258 research outputs found

    Prediction of acute multiple sclerosis relapses by transcription levels of peripheral blood cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to predict the spatial frequency of relapses in multiple sclerosis (MS) would enable physicians to decide when to intervene more aggressively and to plan clinical trials more accurately.</p> <p>Methods</p> <p>In the current study our objective was to determine if subsets of genes can predict the time to the next acute relapse in patients with MS. Data-mining and predictive modeling tools were utilized to analyze a gene-expression dataset of 94 non-treated patients; 62 patients with definite MS and 32 patients with clinically isolated syndrome (CIS). The dataset included the expression levels of 10,594 genes and annotated sequences corresponding to 22,215 gene-transcripts that appear in the microarray.</p> <p>Results</p> <p>We designed a two stage predictor. The first stage predictor was based on the expression level of 10 genes, and predicted the time to next relapse with a resolution of 500 days (error rate 0.079, p < 0.001). If the predicted relapse was to occur in less than 500 days, a second stage predictor based on an additional different set of 9 genes was used to give a more accurate estimation of the time till the next relapse (in resolution of 50 days). The error rate of the second stage predictor was 2.3 fold lower than the error rate of random predictions (error rate = 0.35, p < 0.001). The predictors were further evaluated and found effective both for untreated MS patients and for MS patients that subsequently received immunomodulatory treatments after the initial testing (the error rate of the first level predictor was < 0.18 with p < 0.001 for all the patient groups).</p> <p>Conclusion</p> <p>We conclude that gene expression analysis is a valuable tool that can be used in clinical practice to predict future MS disease activity. Similar approach can be also useful for dealing with other autoimmune diseases that characterized by relapsing-remitting nature.</p

    SVM recursive feature elimination analyses of structural brain MRI predicts near-term relapses in patients with clinically isolated syndromes suggestive of multiple sclerosis

    Get PDF
    Esclerosi múltiple; Classificació d'aprenentatge automàtic; Selecció de funcionsEsclerosis múltiple; Clasificación de aprendizaje automático; Selección de característicasMultiple sclerosis; Machine learning classification; Feature selectionMachine learning classification is an attractive approach to automatically differentiate patients from healthy subjects, and to predict future disease outcomes. A clinically isolated syndrome (CIS) is often the first presentation of multiple sclerosis (MS), but it is difficult at onset to predict who will have a second relapse and hence convert to clinically definite MS. In this study, we thus aimed to distinguish CIS converters from non-converters at onset of a CIS, using recursive feature elimination and weight averaging with support vector machines. We also sought to assess the influence of cohort size and cross-validation methods on the accuracy estimate of the classification. We retrospectively collected 400 patients with CIS from six European MAGNIMS MS centres. Patients underwent brain MRI at onset of a CIS according to local standard-of-care protocols. The diagnosis of clinically definite MS at one-year follow-up was the standard against which the accuracy of the model was tested. For each patient, we derived MRI-based features, such as grey matter probability, white matter lesion load, cortical thickness, and volume of specific cortical and white matter regions. Features with little contribution to the classification model were removed iteratively through an interleaved sample bootstrapping and feature averaging approach. Classification of CIS outcome at one-year follow-up was performed with 2-fold, 5-fold, 10-fold and leave-one-out cross-validation for each centre cohort independently and in all patients together. The estimated classification accuracy across centres ranged from 64.9% to 88.1% using 2-fold cross-validation and from 73% to 92.9% using leave-one-out cross-validation. The classification accuracy estimate was higher in single-centre, smaller data sets than in combinations of data sets, being the lowest when all patients were merged together. Regional MRI features such as WM lesions, grey matter probability in the thalamus and the precuneus or cortical thickness in the cuneus and inferior temporal gyrus predicted the occurrence of a second relapse in patients at onset of a CIS using support vector machines. The increased accuracy estimate of the classification achieved with smaller and single-centre samples may indicate a model bias (overfitting) when data points were limited, but also more homogeneous. We provide an overview of classifier performance from a range of cross-validation schemes to give insight into the variability across schemes. The proposed recursive feature elimination approach with weight averaging can be used both in single- and multi-centre data sets in order to bridge the gap between group-level comparisons and making predictions for individual patients.This project received funding from the European Union's Horizon2020 Research and Innovation Program EuroPOND under grant agreement number 666992, and it was supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre. We thank all participating partners of the MAGNIMS study group for sharing their data with us

    Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation

    Get PDF
    Machine learning-based imaging diagnostics has recently reached or even superseded the level of clinical experts in several clinical domains. However, classification decisions of a trained machine learning system are typically non-transparent, a major hindrance for clinical integration, error tracking or knowledge discovery. In this study, we present a transparent deep learning framework relying on convolutional neural networks (CNNs) and layer-wise relevance propagation (LRP) for diagnosing multiple sclerosis (MS). MS is commonly diagnosed utilizing a combination of clinical presentation and conventional magnetic resonance imaging (MRI), specifically the occurrence and presentation of white matter lesions in T2-weighted images. We hypothesized that using LRP in a naive predictive model would enable us to uncover relevant image features that a trained CNN uses for decision-making. Since imaging markers in MS are well-established this would enable us to validate the respective CNN model. First, we pre-trained a CNN on MRI data from the Alzheimer's Disease Neuroimaging Initiative (n = 921), afterwards specializing the CNN to discriminate between MS patients and healthy controls (n = 147). Using LRP, we then produced a heatmap for each subject in the holdout set depicting the voxel-wise relevance for a particular classification decision. The resulting CNN model resulted in a balanced accuracy of 87.04% and an area under the curve of 96.08% in a receiver operating characteristic curve. The subsequent LRP visualization revealed that the CNN model focuses indeed on individual lesions, but also incorporates additional information such as lesion location, non-lesional white matter or gray matter areas such as the thalamus, which are established conventional and advanced MRI markers in MS. We conclude that LRP and the proposed framework have the capability to make diagnostic decisions of..

    Considering patient clinical history impacts performance of machine learning models in predicting course of multiple sclerosis

    Get PDF
    Multiple Sclerosis (MS) progresses at an unpredictable rate, but predictions on the disease course in each patient would be extremely useful to tailor therapy to the individual needs. We explore different machine learning (ML) approaches to predict whether a patient will shift from the initial Relapsing-Remitting (RR) to the Secondary Progressive (SP) form of the disease, using only “real world” data available in clinical routine. The clinical records of 1624 outpatients (207 in the SP phase) attending the MS service of Sant'Andrea hospital, Rome, Italy, were used. Predictions at 180, 360 or 720 days from the last visit were obtained considering either the data of the last available visit (Visit-Oriented setting), comparing four classical ML methods (Random Forest, Support Vector Machine, K-Nearest Neighbours and AdaBoost) or the whole clinical history of each patient (History-Oriented setting), using a Recurrent Neural Network model, specifically designed for historical data. Missing values were handled by removing either all clinical records presenting at least one missing parameter (Feature-saving approach) or the 3 clinical parameters which contained missing values (Record-saving approach). The performances of the classifiers were rated using common indicators, such as Recall (or Sensitivity) and Precision (or Positive predictive value). In the visit-oriented setting, the Record-saving approach yielded Recall values from 70% to 100%, but low Precision (5% to 10%), which however increased to 50% when considering only predictions for which the model returned a probability above a given “confidence threshold”. For the History-oriented setting, both indicators increased as prediction time lengthened, reaching values of 67% (Recall) and 42% (Precision) at 720 days. We show how “real world” data can be effectively used to forecast the evolution of MS, leading to high Recall values and propose innovative approaches to improve Precision towards clinically useful values

    Prediction of second neurological attack in patients with clinically isolated syndrome using support vector machines

    Get PDF
    The aim of this study is to predict the conversion from clinically isolated syndrome to clinically definite multiple sclerosis using support vector machines. The two groups of converters and non-converters are classified using features that were calculated from baseline data of 73 patients. The data consists of standard magnetic resonance images, binary lesion masks, and clinical and demographic information. 15 features were calculated and all combinations of them were iteratively tested for their predictive capacity using polynomial kernels and radial basis functions with leave-one-out cross-validation. The accuracy of this prediction is up to 86.4% with a sensitivity and specificity in the same range indicating that this is a feasible approach for the prediction of a second clinical attack in patients with clinically isolated syndromes, and that the chosen features are appropriate. The two features gender and location of onset lesions have been used in all feature combinations leading to a high accuracy suggesting that they are highly predictive. However, it is necessary to add supporting features to maximise the accuracy. © 2013 IEEE

    Supervised machine learning in multiple sclerosis: applications to clinically isolated syndromes

    Get PDF
    Multiple sclerosis (MS) is an inflammatory, demyelinating disease that can cause various neurological symptoms. The first episode of this disease is called a clinically isolated syndrome (CIS) and leads to the diagnosis of MS in the majority of patients in the long-term. Fast conversion from CIS to MS is associated with higher disability and more severe disease progression so that it is of high clinical interest to identify risk patients that will convert to MS within a short time. Several risk factors for conversion have been identified but they can only be applied on cohort levels. In this thesis we provide an overview of supervised machine learning approaches that can be used to distinguish individual CIS-stable patients from those who will experience a second attack within one to five years and consequently will be diagnosed with clinically definite MS. This classification is based on information available at baseline derived from routine MRI scans and complemented by clinical information such as lesion masks, age, gender, disability and CIS type of onset. We introduce the classification landscape, an overview of supervised classification studies with respect to their method and task complexity, and show that our experiments cover a large range of feature complexities in this landscape for the rather complex task of outcome prediction in CIS patients. We show that low-level voxel-based information such as tissue density of grey and white matter are not informative and lead to inconclusive results, whereas the introduction of high-level features such as lesion load, age, gender or disability improves accuracies to 71.4 % and 68 % at one- and three-year follow-up respectively in a single-centre data set. Finally, we propose a recursive feature elimination method that is able to identify specific regions that are relevant with respect to disease progression in MS and achieves accuracies of 73.9 % and 74.3 % at one- and three-year follow-up respectively even in a multi-centre setting

    Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation

    Get PDF
    Machine learning-based imaging diagnostics has recently reached or even surpassed the level of clinical experts in several clinical domains. However, classification decisions of a trained machine learning system are typically non-transparent, a major hindrance for clinical integration, error tracking or knowledge discovery. In this study, we present a transparent deep learning framework relying on 3D convolutional neural networks (CNNs) and layer-wise relevance propagation (LRP) for diagnosing multiple sclerosis (MS), the most widespread autoimmune neuroinflammatory disease. MS is commonly diagnosed utilizing a combination of clinical presentation and conventional magnetic resonance imaging (MRI), specifically the occurrence and presentation of white matter lesions in T2-weighted images. We hypothesized that using LRP in a naive predictive model would enable us to uncover relevant image features that a trained CNN uses for decision-making. Since imaging markers in MS are well-established this would enable us to validate the respective CNN model. First, we pre-trained a CNN on MRI data from the Alzheimer's Disease Neuroimaging Initiative (n = 921), afterwards specializing the CNN to discriminate between MS patients (n = 76) and healthy controls (n = 71). Using LRP, we then produced a heatmap for each subject in the holdout set depicting the voxel-wise relevance for a particular classification decision. The resulting CNN model resulted in a balanced accuracy of 87.04% and an area under the curve of 96.08% in a receiver operating characteristic curve. The subsequent LRP visualization revealed that the CNN model focuses indeed on individual lesions, but also incorporates additional information such as lesion location, non-lesional white matter or gray matter areas such as the thalamus, which are established conventional and advanced MRI markers in MS. We conclude that LRP and the proposed framework have the capability to make diagnostic decisions of CNN models transparent, which could serve to justify classification decisions for clinical review, verify diagnosis-relevant features and potentially gather new disease knowledge

    Prediction of second neurological attack in patients with clinically isolated syndrome using support vector machines

    Get PDF
    The aim of this study is to predict the conversion from clinically isolated syndrome to clinically definite multiple sclerosis using support vector machines. The two groups of converters and non-converters are classified using features that were calculated from baseline data of 73 patients. The data consists of standard magnetic resonance images, binary lesion masks, and clinical and demographic information. 15 features were calculated and all combinations of them were iteratively tested for their predictive capacity using polynomial kernels and radial basis functions with leave-one-out cross-validation. The accuracy of this prediction is up to 86.4% with a sensitivity and specificity in the same range indicating that this is a feasible approach for the prediction of a second clinical attack in patients with clinically isolated syndromes, and that the chosen features are appropriate. The two features gender and location of onset lesions have been used in all feature combinations leading to a high accuracy suggesting that they are highly predictive. However, it is necessary to add supporting features to maximise the accuracy. © 2013 IEEE

    Machine learning techniques for personalised medicine approaches in immune-mediated chronic inflammatory diseases: Applications and challenges

    Get PDF
    In the past decade, the emergence of machine learning (ML) applications has led to significant advances towards implementation of personalised medicine approaches for improved health care, due to the exceptional performance of ML models when utilising complex big data. The immune-mediated chronic inflammatory diseases are a group of complex disorders associated with dysregulated immune responses resulting in inflammation affecting various organs and systems. The heterogeneous nature of these diseases poses great challenges for tailored disease management and addressing unmet patient needs. Applying novel ML techniques to the clinical study of chronic inflammatory diseases shows promising results and great potential for precision medicine applications in clinical research and practice. In this review, we highlight the clinical applications of various ML techniques for prediction, diagnosis and prognosis of autoimmune rheumatic diseases, inflammatory bowel disease, autoimmune chronic kidney disease, and multiple sclerosis, as well as ML applications for patient stratification and treatment selection. We highlight the use of ML in drug development, including target identification, validation and drug repurposing, as well as challenges related to data interpretation and validation, and ethical concerns related to the use of artificial intelligence in clinical research
    corecore