Prediction of Second Neurological Attack in Patients with Clinically Isolated
Syndrome using Support Vector Machines

Viktor Wottschel, Olga Ciccarelli,
Declan T. Chard and David H. Miller
Institute of Neurology, UCL
London, United Kingdom
Email: viktor.wottschel. 12 @ucl.ac.uk

Abstract—The aim of this study is to predict the conversion
from cinically isolated syndrome to clinically definite multiple
sclerosis using support vector machines. The two groups of
converters and non-converters are classified using features that
were calculated from baseline data of 73 patients. The data
consists of standard magnetic resonance images, binary lesion
masks, and clinical and demographic information. 15 features
were calculated and all combinations of them were iteratively
tested for their predictive capacity using polynomial kernels
and radial basis functions with leave-one-out cross-validation.
The accuracy of this prediction is up to 86.4% with a sensitivity
and specificity in the same range indicating that this is a feasible
approach for the prediction of a second clinical attack in
patients with clinically isolated syndromes, and that the chosen
features are appropriate. The two features gender and location
of onset lesions have been used in all feature combinations
leading to a high accuracy suggesting that they are highly
predictive. However, it is necessary to add supporting features
to maximise the accuracy.
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I. INTRODUCTION

Multiple Sclerosis is a neurodegenerative disease charac-
terised by inflammation, demyelination and axon degenera-
tion leading to a disturbed signal transmission in the affected
axons [1]. A first neurological attack typically leads to the
diagnosis of a clinically isolated syndrome (CIS). It is often
associated with lesions which are visible as hyperintense
spots in the white matter (WM) structure of the brain in
standard magnetic resonance imaging (MRI) protocols like
T2- and PD-weighting [2],[4]. Depending on the onset lesion
location disorders can affect e.g. vision, movement, or sensa-
tion [3]. In approximately 30% of the CIS patients a second
neurological attack will occur during one year leading to the
diagnosis of clinically definite multiple sclerosis (CDMS).
At the same time, however, 20% will not convert to CDMS
even after 20 years [4]. The ability to predict the risk of a
second neurological attack on a short-time basis at the time
of presentation is of special interest for both the patient and
the physician’s treatment plan.

In a previous study [5] lesional features were defined,
and the predicitive capacity of support vector machines
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(SVMs) was examined using individual features and feature
combinations calculated from onset data. The aim was the
prediction of conversion from CIS to CDMS within one
year. It was shown that combinations perform better and
lead to accuracies of 77%. Further work added demographic
features and increased the classification accuracy to 84%
[6]. Here, we present the results for a completely re-defined
feature set based on the findings of the previous projects.
The new feature definitions obviate the time-consuming
registration of the images and, at the same time, remove
a possible bias.

II. METHODS

15 features were calculated from data of 73 patients who
were scanned on the same MRI scanner in London. The
scanning protocols included T1-, T2-, and PD-weighting,
and lesions were manually masked from the PD-weighted
scans by an experienced neurologist using semiautomated
methods (Figure 1). Finally, clinically and demographic
features were added.

The feature definitions are based on findings from various
studies indicating a correlation between the features and MS
progression. Lesion count and load are used as measures
for disease activity and predictors for the degree of disease
progression [7]. Lesion location and distribution has been
found to be an important factor as well [8]. Older patients are
known to develop more severe disabilities than younger ones
with the same T2 lesion load [9], and males are more likely
to develop long-term disabilities compared to females [10].
However, it is not known how these features perform in clas-
sification tasks and, especially, which combinations of these
features have the highest predictive capacity. Therefore, all
possible combinations of the 15 features were iteratively
tested towards their classification accuracy with a leave-one-
out cross-validation (LOO-CV). The gold standard for the
classification task was the occurence of a second clinical
attack within one year.



Figure 1. PD-weighted MRI scan with hyperintense lesions (a) and the
same scan overlayed with a lesion mask (b).

Table 1
SUMMARY OF RADIOLOGICAL, CLINICAL AND DEMOGRAPHIC PATIENT
INFORMATION.
Number of patients 73
Gender (m/f) 27/46
Age in years (mean [range]) 34.3 [19.4-49.8]
EDSS (median [range]) 1 [0-8]

Converters at 1 year
Lesion load in mm3 (mean [range])
Lesion count (median [range])

22/73 (30%)
2285.1 [29-22581]
11 [1-108]

A. Patient data

73 patients were presented in London with isolated syn-
dromes in the optic nerve, brainstem and spinal cord. They
were scanned during the acute or subacute phase on a
1.5 T GE Signa MRI system. The protocols included T1-
weighting and dual spin echo for T2- and PD-weighting. A
single neurologist masked the lesions on basis of the PD-
weighted images and using the T2 scans as a reference.
A summary of the radiological, clinical and demographic
patient information is presented in Table I.

B. Feature Calculation

15 features were used for the classification. Two of
them are clinical: onset location and EDSS [11]; two are
demographic: age and gender; and 11 are lesional features
calculated from the MRI scans and binary lesion masks. The
following list gives a detailled explanation of the individual
features used for this study.

1) Lesion Count: Number of WM T2 lesions calculated
from the binary lesion masks using an 18-connected
neighbourhood - Indicates severity of lesion occurance

2) Lesion Load: Total volume of WM T2 lesions in mm?®
calculated from the lesion masks - Indicates severity
of lesion occurance

3) Mean Lesion Size: Lesion Load / Lesion Count -
Indicates severity of lesion occurance

4) Standard Deviation of Mean Lesion Size - Describes
variation in individual lesion sizes

5) Minimal Lesion Size: Smallest lesion in patient in

mm? using an 18-connected neighbourhood
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Figure 2. Misaligned images make it difficult to estimate the centre of the
brain (a). Rigid registrations shift and resize the image to match a template
with a known centre without the introduction of a strong bias (b).

6) Maximal Lesion Size: Largest lesion in patient in mm?

using an 18-connected neighbourhood

7) Age: Patient age in years (arithmetically rounded)

8) Gender: Male or Female - Indicates risk for MS

9) Onset Location: Location of first clinical attack (spinal
cord, optic nerve, brainstem, multifocal)

10) EDSS: Expanded Disability Status Scale - Disability
scale for MS in steps of 0.5 from 0 (normal neurolog-
ical exam) to 10 (death due to MS)

11) Brain Volume: Total volume of brain tissue voxels (no
cerebrospinal fluid) obtained with brain extraction tool
(BET) [12]

12) WM Volume: Volume of white matter voxels (Seg-
mentation threshold at 51%)

13) GM Volume: Volume of gray matter voxels (Segmen-
tation threshold at 51%)

14) Mean Distance to Brain Centre: Distance from lesion
centroid to central voxel of MNI-152 template

15) Standard Deviation of Mean Distance to Brain Centre

C. Image Processing

For this study the images were modified as little as possi-
ble in order to avoid any bias occuring from the individual
image processing steps like e.g. a change of lesion load after
a non-linear registration. However, there were inavoidable
steps. First, the patients’ heads were not necessarily perfectly
centered in the MRI scanner so that we performed a ridig
registration to the MNI-152 template using NiftyReg [13] in
order to measure the distances between the lesion centroids
and the centre of the brain which was here defined as the
central voxel of the MNI-152 template (Figure 2).

Second, it is a known problem that lesions affect the
segmentation of white matter as they appear hyperintens in
T2- and PD-weighted MRI, and iso- or hypointens in T1-
weighted MRI. Therefore, most algorithms classify lesions
as being part of cerebrospinal fluid (CSF) so that the white
matter segmentation has ’holes’ and generally the WM
volume is underestimated. A common method to overcome
this is lesion filling as proposed by [14] for T1-weighted
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Figure 3. Hyperintense lesions lead to gaps in the WM segmentation and
therefore an underestimated WM volume (a). The introduction of a lesion
prior is a possible solution for this problem in low-contrast data (b).

MRI. However, this histogram-based method requires high-
contrast images in order to differentiate between WM and
GM - a requirement that was not sufficiently fulfilled in the
present data set. Therefore, a tissue probality map for lesions
was created using the binary lesion masks and smooth them
with a gaussian kernel of size 1 mm. Finally, all patients’
brains were segmented using NiftySeg [15] with four tissue
probability atlases for WM, GM, CSF and lesions. As it is
known that the present lesions are all WM lesions the two
resulting probabilistic segmentations for WM and lesions
could be added resulting in an improved WM segmentation
(Figure 3).

D. Classification

The classification of converters from CIS to CDMS and
non-converters was performed using the library for sup-
port vector machines LIBSVM [16] and a leave-one-out
cross-validation (LOO-CV). SVMs were originally designed
to perform linear binary classification tasks such that the
margin between the two classes is maximised [17]. The
data points that are closest to the classification border are
referred to as support vectors. However, real data usually
is not sufficiently clustered and therefore cannot be linearly
seperated. Non-linear classifcation becomes possible by ap-
plying kernel functions to the data and map it into a higher-
dimensional feature space which is less dense and possibly
allows the calculation of a hyperplane that finally seperates
the two classes.

Commonly used kernel functions are

e Linear Kernel: kijp = u’ * v

o Polynomial Kernel: kpoy = (yu' * v)d

o Radial Basis Function (RBF): kggr = e u—vl?
with u and v being feature vectors, and v and d parameters
that have to be estimated.

SVMs belong to the group of supervised learners so only a
part of the data is used to train the classifier, learn properties,
and find the seperating hyperplane. Once this plane is found
new, previously unseen data can be applied and classified.

Using LOO-CV all but one data point is used for training
and the remaining point for testing. Training and testing
points are then permuted until every patient has been used
for testing once.

III. EXPERIMENTS

The aim of this study was to identify the feature com-
binations that have the highest capacity for the prediction
of a second clinical attack and, hence, the diagnosis of
clinically definite multiple sclerosis. In order to do this all
possible combinations of the 15 features were used as an
input for the SVM resulting in 2! — 1 = 32767 feature
combinations (-1 for the combination with no features).
Every combination has been tested for different parameter
combinations. In particular, v and the cost parameter ¢ have
been varied as multiples of two from 27! to 2% resulting
in a total of 32767%10%10=3,276,700 experiments. This has
been run for both the ploynomial and the RBF kernel with a
LOO-CV. Since the present data set consists of data from 22
converters but 51 non-converters, it was not possible to use
all patient data at once as this would lead to imbalanced
groups and therefore bias the sensitivity and specificity
measures. Therefore, the non-converter group was randomly
split into three sub-groups of 22 patients to match the size
of the converter group. Finally all experiments have been
run for all three 22 vs 22 pairs in MATLAB [18].

IV. RESULTS

The results of two different kernel functions are presented,
those from the polynomial kernel (SVMp,y) and those
obtained from the RBF kernel (SVMggp).

The SVMp,y correctly classified up to 38 out of 44
patients, giving an accuracy of 86.36%. The sensitivity
was 81.82%, the specificity 90.91%, the positive predic-
tive value (PPV) 90.00% and the negative predictive value
(NPV) 83.33%. The results of the SVMgrpr were compa-
rable with also 38 correctly classified patients, an accu-
racy of 86.36%, and a sensitivity/specificity/PPV/NPV of
86.36%/86.36%/86.36%/86.36%.

The feature combinations leading to this results are shown
in Table II.

It can be seen that the features Gender and Onset Location
appear in all important feature combination indictaing a key
role in the prediction of conversion from CIS to CDMS.
However, these features alone only provide an accuracy
between 52% and 66% so that it is necessary to support
them by other features as e.g. shown in Table II.

The two distance-based measures Mean Distance to Brain
Centre and its Standard Deviation of Mean Distance are
not used in any of the highly predictive combinations and
therefore seem to be not useful for this approach.



Table II
OVERVIEW OF FEATURES COMBINATIONS LEADING TO THE HIGHEST
CLASSIFICATION ACCURACIES FOR BOTH THE POLYNOMIAL KERNEL
AND THE RADIAL BASIS FUNCTION.

Features SVMp,ly SVMRggpr

Ist | 2nd | 3rd | 1st | 2nd | 3rd
Lesion Count . . .
Lesion Load .
Mean Size ° . °
Std of Mean Size . .
Min Size . .
Max Size . .
Age . . . .
Gender . ° . ° ° °
Onset Location . . . . . °
EDSS .
Brain Volume . . ° °
WM Volume .
GM Volume . . .
Mean Dist to Brain Centre
Std of Mean Distance
Accuracy in % 86 86 84 86 86 84
Sensitivity in % 82 82 77 86 86 86
Specificity in % 91 91 91 86 86 82
PPV in % 90 90 89 86 86 83
NPV in % 83 83 80 86 86 86

V. CONCLUSION

It has been shown that the new features can be used in
an SVM to predict a second clinical attack in CIS patients,
and the accuracies for this prediction have been improved
compared to previous studies. The obtained accuracies of up
to 86.4% are competitive and in a range of clinical usability.

However, the feature definitions are not yet optimal and
there is room for improvement. Further work will investigate
more useful measures for lesion distribution in order to
replace the two distance-based measures that did not support
the classification in this study.

The segmentation, especially of the white matter, may be
improved with new tools for lesion filling, and images with a
higher contrast and signal-to-noise ratio. A possible solution
for lesion filling is inpainting as presented by [19].

Finally, the findings have to be validated with another data
set to prove the general applicability.
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