1,056 research outputs found

    Sex-specific automatic responses to infant cries: TMS reveals greater excitability in females than males in motor evoked potentials

    Get PDF
    Neuroimaging reveals that infant cries activate parts of the premotor cortical system. To validate this effect in a more direct way, we used event-related transcranial magnetic stimulation (TMS). Here, we investigated the presence and the time course of modulation of motor cortex excitability in young adults who listened to infant cries. Specifically, we recorded motor evoked potentials (MEPs) from the biceps brachii (BB) and interosseus dorsalis primus (ID1) muscles as produced by TMS delivered from 0 to 250 ms from sound onset in six steps of 50 ms in 10 females and 10 males. We observed an excitatory modulation of MEPs at 100 ms from the onset of the infant cry specific to females and to the ID1 muscle. We regard this modulation as a response to natural cry sounds because it was delayed, attenuated to stimuli increasingly different from natural cry, and was absent in a separate group of females who listened to non-cry stimuli physically matched to natural infant cries. Furthermore, the 100-ms latency of this modulation is not compatible with a voluntary reaction to the stimulus but suggests an automatic, bottom-up audiomotor association. The brains of adult females appear to be tuned to respond to infant cries with automatic motor excitation. This effect may reflect the greater and longstanding burden on females in caregiving infants

    Parental brain: cerebral areas activated by infant cries and faces. A comparison between different populations of parents and not.

    Get PDF
    Literature about parenting traditionally focused on caring behaviors and parental representations. Nowadays, an innovative line of research, interested in evaluating the neural areas and hormones implicated in the nurturing and caregiving responses, has developed. The only way to permit a newborn to survive and grow up is to respond to his needs and in order to succeed it is necessary, \ufb01rst of all, that the adults around him understand what his needs are. That is why adults\u2019 capacity of taking care of infants cannot disregard from some biological mechanisms, which allow them to be more responsive to the progeny and to infants in general. Many researches have proved that exist speci\ufb01c neural basis activating in response to infant evolutionary stimuli, such as infant cries and infant emotional facial expression. There is a sort of innate predisposition in human adults to respond to infants\u2019 signals, in order to satisfy their need and allow them to survive and become young adults capable of taking care of themselves. This article focuses on research that has investigated, in the last decade, the neural circuits underlying parental behavioral responses. Moreover, the paper compares the results of those studies that investigated the neural responses to infant stimuli under different conditions: familiar versus unknown children, parents versus non-parents and normative versus clinical samples (depression, addiction, adolescence, and PTSD)

    Making tools and making sense: complex, intentional behaviour in human evolution

    Get PDF
    Stone tool-making is an ancient and prototypically human skill characterized by multiple levels of intentional organization. In a formal sense, it displays surprising similarities to the multi-level organization of human language. Recent functional brain imaging studies of stone tool-making similarly demonstrate overlap with neural circuits involved in language processing. These observations consistent with the hypothesis that language and tool-making share key requirements for the construction of hierarchically structured action sequences and evolved together in a mutually reinforcing way

    Left gaze bias in humans, rhesus monkeys and domestic dogs

    Get PDF
    While viewing faces, human adults often demonstrate a natural gaze bias towards the left visual field, that is, the right side of the viewee’s face is often inspected first and for longer periods. Using a preferential looking paradigm, we demonstrate that this bias is neither uniquely human nor limited to primates, and provide evidence to help elucidate its biological function within a broader social cognitive framework. We observed that 6-month-old infants showed a wider tendency for left gaze preference towards objects and faces of different species and orientation, while in adults the bias appears only towards upright human faces. Rhesus monkeys showed a left gaze bias towards upright human and monkey faces, but not towards inverted faces. Domestic dogs, however, only demonstrated a left gaze bias towards human faces, but not towards monkey or dog faces, nor to inanimate object images. Our findings suggest that face- and species-sensitive gaze asymmetry is more widespread in the animal kingdom than previously recognised, is not constrained by attentional or scanning bias, and could be shaped by experience to develop adaptive behavioural significance

    The clearest mirror : the science of laughing and crying

    Get PDF
    Thesis (S.M. in Science Writing)--Massachusetts Institute of Technology, Dept. of Humanities, Graduate Program in Science Writing, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 44-48).There are few things as familiar to us as the experience of laughing and crying. Studying the two emotional expressions side to side is a way to see our species anew. A way of linking what we share with other mammals to that which sets us apart from all other species. Pulling laughing and crying onto center stage in all their theatrical glory creates a scene of which philosophers and anthropologists have long dreamt: a vision that is uniquely human. Laughing and crying are in many ways physiological and psychological opposites, but these complex behaviors are not exact reversals of the same bodily processes. Nor have researchers told me that they are connected in any biologically relevant way. But zooming out of narrow scientific definitions, digging into our evolutionary history, focusing on the disorders of laughing and crying, looking to the stage where actors and actresses come alive through their tears, there emerges a puzzle of psychology, neuroscience, evolutionary theory, and neurology slowly snapping together.by Genevieve M. Wanucha.S.M.in Science Writin

    Development of the Mu Rhythm: Understanding Function Through Translational Research

    Get PDF
    The incidental discovery of mirror neurons (MN) has renewed interest in motor theories of development and has sparked considerable debate as to the existence and potential function of mirror neurons in humans. The use of invasive single-cell recordings, however, has precluded identification of single MNs in humans or developmental populations of non-human primates. Non-invasive techniques, such as the modulation of the mu rhythm in the electroencephalogram (EEG) of young infants and children, have demonstrated the existence of an action observation/execution matching system in humans. Moreover, the mu rhythm has become an effective tool for addressing questions of MN system ontogeny in other species. The aim of this project is to address two questions that have thus far remained untested. The goal of study one is to address the question of whether or not we can identify activation of the human action observation/execution system under conditions in which the participants cannot see themselves executing a grasping action. Evidence from study one further validates our EEG measures as representing activation of the putative human MN system. The goal of study two is to examine the origins of MNs in 3-day-old mother- and nursery-reared infant rhesus macaques and the extent to which differential experience may contribute to the MN system during episodes of neonatal imitation. The results of study one demonstrated activation of the putative human MN system to actions completed in the absence of visual feedback in both human adults and infants. The magnitude of mu rhythm activity in infants was significantly less than in the adults suggesting a role of experience in the formation of the putative human MN system. The results from study two further emphasized the role of early experience showing significantly greater modulation of the mu rhythm in the mother-reared compared to the nursery-reared infants to the observation of socio-affiliative facial gestures. The evidence of studies one and two are discussed within a developmental framework of ongoing behavioral development and highlight the role experience plays, not in the foundation of, but rather the elaboration of the MN system

    Being-in-the-world-with: Presence Meets Social And Cognitive Neuroscience

    Get PDF
    In this chapter we will discuss the concepts of “presence” (Inner Presence) and “social presence” (Co-presence) within a cognitive and ecological perspective. Specifically, we claim that the concepts of “presence” and “social presence” are the possible links between self, action, communication and culture. In the first section we will provide a capsule view of Heidegger’s work by examining the two main features of the Heideggerian concept of “being”: spatiality and “being with”. We argue that different visions from social and cognitive sciences – Situated Cognition, Embodied Cognition, Enactive Approach, Situated Simulation, Covert Imitation - and discoveries from neuroscience – Mirror and Canonical Neurons - have many contact points with this view. In particular, these data suggest that our conceptual system dynamically produces contextualized representations (simulations) that support grounded action in different situations. This is allowed by a common coding – the motor code – shared by perception, action and concepts. This common coding also allows the subject for natively recognizing actions done by other selves within the phenomenological contents. In this picture we argue that the role of presence and social presence is to allow the process of self-identification through the separation between “self” and “other,” and between “internal” and “external”. Finally, implications of this position for communication and media studies are discussed by way of conclusion

    A sensorimotor control framework for understanding emotional communication and regulation

    Get PDF
    JHGW and CFH are supported by the Northwood Trust. TEVR was supported by a National Health and Medical Research Council (NHMRC) Early Career Fellowship (1088785). RP and MW were supported by the the Australian Research Council (ARC) Centre of Excellence for Cognition and its Disorders (CE110001021)Peer reviewedPublisher PD

    The neuroethology of spontaneous mimicry and emotional contagion in human and non-human animals

    Get PDF
    Spontaneous mimicry appears fundamental to emotional perception and contagion, especially when it involves facial emotional expressions. Here we cover recent evidence on spontaneous mimicry from ethology, psychology and neuroscience, in non-human and human animals. We first consider how mimicry unfolds in non-human animals (particularly primates) and how it relates to emotional contagion. We focus on two forms of mimicry-related phenomena: facial mimicry and yawn contagion, which are largely conserved across mammals and useful to draw evolutionary scenarios. Next, we expand on the psychological evidence from humans that bears on current theoretical debates and also informs non-human animal research. Finally, we cover the neural bases of facial mimicry and yawn contagion. We move beyond the perception/expression/experience trichotomy and from the correlational to the causal evidence that links facial mimicry to emotional contagion by presenting evidence from neuroimaging, direct manipulation, neuro-stimulation and lesion studies. In conclusion, this review proposes a bottom-up, multidisciplinary approach to the study of spontaneous mimicry that accounts for the evolutionary continuity linking non-human and human animals
    • 

    corecore