535 research outputs found

    Optimum receiver design for broadband Doppler compensation in multipath/Doppler channels with rational orthogonal wavelet signaling

    Get PDF
    Copyright © 2007 IEEEIn this paper, we address the issue of signal transmission and Doppler compensation in multipath/Doppler channels. Based on a wavelet-based broadband Doppler compensation structure, this paper presents the design and performance characterization of optimum receivers for this class of communication systems. The wavelet-based Doppler compensation structure takes account of the coexistence of multiple Doppler scales in a multipath/Doppler channel and captures the information carried by multiple scaled replicas of the transmitted signal rather than an estimation of an average Doppler as in conventional Doppler compensation schemes. The transmitted signal is recovered by the perfect reconstruction (PR) wavelet analysis filter bank (FB). We demonstrate that with rational orthogonal wavelet signaling, the proposed communication structure corresponds to a Lth-order diversity system, where L is the number of dominant transmission paths. Two receiver designs for pulse amplitude modulation (PAM) signal transmission are presented. Both receiver designs are optimal under the maximum-likelihood (ML) criterion for diversity combination and symbol detection. Good performance is achieved for both receivers in combating the Doppler effect and intersymbol interference (ISI) caused by multipath while mitigating the channel noise. In particular, the second receiver design overcomes symbol timing sensitivities present in the first design at reasonable cost to performance.Limin Yu and Langford B. Whit

    A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity

    Full text link
    The richness of natural images makes the quest for optimal representations in image processing and computer vision challenging. The latter observation has not prevented the design of image representations, which trade off between efficiency and complexity, while achieving accurate rendering of smooth regions as well as reproducing faithful contours and textures. The most recent ones, proposed in the past decade, share an hybrid heritage highlighting the multiscale and oriented nature of edges and patterns in images. This paper presents a panorama of the aforementioned literature on decompositions in multiscale, multi-orientation bases or dictionaries. They typically exhibit redundancy to improve sparsity in the transformed domain and sometimes its invariance with respect to simple geometric deformations (translation, rotation). Oriented multiscale dictionaries extend traditional wavelet processing and may offer rotation invariance. Highly redundant dictionaries require specific algorithms to simplify the search for an efficient (sparse) representation. We also discuss the extension of multiscale geometric decompositions to non-Euclidean domains such as the sphere or arbitrary meshed surfaces. The etymology of panorama suggests an overview, based on a choice of partially overlapping "pictures". We hope that this paper will contribute to the appreciation and apprehension of a stream of current research directions in image understanding.Comment: 65 pages, 33 figures, 303 reference

    Self-similar prior and wavelet bases for hidden incompressible turbulent motion

    Get PDF
    This work is concerned with the ill-posed inverse problem of estimating turbulent flows from the observation of an image sequence. From a Bayesian perspective, a divergence-free isotropic fractional Brownian motion (fBm) is chosen as a prior model for instantaneous turbulent velocity fields. This self-similar prior characterizes accurately second-order statistics of velocity fields in incompressible isotropic turbulence. Nevertheless, the associated maximum a posteriori involves a fractional Laplacian operator which is delicate to implement in practice. To deal with this issue, we propose to decompose the divergent-free fBm on well-chosen wavelet bases. As a first alternative, we propose to design wavelets as whitening filters. We show that these filters are fractional Laplacian wavelets composed with the Leray projector. As a second alternative, we use a divergence-free wavelet basis, which takes implicitly into account the incompressibility constraint arising from physics. Although the latter decomposition involves correlated wavelet coefficients, we are able to handle this dependence in practice. Based on these two wavelet decompositions, we finally provide effective and efficient algorithms to approach the maximum a posteriori. An intensive numerical evaluation proves the relevance of the proposed wavelet-based self-similar priors.Comment: SIAM Journal on Imaging Sciences, 201

    Wavelets/multiwavelets bases and correspondence estimation problem : an analytic study

    Full text link
    Correspondence estimation in one of the most active research areas in the field of computer vision and number of techniques has been proposed, possessing both advantages and shortcomings. Among the techniques reported, multiresolution analysis based stereo correspondence estimation has gained lot of research focus in recent years. Although, the most widely employed medium for multiresolution analysis is wavelets and multiwavelets bases, however, relatively little work has been reported in this context. In this work we have tried to address some of the issues regarding the work done in this domain and the inherited shortcomings. In the light of these shortcomings, we propose a new technique to overcome some of the flaws that could have significantly impact on the algorithm performance and has not been addressed in the earlier propositions. Proposed algorithm uses multiresolution analysis enforced with wavelets/multiwavelts transform modulus maxima to establish correspondences between the stereo pair of images. Variety of wavelets and multiwavelets bases, possessing distinct properties such as orthogonality, approximation order, short support and shape are employed to analyse their effect on the performance of correspondence estimation. The idea is to provide knowledge base to understand and establish relationships between wavelets and multiwavelets properties and their effect on the quality of stereo correspondence estimation

    Estimation of the effective elastic thickness of the lithosphere using inverse spectral methods: the state of the art

    Get PDF
    The effective elastic thickness (Te) is a geometric measure of the flexural rigidity of the lithosphere, which describes the resistance to bending under the application of applied, vertical loads. As such, it is likely that its magnitude has a major role in governing the tectonic evolution of both continental and oceanic plates. Of the several ways to estimate Te, one has gained popularity in the 40 years since its development because it only requires gravity and topography data, both of which are now readily available and provide excellent coverage over the Earth and even the rocky planets and moons of the solar system. This method, the ‘inverse spectral method’, develops measures of the relationship between observed gravity and topography data in the spatial frequency (wavenumber) domain, namely the admittance and coherence. The observed measures are subsequently inverted against the predictions of thin, elastic plate models, giving estimates of Te and other lithospheric parameters. This article provides a review of inverse spectral methodology and the studies that have used it. It is not, however, concerned with the geological or geodynamic significance or interpretation of Te, nor does it discuss and compare Te results from different methods in different provinces. Since the three main aspects of the subject are thin elastic plate flexure, spectral analysis, and inversion methods, the article broadly follows developments in these. The review also covers synthetic plate modelling, and concludes with a summary of the controversy currently surrounding inverse spectral methods, whether or not the large Te values returned in cratonic regions are artefacts of the method, or genuine observations

    Mammogram Diagnostics via 2-D Complex Wavelet-based Self-similarity Measures

    Get PDF
    Breast cancer is the second leading cause of death in women in the United States. Mammography is currently the most eective method for detecting breast cancer early; however, radiological inter- pretation of mammogram images is a challenging task. Many medical images demonstrate a certain degree of self-similarity over a range of scales. This scaling can help us to describe and classify mammograms. In this work, we generalize the scale-mixing wavelet spectra to the complex wavelet domain. In this domain, we estimate Hurst parameter and image phase and use them as discriminatory descriptors to clas- sify mammographic images to benign and malignant. The proposed methodology is tested on a set of images from the University of South Florida Digital Database for Screening Mammography (DDSM). Keywords: Scaling; Complex Wavelets; Self-similarity; 2-D Wavelet Scale-Mixing Spectra

    Tele-cardiology sensor networks for remote ECG monitoring

    Get PDF
    One of today’s most pressing matters in medical care is the response time to patients in need. The scope of this thesis is to suggest a solution that would help reduce response time in emergency situations utilizing wireless sensor networks technology. Wireless sensor network researches have recently gained unprecedented momentum in both industries and academia, especially its potential applications in Emergency Medical Services and Intensive Care Units. The enhanced power efficiency, minimized production cost, condensed physical layout, as well as reduced wired connections, presents a much more proficient and simplified approach to the continuous monitoring of patients’ physiological status. This thesis focuses on the areas of remote ECG feature extraction utilizing wavelet transformation concepts and sensor networks technology. The proposed sensor network system provides the following contributions. The low-cost, low-power wearable platforms are to be distributed to patients of concern and will provide continuous ECG monitoring by measuring electrical potentials between various points of the body using a galvanometer. The system is enabled with integrated RF communication capability that will relay the signals wirelessly to a workstation monitor. The workstation is equipped with ECG signal processing software that performs ECG characteristic extractions via wavelet transformation. Lastly, a low-complex, end-to-end security scheme is also incorporated into this system to ensure patient privacy. Other notable features include location tracking algorithms for patient tracking, and MATLAB Server environment for internal communication
    corecore