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A B S T R A C T

Machine learning classification is an attractive approach to automatically differentiate patients from healthy
subjects, and to predict future disease outcomes. A clinically isolated syndrome (CIS) is often the first pre-
sentation of multiple sclerosis (MS), but it is difficult at onset to predict who will have a second relapse and
hence convert to clinically definite MS. In this study, we thus aimed to distinguish CIS converters from non-
converters at onset of a CIS, using recursive feature elimination and weight averaging with support vector
machines. We also sought to assess the influence of cohort size and cross-validation methods on the accuracy
estimate of the classification.

We retrospectively collected 400 patients with CIS from six European MAGNIMS MS centres. Patients un-
derwent brain MRI at onset of a CIS according to local standard-of-care protocols. The diagnosis of clinically
definite MS at one-year follow-up was the standard against which the accuracy of the model was tested. For each
patient, we derived MRI-based features, such as grey matter probability, white matter lesion load, cortical
thickness, and volume of specific cortical and white matter regions. Features with little contribution to the
classification model were removed iteratively through an interleaved sample bootstrapping and feature aver-
aging approach. Classification of CIS outcome at one-year follow-up was performed with 2-fold, 5-fold, 10-fold
and leave-one-out cross-validation for each centre cohort independently and in all patients together.

The estimated classification accuracy across centres ranged from 64.9% to 88.1% using 2-fold cross-validation
and from 73% to 92.9% using leave-one-out cross-validation. The classification accuracy estimate was higher in
single-centre, smaller data sets than in combinations of data sets, being the lowest when all patients were merged
together.

Regional MRI features such as WM lesions, grey matter probability in the thalamus and the precuneus or
cortical thickness in the cuneus and inferior temporal gyrus predicted the occurrence of a second relapse in
patients at onset of a CIS using support vector machines. The increased accuracy estimate of the classification
achieved with smaller and single-centre samples may indicate a model bias (overfitting) when data points were
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limited, but also more homogeneous. We provide an overview of classifier performance from a range of cross-
validation schemes to give insight into the variability across schemes. The proposed recursive feature elimina-
tion approach with weight averaging can be used both in single- and multi-centre data sets in order to bridge the
gap between group-level comparisons and making predictions for individual patients.

1. Introduction

Multiple sclerosis (MS) is a disease of the central nervous system
that is characterised by neuroinflammation, demyelination and neuro-
degeneration. The first clinical episode of MS is referred to as a clini-
cally isolated syndrome (CIS). A majority of CIS patients (>80%) will
eventually develop a second episode over a course of 20 years
(Miller et al., 2012), which then defines clinically definite MS (CDMS).
A shorter time to conversion from CIS to CDMS is associated with a
faster disease progression and higher disability subsequently
(Miller et al., 2012). The number of lesions on the MRI scan at onset of
CIS is a clinically highly relevant prognostic factor for the development
of CDMS and disability (Tintore et al., 2015).

Machine learning offers tools for learning how to distinguish two or
more groups based on their features and subsequently assign new,
previously unseen, cases to one of the groups. The idea of supervised
learning is to identify common characteristics in the individual groups
(i.e., patients with a known diagnosis or clinical outcome) that can be
generalised to a larger population. This supervised classification has
become increasingly popular in neuroimaging over the last decade with
a few applications also in MS (Weygandt et al., 2011; Bendfeldt et al.,
2012; Wottschel et al., 2015). However, only few studies have been
performed on the prediction of conversion to CDMS in CIS patients
(Wottschel et al., 2015; Muthuraman et al., 2016; Bendfeldt et al.,
2018), and these have often been limited to one centre (Wottschel et al.,
2015; Muthuraman et al., 2016).

A common issue is the selection of relevant features to perform a
classification. Some studies in MS and Alzheimer's disease have used
voxelwise grey-matter (GM) probability (Bendfeldt et al., 2012;
Klöppel et al., 2008), which works well when patient groups can be
distinguished based on their extent of (regional) brain atrophy. Other
studies used hand-picked features that potentially provide predictive
information (Wottschel et al., 2015; Bendfeldt et al., 2018). In a pre-
vious single-centre study (Wottschel et al., 2015), we showed that
support vector machine-based classification predicted clinical outcome
in CIS patients with an accuracy score of 71.4% using leave-one-out
cross validation. We found that a specific subset of features, mostly
related to MS lesions, performed better than individual or all available
features. However, as we note in (Wottschel et al., 2015) leave-one-out
cross-validation may overestimate classification performance on unseen
test data.

Here, we aimed to identify CIS patients developing CDMS within the
first year of their symptoms, using data collected in six European cen-
tres. We introduce a recursive feature elimination scheme, based on
weight averaging with support vector machines, in a large set of

imaging measures, including GM probability, cortical thickness, T2
white matter lesion load, and volume of specific GM and white matter
(WM) regions. These features can be easily and robustly extracted from
MRI scans, and we investigated whether our model automatically
identified informative features with respect to the classification task.
We examined the influence of the cross-validation partitioning on the
estimated classification accuracy by using 2-fold, 5-fold, 10-fold and
leave-one-out cross-validation on all data sets to provide an overview of
the bias introduced by the different schemes. The model was run in
each centre's cohort independently and then in combinations of data
sets, including all patient data together, in order compare different le-
vels of heterogeneity in the data.

2. Methods

2.1. Data

This is a retrospective study performed on data obtained by six
European centres, which are members of the MAGNIMS (Magnetic
Resonance Imaging in Multiple Sclerosis, www.magnims.eu) network
(Barcelona/Spain (B), Copenhagen/Denmark (C), Graz/Austria (G),
London/UK (L), Milan/Italy (M) and Siena/Italy (S)). The total number
of CIS patients included was 400, and 91 (22.8%) of them converted
from CIS to CDMS within one year. All baseline scans were performed
within 14 weeks (SD 7 weeks) of CIS onset. We do not have information
on treatment in this retrospective cohort. A more detailed overview of
patient characteristics is given in Table 1.

This project was approved locally by the ethics committees and
patient consent was obtained prior to data collection.

The inclusion criteria were as follows: (1) Patients with a CIS were
examined within three months from symptoms onset; (2) T1-weighted
MRI sequences of the brain were obtained at onset of a CIS, using
standard-of-care local protocols; (3) Demographic (age, sex) and clin-
ical information (e.g. type of CIS) at baseline and the presence/absence
of a second relapse at one year follow-up was available; (4) presence of
T2-hyperintense WM brain lesions as outlined in each centre on PD/T2-
weighted or FLAIR MRI by experienced researchers, resulting in binary
lesion masks.

2.2. Image processing

Due to the heterogeneity of the MRI data, we used derived measures
such as GM probability or cortical thickness (CT) which we believe to
be more robust to inter-centre variation compared to direct intensity
information. To calculate the features used in the classification

Table 1
Patient demographic and clinical characteristics per each MAGNIMS centre.

Barcelona Copenhagen Graz London Milan Siena All

No. of patients 175 24 47 72 35 47 400
Age [y] 31.9(16–50) 36.6(24–54) 33.8(21–50) 34.2(19–49) 29.5(20–43) 32.3(20–54) 32.7
Sex 124F/51M 14F/10M 34F/13M 44F/28M 24F/11M 25F/22M 265F/135M
Median EDSS (range) 2 (0–6) 3.75 (1–5) 1 (0–3.5) 1 (0–8) 2 (0–6) 1.5 (0–2) 2 (0-8)
Median global lesion load (range) [mm3] 1299

(14–25220)
461 (23–3270) 82875

(6630–779726)
849 (29–25581) 1511

(38–19383)
1868
(77–22796)

1597 (14-
779726)

Converters to CDMS at 1y follow-up 19.4% 25% 23.4% 30.6% 22.9% 21.3% 22.8%
Type of CIS onset (brainstem / optic

nerve / spinal cord / other)
52/45/48/30 0/24/0/0 10/15/10/12 6/62/4/0 10/10/3/12 10/8/17/12 88/164/82/66
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experiments, a comprehensive image processing pipeline was created as
follows.

1 Bias field correction: all MRI scans were initially corrected for bias
field inhomogeneities using the N4 algorithm (Tustison et al., 2010).

2 Lesion filling: WM lesions can have intensities similar to GM on T1-
weighted MRI, which can cause problems in registration and seg-
mentation. To reduce this effect, we used a patch-based approach
(Prados et al., 2016) to fill the lesion voxels with intensities similar
to their neighbourhood.

3 Registration: lesion masks were created from PD/T2- or FLAIR-
weighted images whereas most other image processing is performed
in T1 space. Therefore, the PD/T2 or FLAIR MRI scans were affinely
registered to T1 space using reg_aladin from the NiftyReg toolbox
(Modat et al., 2010). Lesion masks were subsequently resampled
using the obtained transformation parameters.

4 Brain parcellation: we performed a fine-grained brain parcellation of
all T1 scans using the GIF (geodesic information flows) algorithm
(Cardoso et al., 2012). This tool segments the brain into 143 ROIs
based on the Neuromorphometrics atlas (Klein and Tourville, 2012),
of which most are cortical areas as shown in Fig. 1.

5 Merging hemispheres: Measurements from the left and right hemi-
sphere are highly correlated, which is undesirable for machine
learning analyses (Bolón-Canedo et al., 2014). Therefore, corre-
sponding contralateral ROI values were averaged in order to reduce
the noise in the data and reduce collinearity of features. (Please note
that we show results with unmerged contralateral features in the
supplementary material section ‘Unmerged Hemispheres’.)

6 Grouping: ROIs were merged into nine larger areas according to
their anatomical location. Most of these areas correspond to the
anatomical brain lobes, and, therefore we refer to all of them as
’lobes’ in the context of this study. These ’lobes’ were limbic, insular,
frontal, parietal, temporal, occipital, cerebellum, GM and WM. Deep
grey matter is defined as thalamus, hippocampus, nucleus ac-
cumbens, amygdala, caudate nucleus, pallidum, putamen and basal
ganglia.

7 Segmentation: In addition to the 143 ROIs, the GIF algorithm also
provides a probabilistic segmentation of GM and WM, as well as
binary masks of brain tissue and intracranial volume.

8 Cortical thickness: this was calculated using DiReCT, a registration-
based algorithm (Das et al., 2009). It has been shown to have the
same degree of reproducibility as the more commonly used Free-
surfer method (Tustison et al., 2014) but is faster if WM and GM
probability maps are already available.

9 ROI masking. We used the ROIs from steps 4 and 6 to calculate local
information from GM probability maps, CT maps and lesion masks.

2.3. Feature definitions

Following the image processing, an extensive list of features has
been defined on different ROI scales as follows.

1 Global features: these features describe whole-brain measures such
as overall GM volume, WM volume and brain volume as a percen-
tage of the intracranial volume. In addition, we added demographic
and clinical measures such as age, sex, CIS type and EDSS.

2 ROI features: these features refer to the brain parcellations obtained
from GIF (see Section 2.2, point 4). Each ROI from the brain par-
cellation was used to mask each patient's GM probability map, CT
map, lesion segmentation and T1 scan (to estimate the volume). We
excluded ROIs describing ventricles, skull and background because
they are not expected to be discriminative.

3 Lobe features: we merged ROIs based on their anatomical location
into larger coherent regions, which mostly correspond to brain lobes
as described above.

Eventually, we concatenated the global features, the ROI features
for GM probability, CT, and volume, as well as the lobe features for GM
probability, CT, volume and lesion load. ROI lesion load was not used
because we only included WM lesions, which are found mostly in only
two very large ROIs (WM in left and right hemisphere). Due to mis-
registration of subjects, features such as ‘WM lesion load - dGM’ can
occur and should be interpreted as WM lesion load on the border of
deep GM structures.

This concatenation of all features led to a vector with 213 or 214
entries for each of the 400 subjects depending on the centre. All fea-
tures were included in the initial models and were subject to the re-
cursive feature elimination approach.

Due to differences in scanning protocols and MRI resolutions, there
were centre-specific offsets for some features. Therefore, the feature
matrix for each centre was feature-wise transformed to z-scores in order
to improve comparability and SVM performance (Juszczak et al., 2005).
The transformation centres the data to zero mean with unit variance
following =x x x( ? ))/ x =x x x( ))/ x where x′ is the normalised
vector, x̄ the mean value of feature vector x, and σx the feature's stan-
dard deviation.

2.4. Classification model

One aim of the classification was to identify CIS patients who will
convert to CDMS based on the previously described features, which
were derived from baseline data. The classifier used for this study was a
linear SVM, with which we employ a novel iterative feature selection
process.

The SVM algorithm assigns a weight to each feature and this weight
vector defines the hyperplane (i.e. the multi-dimensional extension of
lines and planes) separating the two classes. One interpretation of these
weights is as measures of feature strength for informing group mem-
bership (Bendfeldt et al., 2012; Klöppel et al., 2008). A common pro-
blem, however, is instability of this weight vector across different
samples, even from the same data set. While the weights of some fea-
tures remain relatively similar, others can vary substantially, even al-
ternating between positive and negative signs (i.e. pointing to different
classes for the same problem). Such behaviour indicates overfitting to

Fig. 1. Illustration of the Neuromorphometrics atlas used for brain parcellation in this study.

V. Wottschel, et al. NeuroImage: Clinical 24 (2019) 102011

3



features that offer little or no problem-specific information.
Here, we propose an algorithm to select only informative features

and avoid such overfitting. The algorithm runs a SVM on 1000 boot-
strap samples of patients and averages the resulting weight vectors to
define a mean weight vector descriptive of the whole cohort. By doing
this, the weights with alternating signs average to values close to zero,
while stable features maintain higher absolute values. The 20% of all
included features with average weights closest to zero are subsequently
removed and the process is repeated iteratively until the estimated
classification accuracy (mean across bootstraps) does not improve fur-
ther. The choice of 20% maintains accuracy while minimising compu-
tation time: smaller percentages increase computation time for the
same result due to smaller step sizes, while larger percentages may
remove relevant features in early iterations due to the larger step size.
Additional example results for percentages of 15% and 25% can be
found in the Supplementary Material section ‘Variation of feature re-
moval parameters’.

2.5. Class imbalance and patient sampling

Imbalanced class sizes tend to bias the SVM classifier performance
towards the majority class. To avoid this, we used down-sampling (also
known as undersampling), which is a common approach to avoid class
imbalance (Anand et al., 2010). An equal number of subjects to the size
of the minority class was selected at random from the majority class. In
our study, the minority group was represented by the converters, and
the majority class by the non-converters. This approach can potentially
introduce a sampling bias, meaning that the random sample is not re-
presentative of the whole class. We mitigate this problem by repeating
the process 1000 times with different majority class samples so the
whole cohort will be represented overall.

The main measure of classifier performance in this study was ac-
curacy, which is the proportion of correctly classified cases (i.e., con-
verters and non-converters) relative to the total cohort size. The 95%
confidence interval with respect to the 1000 repetitions was reported.
Additionally, the mean sensitivity and specificity of the classifier
(where converters are defined as positive samples and non-converters
as negative) were also reported.

2.6. Cross-validation

Cross-validation is an important tool in machine learning for testing
generalisability of a classifier. In k-fold CV, the data is split into k parts
so that k-1 parts are used for training and one part for testing. A se-
parate classifier is trained on each of the k training sets and evaluated
on the corresponding test set. Typically average performance metrics
over all k folds are reported together with range of variation (Geisser,
1993). 10-fold CV is sometimes suggested as a compromise between
bias and training sample size (Kohavi, 1995).

It is important to note, however, that the accuracy estimates arising
from the different CV approaches are only indications of classifier

performance with different levels of bias from training set size and
classifier correlations (Arlot and Celisse, 2010). The real accuracy can
only be estimated with two sufficiently large independent data sets for
training and testing. We refer to the cross-validation results as accuracy
estimates throughout this manuscript for this reason.

In this study, we performed a variety of experiments to show the
effect of sample size and cross-validation partitioning in the proposed
classification pipeline using multi-centre data. Our goal was to show a)
that the classifier is able to identify relevant features to differentiate the
two groups, b) the effect of data set size and composition, and c)
variability in accuracy estimates arising from the choice of cross-vali-
dation scheme. To do this, we used data from six individual centres
with varying number of patients (see Table 1) as well as multi-centre
combinations of these six centres, including a combination of all pa-
tients together. In order to explore how the classifier performance
changes with varying cross-validation schemes, we ran 2-fold, 5-fold,
10-fold and LOO cross-validation on all data sets where it was possible
(i.e. centres Copenhagen and Milan had less than 10 converters so that a
stratified 10-fold CV was not feasible). Similarly, we ensured centre-
stratification for the multi-centre experiments so that the settings in-
volving centre C or M could not use 10-fold CV.

Our multi-centre experiments focus on the combinations with more
heterogeneous imaging protocols (B, L, M and S) but we also explore
the combination of all centres together. An overview of all experiments
is given in Supplemental Table 1.

3. Results

We performed SVM classifications to predict the occurrence of a
second clinical episode in patients with a CIS suggestive of MS using a
large cohort of 400 patients studied in a multi-centre setting and used
an iterative RFE feature selection approach that removed the least-
contributing 20% of features at each iteration. There were differences
in estimated classification accuracy between the individual, centre-
specific data sets as well as between the different cross-validation
schemes (Tables 2–5). As expected (Kohavi, 1995), the classification
accuracy score was higher when using higher fold cross-validations
than when using lower fold methods, and was the highest with the
leave-one-out method. In particular, the mean accuracy estimates
ranged from 64.9% to 88.1% across individual centres when using a 2-
fold cross-validation, and from 73% to 92.9% when using a leave-one-
out scheme. The classification accuracy estimate was higher with
smaller data sets than with larger data sets, which might indicate
overfitting or a spurious selection bias. Multi-centre data sets lead to the
lowest accuracy estimates, which is likely due to the heterogeneity in
the data. When combining all centres’ data to only one multi-centre
data set, we obtained accuracy estimates between 64.8% for 2-fold
cross-validation and 70.8% for the leave-one-out method.

3.1. Recursive feature elimination

The proposed recursive feature elimination approach led to an in-
itial increase in accuracy score from early iterations of the procedure,
when features were removed that are not relevant to the classification
task. However, the predictive power of the model reduced in later
iterations, once relevant features were eliminated and only a low
number of features were left in the model (Fig. 2). The trajectory of
accuracy estimates was similar across all cross-validation schemes and
data sets. This behaviour is illustrated in the Fig. 2 for the whole multi-
centre data set.

3.2. Cross-validation

The accuracy estimates were very similar for all cross-validation
schemes when using all features (Fig. 2). With a reduction of features,
however, the difference in accuracy estimates among the cross-

Table 2
Results for single centres using 2-fold cross-validation.

Accuracy (95% CI) [%] Sensitivity [%] Specificity [%]

Individual data set
Barcelona (B) 64.9 (64.5–65.3) 63.7 66.1
Copenhagen (C) 88.1 (87.4–88.8) 79.4 96.8
Graz (G) 74.3 (73.7–75.0) 63.8 84.9
London (L) 75.8 (75.3–76.3) 74.3 77.3
Milan (M) 88.1 (87.5–88.7) 79.4 96.8
Siena (S) 82.9 (82.3–83.4) 68.9 96.8
Combinations of data sets (first letter of sites)
BCGLMS 64.8 (64.6–65.1) 64.1 65.6
BLMS 65.2 (64.9–65.4) 64.0 66.4
BLM 66.9 (66.6–67.2) 66.4 67.4
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validation approaches increased (Fig. 2). While the difference between
2-fold and leave-one-out method is only 2% when using all features, it
rose to 9.2% when using the selected feature sets, that maximised the
accuracy estimates. An overview of the performance estimates for all
data sets and all cross-validation schemes is given in Fig. 3 and
Tables 2–5.

3.3. Class size

The data sets from the individual centres differed in size and ranged
from 24 CIS patients with 6 converters in the Copenhagen data set, to
175 patients with 34 converters in the Barcelona cohort (Table 1). In
total, there were 400 patients of which 91 converted to CDMS within
one year of follow-up (see top of Fig. 4). Because SVMs are susceptible
to class imbalance and tend to introduce a bias towards the majority
class, we down-sampled the majority class (i.e. the non-converters) to
match the size of the minority class.

The accuracy estimates increased with decreasing class size (see
bottom of Fig. 4). In single-centre data sets, a size of 34 patients per
group leads to an accuracy estimate of 64.9% using 2-fold cross-vali-
dation and 73.0% using leave-one-out scheme, while the smallest class
size of 6 led to an accuracy estimate of 88.1% and 91.9% for 2-fold and
leave-one-out validation, respectively (Fig. 4). In multi-centre data sets,
there was a small increase from 64.8% with 91 patients per class to
66.9% with 64 patients when using 2-fold cross-validation. Similarly,
the accuracy estimate was 70.8% with 91 patients and 73.3% with 64
patients when using the leave-one-out method (Fig. 4).

3.4. Most relevant features

The recursive feature elimination algorithm selected features from
all domains, but the exact composition of feature sets at peak accuracy
score differed slightly between the data sets. When using all data with a
conservative 2-fold cross-validation the following features had the
highest absolute weights at peak accuracy: (i) White matter lesion load
in the whole brain, WM, deep GM, and the frontal, temporal and limbic
lobes, (ii) GM probability features in the cerebellum, deep GM regions
(such as the thalamus), and across the cortex, especially in the occipital
and temporal lobes; (iii) CT of the occipital, frontal and temporal lobes;
(iv) Whole brain volume and volumes of the limbic lobe, middle tem-
poral gyrus and supramarginal gyrus. The type of CIS was selected as
the only non-imaging feature relevant to the classification.

An illustration of the non-lesional imaging features is given in Fig. 5.
A complete list of selected features, as well as all candidate features, for

this experiment is given in the Supplementary Material. The final fea-
ture sets were not identical between experiments but we observed large
overlap suggesting consistency and inherently meaningful feature se-
lection.

4. Discussion

Our proposed recursive feature elimination approach and weight
averaging, with support vector machines, classifies the progression
from CIS to CDMS. The estimated accuracy for this task ranged between
64.8% and 70.8% over the cross-validation schemes in a multi-centre
setting including all patient data, and between 64.9% and 92.9% in
single-centre data sets. However, there were large differences between
the individual centres, and between the applied cross-validation
schemes. In a previous study we used a small set of 12 ‘hand-picked’
features associated with MS progression in order to predict the con-
version from CIS to CDMS with an accuracy estimate of 71.4% when
using support vector machines and LOO-CV (Wottschel et al., 2015).
However, it remained unclear if the initially selected features and cross-
validation setting were optimal, and the experiments were performed
on a single-centre data set. Here, we have extended this approach to
show that a) there were differences between centres and data set sizes,
b) features can be selected in a more automated way and c) that the
cross-validation scheme had a strong influence on the outcome.

4.1. Recursive feature elimination

The classifier did not perform well when all 214 features were used
for classification, but performance improved subsequently with each
iteration until a locally optimal number of features was reached. Once
the classifier started removing features crucial to the classification, the
accuracy score dropped again. This is in line with previous studies
where a certain subset of features performed better than single features
or all features together (Wottschel et al., 2015). The interleaved weight-
averaging across bootstraps to select redundant features for removal is a
novel and viable option to identify relevant markers of disease pro-
gression.

4.2. Class size

The accuracy estimate was generally higher in data sets with fewer
samples, so that the highest accuracy score was achieved in the smallest
centre's cohort and the lowest accuracy score in the largest cohort. This
could be explained by the fact that small samples represent less disease
variability and are therefore easier for a classifier to learn but also by

Fig. 2. Accuracy estimates achieved at different iterations of the recursive
feature selection when using all centres’ data sets combined together
(BCGLMS)). The accuracy estimates increase with the first steps of the RFE, and
the accuracy estimates generally increase with the number of folds. The shaded
areas indicate 95% confidence intervals over 1000 bootstraps.

Fig. 3. Accuracy estimates per centre or combination of centres for each cross-
validation method. Corresponding values for confidence intervals, sensitivity
and specificity can be found in Tables 2–5.
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cross-validation bias exacerbated by the small sample size. In addition
to this, it is more likely to observe spurious correlations between small
data sets and large features sets. It must be noted, however, that this
lack of variability led to an overfitted model that works well for the
data set in question, but cannot be generalised to a larger population.
The overfitting found in the smaller single-centre data sets was not
observed in the multi-centre setting due to an increase in sample size,
and therefore also variability.

4.3. Cross-validation scheme

It is well-known that the choice of cross-validation method has an
influence on the estimated classification accuracy, so we report statis-
tics from multiple schemes in order to mitigate potential bias arising
from correlation between classifiers (Kohavi, 1995). However, many
studies use the leave-one-out scheme arguing that it is more suitable for
small data sets because more data can be used for training and that it
mimics clinical practice where one can learn from large data sets and
then apply the findings to new individual cases (Bendfeldt et al., 2012;
Wottschel et al., 2015). Here, we performed a direct comparison of

different cross-validation schemes on multiple data sets and showed
clearly that there was a difference of up to 20% in estimated classifi-
cation accuracy between 2-fold and leave-one-out cross-validation.
Even though this difference is somewhat artificially high in our ex-
periments, the effect is consistent between data sets and suggests that
estimates from experiments with a high number of folds are more in-
flated than those with a lower number of folds.

The choice of cross-validation partitioning also has a direct effect on
the portion of data that is used for training, such that in 10-fold cross-
validation 90% of the data is used for training, but only 50% is used in a
2-fold method. A smaller amount of training data leads to a worse and
less generalisable model, which is something that may have happened
also in our experiments. The pattern of accuracy score change was si-
milar between cross-validation schemes in all data sets independent of
size, suggesting that we were observing a fold-size effect rather than a
training-size effect – even in data sets with a larger absolute number of
subjects per class the differences between the cross-validation schemes
are striking. For future studies, we suggest to compare two or more
cross-validation schemes to estimate potential biases when it is not
possible to use completely distinct data sets for training and testing.

4.4. Most relevant features

The classification in the multicentre setting using all data seems to
be strongly driven by the presence of white matter lesions in the whole
brain, WM, deep GM, and the frontal, temporal and limbic lobes (see
complete list in the Supplementary Materials). Current literature sup-
ports these findings as white matter lesion load in different regions is
predictive of disease progression in MS (Popescu et al., 2013;
Kearney et al., 2015; Filippi, 2001). Additionally, important features
were those related to GM probability and cortical measures. These
findings extend previous studies, which reported that surrogate mea-
sures of atrophy, such as GM probability derived in deep GM regions,
like the thalamus, predict cognitive impairment (Batista et al., 2012)
and clinical disability in MS (Eshaghi et al., 2018). Similarly, GM
probability of the occipital lobe, but also in other parts of the cortex,
was associated with the rate of progression to CDMS in CIS
(Calabrese et al., 2011). Specific cortical ROIs associated with CT and

Table 3
Results for single centres using 5-fold cross-validation.

Accuracy (95% CI) [%] Sensitivity [%] Specificity [%]

Individual data set
Barcelona (B) 68.9 (68.5–69.3) 66.9 70.9
Copenhagen (C) 91.3 (90.8–91.8) 83.3 99.4
Graz (G) 77.8 (77.3–78.4) 63.1 92.6
London (L) 88.0 (87.7–88.3) 87.4 88.6
Milan (M) 91.5 (91.1–91.9) 84.0 99.1
Siena (S) 83.7 (83.2–84.2) 70.2 97.2
Combinations of data sets (first letter of sites)
BCGLMS 68.5 (68.3–68.7) 67.8 69.3
BLMS 70.4 (70.1–70.6) 69.9 70.85
BLM 69.8 (69.5–70.1) 69.7 69.9

Table 4
Results for single centres using 10-fold cross-validation (note that centres C and
M had less than 10 converters and thus could not be used for 10-fold CV).

Accuracy (95% CI) [%] Sensitivity [%] Specificity [%]

Individual data set
Barcelona (B) 70.6 (70.2–71.0) 70.0 71.2
Copenhagen (C) NA NA NA
Graz (G) 79.1 (78.5–79.7) 67.9 90.3
London (L) 90.6 (90.3–90.9) 88.9 92.2
Milan (M) NA NA NA
Siena (S) 85.5 (85.0–86.0) 73.0 98.1
Combinations of data sets (first letter of sites)
BCGLMS NA NA NA
BLMS NA NA NA
BLM NA NA NA

Table 5
Results for single centres using leave-one-out cross-validation.

Accuracy (95% CI) [%] Sensitivity [%] Specificity [%]

Individual data set
Barcelona (B) 73.0 (72.6–73.3) 72.6 73.3
Copenhagen (C) 92.9 (92.4–93.3) 86.0 99.7
Graz (G) 82.8 (82.2–83.3) 71.2 94.2
London (L) 91.3 (91.0–91.6) 91.6 91.0
Milan (M) 92.0 (91.6–92.4) 84.4 99.6
Siena (S) 87.2 (86.7–87.7) 75.8 98.6
Combinations of data sets (first letter of sites)
BCGLMS 70.8 (70.6–71.0) 70.3 71.3
BLMS 73.3 (73.0–73.5) 73.2 73.3
BLM 73.2 (72.9–73.4) 73.5 72.8

Fig. 4. Top: bar chart of the proportion of converters in the cohort. Bottom:
estimated classification accuracy relative to the size of the minority class. There
is a general increase of estimated accuracy with a decrease in sample size. The
subscript M and S indicate multi-centre and single-centre data sets respectively.
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regional volumes, being additional surrogate measures of atrophy, were
also selected (Calabrese et al., 2011). The type of CIS was selected as
the only non-imaging feature, which is in line with group-level analyses
that showed that a CIS with involvement of the optic nerve (i.e., optic-
neuritis) has a better prognosis compared to initial lesions in the spinal
cord (Miller et al., 2012, 2005). Overall, the features selected by our
proposed approach are well supported by existing literature where the
same or similar types of biomarkers have been associated with disease
progression in MS. This study, however, allows for combining these
features to make predictions of future clinical outcome in individual
subjects.

4.5. Limitations

For this study, we aimed to use a broad range of features that can be
derived from structural MRI scans. However, the classification perfor-
mance could be improved by information from advanced MRI techni-
ques, such as magnetisation transfer imaging (MTR) (Audoin et al.,
2010) or double or phase-shifted inversion recovery (DIR/PSIR)
(Filippi et al., 2010), which have been shown to express damage outside
of WM lesions and GM lesions respectively. Similarly, a large range of
non-imaging markers such as genetic (Kelly et al., 1993) or environ-
mental factors (Ebers, 2008) could potentially be very informative in
such a study where individual subjects’ prognoses are being made.
Furthermore, a comparative study using healthy controls and patients
with MS with the same features would be desirable. Here, however, we
analysed data retrospectively and did not have any of this extra in-
formation available. Future work which includes prospective, harmo-
nised imaging protocols, demographic, environmental and genetic
factors, and all the other variables that define MS at an individual level,
may improve the prediction accuracy of the classifier.

Furthermore, the features included in this retrospective study were
by no means a complete set of all possible features that can be derived
from MRI scans. Other machine learning studies included information,
such as lesion size and shape, for prediction of CIS conversion
(Bendfeldt et al., 2018), which was not done here because we limited
this study to measures that are more easily obtainable through standard
pipelines.

The recursive feature elimination approach is a powerful method to
identify relevant features, but it does not guarantee the globally optimal
solution, as described in previous studies (Wottschel et al., 2015). This
issue is increased here due to the step size of 20% of all available

features, which are removed at each iteration. It is possible that a dif-
ferent step size would have led to higher accuracy score values, but a
too high percentage would make it more likely to accidentally remove
relevant features, whereas a too low percentage would increase com-
putation time and might introduce a significant multiple comparisons
problem. There is no strong difference in accuracy estimates when the
step size was varied between 15% and 25%, so that 20% was selected as
a compromise between computation time and potential loss of valuable
features (see also Supplementary Material).

The study used retrospectively selected cross-sectional data that was
used to derive regional measures such as regional GM probability,
cortical thickness and normalised volume that can be considered sur-
rogate measures for atrophy. Due to the lack of longitudinal MRI
follow-up, however, it cannot be confirmed that atrophy is driving the
models’ predictions because the differences in volume could also be due
to normal physiological variability. Future work should investigate this
in a large cohort with one or more radiological follow-ups.

5. Conclusion

We have presented a new approach for predicting the near-term
conversion from CIS to CDMS within a one-year follow-up. The over-
view of accuracy estimates from different cross-validation settings re-
vealed a strong influence of the selected scheme and its potential bias
on the reported accuracy. Similarly, we showed that small data sets
seemed to ‘over-perform’, which indicates overfitting problems when
classifiers did not have a sufficient number of samples to learn and
generalise from. Therefore, future neuroimaging studies using machine
learning classification need to ensure that data sets are large enough for
the classifier to pick up meaningful patterns, and to compare outcomes
from multiple cross-validation settings in order to obtain meaningful
accuracy estimates.

The proposed recursive feature elimination approach with weight
averaging can be used both in single- and multi-centre data sets in order
to bridge the gap between group-level comparisons and predicting
outcomes for individual patients. It could also be used for automated
biomarker selection in various applications as it is not limited to the
types of features in this study but could in fact use any sort of in-
formation such as genetic or neuropsychological data.

Fig. 5. Location of features relevant to
the prediction of CIS conversion at 1-
year follow-up. The highlighted areas
represent A: GM probability, B: re-
gional volume sizes and C: cortical
thickness respectively. Please note that
white matter lesion load across the
whole brain was also selected but is not
shown here for clarity. Type of CIS
onset was selected as the only non-
imaging feature. A full list of features
can be found in the supplementary
material.
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