocal of the makespan as the
fitness function of the u-COGA.

Selection is the procedure of creating a mating pool by copying the solutions in the
current generation. The goal of the selection procedure is to choose the solutions with
higher fitness values with larger probabilities. In this paper, we use conventional roulette
wheel selection, in which a solution in the current population is chosen with a probability
proportional to its fitness value.

Furthermore, the elitism strategy is applied to the u-COGA proposed in this paper.
This strategy ensures that the best solutions in the current generation are also included in
the mating pool. In other words, the elitism strategy helps to prevent desirable features
of solutions being lost during the search procedure. Consequently, some solutions in the
mating pool are determined by the elitism strategy, while the others are chosen by the
roulette wheel selection procedure.

4. Numerical Experiments

In this paper, the u-COGA was written in Java language and was tested in a Windows
10 (64-bit) environment with an AMD Ryzen 7 2700X eight-Core processor (3.7 GHz) and
32 GB memory. The performance of the u-COGA was evaluated using the benchmark
problems for the FJSP provided by the well-known Hurink library [37]. Depending on the
average number of alternative machines for each operation, benchmark problems in the
Hurink library are divided into three groups: eData, rData, and yData, as listed in Table 3.
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Table 3. Groups of benchmark problems in the Hurink library.

Data Group Description

eData Few operations can be assigned to more than one machine (Low Complexity)
rData Most of the work can be assigned to some machines (Moderate Complexity)
yData Each operation can be assigned to several machines (High Complexity)

Benchmark problems from each data group are summarized in Table 4, where n is
the number of operations, m is the number of machines, and Mij is a set of alternative
machines for an operation oij. Moreover, Avg

∣∣Mij
∣∣ and Max

∣∣Mij
∣∣ indicate the average and

the maximum size of Mij, respectively. Each data group contains three instances, and the
instances of the yData group have the most complex structures, in that they generally have
Avg

∣∣Mij
∣∣ and Max

∣∣Mij
∣∣ larger than the other groups. On the contrary, eData contains the

simplest instances.

Table 4. Benchmark problem instances.

Data Group Instance n m Avg|Mij| Max|Mij|

eData
mt06 6 6

1.15
2 (m ≤ 6 )
3 (m ≥ 10 )

mt10 10 10
mt20 20 5

rData
mt06 6 6

2 3mt10 10 10
mt20 20 5

vData
mt06 6 6

1
2 m 4

5 mmt10 10 10
mt20 20 5

As shown in Table 5, we applied three types of u-COGA, SS, TT, and UU to the
benchmark problems in Table 4. The symbols ‘S’, ‘T’, and ‘U’ indicate one-point, two-point,
and uniform crossover, respectively. In addition, the first and second symbols in ‘type’
indicate the crossover strategies for the OS part and MS part, respectively. For example,
the first type of u-COGA, i.e., SS, applies the one-point crossover strategy to both the OS
and MS parts.

Table 5. Types of crossover operators applied to the existing GA and u-COGA.

u-COGA Existing GA

Type OS MS Type OS MS

SS One-point One-point PS POX One-point

TT Two-point Two-point PT POX Two-point

UU Uniform Uniform PU POX Uniform

For comparison, the existing GA was also applied to the benchmark problems. The
existing GA uses POX to recombine the OS parts of the chromosomes, while crossover for
the MS part is performed in a one-point, two-point, and uniform manner. Thus, we have
three types of existing GAs: PS, PT, and PU, as shown in Table 5.

The experiment results obtained by applying the u-COGA and the existing GA are
summarized in Tables 6–8, where 20 experimental repetitions were performed for each case.
Cmax and SD(Cmax) are the average makespan and standard deviation of the makespan,
respectively. The six types of GAs applied to a single benchmark problem instance are
ranked in ascending order of Cmax. For instance, TT and PS are the best and worst algo-
rithms for the mt06 instance of eData in Table 6, respectively. All experimental results were
obtained with a population size = 50, a crossover rate = 0.8, and a mutation rate = 0.01. In

15



Appl. Sci. 2021, 11, 6454

addition, the elitism policy was used to preserve the five best solutions in the previous
generation. A single experiment was terminated when its iteration number reached the
maximum iteration limit = 300.

Table 6. Experiment results for eData.

eData 6 × 6 (mt06)

Algorithm
Existing GA u-COGA

PS PT PU SS TT UU

Cmax 49.95 50.3 50.85 49.05 48.9 47.9
SD(Cmax) 1.43 1.72 1.93 1.67 1.48 1.33

Rank 4 5 6 3 2 1

eData 10 × 10 (mt10)

Algorithm
Existing GA u-COGA

PS PT PU SS TT UU

Cmax 1094.7 1090.1 1093.9 1078.8 1085 1050.85
SDCmax 24.67 27.93 22.59 27.67 28.19 22.64

Rank 6 4 5 2 3 1

eData 20 × 5 (mt20)

Algorithm
Existing GA u-COGA

PS PT PU SS TT UU

Cmax 1134.15 1135.15 1134.75 1074.2 1101.9 1097.4
SD(Cmax) 42.50 33.31 44.20 62.89 33.86 41.03

Rank 4 6 5 1 3 2

Table 7. Experiment results for rData.

rData 6 × 6 (mt06)

Algorithm
Existing GA u-COGA

PS PT PU SS TT UU

Cmax 49.45 48 47.9 48.25 47.85 47.25

SD(Cmax) 1.79 1.56 1.51 1.74 1.53 1.74

Rank 6 4 3 5 2 1

rData 10 × 10 (mt10)

Algorithm
Existing GA u-COGA

PS PT PU SS TT UU

Cmax 997.95 1008.15 1002.05 996.35 997.8 962.2

SD(Cmax) 28.14 23.04 19.33 29.50 25.35 26.02

Rank 4 6 5 2 3 1

rData 20 × 5 (mt20)

Algorithm
Existing GA u-COGA

PS PT PU SS TT UU

Cmax 1090.1 1091.1 1083.35 1090.3 1074.9 1056.55

SD(Cmax) 41.07 41.74 37.27 34.45 36.89 31.46

Rank 4 6 3 5 2 1
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Table 8. Experiment results for vData.

vData 6 × 6 (mt06)

Algorithm
Existing GA u-COGA

PS PT PU SS TT UU

Cmax 48 47.8 48.1 48.45 47.45 46.9

SD(Cmax) 2.10 1.40 1.29 1.82 1.67 1.62

Rank 4 3 5 6 2 1

vData 10 × 10 (mt10)

Algorithm
Existing GA u-COGA

PS PT PU SS TT UU

Cmax 945.35 938.45 933 934.15 940.6 920.25

SD(Cmax) 21.61 19.22 27.08 26.31 23.86 22.73

Rank 6 4 2 3 5 1

vData 20 × 5 (mt20)

Algorithm
Existing GA u-COGA

PS PT PU SS TT UU

Cmax 1074.8 1068.85 1072.5 1055.05 1053.2 1054.55

SD(Cmax) 28.81 31.23 31.61 30.82 33.71 27.59

Rank 6 4 5 3 1 2

Tables 6–8 provide the following observations. First, u-COGAs generally produce
shorter makespan values than existing GAs, which indicates that the u-COGA is a promis-
ing approach for solving the FJSP. Second, for seven out of nine instances in Tables 6–8,
two instances (mt06 and mt10) of eData, three instances (mt06, mt10, and mt20) of rData,
and two instances (mt06 and mt10) of vData, the shortest makespan values were found by
the UU-type u-COGA. In other words, uniform crossover was the best crossover strategy
for minimizing the makespan of the FJSP. The performances of SS- and TT-type u-COGAs
were not as good as that of the UU-type. Third, excepting one benchmark problem instance,
i.e., mt06 of vData in Table 8, the worst makespan value for each instance was obtained by
one of the existing GAs, which reveals the limitation of the separate evolution strategy for
solving the FJSP. In particular, PS- and PU-type GAs produced the worst makespan values
for four instances and three instances, respectively. Finally, the u-COGA and existing GA
did not demonstrate significant differences in SD(Cmax) values.

Table 9 shows the average rank of the algorithms listed in Table 5. Again, we can see
that the UU-type u-COGA has the smallest average rank, which means that it generally
produces a shorter makespan than the other algorithms. In contrast, the average ranks
of the individual existing GAs are larger than those of the u-COGAs. Consequently, the
average rank of all u-COGAs (2.33) is noticeably smaller than that of all existing GAs (4.63),
and we can conclude that the unified evolution strategy of the u-COGA helps to find better
solutions for the FJSP.

Table 9. Average ranks of the algorithms.

Algorithm
Existing GA u-COGA

PS PT PU SS TT UU

Rank
4.89 4.67 4.33 3.33 2.56 1.11

4.63 2.33
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Table 10 compares the best makespan of the existing GAs and u-COGAs. For instance,
the best makespan for the existing GAs for mt20 of vData is 1068.85, while the best
makespan for a u-COGA for the same instance is 1053.20, as shown in Table 8. Moreover,
the reduction ratio in Table 10 was calculated as follows: (the best makespan of the existing
Gas—the best makespan of u-COGAs)/(the best makespan of the existing GAs). This index
was used to measure how much improvement was achieved by the u-COGA.

Table 10. Comparison of the best makespan obtained by the existing GAs and u-COGAs.

eData rData vData

ALGORITHM Existing GA u-COGA ReductionRatio (%) Existing GA u-COGA ReductionRatio (%) Existing GA u-COGA ReductionRatio (%)

MT06 49.95 47.9 4.10 47.9 47.25 1.36 47.8 46.9 1.88
MT10 1090.1 1050.85 3.60 997.95 962.2 3.58 933 920.25 1.37
MT20 1134.15 1074.2 5.29 1083.35 1056.55 2.47 1068.85 1053.2 1.46

In Table 10, we can see that the u-COGA always produces better solutions for the
FJSP than the existing GA. The reduction ratio values range from 1.36% to 5.29% (average
reduction ratio = 2.79%). That is, the existing GA sometimes demonstrates a similar
performance to the u-COGA; however, the u-COGA generally produces superior results
for the FJSP.

5. Conclusions and Further Remarks

In order to apply the GA to solve a combinatorial optimization problem, a solution
of the problem must be represented in the form of a chromosome comprising a number
of genes. A solution for the classical JSP can be encoded using only OS-type genes. In
contrast, a solution for the FJSP is typically represented in the form of a multichromosome,
which consists of the OS and MS parts. Since the structures of the OS and MS parts are
quite different, existing GAs generally apply different kinds of genetic operators to them.
Consequently, the evolution procedures of the two parts are independent from each other,
and a combination of OS and MS genes for an identical operation is easily broken during
the search procedure. Moreover, the application of different kinds of crossover operators
can make the GA complex and hard to implement and maintain. In order to overcome
these problems, this paper proposes the u-COGA, which can be used to solve the FJSP.

The u-COGA utilizes an integrated genetic operator called the COGO to handle
the multichromosome for the FJSP. The COGO enables the application of conventional
crossover strategies, such as one-point, two-point, and uniform crossovers to the OS part.
The u-COGA is designed to apply an identical crossover strategy to both the OS and MS
parts. Moreover, the COGO generates a new sequence of given operations by choosing
one operation at a time, which is suitable for the purposes of crossover and mutation. In
order to perform the crossover operation, the COGO chooses a candidate with the smallest
reference position. On the contrary, the mutation operation is performed by choosing a
candidate with the largest reference position. In other words, the COGO of the u-COGA
is used to perform three operations: crossover for the OS part, crossover for the MS part,
and mutation for the OS part. Mutation for the MS part should be performed in a different
manner, and random alternative mutation is used in this paper. Consequently, crossover
and mutation are performed using two genetic operators: the COGO and mutation operator
for the MS part in the u-COGA. Note that four different kinds of operators, i.e., crossover
for the OS part, crossover for the MS part, mutation for the OS part, and mutation for
the MS part, are required to implement the existing GAs for the FJSP. In other words, the
COGO enables one to solve the FJSP using a GA with a simpler structure.

In order to evaluate performance of the u-COGA, numerical experiments were per-
formed using an FJSP benchmark problem library. The experiment results reveal that the
performance of the u-COGA is generally superior to that of the existing GAs in terms of
the makespan. In more detail, the u-COGA improves the makespan values for the FJSP by
about 2.79%. Notably, the best solution for a benchmark problem instance was generally
found using the u-COGA based on the uniform crossover strategy. In contrast, the worst
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solution was generally found by one of the existing GAs. This means that the u-COGA can
explore the search space of the FJSP more effectively, and we can conclude that the GA for
the FJSP should contain procedures for maintaining good combinations of good OS and
MS genes; thus, the u-COGA is a promising approach for solving complex combinatorial
optimization problems.

The authors propose three directions for future research on the u-COGA. First, this
paper only considered one objective function, which is the minimization of the makespan.
Thus, u-COGA performance regarding other objective functions should be investigated.
Second, the primary advantage of the original version of the COGA is that it can flexibly
handle additional constraints, such as precedence or position-related constraints. In this
regard, in future research, we plan to apply the u-COGA to the FJSP with additional
constraints. Third, it is expected that the u-COGA can help to solve other combinatorial
optimization problems such that solutions have to be represented in the form of a multi-
chromosome. Therefore, the authors will attempt to apply the u-COGA to combinatorial
optimization problems in various other fields.
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Abstract: In manufacturing-cell-formation research, a major concern is to make groups of machines
into machine cells and parts into part families. Extensive work has been carried out in this area
using various models and techniques. Regarding these ideas, in this paper, experiments with varying
parameters of the popular metaheuristic algorithm known as the genetic algorithm have been carried
out with a bi-criteria objective function: the minimization of intercell moves and cell load variation.
The probability of crossover (A), probability of mutation (B), and balance weight factor (C) are
considered parameters for this study. The data sets used in this paper are taken from benchmarked
literature in this field. The results are promising regarding determining the optimal combination of
the genetic parameters for the machine-cell-formation problems considered in this study.

Keywords: facility layout; optimization; metaheuristic algorithm; cell formation; design of
experiments

1. Introduction

In general, facility-layout optimization problems are nonlinear, nonconvex, and multi-
modal in their nature. Facility-layout problems (FLP) can be divided according to types of
manufacturing systems into four basic categories, which are product layout, process layout,
static layout, and cellular layout [1]. Taking this classification into account, the proposed
study addresses the cellular manufacturing problem. In the past, the main objective of a
facility-layout problem was to minimize the material handling cost of the manufacturing
system [2]. Presently, the main goal of the FLP is to improve manufacturing efficiency. In
line with this, a number of authors suggested different objective functions for facility-layout
problems, e.g., to maximize the throughput rate and minimize the conveyance time per
trip [3] or minimize cycle times in order to increase productivity [4], and so forth.

An important issue in the design of cellular manufacturing systems (CMS) is the
manufacturing-cell-formation problem (MCFP), which is based on group technology prin-
ciples. Several taxonomies of the MCFP are reviewed in the literature, e.g., by Selim
et al. [5], Bidanda et al. [6] and Modrak and Pandian [7]. The core of MCFP procedures
is that machines are grouped into machine cells and parts into part families. In practical
applications, it is not easy to arrange all parts and machines into autonomic cells, and
therefore some operations have to be performed on separate machines. The cost of du-
plicating machines is often high, and therefore, related managerial decisions are usually
trade-offs between economic and technological criteria [8–10]. During previous decades,
numerous heuristic and metaheuristic methods and their variations were developed, tested
and compared for this problem. The metaheuristics include the genetic algorithm (GA),
simulated annealing, ant colony optimization, tabu search, scatter search, particle swarm
optimization, GRASP and hybridized metaheuristics. There are several survey papers,
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such as by Herroelen et al. [11], Kolisch and Hartmann [12] and others, that present and
compare the methods from various perspectives.

In this work, the focus is on application of GAs, and especially on finding out how the
solutions of the cell-formation problem are influenced by a set of probability parameters
of genetic operators, namely crossover and mutation, including balanced weight factors.
In view of this, the presented work attempts to employ the Taguchi approach to find an
optimal combination of parameters that impact the efficiency of the genetic algorithm and
to explore whether the optimal combination of the genetic operators for the given type of
MCFP can be influenced by the magnitude of the noise factors, which is represented by
matrix size in our case.

2. A Brief Literature Review

In this section, a short review of the selected research on manufacturing cell formation
will be given. John Holland, inspired by population genetics, introduced the concept of the
GA in the 1970s. In 1975, the book [13] is published by him and his colleagues. The first
GA-based approach for the cell-formation research area was proposed by Venugopal and
Narendran [14]. It was a proposed mathematical model with a solution procedure based
on a GA that can be purposely implemented in a cellular manufacturing environment.
Joines and Houck [15] in their work applied a non-stationary penalty to solve CFP with a
genetic algorithm. Gupta et al. [16] used a GA approach to solve the layout design problem
with a predetermined number of manufacturing cells. Alsultan and Fedjki [17] utilized
a GA approach to solve the machine-cell-part clustering problem in order to minimize
total intercell and intracell moves. Gravel et al. [18] developed a GA with a double-loop,
able to solve large-scale capacitated cell-formation problems with multiple routings. Moon
and Gen [19] proposed a genetic algorithm to solve an integer programming model with
consideration of alternative process plans and machine-duplication consideration. An
adaptive genetic approach to solve the manufacturing-cell-formation problem in order to
enhance the performance of the genetic search process was proposed by Mak et al. [20].
Zhao and Wu [21] evaluated the solutions of a multi-objective GA that applies minimizing
costs due to intercell and intracell part flows, minimizing the total within-cell load variation
and minimizing exceptional elements. They also incorporated in their research the multiple
routes of parts. Arzi et al. [22] proposed a genetic algorithm with grouping efficiency
and capacity requirements as objectives for large-scale systems design. Zolfaghari and
Liang [23] tested and evaluated a genetic algorithm against simulated annealing and tabu
search using binary cell-formation problems. Yasuda et al. [24] in their research proposed a
method to solve the multi-objective CFP, partially adopting Falkenauer’s grouping genetic
algorithm. It was also aimed at improving the efficiency of their algorithm with regards
to initialization of the population, fitness valuation, and keeping the crossover operator
from cloning. Other similar approaches were published with many innovative algorithms.
For example, Farahani et al. [25] described ant colony optimization to solve machine–part
cell-formation problems. Mohammad Mohammadi et al. [26] approached a layout problem
in cellular manufacturing systems with alternative processing routings. Dmytryshyn
et al. [27] suggested a novel modeling approach for solving the cell-formation problem.
Kamalakannan et al. [28] developed a simulated annealing algorithm for solving CFP
with ratio level data. Shashikumar et al. [29] determined the solution for CFP using a
heuristics approach. Sharma et al. [30] had done research on an implementation model
using AHP and ANP for CFP. Octavio et al. [31] developed metaheuristic algorithms to
solve grouping problems. Mourtzis et al. [32] brought the idea of adaptive scheduling in
cellular manufacturing systems. Firouzian et al. [33] developed an artificial immune system
for part family clustering. Vitayasak et al. [34] proposed a GA-based layout design approach
to solve robust machine layout design problems for systems subject to demand uncertainties
and maintenance. Their innovative method includes an experimental design that was
used to test the robust design approach with corrective, preventative, and combined
maintenance regimes. Dolgui et al. [35] explored a reconfigurable manufacturing system
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that exhibited some crucial design and control characteristics for complex value-adding
systems in highly dynamic scenarios. Such systems are designed at the outset for rapid
change in the structure of machines, in order to quickly adjust production capacity and
functionality within a part family in response to frequent market changes or intrinsic
system changes. An interesting and very useful approach to the facility-layout design
optimization was proposed by Bucki and Suchanek [36]. They proposed an effective tool
for performance analysis of manufacturing systems from logistics viewpoint by using a
mathematical simulation model.

It is worth mentioning other works that directly relate to the manufacturing cell-
formation problem, such as the hybrid GA/branch and bound approach to solve the
manufacturing-cell-formation problem using a graph partitioning formulation, which was
proposed by Boulif and Atif [37]. Their effort has been made to take into account the
natural constraints of real-life production systems. A typical CFP with the objective of
minimizing the exceptional elements was explored by Mahdavi et al. [38]. Deljoo et al. [39]
used a GA to solve the dynamic cell-formation problem. Based on their studies, they
reconsidered the shortcomings related to machine relocation cost and machine purchasing
cost and developed a model for dynamic CFP in order to resolve these two shortcomings.
Arkat et al. [40] developed a multi-objective GA for CFP considering cellular layout and
operations scheduling. Cell-formation problems related to scheduling problems with the
objective to minimize makespan are available in references [41–44]. A new algorithm for
CFP with alternative machines and multiple-operation-type machines was developed by
Li [45]. Its purpose was to improve traditional group technology cell-formation methods
by considering alternative machines and multiple-operation-type machines. Boulif [46]
proposed a new graph-cut-based encoding representation in order to solve the CFP with
the genetic algorithm. Obviously, there are other related works, since this domain attracts
a large research interest.

3. Structure of Genetic Algorithm

In a GA, a high-quality candidate solution is represented by a collection of genes called
chromosome. A chromosome’s potential is given by its fitness function. A population
consists of a set of selected chromosomes, and the population is subjected to generations
(or iterations). Finally, crossover and mutation operators are performed with defined
probabilities to improve the solutions. A GA has several advantages over the traditional
optimization methods. It may quickly arrive at a good solution set. As worse cases are
eliminated, they will never affect the generated solution. GAs are one of the best methods
to solve a problem about which little is known. This is because a genetic algorithm works
by its own rules. This is a very useful strategy for a GA to solve highly complex problems
in nature. In a GA, it is necessary for the problem solver to choose the appropriate coding
method. If the solutions are coded in different combinations, then the GA will start
its searching operation using its operators known as selection, crossover, and mutation,
respectively. As is known, a suitable type of crossover technique for a particular problem
can improve the GA’s performance [47]. All these methods are probabilistic in nature. The
proper stopping criteria will be given as input for the GA to stop its searching process.
This is done purely based on the experience of the problem-solver. Based on the stopping
criteria, the GA will stop running and give the solution that it finds at that point of time. The
solution of the problem has to be represented in the GA as a genome (or chromosome). The
genetic algorithm then creates a population of solutions and applies genetic operators such
as mutation, crossover, and selection to evolve the solutions in order to find the best one(s).
The crucial aspects of using GAs are: the definition of the objective function, the definition
and implementation of the genetic representation, the definition and implementation of
the genetic operators [48].

GAs are frequently adopted to find out how to make the machine clusters form cells
in accordance with the rules of production flow analysis. In cell formation, a GA works
well and finds a good solution, as given in the abovementioned literature studies. It
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gives high-quality solutions even if the problem has a high level of complexity. There are
few other traditional metaheuristics approaches that performing good searches in such
a situation [49]. The following representation is used in a typical cell-formation problem
solved using GA. This representation is popularly known as real coding (see Figure 1).

 

Figure 1. Representation of a chromosome using real coding.

Depending on the number of cells to be accommodated in the layout, the number of
genes on a chromosome increases. In the above example there are three cells and hence
there are only 1, 2, and 3 values present in the chromosome of 8 genes (8 machines).

4. Mathematical Model of the Cell-Formation Problem

According to the review of the literature, the minimization of intercell flows and the
total cell load variation can be considered the essential objectives in the manufacturing
cell-formation research. Thus, the bi-objective fitness function used to evaluate the solution
incorporates intercell flows and cell load variation. The mathematical model is given as:

Intercell flow fitness function:

Minimize f1 = ∑
i

∑
j

∑
k

aij|Xik − Yik| (1)

Cell load variation fitness function:
Minimize

f2 = ∑
i

∑
k

Xik ∑
j

(
ωij − mik

)2 (2)

Variable:
mik = ∑

i
Xik × Yjk × ωij/ ∑

i
Xik (3)

Decision variables:

ωij = tij; if part j is processed on machine i (4)

0; otherwise
Xik = 1; if machine i is in cell k (5)

0; otherwise
Yjk = 1; if part j is in cell k (6)

0; otherwise
aij = 1; if part j needs to be processed on machine i (7)

0; otherwise
Constraints:

c

∑
k

Xik = 1 ∀ ∈ {1, 2, . . . , m} (8)
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c

∑
k

Yjk = 1 ∀ ∈ {1, 2, . . . , p} (9)

∑ Xik ≥ 1 ∀ k ∈ {1, 2, . . . , c} (10)

∑ Yjk ≥ 1 ∀ k ∈ {1, 2, . . . , c} (11)

Bi-objective fitness function:

Z(t) = α· f1 + (1 − α)· f2 (12)

The given model of cell-formation problem works with processing time. According to
this model, we search to obtain the number of cells and the number of machines and parts
within each cell. Equation (1) shows the calculation of the intercell flows, and Equation
(2) shows the cell load variation. Equation (3) shows the average intercell processing time
for the j-th part and k-th cell. Equation (4) shows the decision variables that assign the
time tij of the i-th machine required to process the j-th part. Equations (5)–(7) are decision
variables that state that xik, yjk and ajj are 0–1 binary numbers. Equations (8) and (9) ensure
that each machine and part is attached to only one cell. Equations (10) and (11) ensures
that, in each cell, there must be allocated at least one machine and one part, respectively.
Equation (12) is the bi-objective fitness function for a non-binary cell-formation problem
balanced by weight factor α.

A fitness function value is computed for each chromosome in the population, and
the objective is to find a chromosome with the maximum fitness function value. Due to
objective of minimizing both the total cell load variation and the exceptional elements, it
is necessary to map it inversely and then maximize the result. Goldberg [50] suggested a
mapping function given as:

F(t) = Zmax − Z(t) (13)

The symbol F(t) stands for the fitness function of the t-th chromosome, and Zmax is the
max[Z(t)] of all chromosomes (t). The advantage is that the worst chromosomes obtain a
zero-fitness function value, so they are not going to be reproduced into the next generation.

The following procedure given by Zolfaghari and Liang [51] is used to assign parts
into the machine cells:

Pkj =

( fkj

fk

)
·
(

fkj

f j

)
·
(

Tkj

Tj

)
(14)

where, Pkj is the membership index of the j-th part belonging to the k-th cell; fkj is the
number of machines in the k-th cell required by the j-th part; fk is the total number of
machines in the k-th cell; fj is total number of machines required by the j-th part; Tkj is the
processing time of the j-th part in the k-th cell; and Tj is the total processing time required
by the j-th part.

5. Case Study on Layout Design Optimization

The procedure we decided to apply to analyzing the influence of genetic parameters
on the final solution quality for reorganization of machines and parts into cells is an
experimental design method developed by Genichi Taguchi. Here we established a P-
diagram (see Figure 2) that identifies the inputs and outputs of the system together with
control and noise factors.

The Taguchi experimental method consists of performing selected experiments to
study the influence of several operating factors on output-parameter values. Taguchi
separates the factors into two domains: control and noise factors. The difference between
these two factor groups is that we cannot control them directly. The elimination of the
noise factors is often impractical and impossible so the Taguchi method seeks to minimize
the effect of noise, using optimal levels of important control factors based on the concept of
robustness [52]. These three fundamental control factors are the probability of crossover
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(A), probability of mutation (B), and balance weight factor (C). The levels of each set of
control factors are shown in Table 1.

 

Figure 2. Parameter diagram for a genetic algorithm.

Table 1. Input signal factors and levels.

Control Factors Description
Levels

− 0 +

A Probability of crossover (Pc) 0.3 0.6 0.8
B Probability of mutation (Pm) 0.01 0.05 0.1
C Balance weight factor (α) 0.4 0.6 0.8

Based on the principles of the genetic algorithm, these control-factor values are decided
taking a reference from the optimization of control parameters for a genetic algorithms
using an image registration problem [53]. In the evaluation of a final feasible solution, there
also exist the so-called noise factors that have an impact on the results. These factors cause
deviation in the search space size and the noise factors, such as the size of the machine-part
matrix (D). The offered factors are composed of individual levels, wherein each level is
completely independent. This particular case is under consideration with three levels of
control and two levels of noise factors.

It is proposed to apply Taguchi quality concept for the assessment of the final solution,
and, in this context, the L9 orthogonal array has been chosen. The results of the experiments
are subsequently transformed into a signal-to-noise ratio. For reducing the variability of
solutions around a target, the smaller-is-better S/N ratio (SNR) calculation is applied [54]:

SNR = −10 log[
i
n

n

∑
i=1

Y2
i ] (15)

A signal-to-noise ratio is a measure of robustness that can be used to identify the
control factor settings that minimize the effect of noise on the response. In the parameter
design, there are two factors: the signal factor that can be controlled and the noise factor
that is too expensive to control. In this research work, the signal factors are A, B, and C,
wherein the noise factor is the exceptional element. Yi2 is obtained from the mean sqare
deviation (MSD) of signal factors and of exceptional elements. Here the ‘n’ represents the
number of experiments that are performed using Taguchi’s experiment design.

Higher values of SNR will control the noise factors that lead to the minimization of the
objective function. Since, in this research work, the objective is to minimize the combination
of two functions, it is recommened from Taguchi’s SNR principle that the ‘smaller is better‘
is suitable for this approach.
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The stopping criterion used to test algorithms was set at a number of generations [55],
fixed to min 120. In order to conduct the experiment, we used a set of four instances
and implemented the algorithms in PHP script. As a common performance measure, the
number of exceptional elements (EE) has been used. The total set of experiments that
were performed was obtained by combining the L9 array of the control factors. In order to
obtain more objective results, we decided on two groups of size problems; the first of them
consisted of 4 size problems (24 × 16, 24 × 40, 30 × 16, 30 × 40) as shown in Table 2, and
the second one consisted of 19 size problems (see Table 3).

Table 2. Combination of factors and the resulting values of the trials of experiments (Group #1).

#
Factors D 24 × 16 24 × 40 30 × 16 30 × 40 Results

A B C 1 2 3 4 MSD SNR

1 − − − 12 6 19 13 12.5 −22.49
2 − 0 0 15 5 21 5 11.5 −22.53
3 − + + 13 3 26 7 12.25 −23.54
4 0 − 0 11 0 12 4 6.75 −18.47
5 0 0 + 27 6 25 6 16 −25.52
6 0 + − 11 0 9 4 6 −17.36
7 + − + 15 6 19 9 12.25 −22.45
8 + 0 − 12 3 17 7 9.75 −20.89
9 + + 0 10 0 7 4 5.25 −16.15

Table 3. Combination of factors and resulting values of the trials of experiments (Group #2).

#

Factors D
7
×
5

8
×
6

10
×
10

11
×
7

18
×
5

12
×
8

15
×
10

20
×
8

20
×
20

20
×
23

23
×
14

24
×
14

24
×
16

24
×
40

30
×
16

35
×
20

30
×
40

40
×
24

41
×
30

Results

A B C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 MSD SNR

1 − − − 2 2 1 3 5 1 0 5 20 8 0 0 12 6 19 0 13 2 2 65.84 −18.19

2 − 0 0 2 2 0 3 5 1 0 9 17 4 0 0 15 5 21 0 5 0 3 60.74 −17.83

3 − + + 2 2 0 3 5 1 0 5 19 13 0 0 13 3 26 0 7 0 3 79.47 −19.00

4 0 − 0 2 2 0 3 5 1 0 12 24 10 0 0 11 0 12 0 4 0 3 60.68 −17.83

5 0 0 + 2 2 0 3 5 1 0 9 17 12 0 0 27 6 25 0 6 0 3 104.84 −20.21

6 0 + − 2 2 0 3 5 1 0 27 32 14 0 0 11 0 9 0 4 0 3 116.79 −20.67

7 + − + 2 2 0 3 5 1 0 27 17 22 0 0 15 6 19 0 9 0 3 118.79 −20.75

8 + 0 − 2 2 0 3 5 1 0 9 19 8 0 0 12 3 17 0 7 0 3 55.21 −17.42

9 + + 0 2 2 0 3 5 1 0 9 15 10 0 0 10 0 7 0 4 0 3 32.79 −15.16

The total number of experiments for the first group of size problems is 36 and for
the second group of size problems is 171. The objective in this factorial experiment is to
search values of the signal-to-noise ratio for “smaller-is-better”, which is computed for
each set of experiments. After obtaining the results of Taguchi’s experiment design, EEs are
transformed into S/N ratios. The results of the experiment for each series of experiments
are presented in Tables 2 and 3.

6. Conclusions

Based on Table 1 (input signal factors and levels), the crossover probability is con-
sidered in ascending order (lower to higher), which is mentioned in Tables 2 and 3. The
change in value for A occurs in every three rows; for B, the change in value occurs in
every row in ascending order, and for factor C (1,2,3 then 2,3,1 then 3,1,2) as per the L9
orthogonal array representation. It happens incidentally that the last value (9th row) is
better compared to other values, as far as this research concerned. The optimal level of the
factors is the level with the highest SNR. Tables 2 and 3 show that the optimal level has
been obtained in the 9th row (refer to Tables 2 and 3) where the value of factor A is 0.8,
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the value of factor B is 0.1, and the value of factor C is 0.6, mentioned as (+, +, 0) as per
Table 1. The general view is that whenever the probability of crossover and/or mutation
is increased, the number of searches in the solution space will also increase; thereby the
chance of obtaining a better solution is increased. The Taguchi’s design of experiments
based on this research work provides evidence to the above statement.

Building on this analysis the following conclusions and suggestions for further re-
search have been made.

It can be stated that the Taguchi design of experiments method can be used as an
effective tool to determine the optimal combination of the genetic operators for the given
type of MCF problems, because two different experiments brought out that the optimal
level of the factors A, B, and C are identical.

Due to the limited number of experimental groups, we can only anticipate that an
optimal combination of the genetic operators for the given type of MCF problem is not
influenced by the magnitude of the noise factors. Therefore, in our further research this
dependence/independence relation will be investigated.

This work provides further evidence that the efficiency of a genetic algorithm is
dependent on the mentioned control factors and their parameters. As a direction for future
studies, it could be interesting to extend the parameters (for example, the probability of
reproduction and the number of generations) and develop effective genetic algorithm
incorporating advanced features. For more realistic models, it would be useful to consider
several practical assumptions, such as machine-availability constraints or changeover
times.
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Abstract: Industry 4.0 is transforming how costs, including labor costs, are managed in manufactur-
ing and remanufacturing systems. Managers must balance assembly lines and reduce the training
time of workstation operators to achieve sustainable operations. This study’s originality lies in its use
of an algorithm to balance an assembly line by matching operators to workstations so that the line’s
workstations achieve the same targeted output rates. First, the maximum output rate of the assembly
line is found, and then the number of operators needed at each workstation is determined. Training
time is reduced by matching operators’ training and skills to workstations’ skill requirements. The
study obtains a robust, cluster algorithm based on the concept of group technology, then forms
operator skill cells and determines operator families. Four numerical examples are presented to
demonstrate the algorithm’s implementation. The proposed algorithm can solve the problem of
arranging operators to balance assembly lines. Managers can also solve the problem of worker
absences by assigning more than one operator with the required skillset to each workstation and
rearranging them as needed.

Keywords: assembly line balancing; group technology; cluster algorithm; bottleneck station; output rate

1. Introduction

Netessine and Taylor [1] demonstrated that expensive production technology usu-
ally leads to low product prices and may simultaneously lead to high-quality products.
However, the product price is usually proportional to the product cost, part of which
is labor cost. Assembly line balancing (ALB) is a crucial part of production/operations
management [2]. On most mass-production assembly lines, workers repetitively perform
a set of tasks predefined by using assembly line balancing techniques [3], which assign a
number of work elements to various workstations to maximize the assembly line’s balanc-
ing efficiency [4]. A balancing of tasks across the workstations results in the optimization
of a given objective function without violating preceding constraints [5]. An unbalanced
assembly line can be dangerous. For example, an operator without adequate training
or who is focused on personal problems can cause an accident, decrease the efficiency
of the assembly line, and increase production costs. Assembly lines maximize assembly
operations, and most manufacturing plants have one or more lines, making assembly line
balancing one of the oldest challenges in industry [6]. Moreover, a balanced assembly
line can reduce a factory’s work-in-process (WIP) inventory. Kim et al. [7] suggested a
mathematically mixed integer programming model that accounts for the WIP balance and
setup time in a semiconductor fabrication line. Maximum productivity and minimum load
smoothness are benefits of solving the assembly line balancing problem (ALBP) [8,9].

Many types of production lines exist. Kuroda [10] presented a robust design for
a cellular-line production system with unreliable facilities. A cellular-line production
system comprises multiple flow shops, which are individual sets composed of functionally
different facilities. Kuroda grouped facilities that perform similar operations.
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This study initially considers a traditional assembly line that has four workstations
with outputs λA, λB, λC, and λD (Figure 1). Thus, the production rate, or output rate, of
this assembly line is equal to λline = min.{λA, λB, λC, λD}.

Figure 1. Traditional assembly line.

The cycle time (CT) refers to the longest period required for workstations to complete
operations. Therefore, all station operation times are less than or equal to the CT. The aim
of balancing the assembly line is to ensure that the output rate and operating time of each
workstation are identical. Previous studies have examined assembly line balancing. Ac-
cording to Bartholdi and Eisenstein [11], the assembly line balances itself. They found that
if workers are sequenced from slowest to fastest, a stable partition of work spontaneously
emerges independent of the stations at which the workers begin. Moreover, the production
rate converges to a value. Huang [12] determined that the CT and labor efficiency are
negatively exponential to the number of assigned workers. Sawik [13] presented new
mixed integer programming formulations for scheduling a flexible flow line with blocking.
In this flexible flow line, each stage has one or more identical parallel machines. This study
uses parallel operators instead of parallel machines. Rearranging operators may increase
the production rate. Muth [14] examined whether a rearrangement in the order of servers
affects the production rate. Muth speculated that the production rate remains invariant if
the production line is reversed.

If the number of workers at a workstation is more than the number of machines,
the machines are expected to limit the output rate and cause a bottleneck. However,
Zavadlav et al. [15] showed that the workers, rather than the machines, limit the rate
of output.

The manager of a factory always works under “cost” pressure; the company wants
the manager to make continual improvements without increasing the cost. Managers
typically try to increase the output by adding machines and workers, but managers must
first consider whether assembly lines are balanced. When assembly lines are not balanced,
productivity is low and workers complain. Workers might not only complain that they
have to do more work at their station for the same pay, but also that their skills are not
suited to their workstation. This work environment might lead workers to miss shifts on
purpose or to resign.

Many ALBP methods have been examined in the study of manufacturing systems,
including the heuristic algorithm [16–24], artificial bee colony algorithm [25–27], genetic
algorithm [28–30], branch-and-bound algorithm [31–34], imperialist competitive algo-
rithm [35], Pareto Greedy algorithm [36], memetic ant algorithm [37], whale optimization
algorithm [38], recursive algorithm [39], fuzzy linear programming [40], swarm algo-
rithm [41,42], simulated annealing algorithm [43], and data envelopment analysis [44].
The genetic algorithm [45,46] and artificial bee colony algorithm [47] have been used to
solve the ALBP in remanufacturing systems. However, studies have seldom discussed
how to arrange operators and group similarly skilled operators at the same workstation.
This paper considers workers, not machines, in determining whether a workstation has
the right equipment and machinery for operators to use. To achieve this goal, the study
works out a method for rapidly balancing assembly lines by arranging operators among the
workstations and uses a robust, cluster algorithm based on the concept of group technology
(GT) to form operator skill cells and determine operator families.
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2. Problem Statement

Traditionally, when arranging a limited number of operators on an assembly line,
a manager begins with one operator per workstation, before adding an operator to the
workstation with the lowest output. Step by step, all of the operators are arranged and the
output rate can be found.

When a workstation has a lower output rate, the manager typically adds another
operator. However, the lower output might be due to the “human” factor; an operator who
is trained on many machines might be assigned to a workstation outside of their skill set.
For example, if an operator knows how to work an auto-optical inspection machine but
is assigned to a workstation with an in-circuit test machine, the station’s output rate will
drop because the operator does not have the required skills. Output can also fall when a
worker is absent or resigns unexpectedly and the manager fills the vacancy with a random
worker who has not been trained to operate that workstation.

Thus, the problem statement of this study is:
Ideal: The maximum output rate is found, all of the workstations have the same output

rate, and the number of operators at each workstation can be found, with all operators
assigned to a workstation that matches their skill set.

Reality: The arrangement algorithm is step by step, and the maximum output rate
cannot be determined until all of the operators have been arranged. Operators can be
assigned to unsuitable workstations.

Consequences: The maximum output rate is an unknown that will affect a boss’s
decisions, especially before setting up a new plant. An operator who works at an unsuitable
workstation might complain, be absent, or quit unexpectedly, causing a lower output rate.

Proposal: An arrangement algorithm with a constant number of operators must
consider the maximum output rate and balance the assembly line without any increase in
cost. A sorting algorithm must consider the skills required at each workstation and the
skill set of each operator.

3. Methodology

A manager adds a worker to a workstation that has a lower output than at other
workstations. When the output of another workstation is lower, the manager adds another
worker to that workstation. The use of this step-by-step method balances the assembly
lines, especially when setting up a new plant.

3.1. Example of Step-by-Step Method

Suppose an assembly line has six workstations, as shown in Figure 2.

Figure 2. Assembly line with six workstations.

In addition, suppose that the terms t11, t12, t22, t13, t14, and t15 are equal to 12, 15, 10,
16, 20, and 8 min, respectively. If one workday comprises 8 h, then the output per operator
per day at each workstation, γ11, γ12, γ22, γ13, γ14, and γ15, are 40, 32, 48, 30, 24, and 60,
respectively. Suppose that 500 workers are assigned to this assembly line. The workers can
be assigned step by step, as follows (Table 1).
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Table 1. Traditional ALB assignment.

a11 a12 a22 a13 a14 a15

pij 1 1 1 1 1 1 ∑pij = 6

Υij 40 32 48 30 24 60 Υline = 24

The term λline is limited in workstation a14, which is a bottleneck workstation. Thus,
this workstation should have one more operator to increase the output rate. The seventh
worker is added to workstation a14, and the following is obtained (Table 2).

Table 2. Traditional ALB assignment.

a11 a12 a22 a13 a14 a15

pij 1 1 1 1 2 1 ∑pij = 7

Υij 40 32 48 30 48 60 Υline = 30

The assignment of workers in a step-by-step manner uses considerable time to obtain
the following final result (Table 3).

Table 3. Traditional ALB assignment.

a11 a12 a22 a13 a14 a15

pij 74 92 62 99 123 50 ∑pij = 500

Υij 2960 2944 2976 2970 2952 3000 Υline = 2944

Considerable time was spent and many steps performed to determine the optimal
arrangement of operators at the assembly line’s workstations. Although some studies have
discussed and tried to solve the ALBP, the question remains: Is there another method for
arranging the workers, instead of using the step-by-step method? This paper presents a
novel approach for solving this problem.

Almost all workers require training before operating a workstation. Ideally, the operators
on an assembly line would have all of the skills required for each workstation, but that
would be very costly. Thus, the operators’ skills must be determined so that they can
be placed at a workstation that requires their skills. For example, consider an assembly
line that has welding and drilling workstations. If operator κ possesses welding skills,
assigning operator κ to the welding workstation rather than to the drilling workstation
will reduce the training time for the welding workstation.

Suppose that there is a balanced assembly line with seven workstations (Figure 3),
and workstations 1–7 require one, three, four, two, two, two, and one operator, respectively.

Figure 3. Assembly line with seven workstations.

Each workstation requires a skill, which is denoted as s1, s2, ..., s7. A matrix SO =
{

soij
}

uv
describes the relationship between skills and operators. For example, soij = 1 indicates
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that operator j possesses skill i. For the assembly line in Figure 3 to function, the minimum
matrix SO must be as follows:

 

 

Suppose it is known that:

 

 

On the basis of the first-come, first-served rule, operator 1 is assigned to s1; operators
2, 3, and 4 are assigned to s2; operators 5, 6, 7, and 8 are assigned to s3; operators 9 and 10
are assigned to s4; operators 11 and 12 are assigned to s5; operators 13 and 14 are assigned
to s6; and operator 15 is assigned to s7. Thus, at least 11 operators must take the training
course, namely operators 1, 3, 4, 5, 6, 8, 9, 11, 12, 14, and 15, as illustrated in the following
matrix where an “X” denotes that the operator needs the training course:

 

A cluster algorithm is introduced in this paper to reduce the training time and increase
the speed at which an assembly line functions. Workers’ absences are also a problem for
managers [48,49], but the proposed cluster algorithm can suggest which worker to rotate
to a workstation with an absent operator.

Instead of using the traditional step-by-step method, this study aims to use the
proposed algorithm to assign operators to each workstation. Before assigning the operators,
some basic data must first be known about each workstation, such as the required skills,
the standardization time, the work time per day, and the total number of operators. Then,
the approximate number of operators needed at each workstation can be found by using
Equations (1)–(7) in Section 3.1. Finally, the number of operators at each workstation can
be adjusted by using the traditional step-by-step method. The training time can be reduced
by assigning an operator with suitable skills to a suitable workstation, or by sorting the
skill–operator matrix by using the cluster algorithm proposed in Section 3.2. The concept is
shown in Figure 4.
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Figure 4. The novel algorithm proposed in this study.

3.2. Number of Operators at Each Workstation Decided

Suppose an assembly line has m × n workstations (Figure 5).

 

Figure 5. An assembly line with m × n workstations.

The matrix A =
{

aij
}

mn can be used instead of the previous assembly line.

A =

⎡
⎢⎣

a11 a12 . . . a1n
...

...
. . .

...
am1 am2 . . . amn

⎤
⎥⎦

The output rate of the assembly line is λline where

λline = min.
{

λij
}

, 1 ≤ i ≤ m, 1 ≤ j ≤ n

The ideal assembly line means that

λline = λ11 = λ21 = · · · = λmn (1)

because
λij = pijγij (2)
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The term pij can be easily determined, as follows:

pij =
λij

γij
(3)

Moreover, the total number of operators is P. , where

P =
m

∑
i=1

n

∑
j=1

pij (4)

Thus, the following equations are obtained:

P =
m

∑
i=1

n

∑
j=1

λij

γij
= λline·

m

∑
i=1

n

∑
j=1

1
γij

= λline· 1
T

m

∑
i=1

n

∑
j=1

tij (5)

and,

λline =
P

∑m
i=1 ∑n

j=1
1

γij

=
P·T

∑m
i=1 ∑n

j=1 tij
(6)

Replace λij from Equation (3) with λline from Equation (6) to obtain the following equation:

pij =
λij

γij
=

P
γij ∑m

i=1 ∑n
j=1

1
γij

=
P·T

γij ∑m
i=1 ∑n

j=1 tij
(7)

As term pij is not always an integer, it may need to be chopped off.
Almost all of the operators are now assigned. The traditional step-by-step method is

adjusted (as demonstrated in the previous section) and used to assign the remaining workers.

3.3. Cluster Algorithm

The proposed cluster algorithm is based on the concept of GT, which has been applied
to cellular manufacturing systems [50,51]. The concept involves grouping machines into
machine cells and parts into part families [52–59]. Several algorithms, such as heuristic
algorithms [60,61], genetic algorithms [62,63], and neural network algorithms [64], have
been derived for solving the GT problem. The proposed algorithm begins with the closeness
matrix and a comparison with other algorithms in example 3.

First, the relationship between u skills and v operators, which is represented by the
matrix SO =

{
soij
}

uv is determined as follows:

soij =

{
1, i f operator j has i skill

0, otherwise

The closeness matrix of skills is defined as Bu = {brs}u×u, where

brs =

⎧⎨
⎩

v
∑

k=1
sorksosk, i f r �= s

0 , otherwise.
(8)

For example, if there are three workers that know how to operate the welding and
milling machines, the closeness between the welding and milling skills is three.

3.3.1. Skills Sorting

Whether two skills are grouped depends on their closeness. Closeness denotes how
many operators have both of the skills. The more operators have the two skills, the closer
the skills are. First, the skill with the highest closeness value is found and a new group is
formed. Second, an unsorted skill follows a sorted skill, based on the highest value in its
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row in the closeness matrix. If there is no sorted skill to follow, the skill is placed in a new
group. Finally, all skills are grouped.

Thus, the skills can be sorted in three steps:
Step 1. Let f ∈ G1, where f = { x|bxk = max.{brs}, 1 ≤ k ≤ v}. A tie is broken by

selecting the smaller one.
Step 2. Ignore all the grouped rows and form a new closeness matrix B′u =

{
bij
}

.
Let {

f ∈ Gk, if = {bij = max{bij} ∧ y ∈ Gk
h ∈ Gnew group, otherwise

Step 3. Repeat Step 2 until u skills are grouped.

3.3.2. Operator Sorting

Operator sorting aims to place operators in the group that will use the highest number
of their skills.

Thus, let v ∈ Gy, y =

{
x

∣∣∣∣∣ ∑
u∈Gx

souv = max.

(
∑

u∈Gi

souv

)
, 1 ≤ i ≤ R

}
. A tie is broken

by choosing the group with the lowest number of machines.

3.4. GT Efficiency

This work uses the GT efficiency measurement equation defined by Chandrasekharan
and Rajagopalan [65], while letting q be equal to 0.5, as follows:

η = qη1 + (1 − q)η2 = q
eb

∑ QiPi
+ (1 − q)

(
1 − e0

uv − ∑ QiPi

)
(9)

There are two concerns: the “1” in the group, and the “1” not in the group. The higher
the GT efficiency, the more 1s are in the groups, and the fewer 1s are not in the groups.
Thus, eb

∑ NSi NOi
is the ratio of the number of 1s in the groups to the number of 1s and 0s

in all groups, while e0
uv−∑ NSi NOi

is the ratio of the number of 1s not in the groups to the
number of 1s and 0s not in the groups.

4. Numerical Examples

4.1. Example 1: Number of Operators at Each Workstation Decided

On an assembly line, 500 operators must be assigned to workstations (Figure 6).

Figure 6. Assembly line with seven workstations.

Let

A =

[
a11 a12 a13

a22 a23 a24 a25

]

and {
tij
}
=

[
10 30 24 0 0
0 5 40 20 15

]

Let the work time per day be 8 h.
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Thus, {
γij
}
=

[
48 16 20 0 0
0 96 12 24 32

]

Thus, from Equation (6), λline = 5000/3, and from Equation (8),

{
pij
} chop o f f

∼
[

34 104 83
17 138 69 52

]

The approximate operators needed at each workstation are as follows (Table 4).

Table 4. Approximate operators needed at each workstation.

a11 a12 a13 a22 a23 a24 a25

pij 34 104 83 17 138 69 52 ∑pij = 497

Υij 1632 1664 1660 1632 1656 1656 1664 Υline = 1632

The traditional step-by-step method is adjusted to obtain Table 5. Stations a11 and a22
are the bottleneck stations. Thus, if only one worker is assigned (the 498th one) to station
a11 or station a22, the assembly line cannot function. The production rate is increased if
another worker is assigned to station a11 and another is assigned to station a22. The final
ALB solution is as follows (Table 5).

Table 5. Final ALB solution proposed by this study.

a11 a12 a13 a22 a23 a24 a25

pij 35 104 83 18 138 69 52 ∑pij = 499

Υij 1680 1664 1660 1728 1656 1656 1664 Υline = 1656

4.2. Example 2: Auditing Production Rate

The proposed method can be used to audit the production rate, which could be
increased by rearranging the operators at each station. Consider this numerical example:
An assembly line has seven workstations and 1100 workers (Figure 7).

Figure 7. Assembly line with seven workstations.

Let

A =

⎡
⎣ a11 a12

a21 a22 a23
a33 a34

⎤
⎦
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{
tij
}
=

⎡
⎣ 10 30

20 40 15
24 48

⎤
⎦

and {
pij
}
=

⎡
⎣ 70 180

120 200 80
150 300

⎤
⎦

Let the work hours per day be 8 h. Thus, the following matrix is obtained:

{
γij
}
=

⎡
⎣ 48 16

24 12 32
20 10

⎤
⎦

From Equation (2), the following matrix is obtained:

{
λij
}
=

⎡
⎣ 3360 2880

2880 2400 2560
3000 3000

⎤
⎦

where λline = 2400. If the workers are rearranged, the output rate is increased with-
out any increase in cost. Equation (6) is used in the method proposed in this study:
λline = 528,000/187. Thus, the following matrix is obtained:

 

 

The traditional step-by-step method is adjusted to derive the final arrangement (Table 6):

Table 6. Final ALB solution proposed by this study.

a11 a12 a21 a22 a23 a33 a34

pij 59 176 118 235 88 141 282 ∑pij = 1099

Υij 2832 2816 2832 2820 2816 2820 2820 Υline = 2816
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4.3. Example 3: Comparison with Boe and Cheng’s Algorithm

This example compares the proposed algorithm with Boe and Cheng’s close neighbor
algorithm [66]. The original part–machine incidence matrix is taken from Boe and Cheng
as follows:

4.3.1. Machine Sorting

First, the relationship between the two machines must be obtained. For example,
Equation (8) is used to obtain b37.

 

 

b37 = 1 × 1 + 0 × 0 + 1 × 1 + . . . + 0 × 0 = 6

Thus, the closeness matrix of skills is as follows.
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In step 1 of machine sorting, the first machine, belonging to the first group, is m2.
Thus, G1 = {m2}. Ignoring m2, the next step is to form a new closeness matrix of skill
B′u = {bkl}, as follows:

 

 

The next machine is m14, which belongs to G1 because bm14m2 is the largest number in
B′u. Thus, G1 = {m2, m14}. The new closeness matrix of skill B′u = {bkl} is as follows:

 

 

The third machine is m1, which belongs to a new group, G2, because bm1m7 is the largest
number in B′u, but machine m7 does not belong to any group. Thus, G2 = {m1}. Apply-
ing steps 2–3 in Section 3.3.1 gives four groups: G1 = {m2, m14, m4, m18, m13 }, G2 =
{m1, m7, m3, m8, m17, m5, m9},G3 = {m15, m19, m11, m12, m16 }, and G4 = {m6, m10, m20}.
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4.3.2. Part Sorting

By using the operator sorting step in Section 3.3.2, the parts can be sorted. For example,
p24, the ∑

u∈G1

soup24 = 5, and 2, 1, and 0 in G2, G3, and G4, respectively. Thus, p24 belongs

to G1.
Finally, the four groups are ordered (Table 7).

Table 7. The four groups in example 3.

Groups Group Members

G1 m2,m14,m4,m18,m13,p2,p7,p10,p12,p13,p18,p24,p27,p31

G2 m1,m7,m3,m8,m17,m5,m9,p1,p3,p5,p15,p17,p20,p23,p25,p29,p34,p35

G3 m15,m19,m11,m12,m16,p4,p6,p9,p11,p21,p28,p30,p32,p33

G4 m6,m10,m20,p8,p14,p16,p19,p22,p26,

The sorted incidence matrix is as follows:

 

 

Boe and Cheng’s solution of this example is as follows:
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The GT efficiency of the proposed algorithm is obtained using Equation (9), as follows:

η = 0.5 × 33 + 40 + 31 + 14
5 × 9 + 7 × 11 + 5 × 9 + 3 × 6

+ 0.5 ×
(

1 − 35
20 × 35 − (5 × 9 + 7 × 11 + 5 × 9 + 3 × 6)

)
= 78.5%

In the same way, GT efficiency is calculated using Boe and Cheng’s algorithm, as follows:

η = 0.5 × 40 + 18 + 33 + 22
7 × 11 + 3 × 8 + 5 × 9 + 5 × 7

+ 0.5 ×
(

1 − 40
20 × 35 − (7 × 11 + 3 × 8 + 5 × 9 + 5 × 7)

)
= 77.4%

4.4. Example 4: Reducing Training Time

This example demonstrates how to find an operator with the training and skills that
matches a workstation’s skill requirements so that the operator does not need to take any
training courses. Consider the problem displayed in Figure 3 (Section 2). The proposed
algorithm is used to obtain a sorted skill-operator matrix, as follows:

 

A manager could use the sorted skill–operator matrix as a database for choosing an
operator with the right training and skills. Based on the database, the manager could
quickly rotate a suitable worker to a workstation. Based on the sorted skill–operator matrix
SOsort, the manager could choose operator o11 for the workstation that requires skill s1; o2,
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o12, and o14 because of s2; o4, o7, o13, and o3, because of s3; o1 and o6 because of s4; o15 and
o9 because of s5; o5 and o8 because of s6; and o10 because of s7, as follows:

 

 

Operators in the same skills group can support other operators in the group.

5. Results and Discussion

In example 1, stations a23 and a24 are the bottleneck stations. However, only one
operator, namely the 500th one, can be assigned. Assigning the 500th operator to either
station a23 or a24 cannot increase the output of the assembly line. This study suggests that
the 500th worker should be laid off or shifted to another department. Alternatively, a 501st
operator could be hired, which would allow another worker to be assigned to station a23
and another to be assigned to station a24. This example demonstrates the proposed method
in detail. The maximum output rate and the number of workers at each workstation
can be decided. It also shows that multiple workstations can simultaneously become
bottleneck stations.

In example 2, stations a12 and a23 are the bottleneck stations, and only one operator
can be assigned. This study suggests that the 1100th worker be laid off or shifted to
another department. Alternatively, a 1101st operator could be hired, which would allow
another worker to be assigned to station a12 and another to be assigned to station a23. With
these solutions, a higher production rate than in the original arrangement (2816 > 2400) is
achieved without any increase in cost. It shows that a manager can improve productivity
by rearranging the number of workers at each workstation, while not increasing costs. It
will also cut down on worker complaints because the workers’ workloads are balanced.

In example 3, the proposed algorithm is used to categorize four groups, as shown in
Section 4.3. Boe and Cheng‘s algorithm is compared with the GT efficiency measure pro-
posed by Chandrasekharan and Rajagopalan. The GT efficiency of the proposed algorithm
is 78.5%, higher than the 77.4% of Boe and Cheng‘s algorithm. Thus, the proposed GT
algorithm works and can perform better than other algorithms in the literature. Workers
are assigned to the workstation that best uses their skills, so they feel that their contribution
is meaningful and more substantial. Workers at the same workstation also share more
skills in common. This makes it easier for the manager to alternate workers.

In example 4, operators within the same skill group can support each other, giving
managers more worker rotation solutions. With workers suggested by the sorted skill–
operator matrix, managers can quickly match suitable operators with workstations so
that productivity remains high. Using the matrix to match workers’ training and skills to
workstations’ skill requirements also enables managers to reduce operator training time
and cover workers’ absences. For example, if o4 is absent or busy, then o15 can support or
share the workload without needing too much training. The risk of an unexpected worker
absence or resignation can be mitigated by alternating the workers according to the sorted
skill–operator matrix.

6. Conclusions

Company managers aim to achieve sustainable operations, part of which is managing
labor costs. To reduce labor costs, an assembly line manager increases the line’s efficiency
and reduces the training time needed by operators. Inadequate training or distractions,
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such as an operator focused on a personal problem, can be dangerous, something a plant
manager seeks to eliminate, while worker absences hurt efficiency and increase costs.
This paper presents an algorithm that helps managers keep assembly lines balanced
by arranging operators, so a line’s workstations achieve the same output rates. The first
example demonstrates how the proposed method can decide the maximum output rate and
the number of workers at each workstation given a constant number of operators, especially
when setting up a new plant. The second example demonstrates how the method can audit
the existing number of operators at each workstation. Using the method to readjust the
number of operators at a workstation can increase the output rate, without raising costs.
As indicated in the numerical examples, another challenge is that multiple workstations
can simultaneously become bottleneck stations. Knowing the number of operators at
each workstation, the proposed cluster algorithm can group operators with similar skills
and training, which reduces the training time. The third example demonstrates how the
proposed clustering algorithm performs better than a previously described algorithm.
Within the same group, operators from one workstation can also support operators at other
workstations, as demonstrated in example 4. The clustering algorithm could be used by
the human resources department to make a database that includes all of the company
employees. When an employee is absent, a manger could quickly find a replacement,
mitigating the risk of an unexpected absence. The manager could also use such a database
to determine which employees should take a training course. By not having all of the
employees take the training course, training costs could be reduced. Future applications
of the proposed method could include the creation of a course-faculty database, where it
could be used to find a replacement instructor for a class when the assigned instructor is
absent.

Traditional GT considers only machines and parts, but this study uses the concept
of GT to reduce the training time of workstation operators so that managers can achieve
sustainable operations. The sorted skill–operator matrix in this study can, similar to a
database, provide a manager with suggestions. However, most managers prefer a direct
solution to a problem; they want the specific worker whose training and skills match
the skill requirements of the problem workstation. Thus, future studies could develop
an algorithm to assign specific workers to specific workstations by using a sorted skill–
operator matrix, especially for large factories with multiple assembly lines.
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Nomenclature

A =
{

aij

}
mn

Matrix of workstations

tij Standard time of workstation aij
γij Output of workstation aij per operator per day
pij Number of operators at workstation aij
λij Output of workstation aij per day
λline Output of assembly line per day
TP Total number of operators
T Work time per day

SO =
{

soij

}
uv

Matrix of the skill-operator

u Number of skills
v Number of operators
Bu = {brs}uu Closeness matrix of skills
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B′u =
{

bij

}
New closeness matrix of skills without consideration of sorted rows

Gi group
R Total number of groups
η Group efficiency
eb Total number of 1s in the groups
e0 Total number of 1s not in the groups
NSi Number of skills in the ith group
NOi Number of operators in the ith group

Weighting factor
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Abstract: Tolerance cost and machining time play crucial roles while performing tolerance allocation
in complex assemblies. The aim of the proposed work is to minimize the above-said manufacturing
objectives for allocating optimum tolerance to the components of complex assemblies, by considering
the proper process and machine selections from the given alternatives. A novel methodology that
provides a two-step solution is developed for this work. First, a heuristic approach is applied to
determine the best machine for each process, and then a combined whale optimization algorithm
with a univariate search method is used to allocate optimum tolerances with the best process selection
for each sub-stage/operation. The efficiency of the proposed novel methodology is validated by
solving two typical tolerance allocation problems of complex assemblies: a wheel mounting assembly
and a knuckle joint assembly. Compared with previous approaches, the proposed methodology showed
a considerable reduction in tolerance cost and machining time in relatively less computation time.

Keywords: tolerance allocation; machine and process selection; heuristic approach; univariate search
method; whale optimization algorithm

1. Introduction

All aspects of manufacturing such as machine investment cost, manufacturing cost,
the functionality of the product, quality of manufacturing, and the reliability of the product
directly connect with tolerance allocation. Hence, most of the researchers are still focusing
on this research topic to improve manufacturing efficiency. It involves the allocation of
critical dimensions of an assembly, known from the product’s functional requirements. As
per the literature, more equations are available based on the combinations of the compo-
nent’s tolerance values; however, few equations provide better results. Tolerance allocation
requires discovering the best possible combination of the component’s tolerances by con-
sidering the manufacturing objective(s) and the associated constraints. The researchers
proposed different tolerance allocation strategies in different periods. The summary of
those strategies is explained here. Further, the detailed comparison of the strategies is
given in the Supplementary File as Table S1.
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Meta-Heuristic Method (MHM): In this method, the tolerance accumulation model,
namely the root sum square (RSS) method [1–6], was used to calculate the assembly
tolerance value by summing the randomly picked discrete tolerance values. Initially, the
discrete tolerance values were identified by splitting the process tolerance limits. Most
of the researchers had applied the MHM such as simulated annealing algorithm [7] and
genetic algorithm [8–17] for this purpose.

Heuristic Method (HM): The application of this method is seldom found in literature,
since the usage of thumb rules, previous experiences, and standards [18,19] in solving the
tolerance allocation problems. Nevertheless, the alternative methods, namely the branch
and bound algorithm [20] and design of experiments [21], were used to identify the effec-
tive tolerance allocation models. Further, a new method was developed by integrating
HM with Tabu search for optimal tolerance allocation and subsequent manufacturing cost
reduction [22]. Armillotta (2020) [23] minimized the manufacturing cost of the mechanical
assemblies by properly allocating the tolerances and choosing the right dimensional prop-
erties. Korbi et al. (2021) [24] proposed a computer-aided design model for analyzing the
tolerance in manufacturing the mechanical assemblies.

Discrete Cost Function (DCF) and Continuous Cost Function (CCF) Models: The
researchers have used different cost function models [25–30] in the various periods to
evaluate the manufacturing cost. These models were classified as DCF and CCF based
on their nature. However, the researchers mainly used the CCF model, since it yields
closed-form solutions to the tolerance allocation problems. On the other hand, the DCF
models [4,26,31] were not preferred due to the model fitting errors during the manual
formulation. Further, several studies have been carried out by considering the objective
function as the sum of quality loss (as per Taguchi quality loss concept) and manufacturing
cost [1,8,32–41].

Simple, Complex, and Non-Linear Assembly: The researchers used different tolerance
allocation methods to obtain a solution concerning product type. For instance, the LMM
was only used for simple products [1,8,42,43], which have only two mating components.
Several works have been reported on finding the optimum allocated tolerance values for the
components of complex assembly [44–51]. A limited number of authors have concentrated
on non-linear assembly products that consist of more than two components [20,26,38].

Alternative Process Selection (APS): In practice, it is possible to produce components
using more than one alternative process. It is necessary to select the proper process for the
correct component to reduce the manufacturing cost. Some authors have considered alter-
native process selection (i.e., every combination of the process has a feasible tolerance range,
and for a given process combination, the cost of machining is the function of the tolerance
value) for optimum tolerance allocation of both simple and complex assemblies [4,10,13,15].
Kumar et al. (2009) [52] dealt with the distribution of tolerance on the component dimen-
sion of a complex assembly with alternative process selection. Authors have attempted
to reduce the manufacturing cost of a product using the Lagrange multiplier method for
complex assemblies with the bottom curve follower method.

Alternative Machine Selection (AMS): It is possible to reduce the manufacturing cost of
a product by choosing the suitable machine for the correct process. Several researchers have
considered machine selection as one of the criteria for minimizing manufacturing costs
in recent years. However, very few authors [9,17,34] have discussed alternative machine
selection for optimum tolerance allocation, and even fewer studies [34] on minimizing both
cost and machining time with process and machine selection for optimum allocation of
tolerance have been reported in the literature.

From this literature review, it appears that no significant effort has been made to
consider machine time as an objective in optimum tolerance allocation, even though
machine time is a crucial manufacturing parameter. Therefore, in the present study, both
tolerance cost and machining time are optimized. Realizing the complexity of the problem,
a combined heuristic and univariate search method is introduced to select the best machine
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for each process and the optimum tolerance for each component using alternative process
and machine selection, with available machine time as a constraint.

2. Problem Definition

The biggest challenge facing today’s manufacturing companies is to reduce production
costs while maintaining better quality and higher productivity. Tolerance allocation plays a
vital role in achieving those goals. The production of a component involves selecting processes
as well as selecting machines. These decisions directly influence the allocated tolerance values
of components. The optimum allocated tolerance values govern the manufacturing costs
and machining time of the product. Therefore, an operation may be possible with multiple
alternatives, and as such, is treated as a non-polynomial hard problem.

3. Mathematical Formulation

The proposed work aims to simultaneously minimize tolerance cost and machining
time, represented in Equation (1). Tolerance cost (TCi) and machining time (MTik) are
calculated using Equations (2) and (3). Equations (4) and (5), respectively, determine the
critical dimension of the sub-assembly (Y) and its tolerance (tY). Machine engagement
time (met) is estimated using Equation (6). The constraints considered in this work are
expressed by Equations (7)–(9). The allocated tolerance (ti) should be within the process
limits, represented by Equation (7). The calculated sub-assembly tolerance within the
given sub-assembly tolerance; this constraint is given by Equation (8). The total individual
machine engagement time to manufacture the product should be less than the given
available machine time (amt) represented in Equation (9). In addition, it is assumed that
the following data are known well in advance before manufacturing the product:

• Number of sub-assemblies and their dimensional chain details;
• Allowable tolerance for each sub-assembly (aty);
• Number of parts in the assembly (nc);
• Number of sub-stages required to make the parts (no);
• Number of possible processes for each sub-stage of the components (np);
• Number of possible machines for each process (nm);
• Number of hours available for each machine (amt);
• Possible process—machine combination details (opno);
• Mathematical model to compute tolerance cost and machining time;
• Constants to compute tolerance cost (A and B) and machining time (X1 and Y1);
• Process tolerance limits (tmin and tmax).

Z = min(TC, MT) (1)

TCijk = ηjk

(
Aj +

Bj

tijk

)
(2)

MTijk = ηjk

(
X1j +

Y1j

tijk

)
(3)

Y =
nc

∑
l=1

±dl (4)

tY =
no

∑
i=1

tijk (5)

metk =
no

∑
i=1

MTijk (6)

tmin ≤ ti ≤ tmax (7)

taY ≥ tY (8)
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amtk ≥ metk (9)

Z Objective function
TCijk Tolerance cost of ith sub-stage using jth process on kth machine
MTijk Machining time of ith sub-stage using jth process on kth machine
tijk Allocated tolerance of ith sub-stage in jth process and kth machine
Aj, Bj Tolerance cost function constants for jth process
X1j, Y1j Tolerance machining time function constants for jth process
ηjk Efficiency factor using jth process on kth machine
dl Dimension of lth component
Y Critical dimension of sub-assembly
ty Calculated tolerance of critical dimension
tay Specified tolerance of critical dimension
i Sub-stage number index
j Process number index
k Machine number index
l Component number index
metk kth machine engagement time
amtk Available time of kth machine

4. Methodology

The proposed method consists of two stages: (i) selection of the best machine for each
process by applying a heuristic approach; (ii) selection of the best process and optimum
allocated tolerance for each component using combined whale optimization algorithm and
univariate search method. In the first stage, the process tolerance is divided into nd number
of discrete values using Equation (10) and the allocated tolerance (tejk) is calculated using
Equation (11). The tolerance cost (TCejk) and machining time (MTejk) for tejk are calculated
using Equations (2) and (3), respectively. Nagarajan et al. (2018) explained that the distance
method is used to combine the two different objective functions into a single one. For each
discrete value, points are plotted on a graph where the x-axis and y-axis represent tolerance
cost (TCejk) and machining time (MTejk), respectively. Assuming point (x1, y1) as the origin
and point (x2, y2) as discrete tolerance cost and machining time, and substituting (x1, y1)
as (0,0) and (x2, y2) as (TCejk, MTejk) in Equation (12), then the distance equation becomes
Equation (13). The detailed steps of the heuristic and univariate search methods are shown
in Figures 1 and 2. The pseudocode for the combined whale optimization algorithm and a
univariate search method is presented in Section 5.

tdj =
tmaxj − tminj

nd
(10)

tejk = tminj + (e − 1)tdj (11)

where e is the index for discrete point of tolerance and takes from 1,2,3 . . . nd.

dis =
√
(x2 − x1)2 + (y2 − y1)2 (12)

disejk =
√
(TCejk − 0)2 + (MTejk − 0)2 =

√
TCejk

2 + MTejk
2 (13)
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Figure 1. Heuristic approach to determine the best machine for each process.
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Figure 2. Flow chart of univariate search method.

5. Numerical Illustration

The proposed method is initially implemented in the existing problem (wheel mount-
ing assembly) discussed by Geetha et al. (2013) [34] to show the method’s effectiveness in
case study 1. Later, it is implemented in knuckle joint assembly in case study 2.
Case study 1: Wheel Mounting Assembly (WMA)

The components of the wheel mounting assembly are given in the Supplemental File
as Figure S1. The operations required to manufacture the components of the assembly are
illustrated in Figure S1, starting from O1 to O8. The feasibility of performing the operations
through the processes from P1 to P5 is given in Table S2. The infeasibility of performing
the operation using the specific process is marked as ′0′. The same way, the feasibility of
using machines for the specific processes is also given in Table S2. Further, the cost and
time function constants are represented in Table S3. The first stage of the proposed work,
the procedure to determine the best machine for each process, is discussed below.

Figure 3 represents the graphical representation of possible alternative processes and
machines to carry out all the sub-stage operations to complete the manufacturing of the
product. In the first stage, the best machine is selected for each process by implementing
the heuristic approach.
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Figure 3. Possible processes and machines for each operation/sub-stage to manufacture WMA.

Using Equations (2), (3), (10), (11) and (13), discrete tolerance (tdj), tolerance (tejk),
tolerance cost (TCejk), machining time (MTejk), and distance values (disejk) are calculated
for each machine and are shown in Table 1. Figure 4 is constructed for a discrete tolerance
value of 0.01 mm (tejk = 0.01 mm), assuming TCejk on the x-axis and MTejk on the y axis. The
distance between the origin and the discrete point of the machine represents the critical
factor that decides on selecting the best machine. The value of less distance is more likely
to be the best machine for the process.

Table 1. Best machine for process number 1.

Tejk TCe11 MTe11 dise11 TCe13 MTe13 dise13 Min (disejk) Ze11 Ze13

0.0100 20.32 33.60 39.27 29.21 48.30 56.45 39.27 0.00 17.18
0.0147 14.21 23.42 27.39 20.43 33.66 39.38 27.39 0.00 11.98
0.0193 11.05 18.15 21.25 15.89 26.09 30.55 21.25 0.00 9.30
0.0240 9.12 14.93 17.50 13.11 21.47 25.15 17.50 0.00 7.66
0.0287 7.82 12.76 14.97 11.24 18.35 21.51 14.97 0.00 6.55
0.0333 6.88 11.20 13.14 9.89 16.10 18.90 13.14 0.00 5.75
0.0380 6.17 10.02 11.77 8.87 14.41 16.92 11.77 0.00 5.15
0.0427 5.62 9.10 10.70 8.08 13.08 15.37 10.70 0.00 4.68
0.0473 5.18 8.36 9.83 7.44 12.02 14.14 9.83 0.00 4.30
0.0520 4.81 7.75 9.13 6.92 11.15 13.12 9.13 0.00 3.99
0.0567 4.51 7.25 8.53 6.48 10.42 12.27 8.53 0.00 3.73
0.0613 4.25 6.82 8.03 6.11 9.80 11.55 8.03 0.00 3.51
0.0660 4.03 6.45 7.60 5.79 9.27 10.93 7.60 0.00 3.33
0.0707 3.84 6.13 7.23 5.52 8.81 10.39 7.23 0.00 3.16
0.0753 3.67 5.85 6.90 5.27 8.41 9.92 6.90 0.00 3.02
0.0800 3.52 5.60 6.61 5.06 8.05 9.51 6.61 0.00 2.89
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Figure 4. Selection of the best machine based on discrete tolerance.

TCe11—tolerance cost of eth discrete tolerance using process number 1 on machine
number 1; MTe13—machining time of eth discrete tolerance using process number 1 on
machine number 3.

As shown in Figure 4, it is clear that dis-M1 is less than dis-M3; therefore, machine 1
is considered the best machine for process 1 for achieving a discrete tolerance value of
0.01 mm. The sum of the difference between minimum discrete distance (min(disijk)) and
discrete distance (disijk) to that particular machine is calculated to select the best machine
suitable for all discrete tolerances of the process tolerance. As shown in Table 1, it can
be concluded that machine number 1 is the best machine for process number 1, shown
graphically in Figure S2 (Supplementary File). Similarly, the best machine for the other
processes is calculated and shown in Figure S2. It is clearly understood that machine
numbers 2, 1, 3, and 4 are the best machines for process numbers 2, 3, 4, and 5, respectively.

After implementing the heuristic approach, alternative machines are removed for each
process; instead, the best machine is selected, which is shown in Figure 5.

In the second stage, since the same allocated tolerances reported in Geetha et al. (2013)
have been used for demonstration purposes, only univariate search method is implemented
to get the best process, minimum tolerance cost, and minimum machining time for each sub-
stage/operation of WMA. The univariate search method proposed in this work provides
the best results in relatively less computation time than the existing method. The search
space of the existing method proposed in Geetha et al. (2013) contains 403,200 combinations,
whereas, in the proposed method, there are only 11 possible combinations in the search
space. Equations (14) and (15) compute the possible combinations in the existing and
proposed methods, respectively. Table 2 represents the 11 possible combinations obtained
using the univariate search approach, and the first combination is shown as yellow shaded
text in Figure 5.

ncse =
no
∏
i=1

(
np
∑

j=1
nmij)

= (2 + 2 + 2)(2 + 3 + 2)(2 + 2)(3 + 3)(2 + 2)(2 + 3)(3 + 2)(2 + 2)
= 6 × 7 × 4 × 6 × 4 × 5 × 5 × 4 = 403, 200

(14)

ncsu = 1 +
no

∑
i=1

npi − no = 1 + 3 + 3 + 2 + 2 + 2 + 2 + 2 + 2 − 8 = 11 (15)
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Figure 5. Best machine for process of each operation/sub-stage after implementation of the first stage.

Using Equations (2) and (3), the tolerance cost and machining time are calculated for
each operation with alternative processes and its corresponding best machine is shown
in Figure 5. In all 11 combinations of alternative processes, the same tolerance mentioned
in case 1 and case 2 by Geetha et al. (2013) is assumed for each operation. The alternative
process and its corresponding machine-allocated tolerance of each sub-stage/operation
and its tolerance cost and machining time are presented in Tables 2 and 3. The best result is
shown as shaded text in both Tables 2 and 3.

Figures 6 and 7 show a comparison of the tolerance cost and machining time for the
existing problem presented in Geetha et al. (2013) and the proposed method; it can be seen
that the proposed method works well, considering tolerance cost, machining time, and
both as objective functions.
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Table 2. Result of univariate search method for the existing problem.

Process No. (Machine No.) Table 10 in Geetha et al. (2013) Case 1

O1 O2 O3 O4 O5 O6 O7 O8
TC MT Dist

0.060784 0.061882 0.039412 0.041831 0.055569 0.070471 0.062745 0.056824

1 1(1) 1(1) 2(2) 3(1) 1(1) 2(2) 3(1) 1(1) 35.15 75.64 83.41

2 1(1) 1(1) 2(2) 3(1) 1(1) 2(2) 3(1) 2(2) 35.22 75.66 83.45

3 1(1) 1(1) 2(2) 3(1) 1(1) 2(2) 4(3) 1(1) 37.80 74.10 83.19

4 1(1) 1(1) 2(2) 3(1) 1(1) 5(4) 4(3) 1(1) 37.10 72.11 81.09

5 1(1) 1(1) 2(2) 3(1) 4(3) 5(4) 4(3) 1(1) 38.83 77.58 86.75

6 1(1) 1(1) 2(2) 5(4) 1(1) 5(4) 4(3) 1(1) 37.06 59.53 70.13

7 1(1) 1(1) 4(3) 5(4) 1(1) 5(4) 4(3) 1(1) 38.96 67.29 77.76

8 1(1) 3(1) 2(2) 5(4) 1(1) 5(4) 4(3) 1(1) 36.08 66.30 75.48

9 1(1) 4(3) 2(2) 5(4) 1(1) 5(4) 4(3) 1(1) 36.30 57.74 68.21

10 2(2) 4(3) 2(2) 5(4) 1(1) 5(4) 4(3) 1(1) 36.37 57.93 68.40

11 4(3) 4(3) 2(2) 5(4) 1(1) 5(4) 4(3) 1(1) 37.99 62.97 73.54

Figure 6. Comparison of tolerance cost of the proposed method with the existing problem presented
in Geetha et al. (2013) MC: tolerance cost; EM10 & EM11: existing method, as per data presented in
Tables 10 and 11 of Geetha et al.; PM10 & PM11: proposed method, as per data presented in Tables 10
and 11 of Geetha et al. (2013).
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Figure 7. Comparison of machining time of the proposed method with the existing problem presented
in Geetha et al. (2013).

Table 4 represents the % of savings in both tolerance cost and machining time as
compared to the existing method and the proposed method.

Table 4. % Savings in tolerance cost and machining time.

Details Case 1 Case 2

Existing Method 37.32 68.21 35.72 68.90
Proposed
Method 36.30 57.74 33.50 54.90

% Savings 2.73 15.35 6.22 20.32

Case Study 2: Knuckle Joint Assembly
In practice, the availability of machine time will restrict the selection of the machine for

performing a process, which will influence the tolerance cost and machining time. Therefore,
in this work, the available machine time is considered as a constraint in selecting the machine.
The methodology is demonstrated using a knuckle joint assembly (Figure 8), consisting of
six components performed in ten sub-stages. Two critical dimensions are considered for
the proper functioning of the product. It is assumed that nine processes are performed
using ten machines. Equations (16) and (17) are used to determine the critical dimension,
and the tolerances of the critical dimensions are estimated using Equations (18)–(21). Table 5
shows the dimensions, sub-stages, tolerance symbols, and tolerance stake-up of the knuckle
joint assembly.

Y1 = d5 − d1 − d2 − d3 − d4 (16)

Y2 = d2 − d6 (17)

tY1 = td5 + td1 + td2 + td3 + td4 (18)

tY1 = tO7 + tO8 + tO1 + tO2 + tO3 + tO4 + tO5 + tO6 (19)

tY2 = td2 + td6 (20)

tY2 = tO2 + tO3 + tO9 + tO10 (21)

C =
no

∑
i=1

TCi (22)
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T =
no

∑
i=1

MTi (23)

Figure 8. Knuckle joint assembly (KJA).

Table 5. Dimension and tolerance symbol of knuckle joint assembly.

Name of the Component Dimension No. Operation/Sub-Stage No. Tolerance Symbol Tolerance Stack-Up

Width of fork top d1 O1 td1 tO1
Dimension of fork space d2 O2 and O3 td2 tO2 + tO3

Width of bottom fork d3 O4 td3 tO4
Center distance of hole in spacer d4 O5 and O6 td4 tO5 + tO6

Center distance of hole in pin d5 O7 and O8 td5 tO7 + tO8
Width of collar d6 O9 and O10 td6 tO9 + tO10

Critical dimension 1 Y1 tY1
Critical dimension 2 Y2 tY2

Table 6 shows the cost and time function constants of each process of the knuckle joint
assembly. The possible operation–process and process–machine feasibility matrix and the
available time of the individual machines are presented in Tables 7 and 8, respectively.

Table 6. Cost and time function constants of each process of knuckle joint assembly.

P.No. A B X1 Y1 tmin tmax M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

P1 2.5 0.22 4.7 1.3 0.030 0.09 1.3 1.2 0 0.8 0.9 0 1.3 0 0.7 0
P2 3.9 0.18 3.8 0.8 0.020 0.07 0.9 0 0.75 0.82 0 1.2 1 0 1.8 1.6
P3 2.9 1.23 4.1 1.5 0.030 0.13 0 1.3 1.1 0 1.4 0 1.4 0 0 0.9
P4 3.9 2.15 3.9 2 0.009 0.10 0 1.1 0 1.7 0 1.6 1 1.7 0 0
P5 1.7 1.09 3.1 0.6 0.020 0.14 0 0.7 1.1 0 0 1.8 0 0.8 0 1.5
P6 2.3 1.22 2.1 0.9 0.010 0.13 1.8 0 1.7 0 0.9 0 1.3 0 0.9 0
P7 1.7 0.4 4.2 1.2 0.007 0.15 1.7 0 1.2 0 1 1.8 1.7 1.1 0.9 0
P8 3.2 1.1 2.9 1.1 0.010 0.15 0.8 0 1 1.7 0 1.4 1.1 0 1 1.6
P9 2.1 0.08 5.2 1.7 0.030 0.17 0 1.1 0 0.7 1.8 0 1.1 0 0 0.8
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Table 7. Possible operation—process and process—machine feasibility matrix of knuckle joint assembly.

P.No.
Operation/Sub-Stage Number Machine Number

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

P1 1 0 0 1 1 1 0 0 0 1 1 1 0 1 1 0 1 0 1 0
P2 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1
P3 1 1 0 0 1 0 1 1 1 1 0 1 1 0 1 0 1 0 0 1
P4 1 1 0 1 1 1 1 0 1 1 0 1 0 1 0 1 1 1 0 0
P5 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1
P6 1 1 0 1 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0
P7 0 0 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 1 1 0
P8 0 0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 1 1
P9 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 1 0 0 1

Table 8. Available machine time of each machine in the knuckle joint assembly.

Machine Number M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Available machine time (AMT) 75 80 60 40 30 70 30 30 90 50

As per stage 1, the best machine for each process is determined using the heuristic
method and is presented in Table 9 and Figure S3 (in Supplementary File).

Table 9. Best machine for each process of the knuckle joint assembly.

Process Number P1 P2 P3 P4 P5 P6 P7 P8 P9

Best machine number 9 3 10 7 2 5 9 1 4

In the second stage, the whale optimization algorithm is implemented with a univariate
search method. The optimum allocated tolerance for each sub-stage/operation, tolerance
cost, machining time, and best process is obtained by assuming 100 whales, 100 iterations as
stopping criteria with 20 runs. The parameters involved in the algorithm are given in Table 10.
Further, the pseudocode of this algorithm is given in the Supplementary File.

Table 10. Terms involved in whale optimization algorithm.

Whale Optimization Algorithm Optimization Problem

Number of whales (i = 1,2, . . . nw) Number of solutions = 100
Position of a whale (Xi) Combination of allocated tolerance of each sub-stage/operation

Number of dimensions involved in defining the position of
whale (j = 1,2, . . . nd) Number of operations = 10

Position of Prey (Xp) Value of optimum tolerance of each operation (Tol.)

Fitness of whale (Fi)
Combined optimum tolerance cost (TC) and machining time

(MT) in terms of distance (dis)
Stopping criteria Maximum number of iteration = 100

The convergence plot for tolerance cost and machining time for stopping criteria
considered as 100 iterations are shown in Figure 9. The Pareto optimal solution for a
sample run is shown in Figure 10. The tolerance cost and machining time for 31 runs are
presented in Table 11. Out of these 31 runs, the best value is calculated using EDAS and
CODAS multi-criteria decision-making techniques implemented by Adali & Tuş (2019) [53]
The appraisal score (APS) and the assessment score (AS) obtained by implementing EDAS
and CODAS method are presented in Table 11. Run number (R.No.) 11 has the highest
APS value in EDAS, and run number 7 has the highest AS value in CODAS (Highlighted
in Table 11). The optimum allocated tolerances of each sub-stage are presented for both
methods and are listed in Table 12, along with the tolerance cost and machining time
for the required sub-assembly tolerances of 0.55 mm and 0.22 mm. The optimum total
tolerance cost and total machining time are presented in Table 13 for the given sub-assembly
tolerance values with the constraint of available machine time.
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Figure 9. Convergence plot for tolerance cost and machining time.

Figure 10. Optimum Pareto front solutions.

Table 14 shows the machine engagement times of the individual machines to manu-
facture the knuckle joint assembly within the available machine time.

For supporting the proposed method, the statistical analysis for EDAS and CODAS
methods are executed through Minitab software. The statistical analysis results and proba-
bility plots for both the methods are presented in Figure 11. The probability values are 0.329
and 0.231 for the EDAS and CODAS methods, respectively. Since the value of probability is
greater than 0.005 in both cases, it is clearly understood that the results obtained in 31 runs
are from normally distributed data.
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Table 11. Appraisal (APS) and assessment (AS) scores of EDAS and CODAS.

R.No.
EDAS CODAS

TC MT APS TC MT AS

1 68.08 153.97 0.5009 68.01 154.60 −0.0245
2 68.83 149.68 0.5346 67.92 155.39 −0.0106
3 69.75 147.60 0.5308 67.92 158.54 −0.0275
4 69.24 149.31 0.5185 67.93 155.59 −0.0147
5 69.07 149.32 0.5272 67.91 155.64 −0.0109
6 68.83 149.18 0.5433 67.82 155.70 0.0111
7 69.11 149.15 0.5283 67.90 156.88 −0.018
8 82.51 129.70 0.519 67.84 155.22 0.0113
9 68.85 149.45 0.5375 67.81 156.30 0.0085

10 69.45 148.01 0.5367 67.90 159.17 −0.0222
11 68.47 150.20 0.5452 67.83 156.08 0.0062
12 68.57 151.45 0.5181 67.90 158.74 −0.0233
13 68.18 151.55 0.5379 67.87 154.75 0.0075
14 69.23 148.28 0.5417 67.82 158.41 −0.0036
15 68.25 152.04 0.5256 67.92 156.45 −0.0197
16 69.29 149.66 0.5093 68.01 157.39 −0.0453
17 68.49 152.20 0.5093 68.03 155.22 −0.0348
18 68.74 149.58 0.5414 67.89 157.46 −0.018
19 69.20 148.34 0.5418 67.83 157.84 −0.0046
20 69.14 148.82 0.5326 67.82 158.67 −0.0045
21 68.30 151.69 0.5287 67.94 154.87 −0.0095
22 68.81 149.56 0.5379 67.81 157.83 0.0004
23 69.00 149.17 0.5337 67.89 158.09 −0.0191
24 69.28 148.94 0.5224 67.88 157.48 −0.0145
25 68.94 149.36 0.5341 67.89 158.21 −0.0192
26 69.58 148.35 0.5201 67.89 156.61 −0.0134
27 69.07 149.18 0.5302 67.90 157.29 −0.0193
28 69.00 149.61 0.5262 67.98 154.50 −0.0152
29 68.23 151.46 0.5367 67.80 156.40 0.0095
30 68.14 152.32 0.5266 67.94 154.21 −0.0031
31 68.24 152.13 0.5245 67.93 155.66 −0.0167

Table 12. The optimum allocated tolerance of knuckle joint assembly.

O.No.
EDAS CODAS

Tol. P.No. M.No. TC MT Tol. P.No. M.No. TC MT

1 0.074144 1 9 4.58 16.97 0.074438 1 9 4.57 16.93
2 0.040709 2 9 7.22 18.54 0.036949 2 9 7.55 20.04
3 0.039105 2 9 7.35 19.14 0.041246 2 9 7.17 18.35
4 0.081597 1 9 4.39 15.85 0.069137 1 9 4.73 17.86
5 0.065967 2 3 5.95 12.90 0.062934 2 3 6.05 13.33
6 0.089941 5 10 10.18 7.77 0.09 5 10 10.18 7.77
7 0.050332 9 7 3.21 28.84 0.045295 9 7 3.34 31.47
8 0.108207 5 3 8.75 6.98 0.13 5 3 7.57 6.33
9 0.051985 2 9 6.50 15.34 0.051806 2 9 6.51 15.38

10 0.088202 5 7 10.35 7.86 0.089999 5 7 10.18 7.77

O.No.—operation/sub-stage number; P.No.—process number; M.No.—machine number, Tol.—allocated tolerance; TC—tolerance cost;
MT—machining time.
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Table 13. Sub-assembly tolerance, total cost, and machining time.

Details EDAS CODAS

ta1 0.55 0.55
ta2 0.22 0.22
TC 68.47 67.84
MT 150.20 155.22

ta1—Calculated sub-assembly 1 tolerance. ta2—Calculated sub-assembly 2 tolerance.

Table 14. Machine engagement time (met) of individual machine.

M.No. 1 2 3 4 5 6 7 8 9 10

EDAS 0 0 19.88 0 0 0 36.70 0 85.85 7.77
CODAS 0 0 19.66 0 0 0 39.24 0 88.55 7.77

Figure 11. Statistical analysis and probability plot for EDAS and CODAS methods.

6. Conclusions

Most previous studies on tolerance allocation problems concentrated on minimizing
manufacturing costs, quality loss, or combining the two. Machining time, a vital manu-
facturing objective, has barely been contemplated. In this paper, the machining time was
considered along with manufacturing cost in optimum tolerance allocation of complex
assemblies, representing a more realistic product development scenario. Alternative ma-
chine and process selections with available machine time make this problem cumbersome
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and complicated. Therefore, a new methodology was developed that applies a heuristic
approach and combines whale optimization algorithm with a univariate search method.
The total manufacturing cost and machining time of 36.3 USD and 57.74 min reported in
this paper for wheel mounting assembly is 2.73% and 15.35% less than the problem dealt
with in case 1 by Geetha et al. (2013). Similarly in case 2, there was 6.22% and 20.32% of
savings in the tolerance cost and machining time reported by implementing the proposed
method. The results presented in this paper demonstrate that the proposed method can
reduce tolerance cost and machining time simultaneously with less computation time. The
proposed method is also suitable for solving two- and three-dimensional problems. As a
further extension of this work, the operation sequence, machine sequence, or both may be
considered with additional objectives such as total investment cost of machines, idle time
of machines, idle cost of machines, and the number of machines required to manufacture
the product.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app11199164/s1, Figure S1: Wheel Mounting Assembly (WMA) [Geetha et al. (2013)], Figure
S2: Selection of best machine for process number 1 to 5 to manufacture WMA,
Figure S3: Selection of best machine for process number 1 to 9 to manufacture KJA, Table S1:
Summary of literature survey, Table S2: Feasibility Matrix for WMA [Geetha et al. (2013)], Table S3:
Cost and Time Function Constants for WMA [(Geetha et al. 2013)] [54–69].
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Abstract: The proposed work aims to acquire the maximum number of non-linear assemblies with
closer assembly tolerance specifications by mating the different bins’ components. Before that,
the components are classified based on the range of tolerance values and grouped into different
bins. Further, the manufacturing process of the components is selected from the given and known
alternative processes. It is incredibly tedious to obtain the best combinations of bins and the best
process together. Hence, a novel approach using the combination of the univariate search method and
the harmony search algorithm is proposed in this work. Overrunning clutch assembly is taken as an
example. The components of overrunning clutch assembly are manufactured with a wide tolerance
value using the best process selected from the given alternatives by the univariate search method.
Further, the manufactured components are grouped into three to nine bins. A combination of the
best bins is obtained for the various assembly specifications by implementing the harmony search
algorithm. The efficacy of the proposed method is demonstrated by showing 24.9% of cost-savings
while making overrunning clutch assembly compared with the existing method. The efficacy of the
proposed method is demonstrated by showing 24.9% of cost-savings while making overrunning
clutch assembly compared with the existing method. The results show that the contribution of the
proposed novel methodology is legitimate in solving selective assembly problems.

Keywords: selective assembly; overrunning clutch assembly; univariate search method; harmony
search algorithm

1. Introduction

Product quality is the focus of any manufacturing process. In general, two or more
components are assembled to create an assembly. The quality of the assembly depends on
the quality of the components, which affects the product’s functionality. Tolerance plays an
essential role in the component’s quality, deciding the fit between the mating parts. The
components manufactured with closer tolerance make the precise assembly more suitable
for functional requirements. Selective assembly is one of the feasible methods for making
precise assemblies with lower manufacturing costs. The complete elimination or reduction
of secondary operations by forming wide-tolerance components is the reason for lower
manufacturing costs. In selective assembly, the components are grouped as bins based
on the uniform grouping method, the equal probability method, or the uniform tolerance
method, for example. According to the best bin combinations, the precise assemblies

Appl. Sci. 2021, 11, 9213. https://doi.org/10.3390/app11199213 https://www.mdpi.com/journal/applsci71
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are made by mating the components randomly selected from the corresponding bins.
Most of the research on linear/radial assembly have mainly focused on minimizing the
objectives, namely, clearance variation or surplus parts. Research works focusing on
non-linear assembly are seldom found. Moreover, in the existing literature, the tolerance
of the components is usually considered for obtaining the best bin combinations rather
than the dimension of components. Since different combinations of bins are possible, this
problem environment can be treated as an NP-hard problem. Selection of process for
making components from the given alternative processes also plays a vital role in further
reducing the product’s manufacturing cost.

2. Related Research

The literature relevant to the proposed work has been categorized as selective assembly
and the harmony search algorithm. The literature related to both topics is detailed below.

2.1. Selective Assembly

Kern (2003) [1] proposed an approach for selecting assembly by considering variations
in the dimensional distributions. Further, the author developed closed-form equations for
the different techniques of selective assembly. Mease et al. (2004) [2] introduced a method
to classify the components into various classes based on the dimensional variations. The
assembly was made by pairing the selected components from the different classes. Further,
the absolute and squared error loss functions were studied to select the optimum method.
Matsuura et al. (2008) [3] explored a method to minimize clearance variation when pairing
the components with less variance for making an assembly. Kwon et al. (2009) [4] studied
the effectiveness of optimal binning strategies based on the squared error loss function by
considering similar normal distributions of the dimensions of two different components.
Matsuura et al. (2011) [5] developed the optimal mean shift to reduce surplus components
while making selective assembly. The equal width concept was used for grouping the
components into different bins. Three shifted means method was used for the fabrication
of components.

Yue et al. (2014) [6] proposed a genetic algorithm to minimize the variation in clearance
while mating the components available in the selective groups to manufacture hole and
shaft assemblies. Babu and Asha (2014) [7] introduced a customized artificial immune
system algorithm for mating the components available in selective groups to minimize
assembly clearance variation. Further, they applied Taguchi’s loss function to identify the
deviation from the mean. The count of selective groups was also one of the important
concerns in the proposed work. Ju and Li (2014) [8] solved selective assembly problems
using a two-stage decomposition procedure. A two-component assembly system with
unreliable Bernoulli machines and limited inventories was considered. The effectiveness of
the proposed method was analyzed analytically.

Xu et al. (2014) [9] applied a new method with the combination of discarding and bin-
ning theorems to minimize the components’ variations while making the selective assembly
of a hard disk drive. The utilization rate of the components was high with regard to the
number of assemblies made using the newly proposed method. Lu and Fei (2015) [10] pro-
posed a grouping method in selective assembly to increase the success rate of manufacturing
the assemblies and reducing the surplus parts. A genetic algorithm with a 2D chromosome
structure was used for this purpose. The effectiveness of the proposed method was studied
based on solving three different cases. Manickam and De (2015) [11] developed a genetic
algorithm to identify the better combination of groups containing the components to create
the maximum number of assemblies with less total cost. The small number of components
with wider tolerance was made available in the individual groups. This was the uniqueness
of the presented work. The model was developed using MATLAB software.

Babu and Asha (2015) [12] evaluated the losses in making assemblies by applying
the symmetrical interval-based Taguchi loss function. Further, the dual objectives, namely,
minimum clearance variation and minimum losses in making assemblies, were considered

72



Appl. Sci. 2021, 11, 9213

to identify the better combination of the parts’ groups using the sheep flock heredity
algorithm. Ju et al. (2016) [13] studied the performance of the selective assembly system
using Bernoulli machine reliability models. For this study, the assemblies made through
two components with different qualities were considered. The two-stage decomposition
procedure was applied to evaluate the effectiveness of the proposed models analytically.
Malaichamy et al. (2016A) [14] developed software capable of applying all kinds of selective
assembly methods to identify suitable solutions with the least possible time. For instance,
equal area and width methods were used to minimize variation and scrap in selective
assembly. The random assembly method was inbuilt in the software to select the best
method for minimizing the manufacturing cost of the assembly. Since the software was
developed using an optional programming language, changes to the input data were
extremely easy, and, in no time, the result could be viewed graphically.

Malaichamy et al. (2016B) [15] introduced a software approach to help engineers to
visualize the tolerance cost curve for a given process or a good combination of processes in
no time. The tolerance cost was calculated using the reciprocal power cost model. The best
process could be selected in this work from the given alternative processes for the known
tolerance value. A simulated annealing algorithm was implemented to compute the best
bin number and its combinations with almost nil surplus parts for the given dimensional
distribution of components of a shaft housing assembly. Compared with random assembly,
a good number of surplus parts were reduced by implementing an equal width selective
assembly method. Liu and Liu (2017) [16] discussed the remanufacturing of the engine
through the selective assembly concept. Remanufacturing is a sustainable strategy in which
the group numbers and range of components in each group are not kept constant. The
assembly accuracy was greatly increased using the proposed strategy. Chu et al. (2018) [17]
developed a method for manufacturing gear reducers using a novel strategy called GA-
based selective assembly. The backlash of the gear reducer was the major concern in this
work to verify the meeting of assembly requirements.

2.2. Harmony Search Algorithm

Geem et al. (2001) [18] described the harmony search optimization algorithm’s fea-
tures, robustness, simplicity, and search efficiency in solving engineering problems. Geem
et al. (2002) [19] proposed a harmony search optimization algorithm to solve the prob-
lems associated with pipe network design. Lee and Geem (2004) [20] described a novel
structural optimization algorithm using the harmony search method. The effectiveness of
the proposed algorithm was verified by identifying the solutions to different truss prob-
lems. Lee and Geem (2005) [21] solved different engineering optimization problems that
included minimizing mathematical functions and optimizing structural problems using a
harmonic-search-based method. Flow demand and low head were considered objectives in
this work. Wang et al. (2009) [22] analyzed the harmony search algorithm’s effectiveness
with the colonal selection algorithm. The colonal search method was used to increase the
harmony memory members in the harmony search method.

From the literature survey, it is clear that research works have been very limited in
the manufacturing of non-linear assemblies with a closer assembly tolerance specification.
Further, the usage of the harmony search algorithm for solving selective assembly problems
is seldom found. The problem environment is discussed in the next section.

3. Problem Environment

In selective assembly, parts are manufactured with wider tolerance, measured, and
partitioned into groups, and assemblies are made by assembling the components within
the random combination of groups. Manufacturing tolerance, assembly specification, and
the number of groups are the three main factors that play important roles in controlling
surplus parts that affect the product’s manufacturing cost. After parts are manufactured, it
is tedious to obtain the best combination of groups for different assembly specifications. It
is laborious work to compute the numbers of closer assembly for each bin number from
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the manufactured components. Alternative process selection for making components also
makes the problem highly complicated. The problems described above are challenging
to process/design engineers and reduce implementation in real situations. Moreover,
the components involved in making a non-linear assembly require the individual mating
of dimensions for each assembly. Compared to making linear assembly, this required
additional computation effort is tedious.

4. Solution Methodology

The proposed problem environment can be solved in three stages. In the first stage,
the best process for manufacturing each component of an assembly is obtained from the al-
ternative processes using the univariate search method. In the second stage, 1000 simulated
dimensions of each component are generated using MATLAB for the different combina-
tions of alternative processes obtained from the first stage. Further, the components are
partitioned into different bin numbers according to the equal area method, which is one
of the techniques used in the selective assembly method. In the last stage, the harmony
search algorithm is implemented to obtain the best bin combinations. Then, the non-linear
assemblies are made by mating the components according to the best bin combinations
with almost nil surplus parts. To show the effectiveness of the proposed method, the
manufacturing cost of assemblies made both from the random assembly [23] and selective
assembly are compared. This three-stage approach is explained in a detailed way in the
numerical illustration section.

5. Numerical Illustration

Overrunning clutch assembly (OCA), dealt with by Ganesan et al. (2001) [23], shown
in Figure 1, is considered an example product to show the efficiency of the proposed
method. It consists of a hub, four rollers, and a cage. The nominal dimensions and their
allocated tolerance; the minimum, maximum process tolerances; and the tolerance cost
function constants of alternative processes of each component are listed in Table 1. The
critical dimension Y is determined using Equation (1), and the accepted value of Y is
assumed to be 7.0124 ± 2◦. Equation (2) represents the reciprocal tolerance cost function
to calculate the component’s tolerance cost. The cost function constants are taken from
Ganesan et al. (2001) [23]. The cost of assembly based on allocated and maximum process
tolerances is computed using Equations (3) and (4), respectively, and listed in Table 2.

Figure 1. Overrunning clutch assembly.
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where
X1 —Dimension of the hub in mm
X2 and X3 —Dimension of the rollers in mm
X4 —Dimension of the cage in mm
Y —Critical dimension in degrees
Ai —Fixed cost of the ith component in $
Bi —Cost function constants of the ith component
ti —ith component’s tolerance in mm
Ci —Cost of the ith component in $
tai, tmi —ith component’s allocated and maximum tolerance in mm
Ca, Cm —Cost of assembly in $ based on tai and tmin
nc —Number of components
i —Component number index

Table 1. Manufacturing details of overrunning clutch assembly.

C.No.
Nominal

Dimension
(Di) (mm)

tai
(mm) Ps P.No. Ai Bi tmin (mm) tmax (mm)

X1 55.29 0.179806 3
P1 10.0 0.015 0.015 0.08

P2 5.0 0.500 0.060 0.15

P3 3.5 0.750 0.120 0.25

X2 22.86 0.165358 2
P1 8.0 0.250 0.020 0.15

P2 3.0 0.650 0.080 0.30

X3 22.86 0.120132 1
P1 2.5 0.300 0.040 0.20

P2 5.0 0.045 0.120 0.25

X4 101.69 0.200581 3
P1 4.0 0.560 0.080 0.12

P2 6.0 0.160 0.150 0.25

P3 0.5 0.880 0.200 0.40

C.No.—component name; P.No.—process number.

Table 2. Manufacturing cost of overrunning clutch assembly for tai, tmin, and tmax.

C.No. Cai ($) P.No. Cmin ($) Cmax ($)

X1 7.67
P1 11.00 10.19

P2 13.33 8.33

P3 9.75 6.50

X2 6.93
P1 20.50 9.67

P2 11.13 5.17

X3 5.00
P1 10.00 4.00

P2 5.38 5.18

X4 4.89
P1 11.00 8.67

P2 7.07 6.64

P3 4.90 2.70
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5.1. Stage I

The selection of the best process for each component from the given alternative
processes using the univariate search method is illustrated in Figure 2. It is understood
from Figure 2 that the minimum manufacturing cost of $18.37 can be achieved through
making the components X1, X2, X3, and X4 using process combinations (3213) P3, P2, P1,
and P3, respectively, which is nearly 24.98% less compared with the $24.49 reported in
the existing method dealt by Ganesan et al. (2001). It is also understood that the process
combinations of 2213 and 1213 for components X1, X2, X3, and X4, respectively, can yield
17.52% and 9.92% savings in manufacturing cost. However, in a real situation, the savings
may vary slightly because of surplus parts present in the selective assembly method.

Figure 2. Univariate search method to select the best process for each component. X1-P1 indicates that X1 component
is produced by the P1 process; TC1113 = $26.56 indicates that components X1, X2, X3, and X4 are manufactured using
processes P1, P1, P1, and P3, respectively, and the total cost to manufacture the same will be $26.56.

5.2. Stage II

As discussed in Section 4, 1000 random values have been generated for each com-
ponent according to the mean (μi) and standard deviation (σi) presented in Table 3. The
dimensional distribution of 1000 components of X1, X2, X3, and X4 was generated using
the normrnd (C.No.) function in MATLAB.
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Table 3. Mean and standard deviation of components for different process combinations.

C.No. μi (mm)
PC1–1213 PC2–2213 PC3–3213

P.No. tmi (mm) σi = tmi/3 P.No. tmi (mm) σi = tmi/3 P.No. tmi (mm) σi = tmi/3

X1 55.29 P1 0.08 0.02667 P2 0.15 0.05 P3 0.25 0.08333
X2 22.86 P2 0.3 0.1 P2 0.3 0.1 P2 0.3 0.1
X3 22.86 P1 0.25 0.08333 P1 0.25 0.08333 P1 0.25 0.08333
X4 101.69 P3 0.4 0.13333 P3 0.4 0.13333 P3 0.4 0.13333

P.No.—process number; PC1—1st process combinations for components X1, X2, X3, and X4; μi—mean dimension of the components;
tmi—tolerance of the ith component; σi—standard deviation of the ith component.

5.3. Stage III—Implementation of HSA

The harmony search algorithm (HSA) is a meta-heuristic algorithm, and it works based
on the identification of good harmony by musicians through a continuous improvisation
process. The HSA has the following advantages: (i) quick convergence, (ii) easy to adapt,
and (iii) the least computational time. Further, from the literature survey, it is observed
that the HSA has outperformed in solving complex optimization problems. Hence, the
HSA has been used in this work. Table 4 presents the different terms used in the HSA, its
equivalent term in both optimization problems and the present work formulation, and its
range of values and examples. The schematic diagram shown in Figure 3 illustrates the
implementation of the HSA to obtain the best bin combinations. The technical terms and
their meanings used in Figure 3 are presented in Table 5. For demonstration purposes, the
components are partitioned into five bins. The step-by-step procedure is given below.

Table 4. Representation of variables in HSA.

HSA Parameters
Equivalent Term in

Optimization
Problem

Equivalent Term in
Present Work

Example

Musical Instrument Decision Variable No. of components X1, X2, X3, and X4
Pitch Range Value Range Number of bins 5

Harmony A Solution Vector A combination of bins
for each component

(X1) 13245
(X2) 43251
(X3) 42135
(X4) 52143

Aesthetics Objective Function Number of accepted
assemblies 985

Practice Iteration No. of iterations 150

Experience Memory Matrix Storing of the best
solution

Harmony Memory
Size

Size of Solution
Vector

No. of initial
solutions 20

HMCR
(0.7–0.99)

Harmony Memory
Considering Rate 0.7 0.7

PAR Pitch Adjusting Rate 0.3 0.3

77



Appl. Sci. 2021, 11, 9213

 

Figure 3. Implementation of HSA.
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Table 5. Technical terms and their meanings.

Terms Meaning

Trimming Remove the components which do not satisfy LLi ≤ di ≤ ULi

Partitioning Arranging the components in ascending order based on its di and placing an
equal number of components in each bin starting from bin number 1 to nb

Mating

Selecting one component (X1, X2, X3, and X4) randomly from the bin based on
the bin combination of cbi and making an assembly. Check the assembly’s

specification (within LSL and USL); if it meets the requirement, then treat it as
good assembly (NoA); otherwise, treat it as a surplus part

normrnd Matlab function will generate the required number of normally distributed
random numbers based on the given mean and standard deviation value

randperm (nb) Matlab function will generate a permutation combination for the given bin
number nb

Step 1: A random combination of bins for each component for the size of harmony mem-
ory 10 is generated (listed in Table 6).

Step 2: The corresponding bin’s components are randomly matched with other compo-
nents for each harmony number, and the assembly is produced. If the assembly meets
the given specification limit, it is accepted as an assembly; otherwise, it is treated as
a surplus part. This will be carried out until the component exists in each bin. The
accepted assemblies are counted and listed in Table 6 as NoA.

Step 3: Table 7 represents the arrangements of harmony, from maximum NoA to minimum
NoA. Table 8 illustrates the best bin combination that will produce maximum NoA in
the first iteration.

Table 6. Initial harmony memory.

H.No.(k) cbX1 cbX2 cbX3 cbX4 NoAk

1 2 5 1 4 3 2 5 3 1 4 5 3 4 1 2 3 1 2 4 5 308
2 4 2 1 5 3 4 2 5 1 3 4 2 5 3 1 5 3 4 2 1 649
3 4 2 1 5 3 1 5 2 3 4 3 4 2 5 1 3 1 5 4 2 407
4 4 3 1 5 2 3 2 4 5 1 5 2 3 4 1 3 5 2 4 1 508
5 1 5 4 3 2 1 3 4 5 2 3 2 4 5 1 2 4 1 3 5 326
6 2 1 3 4 5 3 2 4 5 1 3 1 5 2 4 3 5 2 4 1 557
7 5 2 3 1 4 2 5 3 1 4 1 2 3 4 5 1 5 4 2 3 354
8 1 2 4 3 5 1 3 5 2 4 5 2 4 3 1 5 3 4 2 1 397
9 2 3 1 4 5 3 1 2 5 4 2 5 1 4 3 5 4 2 1 3 212

10 4 3 1 2 5 4 5 3 2 1 3 2 1 4 5 3 2 4 5 1 458
H.No.—harmony numbers; cbX1, cbX2, cbX3, and cbX4 are the combinations of bins for X1, X2, X3, and X4
components.

Table 7. Harmonies after sorting based on NoA.

H.No.(k) cbX1 cbX2 cbX3 cbX4 NoAk

1 4 2 1 5 3 4 2 5 1 3 4 2 5 3 1 5 3 4 2 1 649
2 2 1 3 4 5 3 2 4 5 1 3 1 5 2 4 3 5 2 4 1 557
3 4 3 1 5 2 3 2 4 5 1 5 2 3 4 1 3 5 2 4 1 508
4 4 3 1 2 5 4 5 3 2 1 3 2 1 4 5 3 2 4 5 1 458
5 4 2 1 5 3 1 5 2 3 4 3 4 2 5 1 3 1 5 4 2 407
6 1 2 4 3 5 1 3 5 2 4 5 2 4 3 1 5 3 4 2 1 397
7 5 2 3 1 4 2 5 3 1 4 1 2 3 4 5 1 5 4 2 3 354
8 1 5 4 3 2 1 3 4 5 2 3 2 4 5 1 2 4 1 3 5 326
9 2 5 1 4 3 2 5 3 1 4 5 3 4 1 2 3 1 2 4 5 308

10 2 3 1 4 5 3 1 2 5 4 2 5 1 4 3 5 4 2 1 3 212
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Table 8. Best combination of bins for the first iteration.

bcbitr
NoAitr

cbX1 cbX2 cbX3 cbX4

4 2 1 5 3 4 2 5 1 3 4 2 5 3 1 5 3 4 2 1 649

Step 4: A random number less than 1 is generated for each component of each harmony
number (presented in Table 9 as RHMCR).

Step 5: If this number is less than or equal to HMCR, then a random number between
1 and HMS (rcb) is generated, and others are assumed to be zero. This is presented
in Table 9.

Table 9. RHMCR and rcb values.

H.No.
RHMCR rcb

X1 X2 X3 X4 rcbX1 rcbX2 rcbX3 rcbX4

1 0.0697 0.6581 0.1267 0.0176 1 6 7 7
2 0.1398 0.9349 0.9424 0.3936 8 0 0 1
3 0.4975 0.3145 0.218 0.8001 1 9 3 0
4 0.0639 0.7984 0.1875 0.442 7 0 3 4
5 0.9388 0.0765 0.605 0.1321 0 8 1 1
6 0.2711 0.4453 0.7794 0.9148 9 3 0 0
7 0.6946 0.413 0.216 0.0049 1 6 6 1
8 0.0204 0.9048 0.0267 0.7212 1 0 8 0
9 0.0013 0.4189 0.1216 0.8414 1 6 1 0
10 0.6254 0.8232 0.0301 0.6189 2 0 8 7

RHMCR—a random number decides either to accept or not accept the selection of the existing tune/bin combina-
tion of components for improvisation; rcb—a random number generated between 1 and hms for each variable.

Step 6: The cbX1, cbX2, cbX3, and cbX4 values corresponding to rcbX1, rcbX2, rcbX, and rcbX4
are taken from Table 6 and listed in Table 10. If the value of rcb is zero, then the
corresponding harmony’s cbx value is considered.

Table 10. Harmony after HMCR.

H.No.(k) cbX1 cbX2 cbX3 cbX4

1′ 4 2 1 5 3 1 3 5 2 4 1 2 3 4 5 1 5 4 2 3
2′ 1 5 4 3 2 3 2 4 5 1 3 1 5 2 4 5 3 4 2 1
3′ 4 2 1 5 3 2 5 3 1 4 5 2 3 4 1 3 5 2 4 1
4′ 5 2 3 1 4 4 5 3 2 1 5 2 3 4 1 3 2 4 5 1
5′ 4 2 1 5 3 1 3 4 5 2 4 2 5 3 1 5 3 4 2 1
6′ 2 5 1 4 3 3 2 4 5 1 5 2 4 3 1 5 3 4 2 1
7′ 4 2 1 5 3 1 3 5 2 4 5 2 4 3 1 5 3 4 2 1
8′ 4 2 1 5 3 1 3 4 5 2 3 2 4 5 1 2 4 1 3 5
9′ 4 2 1 5 3 1 3 5 2 4 4 2 5 3 1 3 1 2 4 5

10′ 2 1 3 4 5 3 2 4 5 1 3 2 4 5 1 1 5 4 2 3

Step 7: A random number (RPAR) less than 1 is generated for each value of RHMCR,
which is not equal to zero and is less than the HMCR value (listed in Table 11).

Step 8: Two random numbers, r1 and r2, within bin numbers, are generated for each value
of RPAR, which is not equal to zero (presented in Table 11).

Step 9: New harmony, i.e., cbX1, cbX2, cbX3, and cbX4, is obtained wherever the bin is
located within their bin combinations, according to r1 and r2 (presented in Table 12).

Step 10: Then, NoAs are obtained by mating the components randomly corresponding to
the bin combinations given in cbX1, cbX2, cbX3, and cbX4 (listed in Table 12).

Step 11:The selection and selected harmonies for the next iteration are presented in
Tables 13 and 14.

Step 12: The steps from 4 to 11 are repeated to the specified number of iterations.
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Step 13: The above steps, from 1 to 12, can be repeated for various bin numbers, starting
from 3 to 9. Figures 4 and 5 represent the iteration number vs. NoA and the number
of bin vs. NoA for various bin numbers.

Step 14: By changing the product specification, starting from ±0.25◦ to ±2◦, the above
steps from 1 to 13 can be repeated.

Table 11. RPAR, r1, and r2 values.

H.No.
RPAR r1 r2

X1 X2 X3 X4 r1X1 r1X2 r1X3 r1X4 r2X1 r2X2 r2X3 r2X4

1′ 0.0917 0.0738 0.4457 0.8808 3 1 0 0 1 2 0 0
2′ 0.2529 0 0 0.6409 1 0 0 0 3 0 0 0
3′ 0.5235 0.009 0.344 0 0 1 0 0 0 4 0 0
4′ 0.6034 0 0.3208 0.6256 0 0 0 0 0 0 0 0
5′ 0 0.1307 0.599 0.4411 0 2 0 0 0 2 0 0
6′ 0.5166 0.4696 0 0 0 0 0 0 0 0 0 0
7′ 0.5402 0.5435 0.8627 0.7751 0 0 0 0 0 0 0 0
8′ 0.3204 0 0.7643 0 0 0 0 0 0 0 0 0
9′ 0.1678 0.277 0.0321 0 1 3 1 0 3 3 3 0

10′ 0.2417 0 0.8962 0.4639 4 0 0 0 1 0 0 0
RPAR—a random number decides the pitch adjustment (interchanging bin numbers within the component);
r1 and r2—two random numbers within the bin number (nb) to interchange the bin number to generate a new bin
combination for a component.

Table 12. Harmony after HMCR and PAR.

H.No.
After HMCR and PAR

NoA
cb1X1 cb1X2 cb1X3 cb1X4

1′ 1 2 4 5 3 3 1 5 2 4 1 2 3 4 5 1 5 4 2 3 709
2′ 4 5 1 3 2 2 5 4 3 1 4 1 5 3 2 5 3 4 2 1 608
3′ 4 2 1 5 3 1 5 3 2 4 5 2 3 4 1 3 4 1 5 2 671
4′ 5 2 3 1 4 1 5 2 3 4 5 2 3 4 1 3 2 4 5 1 555
5′ 2 1 5 3 4 1 3 4 5 2 4 2 5 3 1 5 3 4 2 1 503
6′ 2 5 1 4 3 3 2 4 5 1 2 1 5 4 3 1 3 5 2 4 312
7′ 4 2 1 5 3 1 3 5 2 4 5 2 4 3 1 5 3 4 2 1 519
8′ 4 2 1 5 3 2 4 5 3 1 3 2 4 5 1 5 3 4 2 1 404
9′ 1 2 4 5 3 1 3 5 2 4 5 2 4 3 1 3 2 5 1 4 460

10′ 4 1 3 2 5 1 4 3 5 2 3 2 4 5 1 1 5 4 2 3 549

Table 13. Selection of harmonies for next iteration.

Before Sorting After Sorting
SHMNo.

HMNo. NoA HMNo. NoA

1 649 1′ 709 1”
2 557 2′ 671 2”
3 508 1 649 3”
4 458 3′ 608 4”
5 407 2 557 5”
6 397 4′ 555 6”
7 354 5′ 549 7”
8 326 6′ 519 8”
9 308 3 508 9”
10 212 7′ 503 10”
1′ 709 8′ 460 NS
2′ 671 4 458 NS
3′ 608 5 407 NS
4′ 555 9′ 404 NS
5′ 549 6 397 NS
6′ 519 7 354 NS
7′ 503 8 326 NS
8′ 460 10′ 312 NS
9′ 404 9 308 NS
10′ 312 10 212 NS

NS—not selected; SHMNo.—selected harmonies for next iteration.
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Table 14. Selected harmonies for next iteration.

IHMno HMNo X1 X2 X3 X4 NoA

1′′ 1′ 1 2 4 5 3 3 1 5 2 4 1 2 3 4 5 1 5 4 2 3 709
2′′ 2′ 4 2 1 5 3 1 5 3 2 4 5 2 3 4 1 3 4 1 5 2 671
3′′ 1 4 2 1 5 3 4 2 5 1 3 4 2 5 3 1 5 3 4 2 1 649
4′′ 3′ 4 5 1 3 2 2 5 4 3 1 4 1 5 3 2 5 3 4 2 1 608
5′′ 2 2 1 3 4 5 3 2 4 5 1 3 1 5 2 4 3 5 2 4 1 557
6′′ 4′ 5 2 3 1 4 1 5 2 3 4 5 2 3 4 1 3 2 4 5 1 555
7′′ 5′ 4 1 3 2 5 1 4 3 5 2 3 2 4 5 1 1 5 4 2 3 549
8′′ 6′ 4 2 1 5 3 1 3 5 2 4 5 2 4 3 1 5 3 4 2 1 519
9′′ 3 4 3 1 5 2 3 2 4 5 1 5 2 3 4 1 3 5 2 4 1 508
10′′ 7′ 2 1 5 3 4 1 3 4 5 2 4 2 5 3 1 5 3 4 2 1 503

(a). NoA for ± 0.5° 

NoA for ± 1° 

Figure 4. Cont.
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(c). NoA for ±1.5° 

(d). NoA for ±2° 

Figure 4. Iteration number vs. NoA for various bin numbers—the 3213 process combination (a) NoA
for ±0.5◦, (b) NoA for ±1◦, (c). NoA for ±1.5◦ and (d) NoA for ±2◦.
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(a). NoA for ±0.5° 

(b). NoA for ±1° 

Figure 5. Cont.
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NoA for ±1.5° 

(d). NoA for ±2° 

Figure 5. NoA for various bin numbers and assembly specifications for the 3213 process combination
(a) NoA for ±0.5◦, (b) NoA for ±1◦, (c). NoA for ±1.5◦ and (d) NoA for ±2◦.
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6. Results and Discussion

An attempt has been made to make assemblies by considering the number of bins/
partitions, up to 9. Figure 6 reveals that in the equal area method for making non-linear
assemblies, it is possible to make 996 assemblies out of 1000 components by partitioning
them into 3 bins for the assembly specification of ±2◦. It is also understood that while
increasing the partition number, there may be a 5.8% (938 assemblies) drop in producing the
number of assemblies for the same assembly specification. In the meantime, the number of
assemblies is reduced for the same 1000 components of X1, X2, X3, and X4 while reducing
the assembly specification for the same partition number (equal to 3). The assemblies are
reduced from 996 to 392 for the assembly specification of ±2◦ to ±0.5◦.

 

Figure 6. NoA vs. bin number for various assembly specifications for the 3213 process combination.

Figures 7–9 represent the number of assemblies produced for various assembly specifi-
cations while changing the partition number for the same set of 1000 components produced
based on process combination 3213. A similarity can be observed from the above figures.
Except in three bin partitions, all other partitions of components and matching components
according to the best bin combinations obtained through the HSA produced almost a very
close number of assemblies for various assembly specifications. Figure 10 indicates that
maximum assemblies are produced for various assembly specifications and process com-
binations while partitioning the components into three bins. The assembly specification
value after ±1◦ in all the process combinations could produce an almost equal number of
assemblies for bin number three. Table 15 represents the best bin combinations and their
maximum number of assemblies for various process combinations.

Figure 7. Assembly specification vs. NoA for various bin numbers—the 3213 process combination.
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Figure 8. Assembly specification vs. NoA for various bin numbers—the 1213 process combination.

Figure 9. Assembly specification vs. NoA for various bin numbers—the 2213 process combination.

 

Figure 10. Maximum NoA produced for different assembly specifications and various
process combinations.
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Table 15. Best bin combinations for various assembly specifications and process combinations.

AS
PC3–3213 PC2–2213 PC1–1213

X1 X2 X3 X4 NoA X1 X2 X3 X4 NoA X1 X2 X3 X4 NoA

±0.5◦ 1 2 3 2 3 1 2 3 1 1 3 2 674 3 2 1 1 2 3 2 3 1 1 2 3 658 2 1 3 3 2 1 3 1 2 3 1 2 681
±1◦ 1 2 3 3 2 1 2 3 1 2 3 1 967 1 3 2 3 1 2 2 1 3 2 1 3 985 2 1 3 2 1 3 3 2 1 3 1 2 994
±1.5◦ 1 2 3 3 2 1 2 3 1 2 3 1 996 2 1 3 2 3 1 2 3 1 2 3 1 996 2 1 3 3 2 1 3 2 1 3 2 1 999
±2◦ 1 3 2 2 1 3 2 3 1 1 3 2 996 2 1 3 1 2 3 3 2 1 2 1 3 996 1 3 2 1 3 2 1 3 2 1 3 2 999

AS—assembly specification.

7. Conclusions

This paper addresses a novel methodology by combining the univariate search method
and the harmony search algorithm in selective assembly for making non-linear assemblies
for various assembly specifications. The best processes for the different components of the
assembly are selected from the known alternative processes using the univariate search
method, and these components are grouped into 3 to 9 bins. Further, the best bin combina-
tions for making assemblies to reduce manufacturing cost are obtained through the harmony
search algorithm. In this work, the component’s dimensions are directly considered for
making assemblies from the best bin combinations rather than considering tolerances, as
in the existing method. The proposed method is demonstrated on a non-linear overrun-
ning clutch assembly and has proved its efficiency by saving 24.9% of manufacturing cost
compared with the existing method for the best process combination of 3213.
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Abstract: In this paper, a hybrid bat optimization algorithm based on variable neighbourhood
structure and two learning strategies is proposed to solve a three-stage distributed assembly permu-
tation flowshop scheduling problem to minimize the makespan. The algorithm is firstly designed to
increase the population diversity by classifying the populations, which solves the difficult trade-off
between convergence and diversity of the bat algorithm. Secondly, a selection mechanism is used to
update the bat’s velocity and location, solving the difficulty of the algorithm to trade-off exploration
and mining capacity. Finally, the Gaussian learning strategy and elite learning strategy assist the
whole population to jump out of the local optimal frontier. The simulation results demonstrate that
the algorithm proposed in this paper can well solve the DAPFSP. In addition, compared with other
metaheuristic algorithms, IHBA has better performance and gives full play to its advantage of finding
optimal solutions.

Keywords: hybrid bat algorithm; optimization problem; the distributed assembly permutation
flowshop scheduling problem; variable neighborhood descent

1. Introduction

The distributed assembly scheduling problem is a derivative and extension of the
assembly scheduling problems. It is mainly used to produce multiple products assembled
from different parts. In a decentralized and globalized economy, the current economic
trend of customization and intelligent manufacturing has led to the rapid development of
assembly production. Internationally, international companies with multiple production
centers or plants are even more common. This shows that distributed and intelligent
production plays a pivotal and irreplaceable role in the modern manufacturing industry.
Currently, this type of scheduling is widely used in the supply chain and manufacturing in-
dustry. In order to maintain a competitive position in a rapidly changing market, managers
must quickly make the right decisions about how to allocate work to plants and how to
schedule each plant efficiently. Therefore, the distributed scheduling problem has become
a hot research topic among scholars and researchers.

The distributed assembly permutation flowshop scheduling problem (DAPFSP) is
of great importance to both the industrial industry and the research community. As we
all know, DAPFSP consists of two phases, including production and assembly. In detail,
the production phase corresponds to a distributed displacement flowshop scheduling
problem, where n jobs are assigned to be processed in f plants with m identical machines
in a flowshop line. Each job belongs to a certain product. The processes contained in
each product cannot be interrupted or inserted by processes of other products during the
production process. The assembly phase corresponds to the assembly flow shop scheduling
problem, where s products are made in an assembly plant with a single assembly machine,
and each product must be assembled after all processes produced in the production phase
are completed.

Total completion time has been identified as a more relevant and meaningful goal in
today’s dynamic manufacturing environment when a batch of work needs to be completed
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as quickly as possible. This allows the objective function to minimize the flow of work and
efficiently improve resource utilization. DPFSP is an NP-hard with m greater than or equal
to 2, and is a derivation and extension of the traditional permutation flow shop scheduling
problem with this criterion. Similarly, DAPFSP can be seen as an extension of DPFSP, which
is more complex than DPFSP. Therefore, the DAPFSP with completion time as the objective
function is also a strong NP-hard problem. In recent years, as a simple yet efficient method,
the bat algorithm has solved many scheduling problems in academia, including the job
shop scheduling problem [1], the open shop scheduling problem [2], the task scheduling
problem [3], and the production scheduling problem [4], by continuously performing local
search in the neighborhood of the current solution to obtain the optimal solution.

In this paper, an improved hybrid bat algorithm, IHBA, is proposed for solving
the DAPFSP with maximum makespan based on the original bat algorithm. The main
contributions of this paper are:

• The algorithm firstly designs the population classification to increase the diversity of
the population and solve the difficult trade-off between convergence and diversity of
the bat algorithm.

• A selection mechanism is used to update the speed and location of bats, solving the
difficulty of the algorithm to trade-off exploration and mining capacity.

• Gaussian learning strategy and elite learning strategy assist the whole population to
jump out of the local optimal frontier.

This paper is organized as described below. Section 2 reviews the closely related
literature. Section 3 presents the DAPFSP problem and its mathematical model. In Section 4,
the hybrid bat algorithm proposed in this paper is described in detail. In addition, the
parameter calibration and simulation calculation results are analyzed in Section 5. In the
last section, the paper is summarized, and future work is provided.

2. Literature Review

It is well known that the distributed permutation flowshop scheduling problem (PFSP)
is one of the most well-known production scheduling problems. It has a strong engineering
background by having the same work order on all machines. The problem has been shown
to be a strong NP-hard problem when more than two machines are involved.The problem
of distributed assembly permutation flowshop scheduling problem (DAPFSP) has been
gaining attention and popularity among scholars and researchers. The most leading expo-
nent is Hatami et al. [5], whose work is very enlightening. He was the first to optimize and
improve the DAPFSP for modeling and studying complex supply chains in 2013. They
also introduced the mixed integer linear programming model, proposed three construction
algorithms, tested the variable neighborhood descent (VND) algorithm, and demonstrated
the good performance of the VND algorithm in solving this scheduling problem. Similarly,
he went on to expand on his previous paper by adding time for sequence-related setups
in both the production and assembly stages [6]. In 2015, Hatami et al. [7] considered a dis-
tributed assembly scheduling problem with sequence-dependent setup times and the goal
of minimizing production time. The setup times of both phases are sequence-dependent,
which also lays the theoretical foundation for the sequences in this paper. Heuristics and
meta-heuristics are also proposed to solve it. Based on his literature and views, many
of these ideas and opinions have been studied and explored in greater depth by many
scholars. Based on these rather cutting-edge ideas, many scholars have built on and
deepened their research, and Ying et al. [8] extended the DAPFSP for flexible assembly
and sequence-independent setup times in supply chains. Using completion time as an
optimization criterion, construction heuristic and custom meta-heuristic algorithms are
proposed to solve this emerging scheduling extension. Gonzalez-Neira et al. [9] studied a
stochastic version of the DAPFSP and proposed a hybrid algorithm to solve the stochastic
problem, integrating biased randomization and simulation techniques. Wang [10] intro-
duced a just-in-time constraint between the two phases of the traditional DAPFSP to form a
just-in-time DAPFSP to minimize the maximum weighted tardiness cost. A variable neigh-
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borhood search based on memory algorithm is proposed. From the above reviewed studies,
it can be concluded that these scholars and researchers have extended and improved this
problem, and most of them have an objective function based on minimizing the makespan,
which provides a theoretical basis for the objective function in this paper.

Most scheduling problems are NP-hard and exact methods simply cannot find the
optimal solution in reasonable computational time. Therefore, heuristic and meta-heuristic
algorithms have been used to find the optimal solution and near-optimal solutions in reason-
able computation time. Zhang et al. [11] pointed out that the DAPFSP is a typical NP-hard
combinatorial optimization problem, and proposed an innovative three-dimensional matrix
cube-based distribution estimation algorithm to address the difficulties of the proposed
DAPFSP-T model. Likewise, Zhang et al. [12] also assumed this idea, and their team inte-
grated the problem with two machine environments, distributed production and flexible
assembly, which can assemble job processing into customized products, and proposed a
mixed integer linear programming model to characterize the problem nature and solve the
small-scale problem. An efficient modulo algorithm is further proposed. They affirm that
the modal algorithm is an efficient algorithm to solve the DAPFSP, while some scholars
prefer to use the greedy algorithm to solve the problem. For example, Pan et al. [13] solved
a novel DAPFSP by proposing a mixed integer linear model, three construction heuristics,
two variable neighborhood search methods, and an iterative greedy algorithm to obtain
important problem-specific knowledge to improve the effectiveness of the algorithm. Simi-
larly, Ochi et al. [14] studied the DAPFSP with the objective of minimizing completion time
and, proposed an iterative greedy based approach called bounded search iterative greedy
algorithm. Similarly, in order to coordinate production and transportation scheduling,
Yang [15] proposed a novel DAPFSP-FABD model. The objective is to minimize the total
cost of delivery and delay, and four heuristic algorithms, a variable neighborhood descent
algorithm, and two iterative greedy algorithms are proposed. Liu et al. [16] proposed a
memory algorithm for DAPFSP based on variable neighborhood search with the objective
function of, i.e., makespan. And, the initialization based on NEH heuristic is applied to the
product ordering. The neighborhood structure is introduced into VNS and used to perturb
the job assignment of the factory and adjust the job order of the factory. Huang et al. [17]
considered the DAPFSP with a total flow time criterion, and proposed an improved it-
erative greedy algorithm based on groupthink to solve the problem. It can be seen that
the exact algorithm is no longer able to solve the problem, and this has promoted the
development of heuristic and meta-heuristic algorithms, which can very definitely find the
optimal solution as a solution to this scheduling problem.

More and more scholars are focusing more on the improvement of algorithmic aspects.
For the no-wait flow shop scheduling problem that depends on time series, Hu et al. [18]
proposed an enhanced differential evolutionary algorithm. Subsequently, Seidgar [19] took
minimizing the weighted sum of expected completion time and average completion time
as the solution objective and proposed four metaheuristic algorithms; namely, genetic algo-
rithm, imperialistic competition algorithm, cloud theory-based simulated annealing, and
adaptive differential evolution algorithm. Moreover, Li et al. [20] argued that the imperialist
competition algorithm can solve the fuzzy distributed assembly flow shop scheduling prob-
lem. Furthermore, Al-Behadili et al. [21] proposed a multi-objective optimization model
and particle swarm optimization solution method for the robust dynamic scheduling of
permutation flow shops with uncertainty. Likewise, Zhang [22] emphasized that DAPFSP
is a new generalization of the distributed displacement flow shop scheduling problem
and the assembly flow shop scheduling problem, proposed an enhanced population-based
metaheuristic genetic algorithm, and designed an effective crossover strategy based on
local search to accelerate convergence. Li et al. [23] studied the minimization problem of
DAPFSP and proposed a genetic algorithm with an enhanced crossover strategy and three
different local searches. It is no coincidence that Mao et al. [24] advocated an improved
discrete artificial bee colony algorithm to solve the DAPFSP with preventive maintenance
operator, optimized by the completion time criterion. Moreover, a local search method
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with insertion and exchange operators is used to generate adjacent solutions in the hiring
bee phase and the bystander bee phase. Song and Lin [25] jointly proposed a genetic
programming hyperheuristic algorithm to solve the DAPFSP with sequence-dependent
setup times, minimizing the completion time as the objective. For the improvement of the
algorithm, these scholars further study the genetic algorithm and particle swarm algorithm.
This also provides a reference basis for our subsequent simulation experiments.

3. Problem Description

The traditional distributed assembly permutation flowshop scheduling problem
(DAPFSP) can be divided into two phases; namely, the production phase and the as-
sembly phase. In this section, the two-stage DAPFSP problem is extended to a three-stage
DAPFSP, named the production stage, the transportation stage, and the assembly stage,
and the problem is described as follows.

The job j ∈ {1, 2, . . . , n} consists of operations Oij, OTj and OAj. In the production
stage, there are n work processes and f identical plants, and job j ∈ {1, 2, . . . , n} needs to be
assigned to any plant l ∈ {1, 2, . . . , f } for processing, and each plant is equipped with the
same m machines, M = {M1, M2, . . . , Mm}, which correspond to the same assembly line
shop for part processing. Operations Oij ∈ {O1j, O2j, . . . , Omj} are processed on machine
Mi, i = 1, . . . , m and require pij time units. Machine Mij can process at most one job at a
time. The production and transport operations OTj will be executed on machine MT and
take pTj time units. The rule is that in each assembly permutation flowshop, all jobs need
to be processed on the same path in the order of machine i, which is equivalent to first on
machine M1, then on M2. This goes on, until the end on machine Mm. Parts belonging to
the same product must be processed continuously, and no partial parts are allowed to pass
through. All jobs start timing at time t = 0 and on machine i = 1.

The subsequent phase is the transport stage, which means that after the completion of
the first one in the first stage of the product operation, the transport machine collects all
parts of the product and moves to the assembly stage.

In the assembly stage, there are s products and an assembly machine MA. Each
product r ∈ {1, 2, . . . , s} has a defined part of the operation. The assembly operation OAj
will be executed on the machine MA and uses pAj time units. The rule is that the assembly
of a product can only start when the work contained in the product is completed and
the assembly machine is idle. Continuous processing stages are part of the same product
operation. The next product operation can only be performed after all jobs belonging to a
product have been processed.

From this, it is clear that the objective function of the problem is to determine the
allocation of products to plants, and the sequence of parts and products to each plant in
order to minimize the completion time or maximum completion time for all products. Based
on the above description of the problem, the minimization of the completion time is denoted
as Fm|nwt|Cmax. To satisfy the above constraint, a feasible schedule π = {π1, π2, . . . , πn}
is found for n jobs, such that the completion time Cmax(π) is minimized. This is the same
where Cmax(π) is also equivalent to the time to complete the last job on the last machine.
The Equation (1) is as follows.

Cmax(π) =
n

∑
k=2

Dπk−1,πk +
m

∑
j=1

Pπn ,j (1)

In the transportation phase, it is necessary to ensure that the completion time distance
between two adjacent jobs is determined by the processing time of the two processes,
independent of the other jobs in the arrangement. Therefore, the completion time distance
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is defined between each pair of jobs. The completion time distance between two adjacent
job processes πk−1 and πk is calculated as

Cπk−1,πk = max
1≤i≤m

{
i

∑
j=1

Pπk−1,j −
i

∑
j=2

Pπk ,j−1

}
, k = 2, 3, . . . , n (2)

In order to build a mathematical model based on the above description, the constraints,
parameters and variables are as follows.

Subject to,
n

∑
j=0,j �=k

Xj,k = 1, k ∈ {1, 2, · · · , n} (3)

n

∑
k=0,k �=j

Xj,k = 1, j ∈ {1, 2, · · · , n} (4)

n

∑
k=1

X0,k = f (5)

n

∑
j=1

Xj,0 = f (6)

Xj,k + Xk,j � 1, k ∈ {1, 2, · · · , n − 1}, k > j (7)

zr−1

∑
j=0

zr

∑
k=zr−1+1

Xj,k +
zr

∑
j=zr+1

zr

∑
k=zr−1+1

Xj,k = 1 (8)

r ∈ {1, 2, · · · , s}, zr =
r

∑
t=0

nt (9)

Ci,j � Ci−1,j + pi,j, i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n} (10)

Ci,j � Ci−1,j + pi,j +
(

Xj,k − 1
)

g
i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n}, k ∈ {0, 1, 2, · · · , n}, j �= k

(11)

s

∑
t=1,t �=r

Yr,t = 1, r ∈ {1, 2, · · · , s} (12)

Yr,t + Yt,r � 1, r ∈ {1, 2, · · · , s − 1}, t > r (13)

Cr � Cm,j + pr
j ∈ {zr−1 + 1, · · · , zr}, r ∈ {1, 2, · · · , s} (14)

Cr � Ct + pr + (Yr,t − 1)g
r ∈ {1, · · · , s}, t ∈ {0, · · · , s}, r �= t

(15)

TF �
s

∑
r=1

Cr (16)

Xj,k ∈ {0, 1}, j ∈ {0, · · · , n}, k ∈ {0, · · · , n}, j �= k (17)

Yr,t ∈ {0, 1}, r ∈ {0, · · · , s}, t ∈ {0, · · · , s}, r �= t (18)
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Ci,j � 0, i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n} (19)

Cr � 0, r ∈ {1, 2, · · · , s} (20)

where Xjk represents a binary variable. It is equal to 1 if job j is the predecessor of job
k. Otherwise, Xjk = 0. The same is true for Yrt. The product r is equal to 1 if it is the
predecessor of the product t. Otherwise, Yrt = 0. Cij is the completion time of job j on
machine i, and Cr is the completion time of product r. pr is the assembly time of product r,
and zr is the total number of jobs contained in the first r products in the product sequence.
In addition, g is a large enough positive number. rt is the number of jobs contained in
product t. It is worth noting that C0,j = Ci,0 = C0 = 0.

Equation (1) shows that the goal of the mathematical model is to minimize the com-
pletion time. The constraint sets (3) and (4) indicate that each job must have only one
preceding job and one following job. Constraint sets (5) and (6) show that the preceding
and following jobs of virtual job 0 are forced to be executed f times. Constraint set (7) en-
sures that a job cannot be both a predecessor and a successor of another job. Constraint
set (8) ensures that jobs belonging to the same product are processed consecutively. Con-
straint set (9) indicates that job j can be processed on machine i − 1 only after it is processed
on machine i. Constraint set (10) indicates that job j can only be processed on machine i
after completing the processing of job k if job j is a successor to job k, where g is positive
and has a sufficiently large scale volume. The constraint sets (11) and (12) ensure that each
product must have only one preorder and one subsequent job. Constraint set (13) ensures
that a product cannot be both a preorder and a successor of another product. Constraint
set (14) ensures that each product cannot enter the assembly stage before the production of
the part of the job it contains is complete. Constraint set (15) shows that if product t is a
preceding job of product r, then product r cannot start the assembly job until product t is
completed. Constraint set (16) defines the minimum completion time. Constraint sets (17)
to (20) define the domains of the decision variables.

The model uses a sequence-based variable and a set of (min{ f , s}+ 1) virtual parts.
The sequence starts with a virtual part and ends with a virtual part. These virtual parts
divide all parts into min{ f , s} subsequences, each corresponding to a plant. Parts belonging
to the same product are never separated. Thus, the product sequence is implicitly included
in the part sequence. For example, s = 4, n = 8, m = 2, f = 2. Table 1 shows the machining
times of parts and products.

Table 1. Machining time for parts and products.

Part 1 2 3 4 5 6 7 8

M1 2 5 7 9 9 3 8 4

M2 3 8 5 7 3 4 1 3

Product 1 2 3 4

MA 9 8 7 6

One of the feasible solutions is x04 = x43 = x35 = x50 = x01 = x12 = x28 =
x86 = x67 = x70 = 1. The sequence of parts is {0, 4, 3, 5, 0, 1, 2, 8, 6, 7, 0}, consisting of the
subsequences {4, 3, 5} and {1, 2, 8, 6, 7}.

4. Materials and Methods

To improve the local search capability of the algorithm, this section introduces the
mathematical representation of feasible solutions, classification of populations, selection
mechanism, domain structure and Gaussian learning strategy and elite learning strategy.
A hybrid bat algorithm adapted to the three-stage DAPFSP problem is proposed.
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4.1. Mathematical Expression of the Feasible Solution of the Three-Stage DAPFSP

The representation of feasible solutions is a crucial and important step in every meta-
heuristic approach. The addition of a transportation process to the DAPFSP solved in this
paper. The result is that the original expression for the process permutation of the PFSP is
not adequate for this scheduling problem. Therefore, in this section, the feasible solution is
divided into a sequence of products and a sequence of s processes based on the model of
the three-stage DAPFSP model and the properties of the bat algorithm. Each sequence of
these s processes corresponds to a product. The processes of a part can be viewed as the
sequence of product assembly on the assembly flowshop.

In the production and transportation stages, parts need to be allocated one by one
according to the product order. When allocating parts, their processes are sequentially
arranged to the corresponding factories according to the process order of the product,
and a minimum manufacturing cycle is obtained. Only after all the processes included
in the current part are completed can the next part be produced. When a product has
completed all processes, the product can proceed to the assembly stage for the installation
and assembly stages. As an example, suppose a set of sequences f is used to represent
a feasible solution, and each plant has one and only one solution. Each sequence is an
ordering of all the parts assigned to that plant, indicating the order in which the parts
enter the flow shop. Thus, the order of processed products in the assembly stage is
also implied, and the feasible solution can be expressed as π =

{
π1, π2, . . . , π f

}
, where

πk =
(

πk,1, πk,2, . . . , πk,ηk

)
, k = 1, 2, . . . , f is the sequence associated with sequence associ-

ated with plant k and ηk is the total number of parts assigned to plant k. For the example in
Section 3, the representation corresponding to this feasible solution is π = {π1, π2} and
π1 = {4, 3, 5}, π2 = {1, 2, 8, 6, 7}.

In the feasible solution of the original DAPFSP problem, the first stage represents the
arrangement of all N processes, and the second stage represents the plants to which these
N processes are assigned respectively. In this section, the concept of product priority is
introduced to determine the order of product assembly, and a novel feasible solution of
the three-stage DAPFSP is proposed. Specifically, the feasible solution in the first stage is
expressed as the processing priority of the product, and the parts assembly of each product
is equal to the number of processes that constitute that product. The specific steps are,
firstly, calculating the total processing time of the product at each stage and randomly
initializing the sequence of products. Second, the first two products in the initial product
sequence are selected for evaluation, and whichever sequence is better is chosen as the
current sequence. Again, this is done by placing it among the product sequences that are
already scheduled properly. Finally, an optimal schedule can be obtained to select the
current best sequence for the next iteration of the process. The second stage is represented
as the processing priority of all processes, where the processes belonging to the same
product are arranged in a random order. The smaller the number of its columns, the higher
the priority of the element values; the third stage is the plant priority assignment vector,
where each part is represented as the plant assigned to the corresponding process. The
specific steps are to assign a part of the processes to the factories one by one in order, then
select a process and find the minimum completion time by placing it after the last process
in each factory. The best part assignment is selected for the next iteration.

Table 2 describes how the three-stage DAPFSP representation is decoded into a sched-
ule. Suppose there are 3 products (s = 3) consisting of 9 jobs (n = 9) processed in 3 plants
( f = 3). The mathematical representation is P1 = {3, 4, 6}, P2 = {1, 2, 8, 9}, P3 = {5, 7}.
According to the last two stages, called job sequence and factory assignment, it can be
observed that jobs 5, 4, and 8 are assigned to the first factory and are processed in the order
of 5, 4, and 8 according to the priority specified in layer 2. Then, it is instantly obtained that
the partial scheduling of the factories can be decoded as π1 = {5, 4, 8}. Similarly, the partial
scheduling of the remaining two plants can be decoded as π2 = {2, 7, 9} and π3 = {6, 3, 1},
respectively. According to the values of the first stage specifying the product assembly
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priority, the value of 1 in the table corresponds to jobs 5 and 7 belonging to product 3.
It can be concluded that after the processing stage, product 3 should be assembled first.
In a similar way, it can be concluded that product 1 is assembled for the second time
immediately after product 2.

Table 2. Coding scheme.

Product Priority 2 1 2 3 3 2 1 3 3

Job 6 5 4 2 8 3 7 9 1

Factory Tasks 3 1 1 2 1 3 2 2 3

In the context of the traditional representation of feasible solutions, the order of
assembly of all products follows a first-come, first-served rule. This results in products
being ranked in the processing stage in ascending order of the total completion time of
their component operations. In contrast, the priority of products in the assembly phase is
determined by the order of arrival at the assembly, and there is no way to specify it. This
observation is confirmed by a study of the two-stage assembly scheduling problem by
Tozkapan [26]. The efficiency may be higher if the sequence of operations in the processing
phase is different from the sequence of operations in the assembly phase under the total
delay objective. With a very late delivery date, for example, the assembly of the product
may be delayed, even if the entire processing phase of the product’s component operations
has been completed.

4.2. Population Classification

The optimization process is divided into two stages. The first stage is that when the
individual bat is in a better search position and is close to the optimal solution, its loudness
and pulse emission rate reach the best state. This process is called the search phase, its
population is called the search-type population. The second stage is the population of bats
in a disadvantaged search position; that is, the capture population, so two populations
with different functions are obtained. After each iteration, by updating the search direction
and step length, the loudness and pulse emission rate of the bat algorithm are improved
to find the optimal solution. By adjusting the weights and deviations of the network, the
difference between the average value and the standard deviation of the bat algorithm can
be minimized.

4.2.1. Search-Type Population

The combination of the back propagation (BP) algorithm based on mean square error
(MSE) and gradient descent method minimizes the mean square error [27]. The formula
based on the mean square error measurement is shown in (21):

MSE(d, y) =
1
N

N

∑
n=1

(d(n)− y(n))2 (21)

where d(n) represents the n-th element of the required signal, and y(n) represents the nth
actual output. In the training process, the weight vector in the (t + 1) iteration is updated
by (23). Where α is the learning rate or step length, Wt is the weight vector of the previous
iteration and gt is the gradient vector, which can be calculated by (22) and (23).

wt+1 = wt − αgt (22)

gt =
∂e
∂w

∣∣∣∣
w=wt

=

[
∂e

∂w11
· · · ∂e

∂wij
. . .

∂e
∂wnn

]
(23)

In (23), e is the MSE error output in the t-th step of the training process and ∂e/∂w is
derived from the MSE error on each element of the w vector. The weight is expressed as

98



Appl. Sci. 2021, 11, 10102

wt+1 = wt − αtgt, αt will be adjusted to an appropriate value to achieve better convergence.
At this time, suppose the probability pops of the search-type population, its loudness and
pulse emission rate are updated to:

At+1
i = αt × At

i (24)

rt+1
i = ro

i
(
1 − e−wt) (25)

4.2.2. Captive Population

As a branch of the gradient descent method, the conjugate gradient method (CG) is
applied to nonlinear unconstrained optimization problems. This method has strong local
and global convergence [26–28]. According to the cloud computing resource scheduling
problem, the CG method uses (26) to generate a weight sequence:

w′
t+1 = w′

t + α′td (26)

where α′t is the result of the line search method, which can be an exact line search or an
inaccurate line search, which is expressed as a step size here. In (26), dt is in the descending
direction, which is expressed as the search direction here, and its formula is shown in (27):

dt+1 = −gt+1 + βtdt (27)

In (27), βt is the conjugate parameter, gt+1 is the gradient of the objective function
concerning the weight at step t + 1, and represents the direction of the last step, and the
first step is d0 = −g0.

In the iterative process, the loudness Ai and the pulse emission rate ri will also change.
As the bat moves closer to its prey, its loudness will decrease, and the pulse emission
rate will increase. At this time, the probability of the catching population is poph and
pops + poph = 1. In summary, the loudness and pulse emission rate of the bat algorithm
are updated to:

At+1
i = α′t × At

i (28)

rt+1
i = ro

i

(
1 − e−w′t

)
(29)

4.3. Selection Mechanism

When it comes to the bat algorithm as a learning algorithm, each individual in the
population needs to learn from the individually optimal and globally optimal individuals
in order to find the optimal solution. In the field of multi-objective optimization, there is
no single optimal solution, and the optimal selection mechanism needs to be redesigned.
Which strategy is used to update the individual optimal pbest and the global optimal
gbest respectively, thus connecting the decision variable space and the objective space, is
particularly important for weighing the exploration and exploitation capabilities of the
algorithm evolution process. In this paper, we consider fully mining individuals with
better diversity and convergence to assist populations to jump out of the local Pareto
frontier. Three guides are selected from the searching and capturing populations to guide
the entire individual bat flight, and how the guides are selected from the two populations
is specified below.

Unlike the traditional bat algorithm, this algorithm first generates a set of θ with
ω solutions and performs a local search process for the optimal solution in the set θ.
Subsequently, IHBA enters the iterative phase. In the iteration, the solution ϕ is selected
using the selection mechanism in the set θ. The solution ϕ is applied to the search phase
and two partial sequences can be obtained, one for the solution ϕSearch with the products
and processes removed, and the other for the remaining part of the solution ϕCaptive. The
local search for the products is applied to ϕCaptive, and the suboptimal solution ϕ′

Captive is
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generated. IHBA again reinserts the removed products and jobs into ϕ′
Captive. This process

is called the capture phase, and a complete solution ϕ′ is regenerated. A local search is
performed on ϕ′ to generate ϕ′′. Finally, acceptance criteria are used to determine whether
the new solution ϕ′′ updates the set.

Therefore, in scheduling problems, the selection mechanism is to select a solution
from the solution set θ at the beginning of each iteration, and the selected solution is noted
as ϕ, and proceeds to the subsequent stages such as search and capture. In this scheduling
problem, the minimum completion time and the number of iterations are often used as
selection factors. So, the proposed selection mechanism consists of two random options,
both of which have a 50% probability of being selected. That is, two solutions are randomly
selected in the set θ and the one with the lower minimum completion time is chosen as ϕ.
Alternatively, two solutions are randomly selected in θ, and the one with the lower number
of iterations is chosen.

The main focus of pbest, gbest and osd wizard selection mechanisms is on the target
space, implying how to fully exploit the candidate solutions with good convergence and
diversity in the target space. These wizards serve as a bridge between the target space and
the decision variable space, and the new wizard selection mechanism can weigh the ability
of exploration and exploitation of the decision variable space in an integrated way.

4.4. Three Neighborhood Structures Based on Insert Operator

To solve the three-stage DAPFSP problem, this paper introduces three neighborhood
structures based on the INSERT operator, which constitutes the three-stage bat algorithm
(3SBA). The insert operator is considered by many scholars as a superior performance
operator, which is described as follows.

• Product-based Neighborhood (PBN)
Regarding the order of product assembly, a randomly selected product is inserted into
another random position.

• Factory-based Neighborhood (FBN)
A process is randomly selected from the representation of the solution and assigned to
another randomly selected plant. For this plant, all possible positions where jobs can
be inserted are considered and the part of the job sequence with the earliest completion
time is selected. It is worth noting that the sequence of jobs assigned to other plants
remains unchanged during this process.

• Job Sequence-based Neighborhood (JSBN)
A plant is randomly selected and its sequence of jobs is extracted from the solution rep-
resentation. Next, a job is randomly selected from this partial sequence, and another
location is randomly inserted. Finally, the jobs in this partial sequence along with
their product priorities and plants are placed in an orderly manner in the distribution
solution representation, which is partially the location belonging to that plant.

4.5. Local Search Method Based on Variable Neighborhood Structure

Based on the above three neighborhoods named PBN, FBN and JSBN, this section
proposes a local search method with variable neighborhood search. Equation n(s) denotes
that the neighborhood structure and other parameters are consistent with the original bat
algorithm, implying that the maximum number of iterations for each neighborhood at the
same frequency is noted as Tmax and the frequency f is initialized as f0. In 3SBA, all three
neighborhoods are iterated sequentially, avoiding premature convergence throughout the
search process.

Variable neighborhood descent (VND) is the simplest variant of variable neighborhood
search [29]. It has been shown to be effective in solving the flow shop [30] and distributed
scheduling problems [31]. VND searches for different neighborhood structures from
minimum to maximum. First, starting from the initial solution, VND searches the first
neighborhood to find the local optimum. Then, while searching the second region, if a
better local optimum solution is found, the algorithm returns to the first neighborhood.
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Otherwise, it continues searching the third neighborhood and so on. The algorithm does
not end until a local optimum is found with respect to all neighborhoods. Therefore,
to facilitate the differentiation of the VNDs in this paper, two versions were developed
based on the characteristics and features of the bat algorithm. The first one uses three
neighborhood structures, named VND3BA, and the second one uses two neighborhood
structures, named VND2BA, respectively. A VND that best fits the bat algorithm and the
scheduling problem is selected by calibration through simulation experiments.

4.5.1. VND3BA Local Search Method Based on Three Neighborhood Structures

The first method is applied to each product contained in the plant. After removing
each part of the product in succession, it is tested at all possible locations within the
product. If a better manufacturing span is found, the part sequence is updated. This
method runs until all parts contained in the plant have been taken into account and no
further improvements are found; then, it can be stopped and ended. It can be named as
Local Search Inside Product() and Part Local Search Inside Factory(). The former mainly
searches individual products, while the latter searches the whole factory by calling the
former, each in its own way.

The second method is a local search of the products within the factory. The principle
of this method is to remove the products one by one from the beginning to the end and try
to find the best position for them, equivalent to the optimal solution of this problem. If,
in the process, a better manufacturing span is found, the sequence of parts in the plant is
updated. The process is repeated until no products are found that can be improved.

The third method focuses on finding the most suitable location for a product that
crosses plants. First, all plants are checked and the plant with the maximum completion
time p is found. Then, the first product is removed and is tested in all possible locations
in the remaining plants. If the generated best completion time is lower than the original
completion time Cp, this product is inserted into the current location. The principle is that
the algorithm iterates by finding the plant with the maximum completion time again, until
a local optimum is found.

4.5.2. VND2BA Local Search Method Based on Two Neighborhood Structures

Since VND3BA considers the neighborhood of parts and the neighborhood of products
separately, some available feasible solutions may be missed. Therefore, in this section,
two local search algorithms are proposed to consider these two neighborhoods in an
integrated manner.

The first approach explores the interior of the plant by extracting the range of products
and finding the best location of the products within the plant. This step is to extend the
scope of the local search. This method also adaptively finds the best part order for the
product when inserting it.

The second approach exploits the local search capability of the bat algorithm itself to ex-
plore the optimal solution across plants. Therefore, it can be viewed as a combination of two
processes named ProductLocalSearchBetweenFactories() and LocalSearchInsideProduct().

4.6. Gaussian Learning Strategy and Elite Learning Strategy

Gaussian learning strategy (GLS) [32] and elite learning strategy (ELS) [33] can assist
individuals of bats to jump out of the local frontier and improve the local search ability of
the algorithm. If the feasible solution is not updated many times, the whole bat population
is most likely to fall into local optimum, and then only the GLS reset strategy can be
executed, which is given by

xt+1
i ∼ N

( xgbest − xgbest,i

2
,
∣∣∣xgbest − xgbest,i

∣∣∣) (30)
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The collaborative learning mechanism of pbest and bbest ensures that the exploration
and exploitation capability of the entire bat population is enhanced, allowing the algorithm
to quickly jump out of the local frontier to approximate the true frontier.

Although the use of GLS can assist individual bats to jump out of the local frontier,
this strategy alone still cannot meet the requirements of the bat algorithm for solving the
DAPFSP. To further improve the performance of the bat algorithm, ELS is introduced to
solve the scheduling problem with the following mathematical expressions.

Ei(j) ∼ Ei(j) + (xub(j)− xlb(j))N(0, 1) (31)

where xub(j) and xlb(j) represent the upper and lower bounds of the j-th dimensional
decision variable, respectively, and N(0, 1) represents the random number with a mean
value of 0 and a variance of 1.

5. Simulation Results

5.1. Test Questions and Parameter Settings

In this section, the proposed IHBA is compared with the competitive memetic algo-
rithm (CMA) [34], biogeography-based optimization algorithm (BBO) [35], estimation of
distribution algorithm ( EDA) [36], genetic algorithm [19,21], and particle swarm optimiza-
tion algorithm [20], and only one of these algorithms was selected for comparison from
the literature [37]. So far, the three DIWO algorithms have proved to be the state-of-the-art
algorithms for the considered problem with the parameters shown in Table 3. All simula-
tion experiments were implemented on the MATLAB r2020a platform. All programs were
executed on an AMD A8-7100 Radeon R5@1.80 GHz and 12.0 GB RAM in Windows 10
operating system.

Table 3. Algorithms and Parameters.

Comparison Parameters Range

TDIWO

Initial population size 10
Maximum population size 50

permutation-based shift operator 5
Max value 20
Min value 1

Control parameters 0.9

CMA

Selection probability of a subclass 0.5
Selection probability of populations 0.5

Number of populations 50
Local search operator 100

BBO

Number of populations 40
Elite retention number 10
Max emigration rate [0,1]
Max migration rate [0,1]
Max mutation rate [0,1]

EDA
Population size 50

Probability vector 0.3
Iterative Probability Sampling Parameters 0.4

GA

Number of populations {40,50,60}
Max number of iterations 300

Crossover rate [0.7, 0.9]
Mutation rate [0, 0.2]
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Table 3. Cont.

Comparison Parameters Range

PSO

Number of populations 2n
Decreasing coefficient 0.975

Crossover rate [0,1]
Variation rate [0,1]

Uniform random number [0,1]
Inertia weights [0.4,0.9]

BA
Frequency [0,1]
Loudness [1,2]

pulse emission rate [−1,1]

IHBA

Frequency [0,1]
Loudness [1,2]

pulse emission rate [0,1]
Step size [0,1]

To calibrate the proposed IHBA, a total of 810 instances were randomly generated
according to the literature [5,34] written by Hatami et al. These instances can be found
in http://soa.iti.es/problem-instances, accessed on 1 September 2021. These instances
combine four factors, including the number of jobs (n), the number of machines (m),
the number of products (s), and the number of plants ( f ). Each factor has three levels,
n ∈ {100, 200, 500}, m ∈ {5, 10, 20}, f ∈ {4, 6, 8} and s ∈ {30, 40, 50}. Thus, a total of
34 = 81 factor combinations are studied. The processing time in the production stage
is randomly generated in the range [1, 99] with uniform distribution. The operation time
of the transportation stage is obtained in the range [l, 99l] with uniform distribution. The
assembly operation time for the assembly stage is obtained in the range between nl and
99nl with uniform distribution.

5.2. The Results and Discussion

Relative percentage deviations are the absolute deviations of a given measurement
as a percentage of the mean, and can only be used to measure the deviation of a single
measurement from the mean. In order to compare the efficiency between algorithms, the
calculation of relative percentage deviations (RPD) is considered to compare and analyze
these metaheuristic algorithms. Its formula is shown in (32).

RPD =
Cmax(π)− Cmax(π)best

Cmax(π)best
× 100% (32)

where Cmax(π) is the total completion time of the current algorithm, and Cmax(π)best is the
minimum value of Cmax(π) among all algorithms to be compared.

In this paper, the termination condition of the iteration is set to a maximum CPU
runtime equal to C × m × n milliseconds, and the results are calculated for C = 20, 40, and
60. Then, the results obtained from the calculation are compared with other algorithms. The
methods used are the analysis of variance (ANOVA), which is widely used in parametric
statistical procedures, and the Friedman test and Wilcoxon paired signed test, which are
commonly used in nonparametric statistical procedures. These methods have been widely
used and promoted in the recent scheduling literature.

5.2.1. Comparative Analysis at C = 20

When C = 20, the values of RPD for various heuristic algorithms are shown in Table 4.
It can be seen from the bold figures that the value of PRD of the proposed algorithm IHBA
in this paper is smaller than that of other algorithms in the vast majority of combinatorial
solutions, including the recognized TDIWO algorithm and the original bat algorithm. Only
in these 5 sets of data (1) m = 5, n = 100, s = 30 and f = 4, (2) m = 5, n = 200, s = 40
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and f = 4, (3) m = 10, n = 100, s = 50 and f = 8, (4) m = 15, n = 200, s = 50 and f = 4,
(5) m = 15, n = 200, s = 40 and f = 8, IHBA is 5–10% smaller than the other algorithms.
Meanwhile, IHBA not only obtains the lowest relative percentage deviation value, but also
the smallest average RPD value, which is 21.15%, with an error of about 0.83% from the
optimal value. This is good proof that the IHBA algorithm has a strong advantage and
superiority. It can also be seen that the GA and PSO performance is also very good, with
average RPD values of 32.09% and 31.52%. Although TDIWO is not satisfactory in this
comparison, it is significantly better than BBO and EDA. The most surprising is the original
bat algorithm, with a result of 27.69, which is second only to the algorithm proposed in
this paper. This also shows that the bat algorithm itself has better performance and has
stronger search capability.

Table 4. The Average RPD Values at C = 20. It can be seen from the bold figures that the value of
PRD of the proposed algorithm IHBA in this paper is smaller than that of other algorithms in the vast
majority of combinatorial solutions, including the recognized TDIWO algorithm and the original
bat algorithm.

Parameters Algorithms for Comparison

m n s f CMA BBO TDIWO EDA GA PSO BA IHBA

5 100 30 4 11.85 14.07 25.59 28.36 12.28 10.24 53.91 18.83
5 100 40 4 41.58 49.38 46.39 48.22 29.16 49.85 46.87 25.63
5 100 50 4 26.73 31.74 38.40 41.56 47.26 43.52 22.52 23.37
5 200 30 4 48.36 57.43 40.74 47.44 35.20 56.69 35.68 27.15
5 200 40 4 8.87 10.53 7.14 11.10 6.15 10.70 10.16 17.69
5 200 50 4 47.76 56.71 55.76 59.54 53.07 37.67 43.21 34.59
5 500 30 4 30.86 36.64 33.26 41.60 33.05 25.58 19.19 18.86
5 500 40 4 25.67 30.49 36.49 34.20 37.50 11.28 37.71 8.10
5 500 50 4 35.44 42.09 43.98 55.36 21.82 45.52 58.99 19.78
5 100 30 6 30.36 36.05 33.53 42.51 34.00 23.69 20.28 18.46
5 100 40 6 16.92 18.22 20.91 26.45 11.15 22.00 18.97 15.03
5 100 50 6 14.64 17.38 27.64 29.01 16.31 17.51 51.16 13.77
5 200 30 6 42.98 51.04 46.84 46.54 46.33 35.33 28.28 11.31
5 200 40 6 12.65 13.15 19.69 13.68 14.52 14.22 14.55 12.54
5 200 50 6 23.56 27.98 26.25 35.09 17.27 27.49 25.69 11.40
5 500 30 6 46.72 55.48 60.63 60.97 57.59 31.18 58.46 24.63
5 500 40 6 51.32 60.94 56.66 55.71 49.76 47.74 41.95 35.20
5 500 50 6 40.78 48.42 41.75 42.01 44.55 32.92 16.54 13.40
5 100 30 8 20.84 24.75 25.22 21.40 38.58 21.02 16.60 14.46
5 100 40 8 11.02 13.09 15.01 19.47 21.27 19.67 28.64 14.66
5 100 50 8 22.67 26.92 33.08 34.28 24.49 18.57 45.03 14.19
5 200 30 8 31.21 37.06 30.75 46.38 38.70 50.60 33.70 28.68
5 200 40 8 53.90 54.00 49.87 62.06 49.33 43.08 32.29 25.95
5 200 50 8 35.10 41.69 43.78 45.73 35.73 40.96 55.08 28.74
5 500 30 8 11.47 13.62 19.68 24.89 20.14 21.65 19.63 15.58
5 500 40 8 27.18 32.28 24.95 24.47 26.94 24.71 23.42 22.44
5 500 50 8 30.93 36.73 31.26 37.29 21.58 47.19 33.29 15.87

10 100 30 4 29.22 34.70 25.77 36.59 26.01 39.50 18.83 13.88
10 100 40 4 44.89 53.31 39.65 44.46 32.99 52.31 21.54 19.12
10 100 50 4 47.60 56.52 44.56 47.68 28.89 21.54 17.43 15.14
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Table 4. Cont.

Parameters Algorithms for Comparison

m n s f CMA BBO TDIWO EDA GA PSO BA IHBA

10 200 30 4 42.81 50.84 45.18 52.77 23.63 27.72 15.36 16.31
10 200 40 4 24.49 29.09 24.96 30.24 22.21 24.33 24.06 18.05
10 200 50 4 22.92 25.34 35.40 46.44 33.68 30.87 29.50 20.82
10 500 30 4 32.87 39.03 42.94 48.66 33.78 28.67 28.91 26.93
10 500 40 4 50.92 60.46 59.45 67.94 30.49 26.25 22.15 22.22
10 500 50 4 25.84 30.68 29.11 33.74 20.88 28.21 17.38 13.10
10 100 30 6 23.73 26.31 25.34 36.70 23.18 22.91 18.00 11.04
10 100 40 6 38.41 39.99 36.67 44.55 20.91 25.07 20.69 23.65
10 100 50 6 29.15 34.62 38.62 41.89 27.51 27.88 27.73 21.81
10 200 30 6 39.89 37.37 31.57 36.12 26.45 29.34 29.94 24.69
10 200 40 6 36.05 34.69 42.13 34.93 23.31 24.19 23.62 19.12
10 200 50 6 30.22 35.89 49.16 32.23 26.75 20.67 24.09 21.13
10 500 30 6 42.37 50.32 48.31 50.49 48.61 31.90 32.61 26.39
10 500 40 6 29.31 21.06 21.56 33.01 21.97 25.72 25.27 23.94
10 500 50 6 59.07 70.15 66.60 64.97 24.49 27.74 26.04 20.91
10 100 30 8 51.95 61.69 49.99 52.54 29.46 29.25 26.85 19.78
10 100 40 8 34.00 36.63 32.67 40.62 22.16 24.44 28.81 20.86
10 100 50 8 56.42 67.00 50.65 54.65 55.99 51.22 22.92 28.90
10 200 30 8 41.14 48.85 49.44 46.66 56.14 22.03 21.86 21.52
10 200 40 8 49.89 59.25 51.00 48.80 52.47 42.32 21.99 22.23
10 200 50 8 41.96 49.82 50.83 50.00 45.85 33.87 45.36 20.07
10 500 30 8 40.46 48.05 39.82 46.89 40.35 36.53 24.49 21.79
10 500 40 8 33.12 39.33 29.86 43.19 21.71 21.22 23.33 18.57
10 500 50 8 22.82 25.22 29.75 30.31 22.57 21.79 20.48 20.39
15 100 30 4 41.00 48.68 48.43 33.07 27.57 30.33 27.09 18.56
15 100 40 4 32.39 38.46 41.61 50.28 25.80 25.73 29.15 17.36
15 100 50 4 24.60 29.21 27.17 25.18 21.45 25.28 22.54 20.74
15 200 30 4 39.11 46.44 39.60 46.76 33.83 40.48 23.17 27.04
15 200 40 4 32.44 38.52 44.61 46.40 30.73 30.90 28.91 25.84
15 200 50 4 35.44 36.46 27.70 28.21 28.96 21.37 26.87 27.48
15 500 30 4 29.43 34.94 29.08 37.33 38.61 27.30 21.71 24.60
15 500 40 4 39.05 30.74 32.58 35.84 34.42 32.77 27.07 23.55
15 500 50 4 33.60 39.90 29.44 36.31 27.27 36.57 25.20 22.54
15 100 30 6 48.79 57.94 44.76 54.99 45.33 47.37 29.07 24.60
15 100 40 6 35.70 42.39 34.74 41.65 32.14 45.68 24.84 24.55
15 100 50 6 30.59 34.45 31.89 33.88 34.72 34.40 29.02 26.06
15 200 30 6 48.61 57.73 34.31 62.97 28.05 24.32 21.15 21.04
15 200 40 6 36.57 43.43 32.65 41.21 37.58 31.90 29.96 28.62
15 200 50 6 19.02 22.59 25.25 32.25 25.43 20.72 23.85 20.05
15 500 30 6 34.44 39.02 36.17 39.27 43.01 33.42 33.74 30.71
15 500 40 6 38.32 45.50 38.05 42.53 32.75 40.05 20.60 20.55
15 500 50 6 34.04 40.43 40.17 45.40 40.42 34.26 29.71 29.51
15 100 30 8 28.09 33.36 24.98 29.91 30.08 53.29 25.50 24.36
15 100 40 8 31.40 37.29 37.76 38.73 33.05 46.61 28.17 20.90
15 100 50 8 44.26 52.56 49.95 51.98 34.90 49.19 28.10 20.38
15 200 30 8 32.96 39.14 33.75 48.87 25.10 27.53 24.32 21.47
15 200 40 8 26.57 31.55 34.71 42.07 22.66 27.82 24.17 28.35
15 200 50 8 23.99 28.49 28.64 32.36 25.55 20.04 15.67 15.14
15 500 30 8 44.80 53.20 42.29 43.54 52.56 32.56 21.67 22.26
15 500 40 8 53.71 63.78 45.43 54.28 44.49 57.55 21.57 22.33
15 500 50 8 39.05 46.38 42.36 45.63 56.73 27.47 29.36 21.82

average 34.33 39.71 37.09 41.40 32.09 31.52 27.69 21.15
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Then, the results of the descriptive statistics of the Friedman test were calculated for
the case of C = 20, as shown in Table 5, where N is the number of test cases and takes the
value of 4050. The minimum value of each item derived in the algorithm is marked in
bold. The p-value calculated for the test statistic is 0 when the significance level α = 0.05,
which is less than or equal to 0.05. This indicates that there are significant differences
between the algorithms used for comparison. The following conclusions can be clearly seen
through Table 5. The rank of IHBA is only 2.60, which is close to one-half of CMA, BBO
and TDIWO, while it is smaller than the ranks of GA, PSO and the original bat algorithm
by 1.39, 1.09 and 0.78, respectively. Although IHBA does not take the best value in terms
of maximum value, it means that standard deviation and minimum value are the smallest
among all algorithms. The comparison between the groups also shows that the ranking of
EDA is even more than three times that of IHBA, indicating the worst performance of the
algorithm, which echoes the results and analysis in Table 4. In addition, it can also be seen
by the mean and standard deviation that the three algorithms of DIWO are very close to
the proposed algorithm.

Table 5. The Descriptive Statistics Achieved by the Friedman Test at C=20 and α=0.05. The bold
figures indicate the comparison between algorithms.

Algorithms Rank n Mean Std. Deviation Min Max

CMA 4.81 4050.00 1.17 0.92 0.00 7.05
BBO 4.92 4050.00 1.47 1.30 0.00 7.70
EDA 7.01 4050.00 16.89 12.80 0.00 50.37

TDIWO 3.36 4050.00 0.99 0.96 0.00 4.82
GA 3.99 4050.00 1.43 1.36 0.00 4.61
PSO 3.69 4050.00 1.31 1.25 0.00 5.35
BA 3.38 4050.00 1.00 0.95 0.00 4.47

IHBA 2.60 4050.00 0.74 0.71 0.00 5.51
p-value 0.00

Next, the non-parametric test for paired samples is the Wilcoxon paired signed test
method used. This method was developed based on the signed test for paired observations,
and is more effective than the traditional test with positive and negative signs alone. The
observed data are generally considered to be significantly different when p is less than 5%.
When p is greater than or equal to 5%, the difference in the data is considered insignificant.
The results of the Wilcoxon paired signed test for this paper are given in Table 6, assuming
that there is no difference between each pair of algorithms (α = 0.05). R+ in the table
represents positive differences and R− represents negative differences. In the results for
each pair of algorithms, the sum of R+, R− and bonding values is equal to n in Table 5. It
can also be seen in Table 6 that the p-values in the last column are equal to 0 and all are less
than 0.001, indicating that the differences between the algorithms compared are statistically
significant with respect to 0. In other words, there is a significant difference between IHBA
and the other algorithms.

Table 6. The Wilcoxon paired signed test result at C = 20 and α = 0.05.

Algorithms for Comparison R+ R− Bonding Value p-Value

IHBA VS CMA 756 3168 126 0.00
IHBA VS BBO 2341 274 1435 0.00
IHBA VS EDA 3840 100 110 0.00

IHBA VS TDIWO 1791 817 1442 0.00
IHBA VS GA 3113 783 154 0.00
IHBA VS PSO 2881 829 341 0.00
IHBA VS BA 2873 907 270 0.00
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Finally, in order to make the observations more visual and relevant, this section
analyzes and interprets the results of the ANOVA analysis for the eight algorithms. The
methods used are the mean plot and the minimum difference method interval, and Figure 1
shows the plotted plots with 95% confidence level. It can be very clearly seen that the best
performance is IHBA, which beats the other comparison algorithms by a more significant
margin. The bat algorithm also has some advantages, while GA and PSO continue to
perform consistently, and the EDA algorithm has the worst performance, followed by BBO.

CMA BBO TDIWO EDA GA PSO BA IHBA  
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D
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Figure 1. Mean plot and 95% LSD interval of the bat algorithm at C = 20.

5.2.2. Comparative Analysis at C = 40

The lower the RPD, the better the performance of the algorithms. When C takes the
value of 40, the average RPD of these eight algorithms is shown in Table 7. As can be
seen in the last row, the average value of IHBA is 22.73%, which is significantly lower
than the average value of other algorithms including the original bat algorithm. It shows
that the IHBA algorithm is more efficient than the other metaheuristic algorithms, while
BA performs second, with an average RPD of 23.57%. Compared with Table 7, it can be
concluded that the RPD value of IHBA changes from the original 21.15 to the current 22.73,
as the value of C is taken to increase, which shows that the value of RPD of IHBA increases
with the increase of the number of iterations and time. In addition, PSO with a mean value
of 35.76% is significantly better than GA and the other four heuristics. Meanwhile, EDA
has the largest value and its performance is the worst, which is also consistent with the
results in Table 4.

Table 8 describes the results of the Friedman test calculations. As can be seen at a
glance from the rankings, IHBA has a mean rank of 3.06, which is the smallest value among
these algorithms. The next best performer is TDIWO, which also has a better performance,
but its standard deviation is 0.89, which is larger than CMA, GA, and PSO. It can be seen
from the mean and standard deviation that IHBA has values of 0.79 and 0.76, respectively,
which are also the smallest values among all algorithms. The performance of EDA is still
the worst, with its average rank, mean, standard deviation, and maximum value all being
at a disadvantage. The performance of EDA is still the worst, with its ranking, mean,
standard deviation and maximum value being at a disadvantage. In particular, the mean
value is as high as 32 times that of IHBA. The p-value in the last row is 0, which is less than
0.05, indicating that the difference between the algorithms has statistical significance. This
difference is not due to chance sampling, but rather, the difference between the two groups
of algorithms is significant.
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Table 7. The Average RPD Values at C = 40. It can be seen from the bold figures that the value of
PRD of the proposed algorithm IHBA in this paper is smaller than that of other algorithms in the vast
majority of combinatorial solutions, including the recognized TDIWO algorithm and the original
bat algorithm.

Parameters Algorithms for Comparison

m n s f CMA BBO TDIWO EDA GA PSO BA IHBA

5 100 30 4 17.00 21.80 22.45 25.09 18.96 17.93 18.42 17.76
5 100 40 4 45.33 46.15 47.52 54.11 49.00 44.16 30.39 29.30
5 100 50 4 31.97 35.80 36.86 49.68 42.45 40.10 26.74 25.79
5 200 30 4 48.36 46.67 48.06 56.50 52.94 47.03 29.99 28.92
5 200 40 4 8.76 9.22 9.50 10.91 10.09 9.03 7.37 7.49
5 200 50 4 52.88 55.13 56.77 70.34 57.50 52.03 35.04 33.79
5 500 30 4 33.25 35.74 36.80 45.17 37.22 33.69 21.18 20.42
5 500 40 4 30.58 32.43 33.39 43.34 32.52 29.70 20.40 19.68
5 500 50 4 40.10 45.33 46.68 51.02 45.22 41.34 30.30 29.22
5 100 30 6 32.98 35.93 36.99 45.65 37.06 33.62 21.29 20.53
5 100 40 6 18.50 21.02 21.64 23.98 21.42 19.55 14.14 13.63
5 100 50 6 19.69 23.73 24.43 28.23 22.68 21.36 19.19 18.50
5 200 30 6 26.49 26.29 27.66 39.61 29.83 24.77 26.50 25.55
5 200 40 6 15.01 14.91 15.35 19.08 16.28 14.90 11.01 10.62
5 200 50 6 25.67 28.63 29.48 33.31 29.19 26.55 17.68 17.05
5 500 30 6 53.74 56.76 58.44 73.33 57.88 52.64 36.23 34.94
5 500 40 6 55.75 55.55 57.20 69.71 59.65 53.63 35.43 34.17
5 500 50 6 43.22 42.37 43.62 55.23 46.38 41.51 23.60 22.76
5 100 30 8 23.37 22.88 23.55 34.36 28.11 25.93 16.95 16.34
5 100 40 8 12.91 15.25 15.70 21.51 18.43 17.53 14.66 14.13
5 100 50 8 27.28 30.22 31.12 37.12 29.63 27.20 20.94 20.20
5 200 30 8 32.68 36.60 37.69 47.78 43.46 40.30 28.25 27.24
5 200 40 8 52.07 53.18 54.76 67.27 57.82 51.16 32.42 31.26
5 200 50 8 39.79 42.05 43.30 52.17 45.00 41.17 30.87 29.76
5 500 30 8 13.78 18.65 19.20 24.48 20.64 19.80 15.01 14.47
5 500 40 8 27.86 26.19 26.96 33.95 29.73 26.41 18.14 17.49
5 500 50 8 32.65 33.74 34.75 39.64 37.96 34.47 23.02 22.20

10 100 30 4 29.60 31.11 32.03 38.46 35.52 32.19 19.82 19.12
10 100 40 4 45.50 44.04 45.35 53.25 49.56 44.10 25.93 25.01
10 100 50 4 49.07 47.68 49.10 55.52 45.70 39.44 21.63 20.86
10 200 30 4 45.82 47.69 49.11 53.88 44.99 39.63 22.34 21.54
10 200 40 4 25.92 27.02 27.82 33.28 28.76 25.91 17.76 17.13
10 200 50 4 27.61 34.35 35.37 44.02 36.05 34.01 24.29 23.42
10 500 30 4 37.90 41.87 43.11 51.38 41.84 38.23 25.91 24.99
10 500 40 4 56.38 60.21 62.00 68.23 54.72 48.43 28.21 27.20
10 500 50 4 28.26 29.98 30.87 35.75 31.20 28.24 17.58 16.95
10 100 30 6 24.88 28.32 29.16 34.85 29.29 26.62 16.93 16.33
10 100 40 6 37.98 38.85 40.00 44.41 38.07 33.11 21.18 20.42
10 100 50 6 33.79 36.90 38.00 44.58 36.98 33.77 22.89 22.08
10 200 30 6 35.92 33.67 34.67 41.10 37.17 31.85 21.99 21.20
10 200 40 6 37.25 35.82 36.88 42.21 36.17 31.53 20.65 19.92
10 200 50 6 38.04 37.59 38.71 45.01 36.10 32.61 21.49 20.72
10 500 30 6 46.53 47.79 49.21 61.79 50.37 45.47 29.42 28.37
10 500 40 6 23.74 24.24 24.96 30.50 28.26 24.42 18.70 18.03
10 500 50 6 64.63 64.65 66.57 70.69 57.97 50.29 28.49 27.47
10 100 30 8 54.00 52.63 54.20 60.53 50.90 44.14 25.66 24.75
10 100 40 8 34.09 35.23 36.28 41.28 35.28 30.99 20.93 20.19
10 100 50 8 57.45 55.22 56.86 71.34 62.21 55.35 32.63 31.47
10 200 30 8 46.02 46.46 47.84 62.84 48.94 44.18 26.87 25.91
10 200 40 8 52.85 50.98 52.49 66.10 56.25 50.27 29.48 28.43
10 200 50 8 47.07 48.29 49.72 61.41 50.43 45.62 30.37 29.28
10 500 30 8 42.35 43.19 44.48 54.72 46.69 41.91 25.91 24.98
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Table 7. Cont.

Parameters Algorithms for Comparison

m n s f CMA BBO TDIWO EDA GA PSO BA IHBA

10 500 40 8 33.77 36.02 37.09 41.90 34.89 30.75 19.49 18.80
10 500 50 8 25.67 27.33 28.15 33.70 28.23 25.67 17.94 17.30
15 100 30 4 45.58 41.72 42.96 49.30 42.42 37.24 22.85 22.03
15 100 40 4 37.12 41.78 43.02 48.80 39.68 36.02 23.45 22.61
15 100 50 4 26.73 26.14 26.92 32.19 28.31 25.40 17.58 16.95
15 200 30 4 41.30 42.56 43.83 52.07 45.60 41.01 26.03 25.10
15 200 40 4 38.14 41.52 42.75 50.08 41.41 37.85 25.60 24.69
15 200 50 4 32.87 29.61 30.49 37.92 32.99 28.26 19.83 19.12
15 500 30 4 30.84 32.48 33.45 43.74 36.42 33.12 22.05 21.27
15 500 40 4 33.79 31.78 32.73 41.74 38.04 32.94 22.99 22.17
15 500 50 4 33.97 33.86 34.87 41.54 37.61 33.56 21.89 21.11
15 100 30 6 50.00 50.54 52.04 63.44 55.40 49.58 30.39 29.30
15 100 40 6 37.24 38.07 39.20 47.16 43.02 38.93 25.14 24.24
15 100 50 6 31.99 32.12 33.08 42.17 37.02 33.53 23.45 22.62
15 200 30 6 46.42 49.68 51.16 57.21 47.41 41.07 23.68 22.84
15 200 40 6 37.18 37.59 38.71 48.40 41.36 36.98 24.93 24.04
15 200 50 6 22.07 25.67 26.43 32.98 26.90 25.00 18.22 17.57
15 500 30 6 36.18 36.69 37.78 49.21 41.73 37.80 26.71 25.75
15 500 40 6 40.22 40.41 41.61 49.63 43.93 39.38 24.02 23.16
15 500 50 6 37.83 40.38 41.58 52.01 43.47 39.74 27.10 26.13
15 100 30 8 28.52 28.29 29.13 36.98 36.98 33.98 23.22 22.40
15 100 40 8 35.13 36.47 37.55 45.88 41.64 38.30 25.34 24.43
15 100 50 8 48.44 49.52 50.99 59.18 52.38 47.24 28.95 27.92
15 200 30 8 34.93 39.03 40.18 45.89 38.40 34.53 22.35 21.55
15 200 40 8 30.64 34.72 35.75 40.93 34.33 31.45 22.20 21.40
15 200 50 8 26.77 28.68 29.53 35.95 29.46 26.75 16.96 16.36
15 500 30 8 46.30 44.56 45.88 59.87 49.81 44.39 26.53 25.58
15 500 40 8 53.77 52.40 53.96 64.99 59.12 52.58 30.33 29.24
15 500 50 8 42.17 43.07 44.35 59.72 47.71 43.28 27.58 26.59

average 36.42 37.64 38.76 46.72 39.78 35.76 23.57 22.73

Table 8. The Descriptive Statistics Achieved by the Friedman Test at C = 40 and α = 0.05. The bold
figures indicate the comparison between algorithms.

Algorithms Rank n Mean Std. Deviation Min Max

CMA 4.81 4050.00 1.17 0.92 0.00 7.05
BBO 4.92 4050.00 1.47 1.30 0.00 7.70
EDA 7.01 4050.00 16.89 12.80 0.00 50.37

TDIWO 3.36 4050.00 0.99 0.96 0.00 4.82
GA 3.43 4050.00 0.93 0.87 0.00 4.44
PSO 4.22 4050.00 1.11 0.96 0.00 5.98
BA 3.06 4050.00 0.79 0.76 0.00 4.67

IHBA 2.94 4050.00 0.77 0.75 0.00 4.71
p-value 0.00

The results obtained from the Wilcoxon paired signed test are shown in Table 9.
The p-values in the last column are all equal to 0, which is less than 0.05. It shows that
the differences between these algorithms are statistically significant, and that there are
significant differences between IHBA and the other algorithms. This also reconfirms
the conclusion that C = 20. More definitely, it explains that IHBA is an effective group
intelligence algorithm with outstanding performance.
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Table 9. The Wilcoxon paired signed test result at C = 40 and α = 0.05.

Algorithms for Comparison R+ R− Bonding Value p-Value

IHBA VS CMA 671 3280 99 0.00
IHBA VS BBO 2434 220 1396 0.00
IHBA VS EDA 3879 100 71 0.00

IHBA VS TDIWO 1933 710 1407 0.00
IHBA VS GA 3198 804 48 0.00
IHBA VS PSO 2149 540 1361 0.00
IHBA VS BA 3050 948 52 0.00

Finally, in this section, EDA is excluded from the mean plot. The reason is that the
algorithm is too intrusive and its performance is too poor. As can be seen in Figure 2, IHBA
is once again stronger than the other metaheuristic algorithms by a margin. Once again,
the variability between the algorithms is proven to be at a significant level. Since the LSD
test has the highest sensitivity, Figure 2 verifies from the side that IHBA is an algorithm
that performs well and can reach Pareto optimality.

CMA BBO TDIWO EDA GA PSO BA IHBA  
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Figure 2. Mean plot and 95% LSD interval of the bat algorithm at C = 40.

5.2.3. Comparative Analysis at C = 60

Table 10 presents the results of the calculations at C = 60. Table 10 shows the validity of
the IHBA, which yielded an overall mean RPD value of 31.55%. The results of the Friedman
test in Table 11, the results of the Wilcoxon paired sign test in Table 12, and the mean plot
in Figure 3 again show that the proposed IHBA performed best in the comparison.
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Table 10. The Average RPD Values at C = 60. It can be seen from the bold figures that the value of
PRD of the proposed algorithm IHBA in this paper is smaller than that of other algorithms in the vast
majority of combinatorial solutions, including the recognized TDIWO algorithm and the original
bat algorithm.

Parameters Algorithms for Comparison

m n s f CMA BBO TDIWO EDA GA PSO BA IHBA

5 100 30 4 21.03 21.53 21.14 22.70 22.35 19.26 20.68 20.84
5 100 40 4 45.06 46.69 45.56 47.61 45.75 46.63 40.83 40.08
5 100 50 4 37.12 37.79 37.41 41.04 39.73 40.82 34.18 33.43
5 200 30 4 47.20 49.43 47.57 50.02 47.74 49.63 42.30 41.33
5 200 40 4 11.03 12.18 11.01 13.06 11.75 9.04 9.69 9.66
5 200 50 4 53.25 54.80 53.76 55.71 55.59 55.49 47.22 46.29
5 500 30 4 34.70 36.10 34.82 37.18 36.60 35.23 29.30 28.58
5 500 40 4 31.75 32.82 32.21 33.83 34.12 31.45 26.98 26.47
5 500 50 4 42.52 43.67 42.61 44.96 43.45 43.58 39.09 38.53
5 100 30 6 34.71 36.05 34.81 37.16 36.76 35.19 29.28 28.57
5 100 40 6 20.98 21.90 20.95 23.25 21.89 20.05 18.20 17.91
5 100 50 6 23.38 23.98 23.58 25.45 24.73 22.48 22.43 22.41
5 200 30 6 31.96 35.07 37.00 39.41 38.96 40.95 34.61 35.04
5 200 40 6 16.42 17.30 16.77 18.65 17.45 15.14 13.98 13.78
5 200 50 6 27.68 28.91 27.69 30.09 28.80 27.43 23.77 23.27
5 500 30 6 54.30 55.62 54.94 56.61 57.10 56.33 48.11 47.22
5 500 40 6 54.49 56.34 55.21 57.09 56.11 57.05 48.51 47.50
5 500 50 6 41.94 43.79 42.47 44.65 43.88 43.44 34.55 33.48
5 100 30 8 25.59 26.71 26.03 28.52 27.71 26.63 22.52 22.01
5 100 40 8 17.68 18.42 17.70 20.40 19.22 17.77 17.30 17.20
5 100 50 8 29.38 30.33 29.67 31.41 30.96 28.81 26.43 26.14
5 200 30 8 38.13 39.23 37.99 41.76 39.92 41.60 36.36 35.72
5 200 40 8 52.43 53.78 52.29 54.87 54.22 54.77 45.26 44.12
5 200 50 8 41.91 43.09 42.34 44.51 43.33 43.64 39.47 38.96
5 500 30 8 19.50 20.11 19.62 22.39 21.30 19.79 18.05 17.81
5 500 40 8 27.99 29.62 28.36 30.23 29.02 27.91 24.85 24.40
5 500 50 8 34.15 35.61 34.35 37.10 34.76 35.59 30.98 30.35

10 100 30 4 31.67 33.18 31.67 34.69 32.85 33.03 27.60 26.88
10 100 40 4 43.96 46.09 44.36 46.88 44.68 46.02 37.74 36.66
10 100 50 4 43.84 46.31 44.35 45.13 44.90 42.43 33.92 32.84
10 200 30 4 42.87 44.87 43.17 44.57 44.00 41.96 33.59 32.56
10 200 40 4 27.34 28.72 27.49 29.64 28.52 27.10 23.92 23.48
10 200 50 4 33.34 33.74 33.22 36.41 35.74 35.00 30.23 29.70
10 500 30 4 39.57 40.71 39.83 41.94 41.52 40.24 34.40 33.72
10 500 40 4 52.70 54.68 53.09 54.06 54.32 51.76 41.54 40.34
10 500 50 4 29.19 30.54 29.38 31.66 30.37 29.12 24.41 23.79
10 100 30 6 27.57 28.64 27.42 30.04 29.20 27.50 23.03 22.46
10 100 40 6 36.71 38.24 36.72 38.26 37.51 35.65 30.23 29.51
10 100 50 6 35.13 36.28 35.43 37.48 36.72 35.36 30.41 29.81
10 200 30 6 35.05 36.48 25.00 36.74 35.55 34.76 30.63 30.04
10 200 40 6 34.94 36.12 35.38 36.55 35.66 33.93 28.12 28.19
10 200 50 6 35.39 36.64 36.45 37.23 36.67 34.44 29.26 28.63
10 500 30 6 46.59 48.16 47.09 49.07 48.84 48.23 40.39 39.48
10 500 40 6 26.68 27.32 26.11 28.68 27.47 26.53 24.27 23.91
10 500 50 6 56.43 59.00 57.28 57.13 57.08 54.35 43.68 42.38
10 100 30 8 48.53 51.05 49.11 49.84 49.34 47.57 38.91 37.82
10 100 40 8 34.03 35.49 34.05 35.77 34.99 33.26 28.97 28.39
10 100 50 8 55.22 57.60 55.79 58.18 56.95 58.49 47.45 46.11
10 200 30 8 45.36 46.91 46.02 47.81 48.24 46.78 37.80 36.78
10 200 40 8 50.53 52.60 51.26 53.33 52.42 52.97 42.70 41.47
10 200 50 8 46.91 48.40 47.51 49.32 48.93 48.44 41.12 40.28
10 500 30 8 42.52 44.27 42.80 45.17 44.25 44.08 36.49 35.56
10 500 40 8 33.76 35.52 33.71 35.51 34.98 32.76 27.86 27.22
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Table 10. Cont.

Parameters Algorithms for Comparison

m n s f CMA BBO TDIWO EDA GA PSO BA IHBA

10 500 50 8 27.20 28.20 27.44 29.46 28.55 26.81 23.54 23.11
15 100 30 4 40.34 42.38 41.45 42.08 40.91 39.70 33.27 32.44
15 100 40 4 38.10 39.33 38.25 40.20 39.79 37.87 31.88 31.17
15 100 50 4 26.98 28.40 27.39 29.22 27.89 26.61 23.70 23.28
15 200 30 4 41.62 43.31 41.89 44.27 42.96 43.04 36.18 35.32
15 200 40 4 39.16 40.30 39.57 41.55 40.85 39.73 33.99 33.32
15 200 50 4 31.61 33.30 31.82 33.23 32.38 30.95 27.72 27.25
15 500 30 4 33.42 34.77 33.52 36.15 35.46 34.69 29.66 29.04
15 500 40 4 34.80 35.60 34.57 36.97 35.72 35.69 31.01 30.37
15 500 50 4 34.45 36.19 34.63 36.96 35.38 35.24 30.42 29.76
15 100 30 6 49.72 51.74 49.98 52.56 51.34 52.26 43.13 42.01
15 100 40 6 38.52 40.11 38.74 41.52 39.67 40.49 34.42 33.64
15 100 50 6 33.84 35.10 34.11 36.57 35.26 35.23 30.97 30.42
15 200 30 6 45.12 47.58 44.69 46.53 46.53 44.27 36.10 35.07
15 200 40 6 38.20 39.92 38.36 40.61 39.75 39.31 34.10 33.44
15 200 50 6 25.76 26.65 25.79 28.29 27.58 25.86 23.07 22.72
15 500 30 6 38.25 39.53 38.53 40.94 40.10 40.06 35.15 34.55
15 500 40 6 39.85 41.62 40.20 42.54 41.07 41.15 34.07 33.17
15 500 50 6 40.03 41.27 40.32 42.78 42.04 41.74 35.87 35.17
15 100 30 8 31.73 33.10 31.92 35.37 32.58 34.68 30.51 29.92
15 100 40 8 37.13 38.34 37.53 40.40 38.45 39.45 33.64 32.91
15 100 50 8 47.43 49.14 47.96 50.25 48.62 49.35 40.65 39.58
15 200 30 8 36.42 37.90 36.33 38.59 37.95 36.38 30.83 30.14
15 200 40 8 32.89 33.95 33.01 35.20 34.33 32.91 28.94 28.45
15 200 50 8 28.05 29.29 28.26 30.40 29.69 27.74 23.28 22.72
15 500 30 8 45.08 47.09 45.61 47.71 47.22 46.99 38.27 37.22
15 500 40 8 52.01 54.39 52.37 55.12 53.16 55.11 44.53 43.21
15 500 50 8 43.50 44.99 43.91 46.29 46.34 45.72 37.83 36.93

average 36.68 37.88 39.01 37.08 38.54 37.28 39.54 38.60

Table 11. The Descriptive Statistics Achieved by the Friedman Test at C = 60 and α = 0.05. The bold
figures indicate the comparison between algorithms.

Algorithms Rank n Mean Std. Deviation Min Max

CMA 4.81 4050.00 1.17 0.92 0.00 7.05
BBO 4.92 4050.00 1.47 1.30 0.00 7.70
EDA 7.01 4050.00 16.89 12.80 0.00 50.37

TDIWO 3.36 4050.00 0.99 0.96 0.00 4.82
GA 4.39 4050.00 0.98 0.85 0.00 4.46
PSO 4.44 4050.00 0.99 0.94 0.00 4.78
BA 4.33 4050.00 0.98 0.85 0.00 4.44

IHBA 3.53 4050.00 0.42 0.50 0.00 5.28
p-value 0.00

Table 12. The Wilcoxon paired signed test result at C = 60 and α = 0.05.

Algorithms for Comparison R+ R− Bonding Value p-Value

IHBA VS CMA 639 3314 98 0.00
IHBA VS BBO 2428 205 1417 0.00
IHBA VS EDA 3840 100 110 0.00

IHBA VS TDIWO 1981 650 1419 0.00
IHBA VS GA 3222 755 72 0.00
IHBA VS PSO 2181 493 1376 0.00
IHBA VS BA 3099 879 72 0.00
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Figure 3. Mean plot and 95% LSD interval of the bat algorithm at C = 60.

5.3. VND Method

In this section, the proposed VND3BA and VND2BA are compared with VNDH12,
VNDH22, and VNDH32, proposed by Hatami et al. These are 3 different versions of the
VND method using H12, H22 and H32 to generate the initial solution. The VND method
uses product local search to improve the product sequence and part local search to improve
the part sequence for each product. Tables 13 and 14 show the computational results and
CPU time for the 5 VND algorithms.

As the table shows, VND3BA and VND2BA perform significantly better than VNDH12,
VNDH22 and VNDH12 in terms of solution quality and computational effort. The best
overall average RPI value of 15.233% for all instances obtained by the existing VND algo-
rithm is more than three times higher than the best overall average RPI value obtained
by VND3BA and VND2BA. For all values of n, m, f and s, the proposed VND algorithm
produces better results than the existing VNDH12, VNDH22, and VNDH32. The VND
method shows stable advantages without considering the different n, m, f , and s involved.
The proposed VND algorithm is also very fast, with an overall average CPU time of 0.009
and 0.057 s for VND3BA and VND2BA, respectively, compared with an overall average
CPU time of more than 5 s for the existing algorithms.

Table 13. Average RPD value of VND method.

RPD
Algorithms

VNDH12 VNDH22 VNDH32 VND3BA VND2BA

n
100 19.177 14.919 16.791 4.656 4.365
200 16.752 16.180 19.497 4.957 4.423
500 12.746 14.599 18.129 4.743 4.074

m
5 17.606 15.753 18.614 4.181 3.977
10 16.616 15.345 18.731 5.015 4.520
20 14.463 14.599 17.072 5.151 4.365

f
4 13.095 11.824 13.706 4.462 3.919
6 16.859 15.627 18.449 4.821 4.317
8 18.731 18.246 22.262 5.063 4.627

s
30 14.608 14.928 18.246 5.160 4.695
40 15.850 15.423 18.449 4.860 4.326
50 18.217 15.355 17.722 4.336 3.841

average 16.226 15.233 18.139 4.784 4.287
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Table 14. CPU time of VND method.

CPU
Algorithms

VNDH12 VNDH22 VNDH32 VND3BA VND2BA

n
100 0.459 0.508 0.525 0.004 0.009
200 1.836 1.786 1.798 0.007 0.027
500 13.424 13.885 13.417 0.016 0.135

m
5 4.765 4.591 4.326 0.008 0.028
10 5.001 5.313 5.114 0.010 0.051
20 5.953 6.274 6.300 0.011 0.091

f
4 3.662 3.522 3.668 0.012 0.083
6 4.993 5.610 5.615 0.008 0.050
8 7.065 7.045 6.457 0.008 0.037

s
30 5.321 5.836 5.763 0.007 0.049
40 5.224 5.354 5.084 0.009 0.058
50 5.173 4.989 4.894 0.012 0.064

average 5.240 5.393 5.247 0.009 0.057

6. Conclusions

To address the challenge that existing heuristic algorithms and meta-heuristic algo-
rithms cannot fundamentally solve the three-stage distributed assembly permutation flow
shop optimization problem, this paper proposes a hybrid bat algorithm optimization algo-
rithm based on variable neighborhood structure and two learning strategies to minimize
the completion time of this problem. The algorithm designs a search-based and capture-
based two populations to solve the difficult trade-off between convergence and diversity
of the bat algorithm in solving the scheduling optimization problem. Moreover, by fully
mining the population information, a new selection mechanism and a new velocity and
location update strategy are designed to solve the difficult trade-off between exploration
and exploitation when the bat algorithm solves the scheduling optimization problem.
The Gaussian learning strategy and elite learning strategy are used to assist the whole
population to jump out of the local optimal frontier. Simulation results show that IHBA
can solve the optimization problem of three-stage distributed assembly permutation flow
shop scheduling well, and performs better than existing algorithms in the literature.

In future research, the algorithm is extended to more complex multi-objective opti-
mization problems to further improve the efficiency of iterative search, and the proposed
algorithm is applied to other scheduling problems.

Author Contributions: Conceptualization, Y.W.; methodology, Y.W.; software, Y.W.; validation,
Y.W. and J.Z.; formal analysis, Y.W.; investigation, Y.W.; resources, Y.W. and J.Z.; data curation,
Y.W.; writing—original draft preparation, Y.W.; visualization, Y.W. and J.Z.; supervision, Y.W. and
J.Z.; project administration, J.Z.; funding acquisition, J.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Fundamental Research Funds for the Central Universities
under Grant No. CUSF-DH-D-2018050 (18D310804).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The benchmark of instances for the permutation flowshop scheduling
problem can be found here: http://soa.iti.es/problem-instances, accessed on 1 September 2021.

Acknowledgments: We gratefully acknowledge the anonymous reviewers for their insightful com-
ments on the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

114



Appl. Sci. 2021, 11, 10102

References

1. Chen, X.; Zhang, B.; Gao, D. An Improved Bat Algorithm for Job Shop Scheduling Problem. In Proceedings of the 2019 IEEE
International Conference on Mechatronics and Automation (ICMA), Tianjin, China, 4–7 August 2019; pp. 439–443.

2. Shareh, M.B.; Bargh, S.H.; Hosseinabadi, A.A.; Slowik, A. An improved bat optimization algorithm to solve the tasks scheduling
problem in open shop. Neural Comput. Appl. 2021, 33, 1559–1573. [CrossRef]

3. Chen, P. S.; Tsai, C. C.; Dang, J. F.; Huang, W. T. Developing Three-phase Modified Bat Algorithms to Solve Medical Staff
Scheduling Problems While Considering Minimal Violations of Preferences and Mean Workload. Technol. Health Care 2021, 1–22.
[CrossRef]

4. Tolouei, K.; Moosavi, E.; Hossein, A.; Tabrizi, B.; Afzal, P. Application of an improved Lagrangian relaxation approach in the
constrained long-term production scheduling problem under grade uncertainty. Eng. Optim. 2021, 53, 735–753. [CrossRef]

5. Hatami, S.; Ruiz, R.; Andrés-Romano, C. The Distributed Assembly Permutation Flowshop Scheduling Problem. Int. J. Prod. Res.
2013, 51, 5292–5308. [CrossRef]

6. Hatami, S.; Ruiz, R.; Andrés-Romano, C. Simple constructive heuristics for the Distributed Assembly Permutation Flowshop
Scheduling Problem with sequence dependent setup times. In Proceedings of the 2014 International Conference on Control,
Decision and Information Technologies (CoDIT), Metz, France, 3–5 November 2014; pp. 19–23.

7. Hatami, S.; Ruiz, R.; Andrés-Romano, C. Heuristics and metaheuristics for the distributed assembly permutation flowshop
scheduling problem with sequence dependent setup times. Int. J. Prod. Econ. 2015, 169 , 76–88. [CrossRef]

8. Ying, K.C.; Pourhejazy, P.; Cheng, C.Y.; Syu, R.S. Supply chain-oriented permutation flowshop scheduling considering flexible
assembly and setup times. Int. J. Prod. Res. 2020, 58, 1–24. [CrossRef]

9. Gonzalez-Neira, E.M.; Ferone, D.; Hatami, S.; Juan, A.A. A biased-randomized simheuristic for the distributed assembly
permutation flowshop problem with stochastic processing times. Simul. Model. Pract. Theory 2017, 79, 23–36. [CrossRef]

10. Wang, K.; Li, Z.; Duan, W.; Feng, X.; Liu, B. Variable neighborhood based memetic algorithm for just-in-time distributed assembly
permutation flowshop scheduling. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), Banff, AB, Canada, 5–8 October 2017; pp. 3700–3704.

11. Zhang, Z.Q.; Qian, B.; Jin, H.P.; Wang, L. A matrix-cube-based estimation of distribution algorithm for the distributed assembly
permutation flow-shop scheduling problem. Swarm Evol. Comput. 2021, 60, 100785. [CrossRef]

12. Zhang, G.; Xing, K.; He, Z. Memetic Algorithm with Meta-Lamarckian Learning and Simplex Search for Distributed Flexible
Assembly Permutation Flowshop Scheduling Problem. IEEE Access 2020, 8, 96115–96128. [CrossRef]

13. Pan, Q.K.; Gao, L.; Li, X.Y.; Jose, F.M. Effective constructive heuristics and meta-heuristics for the distributed assembly permutation
flowshop scheduling problem. Appl. Soft Comput. 2019, 81, 105492. [CrossRef]

14. Ochi, H.; Driss, B. Scheduling the distributed assembly flowshop problem to minimize the makespan. Procedia Comput. Sci. 2019,
164, 471–477. [CrossRef]

15. Yang, S.L.; Xu, Z.G. The distributed assembly permutation flowshop scheduling problem with flexible assembly and batch
delivery. Int. J. Prod. Res. 2021, 59, 4053–4071. [CrossRef]

16. Liu, B.; Wang, K.; Zhang, R. Variable neighborhood based memetic algorithm for distributed assembly permutation flowshop.
In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016;
pp. 1682–1686.

17. Huang, Y.Y.; Pan, Q.K.; Huang, J.P.; Suganthan, P.N.; Gao, L. An improved iterated greedy algorithm for the distributed assembly
permutation flowshop scheduling problem. Comput. Ind. Eng. 2021, 152, 107021. [CrossRef]

18. Hu, R.; Wu, X.; Qian, B.; Mao, J.L.; Jin, H.P. An Enhanced Differential Evolution Algorithm with Fast Evaluating Strategies for
TWT-NFSP with SSTs and RTs. Complexity 2020, 2020, 8835359. [CrossRef]

19. Seidgar, H.; Fazlollahtabar, H.; Zieh, M. Scheduling two-stage assembly flow shop with random machines breakdowns: integrated
new self-adapted differential evolutionary and simulation approach. Soft Comput. 2020, 24, 8377–8401 [CrossRef]

20. Li, M.; Su, B.; Lei, D. A Novel Imperialist Competitive Algorithm for Fuzzy Distributed Assembly Flow Shop Scheduling . J.
Intell. Fuzzy Syst. 2021, 1, 4545–4561. [CrossRef]

21. Al-Behadili, M.; Ouelhadj, D.; Jones, D. Multi-objective Particle Swarm Optimization for Robust Dynamic Scheduling in a
Permutation Flow Shop. Intell. Syst. Des. Appl. 2017, 557, 498–507.

22. Zhang, X.; Li, X.T.; Yin, M.H. An enhanced genetic algorithm for the distributed assembly permutation flowshop scheduling
problem. Int. J. Bio-Inspired Comput. 2020, 15, 113–124. [CrossRef]

23. Li, X.; Zhang, X.; Yin, M.; Wang, J. A genetic algorithm for the distributed assembly permutation flowshop scheduling problem.
In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25–28 May 2015; pp. 3096–3101.

24. Mao, J.; Hu, X.; Pan, Q.K.; Miao, Z.; He, C.; Tasgetiren, M.F. An improved discrete artificial bee colony algorithm for the
distributed permutation flowshop scheduling problem with preventive maintenance. In Proceedings of the 2020 39th Chinese
Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 1679–1684.

25. Song, H.B.; Lin, J. A genetic programming hyper-heuristic for the distributed assembly permutation flow-shop scheduling
problem with sequence dependent setup times. Swarm Evol. Comput. 2021, 60, 100807. [CrossRef]

26. Tozkapan, A.; Kırca, Ö; Chung, C.S. A branch and bound algorithm to minimize the total weighted flowtime for the two-stage
assembly scheduling problem. Comput. Oper. Res. 2003, 30, 309–320. [CrossRef]

115



Appl. Sci. 2021, 11, 10102

27. Luo, J.; Ren, R.; Guo, K. The deformation monitoring of foundation pit by back propagation neural network and genetic algorithm
and its application in geotechnical engineering. PLoS ONE 2020, 15, e0233398. [CrossRef]

28. Cools, S.; Cornelis, J.; Vanroose, W. Numerically Stable Recurrence Relations for the Communication Hiding Pipelined Conjugate
Gradient Method. IEEE Trans. Parallel Distrib. Syst. 2019, 30, 2507–2522. [CrossRef]
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Abstract: Research of manufacturing cell design problems is still pertinent today, because new manu-
facturing strategies, such as mass customization, call for further improvement of the fundamental
performance of cellular manufacturing systems. The main scope of this article is to find the optimal
cell design(s) from alternative design(s) by multi-criteria evaluation. For this purpose, alternative de-
sign solutions are mutually compared by using the selected performance criteria, namely operational
complexity, production line balancing rate, and makespan. Then, multi-criteria decision analysis
based on the analytic hierarchy process method is used to show that two more-cell solutions better
satisfy the determined criteria of manufacturing cell design performance than three less-cell solutions.
The novelty of this research approach refers to the use of the modification of Saaty’s scale for the
comparison of alternatives in pairs based on the objective assessment of the designs. Its benefit lies
in the exactly enumerated values of the selected criteria, according to which the points from the
mentioned scale are assigned to the alternatives.

Keywords: multi-criteria assessment; cell manufacturing design; operational complexity; makespan;
production line balancing rate

1. Introduction and Problem Description

The smart manufacturing concept, as an important part of the Industry 4.0 strat-
egy, opens new opportunities for producers to implement new platform-based business
models by embracing cutting-edge technologies. Cellular manufacturing (CM) systems
belong among six fundamental manufacturing systems, for which Industry 4.0 has been
conceived [1]. Their goal is to complete jobs as swiftly as possible, make a wide variety
of similar products, and produce as little waste as possible. An important objective of
CM systems is to be as easily reconfigurable as possible [2–4]. If the number of potential
configuration design solutions is generated, the role of the user is to define constraints on
design and performance to obtain solutions meeting their requirements. Subsequently, it is
needful to explore design options and configurations to select an optimal solution.

Operation management research often reflects CM problems in order to make manufac-
turing operations more efficient and productive. The cellular manufacturing method brings
scattered processes together with compact cells usually arranged in U-shapes and can
significantly improve the operation of batch production [5]. Batch production with a wide
range of product types presents a crucial problem for layout designers since the parts move
in batches from one process to another, and ready parts must wait for the remaining parts
to complete processing before they move to the next stage. Because operation times are
distinct one from another, it causes unbalanced machine utilization, scheduling problems,
and possible late deliveries. Unbalanced machine utilization is frequently considered one
of the main criteria in CM design optimization since ineffective utilization of machines can
result in unprofitable production [6,7]. Another approach to optimize CM design is based
on using appropriate scheduling techniques that aim to determine the actual assignment
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of products or jobs to available operations in order to complete manufacturing orders on
time [8]. These techniques are mostly developed using the minimum makespan criterion
for CM design optimization [9]. Moreover, makespan minimization positively influences
work-in-process inventories [10,11]. Taking into consideration the fact that CM systems
have to be adaptable to changing market demands, their structural and operational com-
plexity adequately increases as a consequence [12,13]. In this context, the cost of operational
complexity is becoming a topical problem, and therefore, the trade-offs between the level
of complexity and its added value are often discussed (see, e.g., [14–17]).

It is also worth mentioning that CM is not always the appropriate approach to take for
certain scenarios [18]. This problem has been studied, e.g., by Flynn and Jacobs [19], who
indicated that, through a well-organized job shop, it is possible to achieve at least as good a
performance as the cellular layout with respect to several criteria such as work-in-process
inventory levels and average flow times. For this reason, it is assumed in this study that a
given manufacturing process satisfies basic criteria for a cellular layout, which include a
high ratio of setup to process time, stable demand, unidirectional workflow within a cell,
and a considerable level of material movement times between process departments [20].

The problem that is treated in the present work can be described as follows. The time
required to complete all jobs, namely makespan, is one of the most frequent performance
indicators for the job shop problem [21]. Considering that one-piece flow cellular manu-
facturing is the ultimate in lean production [22], CM is primarily aimed at reducing times
within the production system. On the other hand, competitiveness through cost reduction
in the design and implementation of production systems is an important and permanent
task for process designers. In this order, identifying and monitoring cost items causes signif-
icant difficulties since there are various costs such as part holding cost at a facility, machine
procurement cost, machine maintenance overhead cost, machine repair cost, production
loss cost due to machine breakdown, machine operation cost, setup cost, tool consump-
tion cost, inter-cell travel cost, intra-cell travel cost, etc. [23]. Therefore, from a practical
viewpoint, it is reasonable to indicate the main portion of costs by using indirect indicators,
namely production line balancing rate and minimization of operational complexity.

Taking into account the above-mentioned observations and factors influencing the
efficiency of CM systems, our interest in this paper is to propose a multi-criteria decision-
making approach for the selection of an optimal manufacturing cell from several alternative
options. The three selected criteria, i.e., maximization of production line balancing rate,
minimization of operational complexity of alternative CM designs, and makespan mini-
mization, is employed to assess the layout design alternatives.

For the purpose of multi-criteria decision analysis, the analytic hierarchy process
(AHP) method is applied. The AHP method is one of the most exploited multi-criteria
decision-making tools and one of the most trusted decision-making methodologies. On the
other hand, its disadvantage lies in possible flaws in the verbal scale often used in AHP
pairwise comparisons. In the case of investigation of the given manufacturing problem,
a numerical scale is used for the assessment of the criteria. Then, the results will not be
influenced by personal opinions in considering and representing facts.

As testing examples, alternative CM designs along with input data from the existing
representative case study is used.

2. Literature Background

The literature background conducts a review regarding the above-mentioned opti-
mization criteria or factors influencing decision making in cellular manufacturing design.

Line balancing is considered an effective tool to optimize layout design and reduce
product cycle times. The objectives of line balancing techniques in flow shop scheduling
problems are usually focused on the reduction and/or redesign of workstations in order to
minimize production costs, work in process in order to reduce storage space and bound
capital, and minimization of makespan and flow times [24,25]. In general, line balancing
techniques are divided into deterministic types, where all input parameters are known
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and not changed over time, and probabilistic types, which deal with parameter uncertain-
ties [26]. An innovative stochastic line balancing method was proposed by Kottas-Lau
et al. [27]. Their algorithm was developed for the purpose of achieving optimized total
production costs and to allow a good level of line balancing. Among the other important
deterministic line balancing techniques can be mentioned the largest candidate rule [28],
the Kilbridge and Wester Column method [29], and the ranked positional weight method
proposed by Hegelson and Bernie [30]. The latter method was developed to minimize
idle times and the number of workstations. The specific type of these optimization tasks
consists of large-scale line balancing problems that deal with uncertainty in line balancing.
Hazr and Dolgui [31] proposed two optimization models that belong to these problems, by
which it is possible to generate exact solutions of cellular manufacturing designs. Another
optimization technique based on the identification of equilibrium between line efficiency
and equipment cost was proposed by Gurevsky et al. [32]. It is also useful to note that their
method supports decisions at the early design stage of production lines. As it is impossible
to involve all pertinent works on the topic, comprehensive literature studies focused on the
comparative evaluation of line balancing techniques overcome this drawback. Such review
studies can be found, e.g., in [33–35].

Operational and structural complexity is another relevant factor affecting the efficiency
of CM systems. According to Hon [36], the main reason for the investigation of manufactur-
ing system complexity is to comprehend and control the behavior of such systems in order
to make them more productive and predictive. Fredendall and Gabriel [37] argue that by
measuring system complexity, managers can better identify problems in manufacturing
systems that hinder production flow. Therefore, the determination of quantitative metrics
of manufacturing system complexity, either static or dynamic, is one of the crucial elements
in this effort [38]. There are several different approaches to the utilization of complex
concepts in this application domain, but it has not yet been possible to find closed-form
equations able to describe the dynamic behavior of manufacturing systems [39]. For this
reason, available operational complexity measures reflect only selected facets of such sys-
tems. Manufacturing system complexity is often divided into structural and operational
types. The second type of complexity measure, which is of interest in this study, is based
on measuring uncertainties involved in manufacturing systems. This type of complexity
is further divided into time independent and time dependent [40]. Zhang [41] analyzed
the relationship between cellular manufacturing system complexity and utility in order
to show that increasing complexity can be beneficial for manufacturers until it reaches a
critical value. Beyond this critical value, the situation becomes the opposite. The mentioned
system complexity consequences on design and managerial practice were originally intro-
duced by Tainter [42] and are widely respected in many research communities. Therefore,
managers might mitigate the negative aspects of complexity while managing its positive
aspects, as complexity indirectly influences the performance of manufacturing systems [43].
These arguments inspire us to employ operational complexity as one of the criteria in the
decision-making procedure.

Makespan is commonly used as a criterion of performance measure in the design of
cellular manufacturing systems, because the advantages of cellular manufacturing also
include simplified planning and scheduling [44]. The scheduling problem in a cellular
manufacturing system assumes that intercellular moves can be eliminated by duplicating
machines, but it is usually very costly and therefore infeasible [45]. If duplicating machines
is not a viable solution, then a volume limit can enhance the choice of the optimal routing of
jobs. One method to make this choice is to minimize the makespan since this performance
measure is the most frequent objective in flow shop problems [46].

3. Methodological Framework

This section aims to describe in a nutshell the set of methods and overall procedure in
chronological order and help the reader understand the context under which the research
was conducted. In its first steps, the criteria or factors influencing the efficiency of CM
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systems have been mostly identified based on empirical findings and general knowledge of
CM design, namely makespan and production line balancing rate. Similarly, measurement
methods to quantify operational complexity have been chosen. Subsequently, the AHP
method divided into three steps was used for the evaluation of individual CM alternatives.
Summarily, the methodological framework of this research consists of five steps, which is
illustrated in the figure below (Figure 1).

Figure 1. Overall research procedure in chronological order (Sections 1–5).

3.1. Indicators Used as Criteria to Assess Alternative CM Designs
3.1.1. Production Line Balancing Rate

The production line balancing rate (PLB) represents a measure of the average length of
time of every cycle time in the working procedure on the processing line. It is equivalent to
minimizing the number of workstations with a certain takt time [47]. It is expressed as [48]:

PLB =
∑n

j=1 tj

m ∗ max(Ti)
[%], (1)

where

tj stands for standard work time of the j-th job elements;
n represents the number of the work elements;
m represents the number of total lines in the production system;
Ti represents the work time in the production line(s) (PL(s));
max(Ti) represents the biggest line operating time.

3.1.2. Operational Complexity Indicators

There are several potential operational complexity indicators that can be applied
to measure the operational complexity properties of manufacturing systems from differ-
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ent or similar perspectives (see, e.g., [49–54]). Two of them that suit the available data
characterizing the benchmarked alternatives are further introduced.

Process Complexity Indicator

This indicator, similar to the other concurrent complexity measures, is derived from
Shannon’s information theory [55]. The process complexity indicator (PCI) is specified
for the quantification of manufacturing process complexity, taking into account the oper-
ational complexities of individual machines. The PCI indicator is enumerated by using
equation [54]:

PCI = −
M

∑
i=1

P

∑
j=1

O

∑
k=1

pijk · log2 pijk [bits], (2)

where

pijk stands for the probability that part j is processed due to operation k by individual
machine i according to scheduling order;
O is the number of operations according to parts production;
P is the number of parts produced in the manufacturing process;
M is the number of all machines of all types in the manufacturing process.

Balanced Complexity Indicator

The balanced complexity indicator (BCI) takes into account the rate of mutual dif-
ferences between the individual complexities of machines. This indicator expresses the
variability of the partial complexities of workstations/machines and calculates the devi-
ation of partial machine complexities from their mean value. It is calculated using the
following formula [54]:

BCI =

N
∑

i=1
MCIi(max) −

N
∑

i=1
MCIi(min)

N
[bits], (3)

where

MCIi(max) represents the first N-max complexity values;
MCIi(min) represents the first N-min complexity values;
N represents the number of max and min machine complexity values.

3.1.3. Makespan Indicators

For the purpose of calculating makespan, the scheduling algorithm to minimize the
completion of n-jobs of m-machines is used. As known, there are many different algorithms
for the given purpose. In this work, the freely available online software is utilized [56], and
the following input data for this algorithm are collected:

Processing times in minutes for each job, which are included in matrix m x n (Figure 2a);
Number of transport batch (Figure 2b);
Transport batch sizes for each job (Figure 2c);
Sequences of individual jobs numbered by order (Figure 2d).

Its application in the first step requires that input data are presented in the form of a
Microsoft Office Excel table and pasted into the input data window. A flowchart of how to
generate makespan is shown in Figure 3.

As can be seen from Figure 3, makespans are enumerated assuming two scenarios.
According to the first scenario, makespan is calculated for determined batch sizes, and for
the second scenario, the one-piece flow (OPF) principle is applied, i.e., when the transport
batch size for each job equals 1.
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Figure 2. Table format for insertion of input data, (a) processing times in minutes for each job, which
are included in matrix m x n, (b) number of transport batch, (c) transport batch sizes for each job,
(d) sequences of individual jobs numbered by order.

• 
• 
• 
• 

Figure 3. Software flowcharts with acquired data.

3.2. Description of AHP Method

Prior to describing the AHP method with the modified Saaty scale for a comparison
of design alternatives in pairs using a multi-criteria decision-making approach, the five
selected related AHP approaches are reported in Table 1 in order to point out the differences
in the research addressed in our paper.
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Table 1. Comparison of existing studies based on usage of AHP method.

Publication Title Publication Characteristics

The use of AHP method for
selection of supplier [57]

This article presents the general design of the model for the selection of a suitable supplier
from three potential suppliers by the AHP method using Saaty’s point scale. The proposed

model is applied in a manufacturing company.

A multi-Criteria decision support
concept for selecting the optimal

contractor [58]

This paper presents a decision support concept for selecting the optimal contractor. This
concept increases the transparency of decision-making and the consistency of the

decision-making process, and it has potential for application in similar
decision-making problems.

Fuzzy AHP group decision analysis
and its application for the

evaluation of energy sources [59]

The evaluation of a multi-criteria decision problem by use of fuzzy logic is the main concern
of this research. It considers the specific problem of the searching of energy alternatives and

a proper evaluation of these alternatives in comparison with existing ones.

Modeling procedure for the
selection of steel pipes supplier by
applying fuzzy AHP method [60]

This work is focused on the evaluation and selection of suppliers by applying fuzzy
multi-criteria analysis using the AHP method to choose the optimal supplier from five

suppliers for the production of pre-insulated pipes. These suppliers are compared based on
nine criteria, e.g., material cost, delivery time, transport distance, etc.

An application of analytic hierarchy
process (AHP) in a real-world

problem of store location selection
[61]

This study presents a new store location selection problem of Carglass Turkey, which
includes tangible and intangible criteria, and the analytic hierarchy process (AHP) was

applied. The hierarchical model established for this problem may provide insight regarding
location selection problems.

Simultaneous customers and
supplier’s prioritization: an AHP

based fuzzy inference decision
support system (AHP-FIDSS) [62]

This research paper introduced a novel analytical hierarchical process-based fuzzy inference
decision support system (AHP-FIDSS), which involves factor screening, hierarchical

structure modeling, quantification of qualitative factors, and their conversion to
quantitative values.

All of these AHP method applications are based on a subjective approach in mutual
comparison of alternatives. On the contrary, the proposed procedure to find the most
suitable cell design alternative(s) uses an objective approach of the pairwise comparison of
cell design alternatives. In addition, it is necessary to select one of the possible methods
in the application of the AHP method [63,64]. For the given purpose, the most accurate
procedure seems to be that which consists of the following steps:

Step 1. Creation of hierarchical structure of AHP method. The hierarchical structure of
the AHP method is created in the form of a diagram, where the criteria, sub-criteria, and
CM alternatives are specified.

Step 2. Pairwise comparison of CM alternatives. All CM alternatives are pairwise
benchmarked with respect to the criteria and sub-criteria. The pairwise comparison is
provided in matrix form by comparing one CM alternative to another to determine the
weights of importance. For this purpose, the proposed modified scale of relative importance
is applied (see Section 4.3).

Step 3. Enumeration of priority vectors and aggregated results. The priorities are
derived using the values of the principal right eigenvectors of the compared matrices.
These priorities are expressed as absolute numbers bounded between 0 and 1, without
units, and are calculated according to the so-called additive normalization method using
the following simple procedure:

Sum each column values separately for each matrix, divide each element of the column
with the sum of that column for each matrix, and compute the average of all elements in
each row of all matrices to obtain the priority vector.

To obtain aggregated results, it is needed to summarize the determined priorities of
all the individual indicators for each CM alternative. Then, the aggregated priorities are
compared by ranking them in order from most to least important. Finally, the optimal CM
alternative is selected.
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4. A Practical Example

4.1. Description of Manufacturing Cell Designs Alternatives

This section aims to introduce five manufacturing cell alternatives for their mutual
comparison in order to determine the optimal design. The CM alternative designs along
with basic input data are taken from a case study by Yan and Irani [65]. The essential data
from this case study include routing of parts (P) through machines (M), sequencing of parts
by way of recording, operational times in minutes, and batch sizes for individual parts.
The parts routings and operational times for all the parts are shown in Figure 4 (e.g., part
P1 is firstly processed for 96 min on machine M1. It is subsequently machined for 36 min
on machine M4, processed for 36 min on machine M8, and finally, it is machined for 72 min
on machine M9).

 
Figure 4. Sequences of machines for each job/part.

The alternative designs that are depicted in Figure 5 can be divided into two groups:
two-cell solutions (three design alternatives, i.e., Cell Designs 1–3) and three-cell solutions
(two design alternatives, i.e., Cell Designs 4–5). The sequence of machines for each job is
not violated in all the alternatives.

As can be seen in this figure, Cell Design 1 consists of two cells: 11 machines are
located in the first cell, and 12 machines are located in the second cell. Parts P1–P4 and
P7–P11 are processed in the first cell, and the rest of the parts marked as P12–P19 are
processed only in the second cell. Parts P5 and P6 are partially processed in the second cell
and finalized in the first cell.

Cell Design 2 contains 25 machines. There are 16 machines in the first cell and
9 machines in the second cell. Parts P1–P11 and P18 are machined in the first cell, and the
rest of the parts are produced in the second cell.

Cell Design 3 is quite similar to Cell Design 2, except that machine M1 is eliminated in
the second cell, and parts P15 and P16 are first produced in the first cell and subsequently
finished in the second cell.

Cell Design 4 includes three cells with 8 machines in the first cell, 10 machines in the
second cell, and 8 machines in the third cell. Parts marked as P1, P3, P7–P9, and P11 are
machined in the first cell, while P3 is completed in the second cell. Parts P2, P4–P6, P10,
P15, P16, and P18 are produced in the second cell, but P15 and P16 are finished in the third
cell. Parts P12–P14, P17, and P19 are machined in the third cell.
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Figure 5. Cell design alternatives and their material flows.

Cell Design 5 is also divided into three cells. The first cell consists of 5 machines,
15 machines are located in the second cell, and 4 machines are placed in the third cell. P1,
P3, P7–P9, and P11 are machined in the first cell, while P1, P3, and P7–P9 are completed
in the second cell. P2, P4–6, P10, P14–P16, and P18 are produced in the second cell, while
P15 and P16 are finalized in the third cell. P12, P13, P17, and P19 are machined only in the
last cell.

4.2. Application of the Performance Indicators on Cell Designs

In this sub-section, the above-mentioned indicators are applied to the five CM alterna-
tives. Obtained operational complexity values, makespans, and production line balancing
rates are summarily shown in Table 2.

The obtained values are further used as input data for the purpose of multi-criteria
comparison applying the AHP method.
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Table 2. Enumerated results of all the criteria and sub-criteria.

Cell Designs
Makespan

(min)
OPF Makespan

(min)
PCI

(bits)
BCI

(bits)
PLB
(%)

1 5926 3610 47.8 2.1 92.4 *
2 5014 3108 50.7 2.24 78.7
3 5049 3079 53.9 2.45 78.2
4 5438 3194 44.8 * 1.62 * 85.6
5 4650 * 2927 * 47.1 2.14 50.7

* Best obtained value.

4.3. Assessment of Manufacturing Cell Designs Using AHP Method

Firstly, the hierarchical structure of the AHP method is created. The overall focus is
aimed at the selection of the optimal manufacturing cell design(s) from the five cell design
alternatives. For this purpose, these five alternatives are compared using the criteria shown
in Figure 6.

Figure 6. Hierarchical structure of the AHP method for selection of an optimal manufacturing cell.

Once the hierarchy is constructed, the alternatives are pairwise compared for each of
the criteria based on the preferences using the scale of relative importance (see Table 3).

Table 3. Scale of relative importance.

Scale Numerical Rating Explanation

Equal importance 1 Two alternatives contribute equally to the objective (0% difference)
Moderate importance 3 One alternative is slightly favored over another (no more than 25% difference)

Strong importance 5 One alternative is strongly favored over another (25–50% difference)
Very strong importance 7 One alternative is very strongly favored over another (50–75% difference)

Absolute importance 9 One alternative is absolutely favored over another (more than 75% difference)
Intermediate values 2, 4, 6, 8 When compromise is needed between two alternatives

Note: When comparing the best alternative with the worst alternative, the difference between them is maximally
100%. Based on this difference value, the percentages 25%, 50%, and/or 75% are proposed.

The performance of each cell design (CD) with regard to each criterion is indicated by
the following pairwise comparison matrices, and at the same time, it is assumed that all
criteria are equal to each other (see Figure 7).

Subsequently, the priority vectors are calculated according to the additive normaliza-
tion method for all the criteria shown in Table 4.
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Figure 7. Obtained values of pairwise comparison matrices for Cell Designs 1–5.

Table 4. Obtained priority vectors values for all the criteria.

Cell Designs PCI BCI Makespan OPF Makespan PLB

1 0.15877167 0.175165699 0.029623447 0.027892418 0.476996214
2 0.072721123 0.085558568 0.221688177 0.148542569 0.148542569
3 0.029623447 0.03317987 0.15877167 0.245125107 0.101443692
4 0.517195582 0.580746424 0.072721123 0.101443692 0.245125107
5 0.221688177 0.125349438 0.517195582 0.476996214 0.027892418

Finally, the aggregated relative priorities from Table 4 are enumerated, which allows
ranking CM alternatives, as shown in Figure 8.

Figure 8. Final comparison of cell designs.

As can be seen from Figure 8, Cell Design 4 is considered the optimal design.

5. Conclusions

Summarily, it can be stated that both of the three-cell solutions better satisfied the
determined criteria of manufacturing cell design performance than all the three two-cell
solutions. It can be empirically explained by this that cells practically represent modules,
and a modular manufacturing layout design is better than an integral design.
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Moreover, from the obtained results of the computational experiments, it can be
noted that:

According to both complexity indicators, the three-cell solutions are less complex than
the two-cell solutions. The lower complexity of the three-cell designs against the two-cell
designs can be comprehended in a way that the scheduling of cell designs with a higher
number of cells is less complicated than in the case with a smaller number of cells. This
statement comes from the fact the probability that parts are produced on given machines is
higher than in the case of the CM design with a smaller number of cells;
Based on the makespan results, the three-cell solutions better satisfied the minimization of
the total time needed to finish all the jobs than the two-cell solutions;
From the viewpoint of the PLB indicator, the two-cell solutions offer better balancing of
machines than the three-cell solutions.

As mentioned, the case study was taken from the work of Yan and Irani [65], who
compared two-cell solutions with three-cell solutions based on selected criteria such as
the number of intra-cell flows and inter-cell flows, scheduling, etc., to point out the ad-
vantages and disadvantages of two-cell solutions and three-cell solutions. Our aim was to
identify the optimal cell design solution(s) from the alternatives based on a multi-criteria
decision-making approach, where five selected criteria were used. The main benefit of
the used approach lies in the objective approach of the pairwise comparison of cell design
alternatives in the decision-making process.

Related future research could be oriented to employ other criteria to assess man-
ufacturing cells design performance in order to bring new findings for practitioners
and researchers.
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Notations

PLB Production line balancing rate, in %
PCI Process complexity indicator, in bits
BCI Balanced complexity indicator, in bits
tj Standard work time of the j-th job elements
n Number of the work elements
m Number of total lines in production system
Ti Work time in the production line(s) (PL(s))
max(Ti) Biggest line operating time
pijk Probability that part j is processed due to operation k by individual machine i according

to scheduling order
O Number of operations according to parts production
P Number of parts produced in manufacturing process
M Number of all machines of all types in manufacturing process
MCIi(max) First N-max complexity values
MCIi(min) First N-min complexity values
N Number of max and min machine complexity values
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Abstract: Electrochemical machining (ECM) is a preferred advanced machining process for machining
Monel 400 alloys. During the machining, the toxic nickel hydroxides in the sludge are formed.
Therefore, it becomes necessary to determine the optimum ECM process parameters that minimize
the nickel presence (NP) emission in the sludge while maximizing the material removal rate (MRR).
In this investigation, the predominant ECM process parameters, such as the applied voltage, flow
rate, and electrolyte concentration, were controlled to study their effect on the performance measures
(i.e., MRR and NP). A meta-heuristic algorithm, the grey wolf optimizer (GWO), was used for the
multi-objective optimization of the process parameters for ECM, and its results were compared
with the moth-flame optimization (MFO) and particle swarm optimization (PSO) algorithms. It was
observed from the surface, main, and interaction plots of this experimentation that all the process
variables influenced the objectives significantly. The TOPSIS algorithm was employed to convert
multiple objectives into a single objective used in meta-heuristic algorithms. In the convergence plot
for the MRR model, the PSO algorithm converged very quickly in 10 iterations, while GWO and MFO
took 14 and 64 iterations, respectively. In the case of the NP model, the PSO tool took only 6 iterations
to converge, whereas MFO and GWO took 48 and 88 iterations, respectively. However, both MFO
and GWO obtained the same solutions of EC = 132.014 g/L, V = 2406 V, and FR = 2.8455 L/min
with the best conflicting performances (i.e., MRR = 0.242 g/min and NP = 57.7202 PPM). Hence, it
is confirmed that these metaheuristic algorithms of MFO and GWO are more suitable for finding
the optimum process parameters for machining Monel 400 alloys with ECM. This work explores a
greater scope for the ECM process with better machining performance.

Keywords: electrochemical machining (ECM); material removal rate (MRR); nickel presence (NP);
grey wolf optimizer (GWO); moth-flame optimization algorithm (MFO); Monel 400 alloys

1. Introduction

For the last few decades, electrochemical machining (ECM) has been used for machin-
ing the macro- and micro-components of tool steel, carbides, superalloys, and titanium
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alloys. These materials are heavily used in the automotive and aerospace industries, as well
as electronics, optics, medical devices, and communications. ECM is used as a high-priority
machining tool because of its specific advantages, such as minor tool wear, mechanical
forceless machining, no heat-affected zones, high surface quality, low roughness, and stress-
free surface products. ECM is the reverse process of electroplating and can machine any
hard materials or complicated shapes [1]. In ECM, the workpiece and tool are connected
with the anodic pole and the cathodic pole of the electrochemical circuit, respectively, and
the electrolyte is pumped through the inter-electrode gap (IEG) between the tool and the
workpiece. A high-current DC power supply is allowed to pass through this electrochemi-
cal circuit to dissolve the metal from the workpiece in the form of metal hydroxides (i.e.,
sludge). ECM is an efficient and low-cost machining method for Ni-based alloys [2]. Several
works were carried out to study the machinability of Ni alloys by ECM [3–5]. Ni alloys are
primarily used in aircrafts, power generation turbines, rocket engines, chemical processing
plants, and nuclear power plants. Poor surface traits, a short insert life, high manufacturing
costs, and low productivity are associated with the machining of nickel alloys.

Monel 400 alloy is one of Ni alloys that exhibits excellent characteristics of corro-
sive resistance, strength, and toughness in challenging conditions [6]. When machining
Ni-based alloys, ECM generates a large quantity of toxic sludge in the form of Ni and
chromium hydroxides aside from gaseous byproducts, acids, sulphates, nitrates, oils, and
metal ions. Environmentally sustainable machining of Ni-based alloys in ECM is needed
while maintaining productivity and quality [7]. However, the discharge of nickel ions
into the electrolyte slurry is significant. Therefore, it is necessary to use ECM with proper
cutting conditions so that it produces sludge with fewer toxic byproducts. This hazardous
emission may be retained in the electrolyte by repeated use of the electrolyte. However,
such a process might decrease the machining performance. Thus, it is proposed to have
optimized ECM process parameters to produce a better MRR and fewer hazardous mate-
rial emissions. To the best of the authors’ knowledge, investigating the amount of nickel
present in the sludge during electrochemical machining of Monel 400 alloys has not been
attempted before. Optimizing the process parameters is an essential task in the ECM
process, as the optimum process parameters improve the performance and economics of
machining. The selection of ECM process parameters is carried out based on the experience
and expertise of the machinist or machining handbooks. The process parameters selected
based on the operator’s experience rarely assure high efficiency and quality machining. The
machining handbooks can be a handy choice for a few applications only. In most cases, the
selected optimum process parameters are far from the best, and this hampers the best uti-
lization of ECM. Selecting the optimum values for the process parameters without proper
optimization requires elaborate, costly, time-consuming, and tedious experimentation.
Therefore, researchers have used different soft computing techniques to optimize the ECM
process parameters in various operations [8]. Mukherjee and Chakraborty implemented
a biogeography-based optimization (BBO) algorithm in ECM to determine the optimum
machining conditions [9]. The BBO algorithm was inspired by the migration behavior of
species among the habitats in nature. A genetic algorithm (GA) was integrated with a
desirability function (DF) for simultaneous optimization of multiple objectives of the ECM
process [10]. The particle swarm optimization (PSO) algorithm was adopted as an optimiza-
tion strategy for determining the optimum parameters [11]. The PSO algorithm mimics
the concept of the social interaction of birds in a flock. To perform the multi-objective opti-
mization, the cuckoo optimization algorithm (COA) was used with the objective function,
which was derived from the adaptive neuro-fuzzy inference system (ANFIS) model [12].
The COA was developed based on the obligate brood parasitism of some cuckoo species. A
multi-objective Jaya (MO-Jaya) algorithm was implemented in the ECM process to obtain
multiple optimal solutions [13]. The differential evolution (DE) algorithm has been used
for both the single- and multi-objective optimization of process parameters [14]. Singh and
Shukla (2017) considered the ECM process to evaluate the performance of the black hole
algorithm (BHA). The performance measures of the MRR and overcut (OC) were taken
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to obtain the optimum machining parameters using the BHA [15]. The harmony search
(HS) algorithm was combined with the DF so that an HS-DF optimizer was proposed to
optimize the ECM process parameters [16]. Diyaley and Chakraborty conducted a compar-
ative analysis with meta-heuristics such as the firefly algorithm (FA), DE algorithm, ant
colony optimization (ACO) algorithm, and teaching-learning-based optimization (TLBO)
algorithm for the optimization of various control parameters of an ECM process [17]. Apart
from these meta-heuristics, artificial neural networks (ANNs) and fuzzy logic (FL) were
also employed to model the ECM experiments and subsequent optimization process [18,19].
Several optimization algorithms have been reported in the literature, and their efficiency
was tested with many benchmark functions and real-time applications. The grey wolf
optimizer (GWO), a recently developed meta-heuristic, was proposed by Mirjalili et.al [20].
The GWO is inspired by the hunting behavior of the grey wolves in nature, and it ensures a
better trade-off between the exploration and exploitation abilities of the algorithm. It was
applied in many engineering applications, emphasizing its efficiency [21]. The significant
characteristic of this algorithm is that it does not converge toward some local optima and
helps store the best possible solutions obtained so far by its social hierarchy nature [22].
Kharwar and Verma implemented GWO to minimize milling performances (i.e., MRR, cut-
ting force, and surface roughness) and proved the application potential in a manufacturing
environment [23]. Omkar and Shalaka optimized the wire electrical discharge machining
(WEDM) parameters with the GWO algorithm [24]. Shankar and Ankan experimented
with the efficiency of the GWO algorithm for parametric optimization of the abrasive water
jet machining (AWJM) process and found it to be successful [25].

A performance comparison of the response surface methodology (RSM), genetic algo-
rithm (GA), and GWO algorithm was conducted for prediction of the surface roughness in
ball-end milling of hardened steel, and GWO was found to be superior [26]. The grey rela-
tional analysis (GRA)-based GWO was implemented for milling experiments to determine
the machining conditions of the spindle speed, feed rate, and depth of cut for the optimum
surface roughness, cutting force, and MRR [27]. Mirjalili proposed another meta-heuristic,
the moth-flame optimization (MFO) algorithm, which was inspired by the navigation
method of moths in nature [28]. It gained attention for solving engineering optimization
problems immediately. The improved MFO algorithm was proposed by Li et al. to maintain
a balance between global and local searching [29]. A milling optimization problem was
solved to emphasize its effectiveness in solving manufacturing problems [30]. The MFO
algorithm was implemented to identify the optimal set of turning parameters to minimize
the machinability indices. Its effectiveness was compared against the genetic algorithm
(GA), grasshopper algorithm, GWO, and PSO algorithms and to be found superior to the
other algorithms [31]. The optimization of the surface roughness in deep hole drilling was
performed with the MFO algorithm [32]. The MFO algorithm was employed to optimize
the process parameters of plasma arc cutting (PAC) of Inconel 718 superalloy [33]. Based on
the literature on GWO, this algorithm is not utilized much in manufacturing optimization
problems. These reviews conclude that the recently developed intelligent techniques are
more advanced, and their scope of implementation in broader manufacturing applications
can be explored. It is also noted that the efficiency of these new evolutionary algorithms
(i.e., GWO and MFO algorithms) were not explored in the ECM process. The famous PSO
algorithm is still being used to optimize machining parameters [34,35]. Hence, PSO is
considered a benchmark algorithm to compare GWO and MFO algorithms in terms of
convergence, computational time, and the actual Pareto optimal front.

2. Objectives

To determine the optimum ECM parameters for machining Monel 400 alloys for the
maximum MRR and minimum nickel toxic emission in the electrolyte, meta-heuristics such
as GWO, MFO, and PSO algorithms were employed.
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3. Materials and Experimentation

The commercially available nickel-based alloy Monel 400 was used as a test specimen
in this investigation. The chemical composition of the Monel 400 alloys is shown in
Table 1 [36]. The machinability of Monel 400 alloy is very difficult, as it work hardens
during machining. Therefore, it is a tough task to machine these alloys using conventional
machining techniques.

Table 1. Chemical composition of Monel 400 alloys.

Monel 400 Alloys

Composition and weight (%)

C Si Mn P S Cr Mo Fe V

0.047 0.172 1.03 0.012 0.01 0.1 0.1 1.66 0.029
W Cu Al Co Nb Ti Mg Ni
0.1 29.24 0.01 0.103 0.1 0.047 0.031 67.4

The experiments were carried out on the eco-friendly electrochemical machining
(EECM) tool. The schematic diagram of the EECM tool is shown in Figure 1. EECM
comprises a power supply system, electrolyte supply system, filtering system, tool feed
mechanism, work holding and position system, control panel, frame, and housing. The
electrolyte (e.g., NaCl aqueous solution) is allowed to flow at the rate between 1 L/min
and 10 L/min through the inter-electrode gap (IEG) of 0.1–0.6 mm. The direct current
(DC) potential (11–15 V) with a current density of 20–110 A/cm2 is applied across IEG
between a cathodic copper tool and an anodic workpiece. At low current densities, the
MRR is low [37]. The higher current density of 110 A/cm2 was used to attain high current
efficiency. According to Faraday’s laws of electrolysis, the anodic dissolution rate of
workpiece depends on the electrochemical properties of the workpiece metal, the electrolyte
properties, and the power supply conditions. The tool is fed against the anodic workpiece,
which is firmly fixed on the vice. The machining conditions of IEG, voltage (V), and current
(C) are set in the control panel. The filtration system consists of layers of bio-absorbents
compartments and membrane filter. A photograph of the indigenously developed EECM
is shown in Figure 2. The tool’s diameter and electrolyte exit hole were 8 mm and 2 mm,
respectively. The operating conditions of EECM are summarized in Table 2.

Figure 1. Schematic diagram of EECM.
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Figure 2. EECM experimental set-up.

Table 2. Factors and conditions of ECM experiments.

Factors Type Condition/size

Work piece Monel 400 alloys Hardened material
Electrolyte NaCl 130–190 g/L
Tool Copper C101
Voltage DC 11, 13, 15 V
Tool feed rate Horizontal feed 0.1 mm/min
IEG 0.1 mm
Current DC 50 A
Flow rate 1–3 L/min
Machining time 5 min

Experimental Design and Measurements

The MRR is directly proportionate to the feed rate of the tool [36]. A high feed rate
leads to electrolyte boiling or choking in the tool and workpiece gap [37]. Therefore, the
tool feed rate was set to the possible minimum of 0.1 mm/min to have stable movement of
the tool through the workpiece. When the applied voltage is high, the current machining
increases to a high MRR. A low voltage results in poor machining performance [10,11].
The voltage range of 11–16 V was considered in many such investigations in ECM to
have better performance in terms of the MRR and surface finish [38,39]. Therefore, the
voltage range (10–15 V) available in the set-up was used for this investigation. When the
voltage is raised above a particular level, it increases the hydrogen gas bubble generation
at the tool electrode, resulting in high resistivity of the electrolyte and a decrease in the
current density at the workpiece [40–43]. A high concentration decreases the mobility
of ions, which results in poor anodic dissolution. The concentration levels in the range
of around 100–200 g/L influence the MRR significantly [10]. According to the literature,
the main process parameters governing the ECM are the voltage (V), flow rate, and EC.
Therefore, these parameters were considered in this investigation, and their levels are
shown in Table 3.
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Table 3. Process parameters and levels.

S.No. Process Parameters
Levels
−2 −1 0 1 2

1 Voltage (V) 11 12 13 14 15

2 Electrolyte
concentration (g/L) 130 145 160 175 190

3 Flow rate (L/min) 1.0 1.5 2.0 2.5 3.0

The IEG was set to 0.1 mm, and a current of 50 A was set in the DC rectifier. The
machining was performed for 5 min. The central composite design (CCD) of the response
surface methodology (RSM) was adopted with the help of Minitab-17 software for the
process parameters, and its levels are shown in Table 3. In this work, 20 experimental tests
were carried out with different parameter combinations as shown in Figure 3. According
to the concept of CCD, the center point combination was repeated 5 more times during
experimentation to reduce the pure error.

Figure 3. Central composite design for the experimentation.

A HCl concentration of 1% was added to the NaCl electrolyte to minimize the sludge
formation in the IEG. The electrolyte was pneumatically pumped from a stainless steel
reservoir. A 191E water analysis kit (Environmental & Scientific Instruments Co, Haryana,
India.) was used to observe the electrolyte’s pH, conductance, and temperature.

The sludge discharged from ECM was tested with atomic absorption spectroscopy
(Agilent Technologies, Bangalore, India), which is shown in Figure 4. The results show
the nickel content of 250 mg/L in the sludge. The precipitate of the electrolyte was tested
via energy dispersive X-ray spectroscopy (EDAX, JEOL-JSM-6390, Chennai, India) and
confirmed the presence of nickel. Figure 5 represents the EDAX results of the electrolyte
sludge. The peaks in the figure confirm the presence of more nickel, chloride, and sodium
particles. Therefore, in this invetigation, the experimental results for MRR and Nickel
Presence (NP) were observed and tabulated in Table 4.

 
Figure 4. Atomic absorption spectroscopy.
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Figure 5. EDAX spectrum for nickel in precipitate.

Table 4. Experimental design and performance results.

Exp.No. EC (g/L) V (V) FR (L/min)
Experimental Value Calculated Values

MRR (g/min) NP (PPM) MRR (g/min) NP (PPM)

1 190 13 2.0 0.225 65.08 0.20327 64.44446
2 160 13 2.0 0.219 57.26 0.20438 56.57423
3 145 12 2.5 0.204 58.06 0.19676 56.35493
4 175 14 2.5 0.215 67.45 0.22844 68.97187
5 160 13 2.0 0.208 55.05 0.20438 56.57423
6 130 13 2.0 0.129 50.65 0.15130 51.46866
7 160 13 1.0 0.062 55.48 0.07344 55.19648
8 160 13 2.0 0.216 56.45 0.20438 56.57423
9 175 12 1.5 0.157 58.63 0.16119 58.03033

10 160 11 2.0 0.142 57.29 0.14094 59.88398
11 160 13 2.0 0.171 56.45 0.20438 56.57423
12 160 13 3.0 0.216 66.75 0.20555 67.22471
13 145 12 1.5 0.114 55.24 0.09985 53.53437
14 145 14 2.5 0.243 60.08 0.23782 60.49203
15 160 13 2.0 0.209 55.40 0.20438 56.57423
16 175 14 1.5 0.187 58.24 0.19324 59.76420
17 160 15 2.0 0.212 68.16 0.21405 65.75495
18 145 14 1.5 0.132 54.03 0.11226 55.20372
19 160 13 2.0 0.203 58.65 0.20438 56.57423
20 175 12 2.5 0.149 66.13 0.16774 64.77025

4. Optimization Techniques and Procedures

The following details describe the development of mathematical models representing
EECM characteristics for the MRR and the amount of nickel present, as well as the GWO
and MFO techniques for optimizing the process parameters.

4.1. Mathematical Modeling of Experimentation

To study the effect of the EECM process parameters on the MRR and the discharge
of nickel elements into the electrolyte, a regression model was developed to calculate the
response value (as the output) in terms of different parameters (as the input). In this work,
the quadratic form of the regression equation, shown in Equation (1), was established using
the experimental data. The regression coefficients obtained for both the MRR and NP are
shown in Table 5:

CVij = aj + bj ∗ X1i + cj ∗ X2i + dj ∗ X3i + ej ∗ X1i ∗ X2i + f j ∗ X1i ∗ X3i + gj
∗X1i ∗ X3i + hj ∗ X1i

2 + ij ∗ X2i
2 + jj ∗ X3i

2 (1)
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where CVij is the predicted value of the ith trial for the jth response, a, b, . . . , j are the
coefficients of the variables, and X1, X2, and X3 are independent variables.

Table 5. Regression coefficients for MRR and NP models.

Response a b c d e f g h i j

MRR −2.381 0.0123 0.112 0.621 0.0003 −0.003 0.0143 0.00003 −0.007 −0.065
NP 389 −0.551 −41.8 −49.5 0.0011 0.131 1.23 0.00154 1.561 4.64

The regression models for the given objectives can be formulated as in Equations (2) and (3):

MRR = −2.381 +0.0123 ∗ EC + 0.112 ∗ V + 0.621 ∗ FR + 0.0003 ∗ EC ∗ V
−0.003 ∗ EC ∗ FR + 0.0143 ∗ V ∗ FR − 0.00003 ∗ EC2

−0.007 ∗ V2 − 0.065 ∗ FR2
(2)

NP = 389 − 0.551 ∗ EC − 41.8 ∗ V − 49.5 ∗ FR + 0.0011 ∗ EC ∗ V + 0.131
∗EC ∗ FR + 1.23 ∗ V ∗ FR + 0.00154 ∗ EC2 + 1.561 ∗ V2

+4.64 ∗ FR2
(3)

4.2. TOPSIS Method for Multi-Objective Optimization

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a
method used for converting multiple objectives into a single objective, which is conse-
quently applied in optimization techniques for decision making [44,45]. TOPSIS is based
on choosing the alternative with the shortest geometric distance from the positive ideal
solution and the longest geometric distance from the negative ideal solution. By imple-
menting the TOPSIS method, multiple objectives are converted into a single objective value.
Algorithm 1 shows the the pseudo-code for TOPSIS method.

Algorithm 1 Pseudo-code for TOPSIS.

1: Read alternate and objectives matrix—Oij with weights (Wj) and types of objectives (otj)
2: For each alternative (i = 1, 2, 3, . . . , m) and objective (j = 1, 2, 3, . . . , n)
3: Compute Normalized value of Oij using Nij =

Oij√
∑m

i=1 O2
ij

4: Calculate Performance matrix (Aij) using Aij = Nij ∗ Wj
5: End
6: For each objective (j = 1, 2, 3, . . . , n)
7: Determine positive ideal (Pj) and negative ideal solution (Mj)

8: For minimization objective—Pj = min
1<i<m

(
Aij

)
and Mj = max

1<i<m

(
Aij

)
9: For maximization objective—Pj = max

1<i<m

(
Aij

)
and Mj = min

1<i<m

(
Aij

)
10: End
11: For each alternative (i = 1, 2, 3, . . . , m)
12: Calculated Ideal (SPi) and negative ideal separation (SMi)

SPi =

√
∑n

j=1

(
Aij − Pj

)2
SMi =

√
∑n

j=1

(
Aij − Mj

)2

13: Determine relative closeness (Ri )
14: End
15: Rank alternatives w.r.t. Ri in descending order

4.3. Grey Wolf Optimizer

The grey wolf optimizer (GWO) was inspired by the hunting behavior of grey wolves
in nature. Grey wolves usually live in a pack of 5–12 members with their dominant social
hierarchy [20]. The alpha (α) wolf, the pack leader, makes decisions about hunting. The beta
(β) wolf helps the alpha wolf in making decisions. The omega (ω) wolves, the lowest in
ranking, are responsible for submitting information to all the wolves. Others, called delta (δ)
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wolves, should respect alpha and beta wolves and dominate the omega wolves. The three
steps in the hunting process of grey wolves are (1) tracking the prey, (2) encircling the prey,
and (3) attacking the prey. GWO is simulated with the mathematical representation of the
hunting process of the grey wolves to solve complex engineering problems. The optimal
solution to the problem is considered the prey. To mathematically model the hunting
process of these grey wolves when designing GWO, the alpha (α) wolf is considered the
fittest solution. Consequently, the second- and third-best solutions are represented by beta
(β) and delta (δ) wolves, respectively. The remaining candidate solutions are considered to
be omega (ω) wolves.

The first step in the hunting process is encircling the prey. The mathematical for-
mulation to mimic the encircling process for the prey and wolf are represented in the
Equations (4) and (5):

→
D =

∣∣∣∣→C ∗ →
Xp (t)−→

X (t)
∣∣∣∣ (4)

→
X (t + 1) =

→
Xp (t)−

→
A ∗ →

D (5)

where
→
D is a distance vector between the position of the prey and grey wolf.

→
C and

→
A are

coefficient vectors, t is the current iteration, and
→
Xp and

→
X are the positions of prey and

a randomly chosen grey wolf, respectively [20]. The coefficients
→
C and

→
A are determined

using the following formulas:
→
A = 2

→
a ∗→r1 −→

a (6)
→
C = 2 ∗ →

r2 (7)

where
→
a is a decrease from 2 to 0 linearly over the course of iterations and

→
r1 and

→
r2 are

random vectors (0, 1).

A grey wolf is in the position of
→
X, updating its position

→
X (t + 1) according to the

position of the prey
→
Xp. The position can be updated with respect to the current position

by adjusting the values of the
→
A and

→
C vectors. This process enables the GWO to search

the n-dimensional solution space of the given problem efficiently. The alpha (α), beta
(β), and delta (δ) wolves guide the hunting process, and their positions are represented
mathematically as in Equations (8)–(14), while the other wolves (ω) update their positions
randomly:

→
Dα =

∣∣∣∣→C1 ∗
→

Xα −→
X
∣∣∣∣ (8)

→
Dβ =

∣∣∣∣→C1 ∗
→

Xβ −→
X
∣∣∣∣ (9)

→
Dδ =

∣∣∣∣→C1 ∗
→
Xδ −

→
X
∣∣∣∣ (10)

→
X1 =

→
Xα −

→
A1 ∗

→
Dα (11)

→
X2 =

→
Xβ −

→
A2 ∗

→
Dβ (12)

→
X3 =

→
Xδ −

→
A3 ∗

→
Dδ (13)

→
X (t + 1) =

→
X1 +

→
X2 +

→
X3

3
(14)

As the value of � decreases, the search radius of the grey wolves reduces, and they get
closer to the prey and attack over the last iterations of the GWO. This ensures the proper
trade-off between exploration and exploitation by focusing on exploration initially and
exploitation in the last iterations.
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4.4. Moth-Flame Optimization Algorithm (MFO)

The moth-flame optimization (MFO) algorithm takes inspiration from the navigational
mechanism (i.e., transverse orientation) of moths during night flights. The moth flies by
maintaining a fixed angle relative to the moon. Since the moon is so far away from the
moth, this mechanism assures the linear flight of moths. Although a lateral orientation is
practical, moths are often trapped to repeatedly circle many close artificial or natural point
light sources until they are exhausted. This behavior of moths is shown in Figure 6.

Figure 6. Spiral flight path of moths near artificial or natural point light sources [20].

Mathematical Formulation of the MFO Algorithm

According to the MFO algorithm, the moth is considered the candidate solution to the
problem. The variables are represented by the positions of the moths in the solution space.
Moths can fly in the solution space by changing the position vectors. Since this algorithm
is a swarm-based intelligence optimization algorithm, the position vectors of the moth
population can be represented in the following matrix (Equation (15)):

M =

⎡
⎢⎣

m1,1 · · · m1,d
...

. . .
...

mn,1 · · · mn,d

⎤
⎥⎦ (15)

where n is the number of moths and d represents the number of dimension variables to be
solved. The following array represents the list of fitness value vectors corresponding to
all moths:

OM =

∣∣∣∣∣∣∣
OM1

...
OMn

∣∣∣∣∣∣∣ (16)

Each moth updates its position with the corresponding unique flame to avoid the algo-
rithm being trapped in the optimal local value, which significantly supports the algorithm’s
exploration ability. Hence, the flame positions in the solution space corresponding to its
moths are represented in the following array (Equation (6)):

F =

⎡
⎢⎣

f1,1 · · · f1,d
...

. . .
...

fn,1 · · · fn,d

⎤
⎥⎦ (17)
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For these flames, the corresponding column of the fitness value vectors is represented
as follows:

OF =

∣∣∣∣∣∣∣
OF1

...
OFn

∣∣∣∣∣∣∣ (18)

The position update strategies for both the moth and flame matrices are different
during the iteration process. The moths are the solution points that move within the
solution space, and the flames are the best solution points obtained by moths iteratively so
far. The best solutions of the moths are updated to the positions of the flames in the next
iteration. With this approach, the MFO algorithm can find the optimal global solution. The
position update behavior of each moth relative to a flame is expressed mathematically by
the following equation:

Mi = S
(

Mi, Fj
)

(19)

where Mi is the ith moth, Fj is the jth flame, and S is the spiral function.
The spiral function’s initial point should start from the position of the moth, and the

endpoint should be at the position of the flame. The range fluctuation of the spiral function
should not exceed the boundaries of the search space. According to the above conditions,
the logarithmic spiral function of the moth’s flight path is defined as in Equation (20):

S
(

Mi, Fj
)
= Di ∗ ebt ∗ cos(2πt) + Fj (20)

where Di is the linear distance of the ith moth for the jth flame and b is an index of the
shape of the logarithmic spiral. The magnitude of t is represented by Equation (21), where
a is represented by Equation (22):

t = (a − 1) ∗ rand + 1 (21)

The path coefficient t ∈ [r, 1] represents the distance between the moth and the flame’s
position in the next optimization iteration. The variable r decreases linearly from −1 to
−2 as the number of iterations in the optimization iteration increases. The coefficient from
t = −1 to −2 represents that the moths’ position is close to the flame, and t = 1 shows that
the moths are farther from the flame:

a = −1 + Iteration ∗
(
− 1

Tmax

)
(22)

Di is expressed as follows:
Di =

∣∣Fj − Mi
∣∣ (23)

The above equations ensure the algorithm’s balanced global and local search capabili-
ties. When the value of t is smaller, the moth converges to the flame. As the moth gets closer
to the flame, its position around the flame is updated more quickly. After each iteration,
the flames are updated based on fitness values. In the next iteration, the moth updates its
position according to the updated sequence of the flame. The first moth updates its position
with the flame’s best fitness value, and the last moth updates its position with the worst
fitness value in the list. Hence, the flame position matrix F contains the optimal solutions
of the current iteration. The number of flames can be reduced adaptively in the iterative
process to balance the algorithm’s global search and local search capability in the solution
space as follows:

f lameno = round
(

N − l ∗ N − 1
T

)
(24)

where l is the current iteration number, N is the initial maximum number of flames, and T
represents the maximum number of iterations.
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5. ANOVA and Parametric Influence on Performances

Analysis of variance (ANOVA) on the process parameters and the effects of the main
process parameters on the performance measures was performed. This and Fisher’s test
(F-ratio) were performed to justify the adequacy of the developed regression models as in
Equations (2) and (3). Values of “Prob > F” less than 0.05 indicate the model’s significance
and terms. Values greater than 0.1 indicate that the model terms are insignificant.

The model F-values in Table 6 indicate that the developed models were very significant.
The two-way interaction terms such as EC*V, EC*EC, and V*FR for the MRR and NP models
were insignificant when the values of “Prob > F” were greater than 0.05. The terms V*V and
EC*FR for the MRR and NP models, respectively, were not significant, but the coefficient
of determination values for both models were good, as shown in Table 7. The normal
probability curves in Figure 7 confirm the adequacy of the model equations. The high
coefficient of determination values (R2 = 90.34% for the MRR and R2 = 92.29% for the NP)
for both responses confirm its adequacy for optimization study.

Table 6. Analysis of variance for quadratic models of MRR and NP.

Source
DF Adj SS Adj MS F-Value p-Value

MRR NP MRR NP MRR NP MRR NP MRR NP

Model 9 9 0.037278 437.944 0.004142 48.660 10.39 13.29 0.001 0.000
Linear 3 3 0.025497 347.518 0.008499 115.839 21.32 31.64 0.000 0.000
EC 1 1 0.002700 168.372 0.002700 168.372 6.77 45.99 0.026 0.000
V 1 1 0.005345 34.468 0.005345 34.468 13.41 9.42 0.004 0.012
FR 1 1 0.017452 144.678 0.017452 144.678 43.78 39.52 0.000 0.000
Square 3 3 0.007095 79.698 0.002365 26.566 5.93 7.26 0.014 0.007
EC*EC 1 1 0.001154 3.003 0.001154 3.003 2.89 0.82 0.120 0.386
V*V 1 1 0.001136 61.290 0.001136 61.290 2.85 16.74 0.122 0.002
FR*FR 1 1 0.006615 33.779 0.006615 33.779 16.59 9.23 0.002 0.013
2-Way Interaction 3 3 0.004685 10.728 0.001562 3.576 3.92 0.98 0.044 0.442
EC*V 1 1 0.000193 0.002 0.000193 0.002 0.48 0.00 0.502 0.981
EC*FR 1 1 0.004082 7.681 0.004082 7.681 10.24 2.10 0.009 0.178
V*FR 1 1 0.000410 3.045 0.000410 3.045 1.03 0.83 0.334 0.383
Error 10 10 0.003987 36.607 0.000399 3.661
Lack of Fit 5 5 0.002498 28.127 0.000500 5.625 1.68 3.32 0.292 0.107
Pure Error 5 5 0.001489 8.480 0.000298 1.696
Total 19 19 0.041264 474.551

Figure 7. Normal probability plots for MRR and NP.
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Table 7. Model summary.

Model S R-sq R-sq (adj) R-sq (pred)

MRR 0.01997 90.34% 81.64% 44.22%

NP 1.91331 92.29% 85.34% 47.85%

Parametric Influence on the Performance Measures

Figure 8 depicts the surface plots of the MRR and NP responses for electrochemical
machining of Monel 400 alloys. In each surface plot, one parameter was kept constant,
and other parameters were varied with defined levels. The surface plots show that the
machining parameters V, FR, and EC influenced the material removal and the discharge of
nickel elements in the sludge significantly. It can be observed that the change in electrolyte
concentration from 150 g/L to 190 g/L gradually increased the sludge removal. A higher
concentration helped increase the speed of the electrochemical reactions and resulted in
more removal (Zhang, 2010; Ayyappan and Sivakumar, 2015). A lower concentration led
to a lower ion content, which reduced the rate of the electrochemical reaction (Trimmer,
Hudson, Kock, and Schuster, 2003). A flow rate above 1.5 L/min removed the sludge from
the gap between the tool and the workpiece better and exposed the specimen’s new surface
for different electrochemical reactions (Ayyappan and Sivakumar, 2014). High flow rates
increased the nickel ions in the electrolyte discharge and the MRR (Bhattacharyya and
Sorkhel, 1999).

Figure 9 represents the main effect plots of the MRR and NP responses using MiniTab17
software. It was noticed that the electrolyte flow rate and electrolyte concentration were
the influencing factors for the MRR and NP, respectively. Variations in the voltage also
produced significant results in the responses.

Figure 10 shows the interaction plots of the ECM parameters for different process
attributes. As shown, the interaction terms such as EC*V and V*FR had a lean influence on
the responses. The MRR and NP models were insignificant when the “Prob > F” values
were more significant than 0.05. The term EC*FR influenced the NP at a high flow rate
of 3 L/min.

Figure 8. Cont.
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Response values  Very Low   Low   Moderate Low  Moderate High   High   Very High 

Figure 8. Surface plot of responses for various combinations of parameters.

  
(a) Main effect plot for MRR (b) Main effect plot for NP 

Figure 9. Main effects plots of MRR and NP.
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Figure 10. Interaction plots for MRR and NP.

6. Multi-Objective Optimization of ECM Process Parameters

6.1. RSM Optimization Tool

Since the RSM as a DOE strategy was employed in this work, the optimum process
parameters were obtained with its built-in optimization tool. The RSM optimization tool
used the steepest ascent (SA) method combined with the desirability function (DF) for
finding the optimum parameters. The variables and response constraints were set as shown
in Table 8.

Table 8. Limits of process and performance parameters.

Response Goal Lower Target Upper Weight Importance

NP Minimum 50.6452 68.1613 1 1
MRR Maximum 0.062 0.2429 1 1

The optimization results are shown in Table 9, and the optimization plot is shown
in Figure 11.

Table 9. Multiple response prediction results using RSM.

Solution EC V FR NP Fit MRR Fit Composite Desirability

1 130 12.8586 2.57576 53.9394 0.217350 0.835117

 

Figure 11. Response optimization plot.
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6.2. Applications of Meta-Heuristics for Optimization of the Process Parameters

To apply the various meta-heuristic algorithms such as MFO, GWO, and PSO in this
work, the TOPSIS method was adopted to convert the multiple objectives into a single
objective. A performance comparison of these algorithms was carried out. The Algorithms
2–4 show the pseudo-codes of the MFO, GWO, and PSO respectively.

Algorithm 2 Grey Wolf Optimization Algorithm

1: Initialize no. of grey wolf (Xij—i =1,2,..nw and j = 1,2,..nd)
2: While (it < nitr)
3: Determine the fitness function Fik
4: Calculate Pareto optimal distance fi
5: Sort fi in descending order and set as sfi
6: Store the first wolf’s data as Xit. and Fit.
7: Using the sorted data, assign Xa. = X1, Xb. = X2. and Xd. = X3.
8: Compute a = 2-it*(2/nitr)
9: For each wolf, Update the position using A1 = 2*a*rand()-a
10: C1 = 2*rand()
11: Da. = abs(C1*Xa.-X i.)
12: X1. = Xa.-A1*Da.
13: A2 = 2*a*rand()-a
14: C2 = 2*rand()
15: Db. = abs(C1*Xb.-Xi.)
16: X2. = Xb.-A2*Db.
17: A3 = 2*a*rand()-a
18: C3 = 2*rand()
19: Dd. = abs(C1*Xd.-X i.)
20: X3. = Xd.-A3*Dd.
21: X i. = (X1. + X2. + X3.)/3
22: Check Xi. within bounds
23: End
24: End
25: Using TOPSIS method convert Fit. into fi
27: Sort fi in descending order and display the first wolf’s data (optimum data)
28: Print the best solution

Algorithm 3 Moth-Flame Optimization Algorithm

1: Initialize the parameters for Moth-flame
2: Initialize Moth position Mi randomly
3: For each i = 1:n Calculate the fitness valute fi
4: End
5: While (i ≤ imax)
6: Update the position of Mi
7: Calculate the no. of flames
8: Compute the fitness value fi
9: If (i = 1) then F = sort (M) OF = sort (OM)
10: Else F = sort (Mt-1, Mt) OF = sort (Mt-1, Mt)
11: End
12: For each i = 1:n
13: For each j = 1:d Update the values of r and t
14: Calculate the value of D w.r.t. corresponding Moth
15: Update M(i,j) w.r.t. corresponding Moth
16: End
17: End
18: End
19: Print the best solution
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Algorithm 4 Particle Swarm Optimization Algorithm

1: Initialize Particle Position P
2: For i = 1 to itrmax
3: For each particle p in P
4: Evaluate fp = f(p)
5: If fp is better than f(pB); pB= p;
6: End
7: End
8: gB= best p in P
9: For each particle p in P
10: Compute v = v + c1*rand()*(pB– p) + c2 *rand()*(gB-p)
11: Update p = p + v
12: End
13: End
14: Print the best solution

The terms in GWO and their equivalent meanings in the optimization problem are
listed in Table 10.

Table 10. Terms in GWO and optimization problems.

Optimization Problem Grey Wolf Optimization (GWO) Algorithm

Number of solutions Number of grey wolves (i = 1, 2, . . . nw)
Combination of parameters within
their bounds Position of grey wolf (Xij)

Number of parameters, factors, and
independent variables

Number of dimensions involved in defining
the position of a wolf (j = 1, 2, . . . nd)

Value of best parameters Position of prey (Xbest)
Response value, output, and
dependant variable Fitness of grey wolf (Fik)

First best three solution’s parameters Position of alpha, beta, and delta grey wolves
(Xa., Xb., and Xd.)

First best three solution’s fitness values Fitness of alpha, beta, and delta grey wolves
(Fa., Fb., and Fd.)

Except for best first three solutions Omega grey wolf

Similarly, the equivalent terms for the MFO and PSO algorithms for an optimization
problem are shown in Table 11. The algorithm parameters are shown in Table 12.

Table 11. Terms in MFO and PSO optimization problems.

Optimization Problem
Moth Flame Optimization
(MFO) Algorithm

Particle Swarm Optimization
(GWO) Algorithm

Number of solutions Number of moths (i = 1, 2, . . . nm) Number of particles (i = 1, 2, . . . np)
Combination of parameters within
their bounds Position of moth (Mij) Position of particle (Pij)

Number of parameters, factors,
andindependent variables

Number of dimensions involved in
defining the position of moth
(j = 1, 2, . . . nd)

Number of dimensions involved in
defining the position of particle
(j = 1, 2, . . . nd)

Number of better solutions Number of flames (i1 = 1, 2, . . . nf ) Fitness of particle (fi)
Combination of parameters within
their bounds Position of flames (Fi1j)

Response value, output, and
dependant variable Fitness of moth (fi) Global best (gB)
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Table 12. Algorithm parameters for GWO, MFO, and PSO algorithms.

GWO Algorithm MFO Algorithm PSO Algorithm

Parameter Value Parameter Value Parameter Value

Maximum number of
grey wolves 100 Maximum number of

moths 100 Maximum number of
particles 100

Constant a 2 to 0 Position of moth close
to the flame (t) From −1 to −2 Learning factors (C1

and C2) 2 and 2

Coefficient vectors A −2a to 2a Update mechanism Logarithmic spiral Inertia weight (ω) From 0.4 to 0.9

Coefficient vectors C 2*rand(0,1) Adaptive number
of flames

round((mf-(itr*(mf-
1)/max_itr))) Number of particles 30

No. of iterations (nitr) 100 No. of iterations (nitr) 100 No. of iterations (nitr) 100

The steps in implementing the GWO algorithm in this experimentation are shown
in Figure 12. The flowchart for implementing the MFO algorithm in the present work is
shown in Figure 13.

 

Figure 12. Implementation of GWO algorithm.
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Figure 13. Implementation of MFO algorithm.

The PSO implementation is shown in Figure 14. The efficiency of these algorithms
is compared in the convergence plot of Figure 15. In maximization of the MRR, the MFO
convergence plot was attained after the 60th iteration, while GWO and PSO performed
better. In minimization of the NP, PSO converged well before MFO and GWO.

The optimum process parameters obtained by different meta-heuristics and the RSM
are tabulated in Table 13. The convergence plot of the Pareto optimal solutions is shown
in Figure 16, and the Pareto optimal set of process parameters out of 12 runs is presented
in Table 14.

Table 13. Optimum process parameters and the response values.

Algorithms EC V FR MRR NP

RSM 130.000 12.8586 2.5758 0.217 53.9400
PSO 130.401 12.7735 2.0378 0.156 51.3507
GWO 132.014 13.2406 2.8455 0.242 57.7202
MFO 132.014 13.2406 2.8455 0.242 57.7202
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Figure 14. Implementation of PSO algorithm.

Figure 15. Comparison of convergence plots for various algorithms for MRR and NP.

Figure 16. Pareto optimal solutions for various algorithms.
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Table 14. The Pareto optimal solutions and their responses for various algorithms.

R.No.
GWO MFO PSO

EC V FR MRR NP EC V FR MRR NP EC V FR MRR NP

1 134.440 13.850 2.835 0.251 60.739 134.440 13.850 2.835 0.251 60.739 131.070 12.188 1.946 0.135 51.413
2 135.769 13.942 2.815 0.251 61.324 135.769 13.942 2.815 0.251 61.324 130.401 12.774 2.038 0.156 51.351
3 130.034 12.754 2.265 0.185 52.015 130.034 12.754 2.265 0.185 52.015 130.033 12.709 1.794 0.114 51.026
4 130.444 12.755 2.043 0.156 51.355 130.444 12.755 2.043 0.156 51.355 130.717 12.427 1.931 0.136 51.168
5 132.014 13.241 2.846 0.242 57.720 132.014 13.241 2.846 0.242 57.720 130.047 12.363 1.904 0.129 51.110
6 131.611 13.909 2.947 0.256 61.669 131.611 13.909 2.947 0.256 61.669 130.310 12.588 1.867 0.126 51.046
7 135.416 13.038 2.469 0.217 54.597 135.416 13.038 2.469 0.217 54.597 130.630 12.623 1.891 0.132 51.097
8 131.808 13.122 2.628 0.227 55.281 131.808 13.122 2.628 0.227 55.281 130.508 12.809 1.880 0.132 51.150
9 133.968 13.719 2.996 0.255 61.918 133.968 13.719 2.996 0.255 61.918 130.923 12.609 1.829 0.122 51.101
10 132.374 12.824 2.548 0.217 54.160 132.374 12.824 2.548 0.217 54.160 130.167 12.553 1.630 0.082 51.215
11 130.319 13.339 2.460 0.214 54.328 130.319 13.339 2.460 0.214 54.328 130.598 12.673 1.892 0.132 51.104
12 132.275 12.697 2.634 0.220 54.608 132.275 12.697 2.634 0.220 54.608 130.580 12.182 1.883 0.124 51.339

Both the MFO and GWO algorithms produced the better trade-off performances
with the same solutions of EC = 132.014 g/L, V = 13. 2406 V, and FR = 2.8455 L/min for
MRR = 0.242 g/min and NP = 57.7202 PPM.

7. Conclusions

In the present study, ECM operations were carried out on Monel 400 alloys by vary-
ing the applied voltage (11–15 V), flow rate (1–3 L/min), and electrolyte concentration
(130–190 g/L). The meta-heuristic algorithms (i.e., moth-flame optimization (MFO) algo-
rithm, grey wolf optimizer (GWO), and particle swarm optimization (PSO)) were imple-
mented to find out the optimum process parameters for producing the best performance
measures for the material removal rate (MRR) and nickel presence (NP) in the sludge.
The regression model equations were developed to determine the optimum parametric
combination. The high coefficient of determination values (R2 = 90.34% for MRR and
R2 = 92.29% for NP) for both responses confirmed their adequacy. The algorithms were
tuned to obtain the best possible feasible solution. This study proved that the MFO and
GWO algorithms could be successfully utilized to find the best process parameter setting
for the ECM process for Monel 400 alloys. The TOPSIS algorithm was implemented to
convert multiple objectives into a single objective used in meta-heuristic algorithms. It was
observed from the surface, main, and interaction plots of this ECM experimentation that all
the process variables significantly affected the performances. The PSO algorithm converged
very quickly in 10 iterations, while GWO and MFO took 14 and 64 iterations, respectively,
for convergence of the MRR. In the case of the NP model, the PSO tool took only six itera-
tions to converge, whereas MFO and GWO took 48 and 88 iterations, respectively. However,
both MFO and GWO obtained the better trade-off performances with the same solutions
of EC = 132.014 g/L, V = 13. 2406 V, and FR = 2.8455 L/min for MRR = 0.242 g/min and
NP = 57.7202 PPM. The Pareto optimal set of solutions provided by the GWO, MFO, and
PSO algorithms for the ECM process was beneficial to the industries, as it contained a
wide range of optimal values. A particular solution from the Pareto optimal set can be
chosen according to the specific needs of the objectives. Hence, it was confirmed that the
metaheuristic algorithms of MFO and GWO were suitable for finding the optimum process
parameters for machining Monel 400 alloys with ECM. Future studies may be explored by
combining the artificial neural network (ANN) and fuzzy logic (FL) concepts with MFO
and GWO to determine the optimum ECM process parameters.
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Abstract: In this research work, the machinability of turning Hastelloy X with a PVD Ti-Al-N coated
insert tool in dry, wet, and cryogenic machining environments is investigated. The machinability
indices namely cutting force (CF), surface roughness (SR), and cutting temperature (CT) are studied
for the different set of input process parameters such as cutting speed, feed rate, and machining
environment, through the experiments conducted as per L27 orthogonal array. Minitab 17 is used
to create quadratic Multiple Linear Regression Models (MLRM) based on the association between
turning parameters and machineability indices. The Moth-Flame Optimization (MFO) algorithm is
proposed in this work to identify the optimal set of turning parameters through the MLRM models,
in view of minimizing the machinability indices. Three case studies by considering individual
machinability indices, a combination of dual indices, and a combination of all three indices, are
performed. The suggested MFO algorithm’s effectiveness is evaluated in comparison to the findings
of Genetic, Grass-Hooper, Grey-Wolf, and Particle Swarm Optimization algorithms. From the
results, it is identified that the MFO algorithm outperformed the others. In addition, a confirmation
experiment is conducted to verify the results of the MFO algorithm’s optimal combination of turning
parameters.

Keywords: Hastelloy X; turning; cutting force; surface roughness; liquid nitrogen; grass-hooper
optimization algorithm; moth-flame optimization algorithm

1. Introduction

Nickel-based (Ni) alloys attract more researchers nowadays for their broader applica-
tions in the fields like aerospace, automobile, biomedical, and allied industries. Hastelloy
is one of the Ni-based alloys, and it holds few unique characteristics like good strength-to-
weight ratio, resistance to corrosion, higher melting temperature, good toughness, etc. [1].
Mainly, Hastelloy X is used to fabricate the combustion chamber of an aircraft engine
because of its high heat-resisting property. However, the holding of all the above-said
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properties by Hastelloy X, resulting in very poor machinability. In this sense, the man-
ufacturing industries face a difficult task in improving Hastelloy X machinability using
traditional machining methods. [2]. Furthermore, the reduction of cutting forces (CF),
surface roughness (SR), and cutting temperature (CT) during Hastelloy X machining adds
to the difficulty of achieving good machinability. As a result, several researchers have
worked on various research projects over time to increase the machinability of Hastelloy.
Furthermore, they performed these tests under dry, wet, and cryogenic cooling condi-
tions in order to demonstrate an increase in machinability. Therefore, these literatures are
critically reviewed, and the extracted information is given here for ready reference to the
readers.

Kadirgama et al. [3] studied the impact on cutting force by the parameters, namely
axial depth, cutting speed, and feed rate while milling Hastelloy C-22HS. The models using
Response Surface Methodology were developed using experimentation and Finite Element
Analysis to predict the optimized cutting force. Kadirgama et al. [4] investigated the tool
behavior such as tool wear and tool life during machining of Hastelloy C-22HS under wet
conditions. PVD and CVD multilayer coated carbide tools were used for machining. The
tool life was decreased in all the cases while increasing the cutting parameters, namely
cutting speed (vc), feed rate (f ), and axial depth (ap). Altin [2] studied the machinability of
Ni-based (Hastelloy X) alloy under dry cutting conditions. The CF and SR were analyzed
against the multilayer coated insert and various vc. The experimentation results showed
that the abrasiveness of the carbide particles on the tool and the mechanical loading
had a growing influence on the CF. Sofuoğlu et al. [5] studied the impact of the vc, tool
extended length, and novel methods, namely Conventional Turning (CT), Ultrasonic
Assisted Turning (UAT) and Hot-Ultrasonic Assisted Turning (HUAT) on the SR, ap, and
CT while machining Hastelloy X. The reduction in SR and increment in regular ap and
CT were attained in UAT and HUAT compared to CT. Dhananchezian [6] conducted the
machinability study on Hastelloy C-276 under dry and cryogenic liquid nitrogen (LN2)
cooling conditions using turning operation. The output responses such as CT, CF, SR, chip
morphology, and tool wear under dry turning were compared with LN2 cooling-based
turning. A considerable reduction in all the output responses was noted under liquid
nitrogen cooling-based turning.

Kesavan et al. [7] conducted the CNC turning of Hastelloy C276 by varying vc and
the fixed values of f, ap. The experimentation was executed under dry and LN2 conditions.
Further, Deform 3D analytical tool was used to create the simulation model based on the
experimental design to identify the optimal cutting conditions. From the experimentation
and simulated model results, it was evident that the cutting temperate and machining forces
have been significantly reduced while machining under cryogenic cooling conditions rather
than dry conditions. Dhananchezian and Rajkumar [8] examined the SR and Tool Wear
characteristics of Nimonic 90 alloy and Hastelloy C-276 dry turning. During the turning
process, various cutting inserts were used. In both cases, the roughness and tool wear
metrics were observed to be larger as the turning length was increased. Dhananchezian
and Rajkumar [8] made a comparative analysis on the tool wear rate and SR during the
turning of Hastelloy C-22 underneath dry and LN2 cooling conditions. A substantial drop
in the SR was found in the turning of Hastelloy under LN2 cooling rather than dry turning.

Oschelski et al. [9] used the Box-Behnken method to design the experiments by
considering the ranges of parameters, namely vc, ap, lubricating conditions, constant f,
and (wet, dry, and reduced quantity lubrication) for finish turning the Hastelloy X. The
experimental results showed that the vc, ap, and interactions were the most significant
factors affecting the SR. Next, Venkatesan et al. [10] reported the machinability study
on Hastelloy X with PVD and CVD coated tools in comparison with dry and Minimum
Quantity Lubrication (MQL) conditions. A mixture of coconut oil with Hexagonal Boron
Nitride (HBN) nanoparticles was used as nanofluid for lubrication. Significant reductions
in CF, SR, and tool wear were observed in MQL-PVD combination than MQL-CVD and
dry-PVD. Finally, Sivalingam et al. [11] investigated the influence of whisker-reinforced
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ceramic tools on tool wear, SR, and tool chattering under dry and Atomization-based
Cutting Fluid (ACF) cooling conditions when turning Inconel 718 material. Investigation
results stated that the flank wear and SR of the tool were significantly reduced under ACF
cooling conditions due to limited notching and fracture of the tool edge at the tool-chip
interface.

Zhao et al. [12] investigated the characteristics of chip formation when machining
NiTi shape memory alloys under different vc with constant f, ap. The shape of the chip and
microstructure were examined to expose the chip flow behavior. The martensitic phase
transformation seemed to have a noticeable effect on the material flow behavior and indeed
on the chip formation. [11] investigated the possibility of improving the machinability of
Inconel 718 alloy under a dry and atomized spray cutting fluid system. The turning of
Inconel 718 alloy with ceramic inserts was carried out by varying the cutting parameters.
The output responses such as tool wear, power consumption, surface topography, machine
vibrations, chip morphology, and machining cost were analyzed against the experimental
design of input parameters. It was observed that the atomized spray cutting fluid technique
yielded better results than dry machining.

The effect of LN2 cooling in improving the machinability of Hastelloy X is discussed
in the following literature. Chetan et al. [13] investigated the turning of Nimonic 90 alloy
using uncoated tungsten carbide inserts under the modes like dry, MQL, and cryogenic
cutting. At lower vc, the cutting performance of the cryogenically treated tool was good
than the untreated tool. But, the performance of the tool under MQL and LN2 was
good in terms of minimum tool wear at a higher cutting speed. Further, a good SR was
obtained under dry and MQL modes than LN2 cooling mode at all levels of cutting speed.
Iturbe et al. [14] compared the effects of liquid nitrogen and MQL based cryogenic cooling
with conventional cooling. For short machining times, the cryogenic cum MQL cooling
outperformed conventional cooling.

Sivaiah and Chakradhar [15] compared the results of LN2 machining like tool wear,
feed force, CF and CT, chip characteristics, and SR with the wet condition during ma-
chining of heat-treated 17-4 Precipitation Hardenable Stainless Steel. The LN2 machining
outperformed even at high f to reduce all the above-said parameters compared with wet
machining. Tebaldo et al. [16] studied the machinability of Inconel 718 under different
machining conditions and lubricating systems. The highest wear resistance was obtained
while using the CVD-coated tools under conventional lubricated conditions. But, the MQL
system provided good lubrication than cooling with lesser cost and low environmental
impact. Shokrani et al. [17] investigated the impact of using different cooling systems,
namely MQL, cryogenic and hybrid of cryogenic and MQL, during the CNC milling of
Inconel 718 alloy material. Comparatively, the hybrid cooling system yielded better results
in terms of good machinability, less SR, and greater tool life. Mehta et al. [18] studied
the parameters such as SR, CF, and tool wear during machining of Inconel 718 material.
During machining, various sustainable environments, namely dry state, MQL, LN2 cooling,
hybridization of cold air and MQL, and hybridization of MQL and LN2, were used. The
input parameters such as ap, f, and vc were kept constant during machining under all the
above-said environments. Better surface finish and minimum cutting force were observed
during the cold air and MQL environment. Alternatively, the very least tool wear was
observed under MQL and LN2 hybrid cutting environment than the dry environment.

Further, the researchers had used different optimization tools to identify the suitable
process parameter values for minimizing the manufacturer’s objectives. A few of them are
discussed here. Khalilpourazari and Khalilpourazary [19] proposed an algorithm, namely
Robust Grey Wolf Optimizer (RGWO), to minimize total production time by identifying
the optimal input parameters multi-pass milling process. The parameter tuning during
optimization was carried out using the Taguchi method. Further, an efficient constraint
handling approach was implemented to handle the complex constraints of the problem.
The results concluded that the RGWO outperformed the meta-heuristic algorithms such
as the multi-verse optimizer and dragonfly algorithm and the other solution methods
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in the literature. Khalilpourazari and Khalilpourazary [20] developed the lexicographic
weighted Tchebycheff method to obtain the optimal decision parameters of the grinding
process for maximizing the quality of the surface and production rate and minimizing the
machining time and cost. GAMS software was used for this purpose. Khalilpourazari
and Khalilpourazary [21] used a novel strategy, namely Robust Stochastic Novel Search,
to identify the optimal values of the grinding process parameters to minimize process
cost and to maximize the rate of production and surface quality. The proposed method
outperformed previously proposed methodologies and novel algorithms, including Multi-
Population Ensemble Differential Evolution and Heterogeneous Comprehensive Learning
Particle Swarm Optimization.

Rao et al. [22] optimized the abrasive water-jet machining parameters to minimize the
kerf and surface roughness using the Jaya algorithm and the multi-objective Jaya algorithm.
Better results were obtained through the used algorithms than the simulated annealing, par-
ticle swarm optimization, firefly algorithm, cuckoo search algorithm, blackhole algorithm,
and biogeography-based optimization algorithms. Further, the PROMETHEE method
was used to handpick a specific solution among the possible Pareto-optimal solutions
obtained through the proposed algorithms based on the given requirements. Rao et al. [23]
obtained the optimal set of process parameters of focused ion beam micro-milling, laser
cutting, wire-electric discharge machining, and electrochemical machining processes. The
maximization of material removal rate and minimization of SR were considered as the
objectives in all the processes. The multi-objective Jaya algorithm was implemented to
find the optimal solutions in all the cases. The test results showed that the implemented
algorithms produced good results compared to other algorithms such as Genetic Algorithm,
Non-dominated Sorting Genetic Algorithm, iterative search, and biogeography-based opti-
mization algorithm, Khalilpourazari and Khalilpourazary [24] carried out the optimization
of grinding process parameters to improve the SR and reduce production cost and time.
A multi-objective dragonfly algorithm was employed for optimizing the process param-
eters. Results revealed that the proposed algorithm outperformed the Non-dominated
Sorting Genetic Algorithm-II. Khalilpourazari and Khalilpourazary [25] proposed a novel
hybrid algorithm, Sine–Cosine Whale Optimization Algorithm, to optimize the process
parameters of the multi-pass milling process by minimizing the total production time.
Almeida et al. [26] optimized the variable-angle composite cylinders via filament winding
manufacturing process using GA. Similarly, Wang et al. [27] proposed a reliability-based
design optimization technique to improve the buckling load of winding cylinders subjected
to radial compression. The moving search windows in the Kriging metamodel are used
to accelerate its convergence and reduce the number of training iterations. The results
of this study demonstrated the advantages of adopting a variable stiffness design for
achieving a maximum load capacity. Almeida et al. [28] proposed a genetic algorithm
(GA) to enhance the strength of a cylindrical shell under internal pressure by optimizing
the stacking sequence. The results offered asymmetric and non-conventional angles for
internally pressured composite tubes, as opposed to the well-known ± 55◦ winding angle
advice (for first ply failure approach).

In this research work, turning experiments are conducted on the Hastelloy X material
using the PVD TiAlN carbide insert tool under dry, wet, and LN2 environments. The
vc, f, ap, and machining environment are considered input turning process parameters,
and CF, SR, and CT are considered machinability indices. The evolutionary algorithms
namely grasshopper optimization (GHO) [29–31], genetic algorithm (GA) [32–34], parti-
cle swarm optimization (PSO) [35,36], moth flame (MFO) [37,38], grey wolf optimization
(GWO) [39–41] algorithms are used to identify the optimal set of turning process parame-
ters (MATLAB R2020b version). A clear picture of the experimentation and subsequent
processes are detailed in Figure 1.
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Figure 1. Flow chart of experimental part and metaheuristic algorithm.
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2. Experimentation Details

The Hastelloy X bar having 20 mm diameter and 300 mm length is used for conducting
the turning experiments on a C6140H turning machine. VNMG160408-SM1105 PVD TiAlN
cutting tool inserts are used to do the turning operation. The impact of tool wear on the
machinability indices is completely eliminated by using new inserts every time. The CF
(Tangential Force, Fz) is calculated with a 9257B Kistler dynamometer, and the value is
manipulated with dynoware software. The workpiece surface roughness (Ra) is measured
using a contact-type surface roughness tester (TR200), a cutoff length of 0.8 mm, and a
traverse length of 4 mm. For measuring the CT, a FORTIC 226 infrared imaging sensor
is used. Cryogenic equipment consists of a self-pressurized pump, cryogenic dewar tank
capacity of 50 L. At a pressure of 0.3 bar, LN2 was sprayed onto the work-tool interface
using a copper nozzle diameter of 3 mm. Figure 2 depicts a schematic representation of the
experimental setup. The detailed experimental conditions are shown in Table 1.

Figure 2. (a) Schematic View, Experimental Setup (b) Dry (c) Wet (d) Cryogenic Machining.

Table 1. Experimental Conditions.

Items Descriptions

Workpiece Hastealloy × (Ø20 × 300 mm)

Material Properties

Chemical Composition (%): Ni:50, Cr:21, Mo:17, Fe:2,
Co:1,W:1, Mn:0.80, Al:0.05, Si:0.08, C:0.01, B:0.01

Physical Properties: Tensile strength:1370 MPa, Yield
Strength: 1170 Mpa, Hardness:388 HB

Insert Specification VNMG160408-SM1105, PVD TiAlN coated carbide
insert, Sandvick

Nose radius 0.8 mm
Rake and relief angle 7◦, 6◦

Depth of cut (ap) 0.1 mm
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Table 1. Cont.

Items Descriptions

Length of cut (Loc) 60 mm
Environment Dry, Wet and Cryogenic machining
Cutting Fluid Vegetable-based oil
Cutting force Kistler 9257B dynamometer Cutting

Cutting temperature FORTIC 226 infrared radiation imaging sensor

Surface Roughness TR200 portable surface roughness tester
Evaluation and sampling Lengths are 4 and 0.8 mm

In this work, turning experiments were performed using L3
27 full factorial experimen-

tal design using Minitab 17. three factors are considered for this experiment: vc, f, and
environment; each factor has three different levels, as shown in Table 2.

Table 2. L3
27 full factorial experimental design.

Factors Unit Symbol Level 1 Level 2 Level 3

Cutting
speed (vc) m/min A 33 87 124

Feed rate (f ) mm/rev B 0.05 0.1 0.15

Environment C 1
(Dry)

2
(Wet)

3
(Cryogenic)

The experimental design and the corresponding measurement of machinability indices
are presented in Table 3.

Table 3. Experimental design values.

S.no
Cutting
Speed

Feed
Rate

Environment
Cuting
Force

Surface
Roughness

Cutting
Temperature

m/min mm/rev Fz (N) Ra (μm) ◦C

1 33 0.05 Dry 256 3.42 380

2 87 0.05 Dry 192 3.01 416

3 124 0.05 Dry 165 2.98 472

4 33 0.1 Dry 339 2.96 435

5 87 0.1 Dry 281 2.83 477

6 124 0.1 Dry 220 2.72 515

7 33 0.15 Dry 430 2.75 510

8 87 0.15 Dry 385 2.62 550

9 124 0.15 Dry 322 2.53 596

10 33 0.05 Wet 245 3.25 250

11 87 0.05 Wet 186 2.86 313

12 124 0.05 Wet 156 2.80 347

13 33 0.1 Wet 302 2.87 386

14 87 0.1 Wet 276 2.74 414

15 124 0.1 Wet 208 2.68 472

16 33 0.15 Wet 412 2.69 491
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Table 3. Cont.

S.no
Cutting
Speed

Feed
Rate

Environment
Cuting
Force

Surface
Roughness

Cutting
Temperature

m/min mm/rev Fz (N) Ra (μm) ◦C

17 87 0.15 Wet 368 2.53 515

18 124 0.15 Wet 308 2.43 565

19 33 0.05 Cryogeic 228 2.65 50

20 87 0.05 Cryogeic 168 2.48 95

21 124 0.05 Cryogeic 132 2.29 110

22 33 0.1 Cryogeic 275 2.2 90

23 87 0.1 Cryogeic 249 2.01 135

24 124 0.1 Cryogeic 168 1.96 140

25 33 0.15 Cryogeic 367 1.92 110

26 87 0.15 Cryogeic 320 1.84 130

27 124 0.15 Cryogeic 279 1.76 165

3. Results and Discussion

This section is divided into three case studies. Case study 1: Minimization of machin-
ability indices individually; Case study 2: Simultaneous minimization of dual machinability
indices by considering three combinations; Case study 3: Simultaneous minimization of
all three indices. The quadratic Multiple Linear Regression Models (MLRM) are formu-
lated for evaluating the minimum values of machinability indices in all the cases. The
Moth-Flame Optimization (MFO) algorithm is proposed to identify the optimal set of
turning process parameters in view of minimizing the objectives. The effectiveness of the
proposed algorithm is tested against the results of other optimization algorithms such as
Genetic Algorithm, Grass-Hooper Optimization (GHO), Grey-Wolf Optimization (GWO),
and Particle Swarm Optimization (PSO). Pseudocode for optimization algorithms is shown
in the Figure 3. The general parameters used in algorithms are the maximum population
size: 50, and the maximum no. of iterations: 100 (MATLAB R2020b). Twenty-seven runs
are executed for each algorithm in all the cases. The evaluated results from the case studies
are discussed below.

3.1. Case Study 1

Cutting force analysis and its minimization plays a crucial role in machining operation
and understanding the cutting phenomena of the work material in different environments
(dry, wet, and LN2 machining). Moreover, after machining, the work material must be
superior in surface quality [33]. On the other hand, minimizing the machining zone’s
temperature is necessary to retain the cutting temperature as low as possible. In this
case study, the MLRM for minimizing all the machinability indices is developed using
Minitab 17. The developed MLRM are given in Equations (1)–(3).

Objective functions 1.

Minimize Cutting = 212.7 − 0.244A + 703B + 20C
Force − 0.00571A2 + 6289B2 − 8.11C2

−0.60AB + 0.053AC − 143BC
R2 = 0.98, Adj R2 = 0.98

(1)
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Objective functions 2.

Minimize Sur f ace = 3.56 − 0.008A − 9.65B + 0.73C
Roughness + 0.000015A2 + 19.3B2 − 0.265C2

+0.023AB + 0.00028AC − 0.65BC
R2 = 0.98, Adj R2 = 0.97

(2)

Objective functions 3.

Minimize Cutting = −0.083 + 0.076A + 2521B + 341.21C
Temperature + 0.0033A2 − 1400B2 − 118C2

−1.42AB − 0.16AC − 396.67BC
R2 = 0.97, Adj R2 = 0.96

(3)

Three responses were considered in this section R1, R2 and R3, CF, SR and CT, respec-
tively, as shown in Table 4.

Table 4. Minimization of machinability indices using evolutionary algorithms for Case study 1.

Algorithms
Cutting Speed

(m/min)
Feed Rate
(mm/rev)

Environment
Machinability
Index Value

Iteration No.

Cutting force

MFO 124 0.05 3 127.10 N 2
GA 119.61 0.05 3 139.16 N 3

GHO 124 0.06 3 135.27 N 61
GWO 121.65 0.05 3 132.85 N 78
PSO 123.32 0.05 3 132.77 N 10

Surface roughness

MFO 124 0.05 3 1.78 μm 1
GA 86.23 0.147 3 1.88 μm 3

GHO 124 0.129 3 1.85 μm 39
GWO 134.17 0.15 3 1.81 μm 79
PSO 126.32 0.052 3 2.33 μm 10

Cutting temperature

MFO 34.04 0.05 3 33.19 ◦C 22
GA 80.77 0.05 3 78.98 ◦C 67

GHO 36 0.05 3 32.33 ◦C 65
GWO 39.57 0.06 3 48.44 ◦C 43
PSO 33.6 0.05 3 34.11 ◦C 26

Figure 4a present the convergence plot for cutting force using the evolutionary al-
gorithms. It is observed that the response is converged in iteration no. 2 using the MFO
algorithm. Provided the same response value is converged in iteration no. 3, 10, 61, and
78 based on GA, PSO, GHO, and GWO algorithms, respectively. Further, the response
value is very minimum in the MFO algorithm and maximum in GA. The simplicity of the
MFO algorithm along with the speed in searching is the prime reason for obtaining the
best results in the present work. It is additionally inferred that the CF is very minimum
in the LN2 environment compared to the dry and wet machining environments. The LN2
nozzle spray droplet acts as cushioning effect of the machining zone and, thus, minimizes
the vc [42].
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Figure 3. Pseudocode for optimization algorithms (a) MFO (b) GHO (c) GA (d) GWO (e) PSO.
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Figure 4. Convergence plot for case study 1 (a) Cutting Force (b) Surface Roughness (c) Cutting
Temperature.
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Similarly, the convergence plots for the other two machinability indices are given in
Figure 4b,c, respectively. The order of preferences of algorithms based on their performance
in obtaining the minimum response values is MFO-GWO-GHO-GA-PSO for SR and MFO-
GHO-PSO-GWO-GA for CT. Chattered vibrations are generally existing in the machining
process, and this is significantly affecting the SR. The SR values are lower in the cryogenic
machining than the dry and wet machining from the experimental value and predicted
data.

Further, the cutting temperature is directly related to CF and SR. CT increases with an
increase in vc. The flow of cryogenic LN2 (−196 ◦C) between tool and workpiece interface
greatly reduces the CT in the machining zone compared with dry and wet machining [42].

3.2. Case Study 2

In this study, the simultaneous minimization of dual machinability indices with three
different combinations using evolutionary algorithms is considered. The Pareto front
analyses of all the algorithms with respect to CF vs. SR, CT vs. CF, and CT vs. SR are
given in Figure 5a–c, respectively. Further, the TOPSIS method is used to convert the dual
machinability indices into a single objective. Hence, the global minimum value of the
machinability indices is obtained using TOPSIS results (Figure 5d–f) for all the evolutionary
algorithms. In addition to that, the performance of evolutionary algorithms is validated
using the hypervolume indicator. From these Figure 5, it is inferred that the MFO algorithm
outperformed others in all three cases. The results are presented in Table 5.

Table 5. Minimization of machinability indices based on pareto front analysis and TOPSIS method for Case study 2.
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GHO
CF
&
SR

128.00 0.050 3 127.75 N 2.26 μm 0.301
GA 126.00 0.062 3 127.12 N 2.27 μm 0.302
PSO 128.00 0.065 3 141.07 N 2.17 μm 0.319
MFO 124.00 0.060 3 136.57 N 2.20 μm 0.324
GWO 129.00 0.060 3 136.57 N 2.20 μm 0.321

GHO
CF
&

TE

53.87 0.050 3 206.31 N 42.89 ◦C 0.652
GA 34.06 0.060 3 218.52 N 32.79 ◦C 0.633
PSO 35.06 0.062 3 218.52 N 32.79 ◦C 0.624
MFO 35.11 0.050 3 217.98 N 31.26 ◦C 0.697
GWO 46.90 0.050 3 211.12 N 39.03 ◦C 0.657

GHO
SR
&

TE

34.32 0.052 3 2.60 μm 36.16 ◦C 0.391
GA 34.32 0.062 3 2.60 μm 36.16 ◦C 0.415
PSO 49.38 0.058 3 2.52 μm 43.72 ◦C 0.416
MFO 50.00 0.053 3 2.52 μm 34.06 ◦C 0.443
GWO 52.00 0.056 3 2.52 μm 44.06 ◦C 0.441

The general observations are when CF increases, and SR worsens after machining;
When CF increases, TE increases significantly and affects the tool life; and when TE
increases, then SR decreases. Further, the LN2 environment minimizes the CF, CT, and SR
due to a fine droplet of LN2 acting as a film barrier in the tool and workpiece interface,
thus reducing chatter vibration and built-up edge formation. This is used to improve the
tool life too.
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Figure 5. Pareto optimality (a–c) Multi-objective for single run (d–f) Multi-Objective for 27 runs.

3.3. Case Study 3

In this case study, the simultaneous minimization of all three machinability indices is
carried out using evolutionary algorithms. As in case study 2, the TOPSIS method is used to
convert all three machinability indices to a single objective. Further, the quality indicators,
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namely Diversity (DIV), Inverted Generational Distance (IGD), and Hyper Volume (HV),
are used to opt out the best evolutionary algorithm which provides minimum values of
machinability indices along with the corresponding set of turning process parameters.
The algorithm, which has a higher DIV and HV value and a lower IGD value, is to be
considered as the best algorithm among others. The DIV and IGD values are calculated
using Equations (4) and (5), respectively. The hypervolume is calculated based on the
Pareto analysis. The calculated values of quality indicators for all the algorithms are
presented in Table 6.

DIV =
√

∑k
j=1 ( f max

j − f min
j )2 (4)

IGD =

√
n
∑

i=1
d2

i

n
(5)

di =

√√√√ no

∑
j=1

(oij − obj)
2 (6)

where,

Oij—ith run jth objective value;
Obj—Best jth objective value;
di—Euclidean distance.

Table 6. Minimization of machinability indices based on IGD, DIV and HV for Case study 3.

A
lg

o
ri

th
m

s

IG
D

D
IV

H
V

C
u

tt
in

g
S

p
e

e
d

(m
/m

in
)

F
e

e
d

R
a

te
(m

m
/r

e
v

)

E
n

v
ir

o
n

m
e

n
t

C
u

tt
in

g
F

o
rc

e
(N

)

S
u

rf
a

ce
R

o
u

g
h

n
e

ss

(μ
m

)

T
e

m
p

e
ra

tu
re

(◦
C

)

GHO 7.98 233.85 0.273 71.00 0.051 3 193.36 2.44 85.25
GA 9.81 279.61 0.267 72.00 0.051 3 194.36 2.48 86.25
PSO 5.79 264.68 0.265 94.62 0.052 3 173.13 2.45 73.28
MFO 5.10 286.72 0.286 92.62 0.052 3 171.13 2.35 72.28
GWO 6.70 267.48 0.269 96.62 0.052 3 174.13 2.55 74.28

Further the statistical analyses of the quality indicators are carried out using Minitab
software to study the performance and consistency of the algorithms. The normal proba-
bility plots for the quality indicators IGD, DIV, and HV are given in Figure 6a–c, respec-
tively, and the summary reports of the same are given in Figure 6d–f, respectively. From
Figure 6d–f and as well as the findings (higher values of DIV and HV and Lower value of
IGD) from Table 5, it is concluded that the MFO algorithm outperformed others.

The reasons for the better performance of MFO compared with other algorithms are
explained here. The GA became gradually a dominant optimization technique compared to
deterministic approaches mainly due to the higher probability of local solutions avoidance.
However, the main drawback of GA was the stochastic nature of this algorithm which
resulted in finding different solutions in every run. Despite the relatively high convergence
rate of PSO, it has the drawback of premature convergence to local optimal and ineffec-
tiveness in exploring the whole search space. Similarly, the original version of the GWO
algorithm has the drawbacks of low solving accuracy, bad local searching ability, and slow
convergence rate. Similarly, the disadvantage of GHO was being easy to fall into the local
optimum which prevented the search process from finding a better solution. On the other
hand, MFO is able to locate the local and global optimal solutions accurately with less
computational time [43].
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Figure 6. (a–c) Normal Probability plot (d–f) summary report.

4. Conclusions

The purpose of this study was to minimize machinability indices CF, SR, and CT while
performing the turning of Hastelloy X. Three levels of turning process parameters namely
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cutting speed (vc), feed rate f, and machining environment were considered for performing
the experiments under L27 orthogonal array basis. Further, the MFO algorithm was used
to identify the optimal set of turning process parameters to minimize the machinability
indices individually and simultaneously. Three case studies were carried out for this
purpose. The conclusion drawn from these case studies is given below.

1. From the case study 1 (minimization of machinability indices individually), as com-
pared to other algorithms such as GHO, GA, PSO, and GWO, the MFO algorithm
yielded the minimum values of CF = 127.1 N, SR = 1.78 μm, and CT = 33.19 ◦C for the
optimal set of turning process parameters such as vc = 124 m/min, f = 0.05 mm/rev,
and cryogenic environment. The range of reduction in CF, SR, and CT values based
on the MFO algorithm was 4–8 %, 1–23%, and 3–57%, respectively, compared with
other algorithms.

2. The simultaneous minimization of dual machinability indices with three combinations
were performed using the MFO algorithm in case study 2. The results were compared
with the results obtained from other algorithms. Based on the hypervolume indicator
identified from the Pareto analyses, again the MFO outperformed others, and the
corresponding optimal set of input parameters were identified.

3. In case study 3, the simultaneous minimization of all three machinability indices
was carried out using the MFO algorithm. The performance of MFO algorithm
was compared with other algorithms using the quality indicators namely Diversity,
Inverted Generational Distance, and Hyper Volume. From the analyses, the best
results were obtained as CF = 171.13 N, SR = 2.35 μm and CT = 72.28 ºC form the
MFO algorithm for the inputs of vc = 93 m/min, f = 0.05 mm/rev and cryogenic
environment.

Based on the results of all three case studies, the MFO algorithm effectively predicted
the optimal set of turning process parameters in view of minimizing the machinability
indices individually and simultaneously when compared with other algorithms. Further,
the other machinability indices such as tool life and machining cost will also be considered
in addition to the existing indices as the future work.
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Abstract: Multifold effects of the COVID-19 global health crisis and economic lockdowns are reflected
in the insurance industry, and are predicted to expand to the post-COVID-19 era. It is expected
that, within a short period of time, the current worldwide situation, in regards to the coronavirus
pandemic, will be reflected in new trends, regarding customer behavior, organizational management,
and culture, as well as reveal improved business management models, legacy infrastructure, and
service systems in insurance organizations. Here, a focus on end-user preferences, data, and their
behavior modeling in digital platforms are major practical drivers within the modern insurance
concept, but there is a paucity of researches within the theoretical synthesis of consumer decision-
making (CDM) models, information system theories, and behavioral economics concerning modern
insurance-specific value chains and digitalized decision-making processes. Therefore, the following
research aims to expand upon the existing scientific knowledge of end-user behavioral patterns and
process frameworks in the Baltic insurance market, by including and examining a factor group of
technological enablers and a digital environment. Research results in digitalization, personalization,
and customization levels within the Baltic non-life insurance market are homogenous with a leading
position of Estonia and overall evaluations ranging between Satisfied and Rather Good. There are
also three major factor groups and process stages identified, which influence insurance purchase
decision-making in digital insurance platforms in the Baltic market.

Keywords: digital platforms; decision-making; insurance; Baltic; customization; personalization

1. Introduction

Countries across the world underwent an unprecedented global health crisis and
subsequent lockdowns in 2020–2021 due to the coronavirus disease (COVID-19) pandemic,
moreover, social and economic outcomes are still hard to predict at a full scope. It is
argued that insurance organizations should focus on the development of hybrid service-
based and customer-driven business models, sustainable and innovative digital products,
and consolidations, with InsurTech and technology companies, for better digitization of
distribution channels [1,2]. The ongoing global pandemic has revealed a lack of flexibility,
emotional connection, and data harmonization with the day-to-day needs of end-users,
as well as personalized, situation-based, and easily customizable insurance services, as a
part of practical improvements toward the modern insurance [3,4]. It is important to note
intensive and dynamic changes in the market structure, which are mostly determined by
a high competition among traditional peers and new virtual incumbents, non-traditional
insurance service providers, such as “Big Tech”, and product manufacturers [5,6].

From a theoretical point of view, the research refers to predecessor studies in the field
of non-life insurance consumer decision-making, such as Hsee and Kunreuther (2000) [7],
Kunreuther and Pauly (2006; 2015) [8,9], and a cross-border study report by the European
Commission (2017) [10]. The present research also follows key findings and limitations
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of scientific studies on behavioral patterns in the Baltic insurance market, such as re-
search by Kiyak and Pranckevičiūtė (2014) [11], and longitudinal studies conducted by
Ulbinaitė et al. (2010, 2011, 2013) [12–15]. Additionally, novel studies of comparison web-
sites [2], multi-sided platforms [1] in the insurance industry and the Service-Dominant
Architecture (SDA) [16], as well as insurance literacy [16,17], were considered. However, a
recent increase in practical demands for hyper-personalized support services and digitally
customized insurance outcomes of on-demand and usage-based insurance reveal a research
gap. There is a need for a multi-tier factor evaluation of the digital insurance environment
and multi-agent-based model simulations oriented toward decision making in digital in-
surance platforms. Therefore, this research aims to extend the existing scientific knowledge
on insurance end-user behavioral patterns and frameworks by including and examining
factors of customization, personalization, and technological enablers. To investigate this
situation, the following research questions have been raised:

1. How do digital environments and technological factors influence the decision-making
process in insurance distribution platforms?

2. What are the predominant factors of insurance decision-making processes in digital
insurance platforms?

From a methodological point of view, the research follows a triangulation logic,
combining an online survey with Fuzzy and Likert logic, simplified art-based method
outcomes for information presentation, and an embedded, descriptive case study with
statistical data analysis methods, which summarize key findings of the online survey.
The structure of this research paper is composed of five main sections. The first section
introduces the theoretical background of the topic. The second section provides a detailed
description of the research and survey methodology and applied methods. Results of the
online survey are presented and analyzed in the third section. The fourth section presents a
discussion on research limitations and possible future research directions. The fifth section
concludes the main findings from theoretical and practical analyses.

2. The Theoretical Background of Digital Non-Life Insurance Concepts and Insurance
Customer Decision-Making Processes

Although the importance of non-life insurance products for the financial wellbeing
of individuals and society has been recognized for a long time, a practical spread is still
considered vague, i.e., the lack of insurance literacy, financial decision-making skills, and a
number of underinsured persons are observed [17]. On a theoretical level, it is argued that
modern insurance-related decisions and customer behavior cannot be sufficiently explained
by applying traditional neoclassical economic and financial theories and ignoring cognitive
and emotional factors.

In general, fundamental studies on consumer decision-making in insurance services,
insurers, and market behavior, were carried out by Hsee and Kunreuther in 2000 [7] and
Kunreuther and Pauly in 2006 [8]. However, the phenomenon of insurance purchases under
these studies has been analyzed from a holistic standpoint, resulting in a focus on high-level
benchmark models of insurance demand and supply, legal regulation, and government
insurance market principles. The interdisciplinary nature of the behavior of consumers
in the insurance market was analyzed, mostly regarding monetary financial risks and
positive theory perspectives, with limited attention to the influence of behavioral finance
and economics theories, as well as heuristic and bias phenomena. This research gap was
only partially covered in the last decade via a comprehensive analysis from the European
Commission (2014) [10] study, and Kunreuther and Pauly in 2015 [9]. Here, assumptions
on behavioral finance and economy and cognitive psychology domains have contributed to
the foundation of the modern insurance concept by introducing the influence of individual
risk perceptions, heuristic reflections in framing effects, and intuitive and deliberative
thinking along general concepts of probability and risk, distribution channels, and social-
demographic differences in Europe [9,10,17]. Nevertheless, afterwards, an increase in
scientific attention to the phenomenon of insurance digitization and digitalization has
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been noticed, as the majority of research was mostly oriented to countries from Western
and Central European regions, while analyses of the Baltic region (Lithuania, Latvia, and
Estonia) resulted in low volumes, and were mostly limited to a one country-level (Lithuania
or Latvia). A significant part of the existing scientific studies on digital insurance have been
completed at a high-generality level, scattered to different parts of the insurance-specific
value chain or technological solutions, without sufficiently considering the influence of
modern mass customization and personalization concepts and marketing theories. A
similar situation can be identified when analyzing consumer decision-making in insurance
services, which, in the case of the Baltic region, are geographically limited, practically
outdated, and, as in the case of Lithuania, the majority of studies were completed from
2008 to 2014, without considering customization, personalization, or digitalization factors.
Therefore, the multidimensional and cross-border studies of digital insurance decision-
making, insurance literacy, and platform business models in the Baltic region are required
both theoretically and practically.

To conclude, the modern insurance combines derivatives from several concepts
and theories:

• Risk management, regarding the relationships between insurance service counter-
parties, the obligation of exchanging customer risks, risk handling methods, and the
overall management of the asymmetric dominance effect legally and ethically [12,18];

• Customer behavior, regarding personal mental considerations and physical actions,
behavioral and cognitive decision-making biases, purchase decision function, and
interaction between the social system and the social reality [18,19];

• CDM and HCDM, regarding behavior and purchase decision-making of insurance
customers. It can be defined as a continuous sequence of mental considerations and
physical actions, which are divided into the two following main groups and two
stages: a perception group of a need for insurance and a perception group of afford-
ability; a personal evaluation stage of needs and affordability factors and objective
evaluation stage of insurance content [12,13,18,19]. On the other hand, organizations,
including the non-life insurance market, still focus on favorable customer experience
management with limited attention and analysis on the multifaceted concept of cus-
tomer experience and journey management [19]. This situation illustrates a need for
conceptualization of insurance customer experience drivers and outcomes in the tradi-
tional model of three process stages and comprehensive evaluation categories. These
categories combine customer experience drivers and customer integration via value
co-creation efforts within different processes of insurance decision-making [20]. This
type of holistic customer experience evaluation approach indicates that the customer
value and experience are context-dependent, systematic, and interactive within all
stages of the process [19,21];

• Information system theories and models of technology acceptance and self-service
technologies (SSTs), in the form of constructs and determinant groups of behavioral
intentions, usage behavior, and digital insurance platforms. The following constructs
and determinants of behavioral intentions and usage behavior can be identified as
slightly modified, but reflecting both traditional (face-to-face) and digital insurance
distribution channels, such as performance expectancy, effort expectancy, social influ-
ence/boundaries, facilitating conditions (organizational and technical infrastructure)
and attitude factors (cognitive processes and emotional reactions) [22,23].

Modern insurance specific value chain and co-creation activities depend on features
of the core offering-purchase stage, but are also shaped by numerous internal and ex-
ternal factors: customer sourcing processes and an organization role within customer
operations, high-level factors of sociodemographic and socioeconomic characteristics,
insurance literacy, platform design and information layout, and social media and real-
ity [12,13,17,19,24,25]. Figure 1 summarizes key elements and processes of insurance
decision-making.
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Figure 1. Features and background of the insurance decision-making process. Source: composed by the authors, by
following [5,12,13,17].

Figure 1 illustrates the main process stages and influential driving factors, which affect
the insurance decision-making and customer transition through the stages. In general, all
influential driving factors can be divided into two groups. The first group is formed by
internal factors, which are related to personal evaluation of an insurance need, financial
affordability, and past and ongoing experience with insurance service providers. The
second group compounds external factors, which define an objective and holistic evaluation
of insurance decision-making from legal, marketing, and technical points of view. The
financial and marketing-oriented factors have key role in the pre-purchase stage, where the
final decision to purchase is made. It should also be outlined that technological factors and
the digital environment have a significant influence on the modern insurance value chain
and customer experience management. Contrary to the legal, informational, relational,
or social-demographic driver factors, they are recognized equally important to the entire
value co-creation process in all three stages of the insurance decision-making process. An
intensive development of the internet technology, mobile devices, and digital platform
business model have become critical enablers to balance the quality of service delivery,
insurance personalization, and customization, with different customer expectations and
experience levels:

• Operational activities and product-levels via the mediation of a customer’s journey,
by personalized easy-access communication tools and information exchange. It also
allows ensuring operational capabilities for value co-creation processes and a spectrum
of product customization options;

• Customer experience management activities and individual-levels via a well-designed
purchase process in graphical interface solutions, situations involving flow interrup-
tions or overwhelming information. It also promotes a continuous positive social
interaction and an emotional brand connection after the purchase stage [26].

This theoretical setup reflects the modern non-life insurance meaning, which stands
for a continuous (but not a simultaneous) sequence of the insurance-related processes and
multiple internal and external influencing factors within the decision-making. The complex
and non-linear non-life insurance market nature requires a decentralized, digitalized, and
individual-centric approach to organizational management, product configuration, and
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customer experience management [12,13,17]. Otherwise, digital technologies, technological
advancements, and global social networks increased the recognition of non-life insurance
products and services, and have been rapidly embedded into daily operations and a value
co-creation chain of insurance. These trends indicate the shift of traditional insurance
concept boundaries and the non-life insurance market from a traditional, provider-centric
management approach and service blueprint model, where a homogenous focus on the
operational efficiency and cost-service level dichotomy is dominant [26,27]. The emerging
prominence of the customer-centric philosophy and holistic design framework and avail-
ability of individual-level real-time data factors reflect in newly developed, innovative, and
personalized touchpoints, on customer values and experience management [26,27]. Practi-
cally, it reflects on advanced online self-service platforms, which work in combination with
techniques of personalization and customization and create a new cognitive framework. It
embraces an intrinsic security need for customers and leads to a simpler creation, usage,
and exchange of insurance knowledge and information [5,26,28].

It is also agreed that the last two decades of the globalization process, intensive
digitization, and digitalization, and rapid socioeconomic changes, have brought about
a remarkable, two-fold impact on the financial service market, organizations, and cus-
tomers, including the insurance industry [29]. Therefore, it is recognized that existing
integrated and sophisticated quantitative analysis techniques, financial and economic theo-
ries, and consumer decision-making (CDM) models are not fully sufficient to be applied
in the modern, digitalized financial service, oriented to the platform business model [30].
The analysis and modeling of the optimal financial decision-making process should be
supported by the application of behavioral reasoning theory (BRT), forecasting, and multi-
criteria decision approach and methods with qualitative data, behavioral, and cognitive
factor evaluations [29,31]. New theoretic models and conceptual frameworks should re-
flect both technical specifications and capabilities of digital platforms as well as recent
behavioral patterns of fully digital end-users, which is no longer a linear progression
through process stages, but more an iterative decision-making process [30]. The traditional
CDM and hybrid decision-making models (HDCM) have been widely applied in practice
since 1960s, but there is a paucity of research within the theoretical synthesis of CDM
and HDCM models, concerning a modern insurance-specific value chain and digitalized
decision-making process. A brief overview of the main CDM models and their influence
points on digitalized insurance decision-making processes is presented in Table 1.

Table 1. The influence of the main CDM models on digitalized insurance decision-making processes. Source: created by the
authors, following [30,32–36].

Model Influence Points

F.M. Nicosia’s model (1966) [37]

• A mutual relationship between the organization and the
consumer.

• Feedback area.
• The interactive repurchase cycle.

J.F. Engel, D.T. Kollat, and R.D. Blackwell (EKB) model (1968)
[38]

• Consideration of interactions between both internal and
external inputs, information retrieval.

• Presence of consumers’ perspectives, feedback-search loop,
and partial decision making.

• The postponement of decision-making.

J.A. Howard and J.N. Sheth model (1969) [39] • Inclusion of marketing, social influence, and exogenous
variables.

S. Um and J.L. Crompton model (1990) [40] • Stage of awareness set.
• Passive and active information acquisition.

P. Kotler model (1997) [41]
• Identification of suspected target groups.
• Differentiation and transformation of first time and

repetitive customers.

J.E. McCarthy, W.E. Perreault and P.G. Quester model (1997) [42] • Impact of social, situational, and mental factors.
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Table 1. Cont.

Model Influence Points

J. Walker and M. Ben-Akiva model (2002) [43] • Flexible disturbances and irrational behavior.
• Combination of latent psychological factors.

P. Kotler and K.L. Keller model (2006, 2012) [44,45] • Post-purchase stage and behavior.
• Skipping or reversing some stages.

For a long period of time, main CDM models defined in Table 1, together with the
expected utility theory have been accepted as a dominant paradigm by economic and mar-
keting researchers, and used practically by organizations to determine and model customer
responses to products or services, purchase offerings, and motivational appeals [33,36].
On the other hand, modeling of the financial attitude and decision-making process in
digital platforms has specific circumstances to consider. The stage of the initial problem,
problem recognition, or need arousal, together with a non-standard combination of high
psychological and monetary risks, internal and external biases associated with certain
consequences of financial decision-making, have a strong influence in this field [30,34].
These particular characteristics of financial decision-making require reframing processes
and variables of existing CDM and HCDM models. It is also essential to identify and apply
the fundamentals of customer behavior models to the comprehensive examination of the in-
surance service customer’s engagement and characteristics. The following essential points
of traditional consumer decision-making models can remarkably contribute to a conceptual
framework of the digital insurance decision-making process. Fundamental outcomes of
Nicosia’s (1966) [37] model, as a separation of the buying process to the multiple stages,
iterative and constant connection between the organization and the customer (in the form
of a feedback area and repurchase cycle) can be identified in the insurance. Relevant factors,
considering various endogenous and exogenous variables, marketing stimuli components,
process options of partiality, and postponement of decision-making, were presented in
the EKB (1968) [38] and J. A. Howard and J. N. Sheth (1969) [39] models. These elements
support the content and the context of the modern insurance and decision-making process,
but are also limited to apply fully, due to the logic of the linear process and the unmeasured
relationships between variables [36,46]. Later revisions and elaborations of these limita-
tions in the choice set model of S. Um and J. L. Crompton (1990) [40] and the hybrid choice
model of J. Walker and M. Ben-Akiva (2002) [43] introduce relevant factors of possible
disturbances, irrational behavior, and an unreliable memory of customers, as well as the
initial stage of the awareness set [32,33,36]. Furthermore, simplified models by P. Kotler
(1997) [43], P. Kotler and K. L. Keller (2006, 2012) [44,45], and J. E. McCarthy, W. E. Perreault,
and P. G. Quester (1997) [42] reflect early complex models of buyer behavior, and in this
way, support the holistic approach to the decision-making process. Overall, these models
outline the pre-purchase and post-purchase stages and customer-orientated activities of
identification differentiation and transformation of target groups, which are also important
parts of the modern insurance concept.

3. Materials and Methods

The present research is a continuation and a supplementary portion of the authors’
multi-step research (2020, 2021) within a practical status, regarding insurance digitalization,
customization and personalization level, and digital insurance platforms in the Baltic
non-life insurance market. The research also contributes to the research field, providing
empirical validation of a conceptual framework of the digital insurance customer decision-
making process. Therefore, data collection and analyses were carried out by using a
convergent parallel research design and the following triangulation of scientific methods:

1. A descriptive thematic analysis and synthesis of scientific findings within digital
non-life insurance and decision-making models.
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2. Modeling a conceptual process flow and framework of digital insurance purchase-
decision making. A simplified logic of the Robinson’s [47–49] conceptual modeling
framework in combination with a logical data flow diagram was applied.

3. The online survey of 157 insurance-related specialists from three Baltic countries,
using a structured questionnaire of 24 questions, a full-blown Likert evaluation scale,
and visualized prototypes of online customization frameworks. Visual outcomes were
illustrated by using the design and prototyping software Axure RP Pro (version 8).

4. Descriptive statistics, multiple factors, and correlation analyses of online survey
results. The exploratory factor analysis (EFA), confirmatory factors analyses (CFA),
and Pearson correlation analysis were applied by using the statistical analysis software
IBM SPSS Statistics 26 (Armonk, NY, USA: IBM Corp.).

It is argued that a convergent parallel research design and triangulation of scien-
tific methods allow simultaneous collection, analysis, and interpretation of quantitative
data and qualitative evaluations in a single research study. Moreover, complementary
data can be used and transformed to a more holistic understanding of the research phe-
nomenon [50,51]. The details of the questionnaire are presented in Table 2.

Table 2. Presentation of the questionnaire structure, content, and methodological foundation. Source: composed by
the authors.

Element Content

Logic of structure

Twenty-four close-ended questions and statements:
Three demographic-type questions about the respondent’s geographic location, age group,
and gender;
Four questions about the “state-of-the-art”, regarding country specifics, within levels of
insurance digitalization, insurance service provider preparation for digitalization,
customization, and personalization in digital insurance platforms;
Three comparative statements about the visualized prototypes of three online
customization frameworks;
Fourteen questions oriented to the conceptual framework about the multi-criteria influencing
customer decision making in digital insurance platforms.

Methodological foundation

A full-blown Likert scale of 9 points and linguistic variables in the following parts of
the questionnaire:

- In questions 4–7, point 5 has a value of “Neutral”; 1—“Very poor”; 9—“Excellent”;
- In questions 10–24, point 5 has a value of “Neutral”; 1—“Extremely low”;

9—“Extremely Strong”.

The questionnaire was formulated by using a combined full-blown Likert scale and
a Fuzzy set of 9 points with numerical and linguistic values due to several methodologi-
cal reasons:

• The research object of the conceptual framework regarding the customer decision-
making processes in digital insurance platforms follows the multi-criteria decision
making (MCDM) approach. It concerns the design of the criteria evaluation scale and
validity of results, using the traditional ranking scale [52,53]. It is also recommended
to reduce possible risks of uncertainty, subjective interpretation, and bias within
responses, by applying specific wording techniques, reversed forms, as well as an
improved scale for evaluations [52];

• The research aims to evaluate the influence of the digital environment and techno-
logical factors as well as identify the predominant factors, as it is not aligned to the
classical set theory, binary terms, and bivalent conditions. It requires a comparison
concerning a certain criterion (a degree of influence to purchase), gradual member-
ship, and a combined linguistic and visual analog scale for easier interpretation and
understanding of questions [54];
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• Provision of responses grounded with a well-balanced and gradual assessment for
further interpretation within methods of descriptive statistics, and comparative and
correlation analysis [54].

The selection of the fundamental scale of nine points (from 1 to 9) follows the multi-
criteria decision making (MCDM) approach and the logic of the analytic hierarchy process
(AHP). It determines a comparison of criteria and their weight importance within the
suggested conceptual framework [55]. It is also argued that a combined full-blown Lik-
ert and fundamental AHP 1 to 9 scale is relevant under the cross of the threshold at
n = 10 criteria [56].

The online survey was conducted through multiple forms, distribution channels, and
periods. The detailed summary of the surveying process is as follows:

• The introductory section and the questionnaire were translated to English and three
local languages of the Baltic countries, Lithuanian, Latvian, and Estonian respectively.
Translation was handled in collaboration with native speakers of local languages and
a qualified English linguist;

• The main survey distribution channel involved a direct contact with insurance service
distributors and institutions via publicly available and/or personal contact emails.
Supplementary channels and forms involved messaging and posting on Facebook and
via the authors’ personal professional network;

• The online survey process was held between 16 February and 22 May 2021.

The research sample was formulated by following a logic of probability sampling
and a simple sample type. The probability sampling selection was related to the specific
research and target population, a methodological set of selection criteria to participate in
the survey, and the overall possibility of reducing the sample bias and gathering higher,
unbiased data quality. Authors accept key limitations and risks of using simple random
sampling—a high level of the standard error of estimate [57]. The target population was
defined by using two critical selection criteria: (a) working positions and experiences in the
non-life insurance field, and (b) the workplace as an insurance service provider, physically
located and operating in the Baltic region (Lithuania, Latvia, or Estonia).

4. Results

A combination of statistical techniques, involving descriptive statistics and factor
analyses, are recommended within the applied research to simplify an interpretation
of quantitative variables and, overall, to ensure a comprehensive examination of the
empirical dataset [58]. This type of multi-level qualitative and quantitative analysis allows
researchers to examine the validity of theoretical constructs and the consistency of research
instruments, sampling adequacy, and underlining structures and relationships among
latent variables (factors) [58,59]. The selected forms of the descriptive statistics involved a
manual calculation of a simple and grouped frequency distribution and measures of central
tendency. The factor analysis was conducted with the SPPS statistical software (version
26) by completing exploratory factor analysis (EFA), confirmatory factor analysis (CFA),
and Pearson’s correlation analysis. The logical sequence of statistical analysis procedures
is presented in Figure 2.
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Figure 2. Logical sequence and content of statistical analysis. Source: created by the authors.

4.1. Descriptive Statistics

Application of the descriptive statistics provides a valuable summary of the dataset
characteristics and research sample in a manageable and organized format [60]. It also
contributes to the research conclusions and validation of the conceptual framework by re-
vealing the influence of sociodemographic factors. The main characteristics of the research
sample are presented in Table 3.

Table 3. Characteristics of the research sample. Source: composed by the authors.

Variables Data Values Absolute Number %

Gender
Female 123 78

Male 34 32

Age group

18–25 36 23

26–35 54 34

36–45 47 30

46–55 17 11

56–65 3 2

+65 0 0

Country

Estonia 32 20

Latvia 31 20

Lithuania 94 60

In total, 157 insurance-related specialists from three Baltic countries agreed to partici-
pate in the online survey; the majority (64% of all respondents) belong to the 26–45 year-old
age group, are female (78%), and from Lithuania (60%). One important reliability feature of
the research sample is the variety of respondent age groups. Accordingly, a representation
of five different age groups was identified, while the majority was composed of three age
groups within the age range of 18–55. Nevertheless, the analysis of results shows that
sociodemographic factors do not have any significant influence on digitalization, personal-
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ization, and customization evaluation or factor groups of the insurance decision-making
process in digital platforms.

4.2. Factor and Correlation Analysis
4.2.1. Pre-Factor Analysis

The pre-factor analysis of four indicators was conducted using the SPPS statistical
software (version 26). It was oriented to investigate an internal consistency of questionnaire
items, a level of questionnaire reliability, sampling adequacy, and usefulness of factor
analysis. Results of the pre-factor analysis are presented in Table 4.

Table 4. Results of indexes in the pre-factor analysis.

Indices Result

Cronbach α 0.875

Spearman–Brown 0.701

Kaiser–Meyer–Olkin (KMO) 0.839

Bartlett’s test of sphericity χ2 0.000

As per Table 4, the Cronbach α indicator has a value of 0.875, which shows that
the internal consistency of questionnaire items is relatively high and acceptable. Test
reliability and acceptance to perform data reduction using EFA and CFA techniques were
confirmed by the Spearman–Brown and Kaiser–Meyer–Olkin coefficients. The value of
KMO was 0.839, exceeding the suggested cut-off value of 0.6. Moreover, it indicates a
meritorious selection of variables. These results indicate that the sampling was adequate
and supports the application of factor analysis [61]. Finally, the Bartlett’s test of sphericity (a
test of at least one significant correlation between two of the items studied) was significant:
χ2 (153) = 1140.42, p < 0.05. Here, the p-value is smaller than the significance level (α = 0.05);
therefore, it confirms that the dataset is suitable to continue investigation within procedures
of EFA and CFA.

4.2.2. EFA, CFA, and Pearson’s Correlation Analysis

EFA and CFA are generally accepted and widely used as a combination of statistical
techniques, allowing researchers to reach high effectiveness in both statistical data content
analysis and testing of construct and criteria [58]. Firstly, EFA was applied to determine a
structure of latent dimensions among the observed variables reflected in the items of an
instrument. Construct validity was determined by using the principal component analysis
(PCA) extraction method and varimax rotation. In addition to the indicators of EFA, which
were presented in the pre-factor analysis, as per Table 2, it is important to “ground” the
size of the sample. Authors followed the position offered by Guadagnoli and Velicer (1988),
who claim that 150 participants could be interpreted as adequate if factor loads of several
items exceed 0.80 [58,62].

The CFA principal procedure was used for a better interpretation of factor structures, to
test the validity of the structure obtained after EFA. Here, three groups of model fit indices
were used to examine the goodness-of-fit of the model with a given dataset: videlicet
the absolute fit indices (coefficients of standardized root mean square residual, SRMR),
parsimonious indices (a coefficient of root means square error of approximation, RMSEA),
and comparative indices (coefficients of comparative fit index, CFI; non-normed fit index,
also known as the Tucker–Lewis index, TLI-NNFI) [58]. Results of these indices are
provided in Table 5.
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Table 5. Results of CFA. Source: composed by the authors, using IBM SPSS Statistics 26 (Armonk,
NY: IBM Corp.).

Indices Result

SRMR 0.063

RMSEA 0.065

CFI 0.921

TLI-NNFI 0.903

It is important to note that the chi-square/df ratio was 1.66, indicating that the model
fitted the data well. Overall, the results of fit indices in Table 5 are under the recommended
cut-off points for a good model-data fit. The value of SRMR was less than 0.08, the value
of RMSEA did not exceed the acceptable limit of 0.08, and values of CFI and TLI-NNFI
indices were above the recommended value of 0.90. Finally, the following five groups of
related factors were identified after completing EFA and CFA:

1. The first-factor group (F1) consists of six internal factors, which together represent a
factor group of personal evaluation and considerations. These six factors represent
the evaluation of the influence level within insurance purchases in digital insur-
ance platforms: perception of a need of insurance, financial well-being, potential
financial savings, consideration of loss and gains probability, recommendations, and
insurance literacy.

2. The second-factor group (F2) was formed of four external factors of technological
features and the marketing domain, which influence the insurance purchase process
in digital insurance platforms: advertising, the brand of insurance service provider,
key technical platform features, and graphical user interface features.

3. The third-factor group (F3) has two factors inside, representing a status regarding
evaluation of the digitalization level and level of preparation of insurance service
providers to apply digital solutions.

4. The fourth-factor group (F4) composes four combined factors of insurance knowledge
and operational features level, which influence the insurance purchase process in
digital insurance platforms: insurance literacy, product terms, and conditions accept-
ability, customization of insurance products, personalization of insurance processes,
and services.

5. The fifth-factor group (F5) has two factors, representing an “as-is” evaluation status
of the service personalization level and product customization level in existing digital
insurance platforms.

Results of the statistical factor analysis show the existence of five-factor groups, but
only three of them are directly related to the digital behavior and purchase decision-making
process of Baltic insurance customers: the first-factor group, the second-factor group, and
the fourth-factor group. Additionally, calculation of the total rank-sum was conducted
to identify the most influential factor groups; the first-factor group with 6648 points.
The second-factor and the fourth-factor groups have rank-sums of 4482 and 4352 points,
respectively. The Pearson correlations between the five-factor groups were calculated in a
parallel way. Details of the Pearson’s correlation calculation are provided in Table 6.

It should be outlined that three factors groups are identified as having a strong positive
Pearson correlation: the first-factor group, the second-factor group, and the fourth-factor
group. This result has a two-fold outcome. First, it supports the previous finding of
these three factor groups being predominant factors within insurance purchase–decision-
making processes at Baltics online insurance platforms. Second, it grounds the theoretical
assumption about the digital environment and technological factor influences to end-users
and extends the foundation of the theoretical insurance decision-making framework, with
new components in the pre-purchase and purchase stages.
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Table 6. The calculation of Pearson’s correlation. Source: composed by authors by using using IBM SPSS Statistics 26
(Armonk, NY: IBM Corp.).

Factor
Group 1

Factor
Group 2

Factor
Group 3

Factor
Group 4

Factor
Group 5

Factor
Group 1

Pearson
Correlation 1 0.654 ** 0.327 ** 0.726 ** 0.528 **

Sig.
(2-tailed) 0.000 0.000 0.000 0.000

N 157 157 157 157 157

Factor
Group 2

Pearson
Correlation 0.654 ** 1 0.173 * 0.758 ** 0.279 **

Sig.
(2-tailed) 0.000 0.030 0.000 0.000

N 157 157 157 157 157

Factor
Group 3

Pearson
Correlation 0.327 ** 0.173 * 1 0.444 ** 0.763 **

Sig.
(2-tailed) 0.000 0.030 0.000 0.000

N 157 157 157 157 157

Factor
Group 4

Pearson
Correlation 0.726 ** 0.758 ** 0.444 * 1 0.663 **

Sig.
(2-tailed) 0.000 0.000 0.000 0.000

N 157 157 157 157 157

Factor
Group 5

Pearson
Correlation 0.528 ** 0.279 ** 0.763 ** 0.663 ** 1

Sig.
(2-tailed) 0.000 0.000 0.000 0.000

N 157 157 157 157 157

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

Finally, the aim was to analyze the views of insurance-related specialists regarding
their sociodemographic characteristics, i.e. age, country, and gender. As the normal
distribution assumptions were not met, Mann–Whitney U and Kruskal–Wallis tests were
applied to identify whether there were any statistically significant differences between
different groups of respondents in the three most influential factor groups. Results of the
Kruskal–Wallis test are presented in Table 7.

Table 7. Results of Kruskal–Wallis H test. Source: composed by the authors by using IBM SPSS
Statistics 26 (Armonk, NY: IBM Corp.).

Variable Factor Group
Results of Kruskal–Wallis H Tests

Kruskal–Wallis H Df Asymptotic Significance

Age group

F1 3.453 4 0.485

F2 15.209 4 0.004

F4 2.736 4 0.603
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Table 7. Cont.

Variable Factor Group
Results of Kruskal–Wallis H Tests

Kruskal–Wallis H Df Asymptotic Significance

Country

F1 0.986 2 0.611

F2 2.317 2 0.314

F4 1.732 2 0.421

Results of the Mann–Whitney U test are presented in Table 8.

Table 8. Results of Mann–Whitney U test. Source: composed by the authors by using IBM SPSS Statistics 26 (Armonk, NY:
IBM Corp.).

Variable Factor Group

Results of Mann–Whitney U Test Statistics Table

Mann–Whitney U Wilcoxon W Z
Asymptotic Significance.

(2-Tailed)

Gender

F1 1980.000 2575.000 −0.473 0.636

F2 2086.000 9712.000 −0.021 0.986

F4 2011.00 2606.000 −0.341 0.733

The Kruskal–Wallis identified that the difference between the mean values of the
second-factor group for age groups was statistically significant (p-value = 0.004 is less than
the significance level 0.05). It was identified that the highest mean rank of 103.53 was in the
age group 46–55, compared to the lowest mean rank of 59.22 in the age group 18–25. More-
over, it was noticed that the value of a mean rank increases constantly within age groups.
Several conclusions can be formulated in regards to the above-defined observations:

1. External factors of technological platform features and marketing domains do not
have any significant influence on the digital insurance decision-making process for
the customers in the age group 18–25, because members of this very age group
are considered tech-savvy-type customers without any strong brand recognition
in insurance.

2. External factors of technological platform features and marketing domains have a
significant influence on the digital insurance decision-making process for customers
in the age group of 46–55. Members of this age group tend to have a higher need for a
technologically friendly platform, are already experienced with a specific brand of
insurance service providers, and possess an overall emotional connection to the brand.

The Mann–Whitney U test was applied to test for gender differences in evaluations
of factors groups. Results, presented in Table 8, do not show any statistically significant
differences in the evaluation of factor groups according to gender.

5. Discussion and Limitations

First, the above-presented factor and correlation analysis validate theoretical assump-
tions of internal and external main driving factors and the framework of the digital insur-
ance decision-making process, and disclose the actual Baltic insurer’s perception towards
this process reflection in digital distribution platforms. The main finding of a strong, posi-
tive Pearson correlation among three factor groups both support and extend the findings
of Milner and Rosenstreich (2013) [30] and Rocha and Botelho (2018) [63] studies. The
personal insurance experience factor has the highest rank (7.4) among all influential fac-
tors, supporting the findings by the structural model of attitude towards insurance (ATI)
by Rocha and Botelho (2018) [63], where factors of perception of risk in relation to the
good/asset and personal concern with finances are indicated as having the highest positive
influence towards consumers’ willingness to pay for insurance. Additionally, the high
rank (7.2) and influence of the insurance service provider brand factor confirm marketing
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domain-oriented findings of Milner and Rosenstreich (2013) [30], where marketing mixes
are recognized as an outlying component of the final financial decision-making frame-
works, and the structural ATI model of Rocha and Botelho (2018) [63], where the factor of
trust in the industry is also outlined among three of the most influential factors. From the
perspective of the Baltic insurance market research, the empirical investigation and results
of marketing-oriented factors extend the finding by Kiyak and Pranckevičiūtė (2014) [11],
where no significant statistical relationship has been identified between the insurance
purchase intention and the discount factor. Moreover, this contradiction of evaluation
results in insurance research on marketing-oriented factors will reveal a possible scope of
the marketing domain inclusion in further studies on digital insurance decision-making.
Second, the findings on the insurance literacy factor have a two-fold meaning and scientific
contribution. The lower average evaluation rank (6.9) on the insurance literacy factor
partially supports the findings by Weedige and Ouyang [18], Weedige et al. [64], and
Allodi et al. [17], where insurance literacy was identified as a potential mitigation action
and an influential factor to reduce the problem of underinsurance and low-level insurance
knowledge. Otherwise, recognition of the insurance literacy factor in non-standard com-
bination, with the factors product terms and conditions acceptability, customization, and
personalization foster an additional scientific discussion and contribute, as a standpoint, to
further conceptual modeling and empirical analysis.

The research also has methodological and empirical limitations. First, in method-
ological terms, the validity and reliability of CFA outcomes within the selected sample
of 157 respondents are questionable. It contradicts the Hoelter’s critical N (C.N.) recom-
mendation, where the acceptable size of the sample (N) should be above 200 to accept a
model at the 0.05 level [65,66]. Nevertheless, authors follow the methodological position by
Guadagnoli and Velicer (1988) [62], claiming that a sample’s size, as a function of the num-
ber of variables, is not an important factor to determine the sample pattern as being a stable
and approximate population pattern. It is outlined that a research sample size between 100
and 200 observations is valid, and under this sample, “a correlation coefficient becomes an
adequate estimator of the population correlation coefficient” [62]. Additionally, the value
of the KMO of 0.839 confirms the adequacy of sampling. Additionally, the scope of the
research instrument and assessment scale, by including more than 10 items, is considered
to bring some negative effects on the reliability of measurement results and affect the per-
ception of respondents [67]. Otherwise, it is confirmed that if the index of the Cronbach’s
alpha is equal to 0.7 or above, the research instrument of 10 or more items is treated as suffi-
cient [61]. Previous research in this field also confirmed that 9-point scale scores correlated
better than the 5-point scale, and, overall, an increase in the reliability level was noticed
due to the transition to a higher number scale [67]. The main empirical limitation of the
research can be interpreted as a future research discourse within this topic. Application of
the traditional fuzzy analytic hierarchy process (FAHP), the modified version of extended
fuzzy analytic hierarchy process (E-FAHP), or a combination of different multi-criteria
decision-making (MCDM) techniques can reduce the vagueness inherent in a stand-alone
linguistic assessment and an uncertain comparison of opinions [68]. Accordingly, future
scientific discussions and empirical investigations should be focused on using this set
of methodological techniques in continuous scientific investigations. A more extensive
and overall continuous validation of the authors’ suggested influential driving factors
within a higher sample of external customers in the Baltic insurance market is required.
Additionally, a simultaneous theoretical analysis within the presented topic, by adding the
foundation of organization buyer behavior (OBB) and/or technology acceptance models
(TAM), should be completed by the authors.

6. Conclusions

The theoretical analysis of scientific literature and recent practical trends have revealed
that the global insurance market and insurers are in a multidimensional transition period,
including an intensive digital acceleration (mostly due to COVID-19), dynamic changes
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in the market structure, and a spread of the new hybrid operational business model.
The digital environment, big data analytics, and technological and cognitive-emotional
factors have become major drivers of the modern insurance concept. Otherwise, it has
also been recognized that insurance customer behavior and decision-making processes in
digital platforms reflect on the fundamental outcomes of the traditional CDM and hybrid
choice models. Parallelly, the following features of the complex and simplified customer
behavioral models, expected utility theory and behavioral reasoning theory, could be
identified: interactive multi-step logic, the complexity of perceived risks, personal bias, and
contextual variables in decision-making, influence of the marketing domain, and feedback-
repurchase loop. The conceptual modeling confirmed that, within digital platforms, the
behavior and purchase decision making of insurance customers is a continuous, but not
a simultaneous, sequence of three-stage processes. Additionally, the statistical factor
analysis confirmed that the combination of three internal and external factor groups
influence the insurance purchase–decision-making in Baltics digital insurance platforms.
Here, a strong, positive Pearson correlation was identified among six internal factors of
personal evaluation and considerations, four external factors of technological features and
marketing domains, and four combined factors of insurance knowledge, levels of product
customization, and service personalization. Otherwise, the analysis of sociodemographic
factors, such as age group, gender, and country, showed that there are no statistically
significant relationships among these types of factors and evaluations of digitalization,
personalization, and customization levels within the Baltic non-life insurance market and
digital insurance platforms.
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