48,937 research outputs found

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Metaheuristic Algorithms for Convolution Neural Network

    Get PDF
    A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent).Comment: Article ID 1537325, 13 pages. Received 29 January 2016; Revised 15 April 2016; Accepted 10 May 2016. Academic Editor: Martin Hagan. in Hindawi Publishing. Computational Intelligence and Neuroscience Volume 2016 (2016

    ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing

    Full text link
    With the aim of developing a fast yet accurate algorithm for compressive sensing (CS) reconstruction of natural images, we combine in this paper the merits of two existing categories of CS methods: the structure insights of traditional optimization-based methods and the speed of recent network-based ones. Specifically, we propose a novel structured deep network, dubbed ISTA-Net, which is inspired by the Iterative Shrinkage-Thresholding Algorithm (ISTA) for optimizing a general 1\ell_1 norm CS reconstruction model. To cast ISTA into deep network form, we develop an effective strategy to solve the proximal mapping associated with the sparsity-inducing regularizer using nonlinear transforms. All the parameters in ISTA-Net (\eg nonlinear transforms, shrinkage thresholds, step sizes, etc.) are learned end-to-end, rather than being hand-crafted. Moreover, considering that the residuals of natural images are more compressible, an enhanced version of ISTA-Net in the residual domain, dubbed {ISTA-Net}+^+, is derived to further improve CS reconstruction. Extensive CS experiments demonstrate that the proposed ISTA-Nets outperform existing state-of-the-art optimization-based and network-based CS methods by large margins, while maintaining fast computational speed. Our source codes are available: \textsl{http://jianzhang.tech/projects/ISTA-Net}.Comment: 10 pages, 6 figures, 4 Tables. To appear in CVPR 201

    Sum Spectral Efficiency Maximization in Massive MIMO Systems: Benefits from Deep Learning

    Full text link
    This paper investigates the joint data and pilot power optimization for maximum sum spectral efficiency (SE) in multi-cell Massive MIMO systems, which is a non-convex problem. We first propose a new optimization algorithm, inspired by the weighted minimum mean square error (MMSE) approach, to obtain a stationary point in polynomial time. We then use this algorithm together with deep learning to train a convolutional neural network to perform the joint data and pilot power control in sub-millisecond runtime, making it suitable for online optimization in real multi-cell Massive MIMO systems. The numerical result demonstrates that the solution obtained by the neural network is 1%1\% less than the stationary point for four-cell systems, while the sum SE loss is 2%2\% in a nine-cell system.Comment: 4 figures, 1 table. Accepted by ICC 2019. arXiv admin note: text overlap with arXiv:1901.0362
    corecore