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Abstract. Breast cancer is the second leading cause of death in women
in the United States. Mammography is currently the most effective
method for detecting breast cancer early; however, radiological inter-
pretation of mammogram images is a challenging task. Many medical
images demonstrate a certain degree of self-similarity over a range of
scales. This scaling can help us to describe and classify mammograms.

In this work, we generalize the scale-mixing wavelet spectra to the
complex wavelet domain. In this domain, we estimate Hurst parameter
and image phase and use them as discriminatory descriptors to clas-
sify mammographic images to benign and malignant. The proposed
methodology is tested on a set of images from the University of South
Florida Digital Database for Screening Mammography (DDSM).
Keywords: Scaling; Complex Wavelets; Self-similarity; 2-D Wavelet
Scale-Mixing Spectra

1. Introduction

The National Cancer Institute estimates that 1 in 8 women born today
will be diagnosed with breast cancer during her lifetime (Altekruse et al.,
2010). Breast cancer is one of the most common forms of cancer among
women in the United States, second only to non-melanoma skin cancer.
A national objective has been set by the U.S Department of Health and
Human Services to reduce the female breast cancer death rate from 22.9
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per 100,000 females in 2007 down to 20.6 by the year 2020 – a 10% im-
provement (Healthy People 2020, U.S. Department of Health and Human
Services). One of the most important efforts toward that goal is advancing
the precision of screening technologies. Early detection is the best method
for improving prognosis and also leads to less invasive options for both
specific diagnosis and treatment.

Mammography is currently the most efficient and prevalent method for
detecting a breast cancer early, before the disease becomes symptomatic.
However, the radiological interpretation of mammogram images is a diffi-
cult task since the appearance of even normal tissue is highly variable and
complex, and signs of early disease are often minute or indistinct. Reading
a mammogram image is a skill that physicians develop over time, and con-
fidently stating whether findings are cancerous or not is quite difficult and
often subjective. Suspicious findings are commonly clarified by follow-up
images, ultrasound, or MRI. On the other hand, it has been estimated that
10 − 30% of cancers which could have been detected are missed (Oestre-
icher et al., 2005). Thus, improving both the specificity and the sensitivity
of mammographic diagnoses is an important goal in improving prognoses
while also reducing the number of unnecessary procedures or surgical op-
erations.

In high frequency and irregular data collected in real-life settings (both
naturally occurring and human-made), a commonly occurring phenomenon
is that of regular scaling. Examples of this have been found in a variety
of systems and processes including economics (stock market, exchange rate
fluctuations), telecommunications (internet data), physics (hydrology, tur-
bulence), geosciences (wind and rainfall patterns), and several applications
in biology and medicine (DNA sequences, heart rate variability, auditory
nerve-spike trains). The irregular behavior of these complex structures is
difficult or impossible to quantify by standard modeling techniques; but
when observations are inspected at different scales, there is in fact a regu-
lar relationship between the behavior at each scale. This phenomenon has
been demonstrated in many medical images, leading to its diagnostic use
as a tool capable of quantifying statistical similarity of data patterns at
various scales.

The standard measure of regular scaling is the Hurst exponent. This
measure can also be connected to the presence of long memory and fractal-
ity in signals and images and is viewed as an informative summary. Many
techniques for estimating the Hurst exponent exist, and assessing the ac-
curacy of these estimations can be complicated. Wavelet transforms are
powerful tool in estimating the Hurst exponent and modeling statistical
similarity at different scales. For example, Nicolis et al. (2011) proposed a
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method based on the wavelet spectra for extracting the self-similarity mea-
sures in an isotropic and anisotropic spaces. Ramı́rez-Cobo et al. (2011)
demonstrated a wavelet-based spectra method for estimating Hurst expo-
nent in time-varying two-dimensional rainfall maps.

For an efficient representation of an image or signal, the wavelet basis
is desirable to be orthogonal, symmetric and to have compact support.
(Gao and Yan, 2010). An orthogonal basis has a variety of theoretical
and practical advantages: it leads to more efficient algorithms, and estab-
lishing properties of a representation is often easier with orthogonal bases.
Most importantly, orthogonal bases preserve the variances, a property crit-
ical for the coherent definition of wavelet spectra. Symmetry guarantees
an orientation-free representation of features, preventing distortion in the
transformed domains. Moreover, the computational cost of performing
wavelet transforms depends heavily on the support size of a basis. Apart
from the Haar wavelet, complex wavelets with an odd number of vanish-
ing moments are only compactly supported wavelets which are symmetric
(Lawton, 1993). Due to this advantages, complex wavelet has been used in
various areas including motion estimation (Magarey and Kingsbury, 1998),
texture image modeling (Portilla and Simoncelli, 2000), image denoising
(Achim and Kuruoglu, 2005) and NMR spectra classification (Kim et al.,
2008). However, to the best of our knowledge, there is no literature that
investigates self-similarity measures based on the complex wavelet spectra.

The novelty of this paper is to use the scale-mixing wavelet spectra based
on complex wavelet transforms for estimating the Hurst exponent. We fo-
cus on the estimated Hurst exponent and show its ability to differentiate
cancerous from normal tissue visible in the backgrounds of mammogram
images, and compare this performance with its counterpart obtained from
real-valued wavelet transform. Moreover, complex wavelet transforms pro-
duce an additional measure, the phase information. We also demonstrate
the classification power of the phase information and use it as an additional
modality in the discriminatory analysis.

A further novelty of our work is the use of the information contained in
the background tissue of images. Most of the references found in literature
dealing with breast cancer detection methods are based on microcalcifica-
tions (Wang and Karayiannis, 1998; Netsch and Peitgen, 1999; Kestener
et al., 2001; El-Naqa et al., 2002). Only recently the information contained
in the background is taken into consideration (Nicolis et al., 2011; Hamilton
et al., 2011). This classifying measure based on the irregularity measure
of background tissue promises to be a new tool to be used in combination
with existing clinical diagnostic tools, thus improving discriminatory power
of non-invasive diagnostic techniques.
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The paper is organized as follows. In Section 2, we briefly describe the
data set used in the analysis. In Section 3, the complex wavelet based
scale-mixing wavelet spectra is proposed as new tools for estimating the
self-similarity indices. Also the importance of the phase information is
discussed. Section 4 deals with the classification of mammogram images
using the wavelet descriptors obtained from Section 3 as classifiers. Finally
Section 5 contains discussion and some concluding remarks.

2. The Dataset

The collection of digitized mammograms we analyzed was obtained from
the University of South Florida’s Digital Database for Screening Mammog-
raphy (DDSM)

http://marathon.csee.usf.edu/Mammography/Database.html.

The DDSM is described in detail in Heath et al. (2000). Images from
this database containing suspicious areas are accompanied by pixel-level
“ground truth” information relating locations of suspicious regions to what
was assessed and verified through biopsy. We selected 45 normal (benign)
cases and 79 cancer (malignant) cases scanned on the HOWTEK scanner
at the full 43.5 micron per pixel spatial resolution. Each case contains four
mammograms (two for each breast: the craniocaudal (CC) and mediolateral
oblique (MLO) projections) from a screening exam. We considered only the
CC projections, using either side of the breast image. Five sub-images of
size 1024 × 1024 was taken from each case for analysis. An example of
mammogram image and the location of sub-images is provided in Fig. 1.
For the classification purpose, we only used one of the five sub-images from
each mammogram.

3. Discrete complex wavelets

This section discusses discrete complex wavelet transforms. Unlike the
popular method used in this context (Selesnick et al., 2005), the proposed
method is unitary (complex orthogonal) and minimal.

3.1. Complex wavelet basis. The construction of the complex wavelet
basis associated with multiresolution analysis follows the usual approach
proposed by Mallat (1998) and Daubechies (1992). Details on the construc-
tion and properties of complex wavelets can be found in Lawton (1993),
Lina and Mayrand (1995), Strang and Nguyen (1996), and Zhang et al.
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Figure 1. An example of mammogram image with five sub-images
of size 1024 × 1024 considered for the analysis.

(1999). In analogy to the real case, the wavelet function ψ(x) for the com-
plex wavelet is given by

ψ(x) =
1√
2

∑
k

(−1)k2h∗1−kφ(2x− k) (1)

where φ is the scaling function, h is the low pass filter and the ∗ indicates
the complex conjugate. The representation of wavelets in 2D can be done
through the tensor product of univariate scaling functions and wavelets as
follows:

φ(x, y) = φ (x) · φ (y)

ψh(x, y) = φ (x) · ψ (y)

ψv(x, y) = ψ (x) · φ (y) (2)

ψd(x, y) = ψ (x) · ψ (y)

where symbols h, v, d in (2) stand for horizontal, vertical and diagonal direc-
tions, respectively. The atoms capture image features in the corresponding
directions.
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3.2. The complex scale-mixing 2-D wavelet transform. The dis-
crete complex wavelet transform (DCWT) can be considered as a complex-
valued extension of the standard discrete wavelet transform (DWT). It uses
complex-valued filtering (analytic filter) for transforming the real/complex
signals. Complex wavelet coefficients can be computed by Mallat’s algo-
rithm (Mallat, 1998; Morettin, 1997)

cj−1,l =
∑
k

h∗k−2lcj,k (3)

and
dj−1,l =

∑
k

g∗k−2lcj,k (4)

where h is as in (1) and g is the quadrature mirror filter. The ∗ denotes
the complex conjugate.

Conversely, the reconstruction is given by

cj,k =
∑
l

cj−1,lhk−2l +
∑
l

dj−1,lgk−2l. (5)

Moreover, the real and imaginary coefficients are used to compute the mod-
ulus and phase information. The wavelet coefficients can be written as

dj,k = Re(dj,k) + i · Im(dj,k)

with magnitude

|dj,k| =
√
Re(dj,k)2 + Im(dj,k)2

and phase

∠dj,k = arctan

(
Im(dj,k)

Re(dj,k)

)
when |Re(dj,k)| > 0.

There are many versions of the 2-D wavelet transforms which lead to
different tessellations, or tilings (Ramı́rez-Cobo et al., 2011). Here we define
the complex wavelet atoms as follows

φ(j1,j2),k(x) = 2(j1+j2)/2 φ(2j1x− k1, 2j2y − k2) (6)

ψδ,(j1,j2),k(x) = 2(j1+j2)/2 ψδ(2
j1x− k1, 2j2y − k2), (7)
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where δ is one of directions h, v, or d, and (j1, j2) ∈ Z2. Then, any function
f ∈ L2(R2) can be represented as

f(x) =
∑
k

c(J0,J0),k φ(J0,J0),k(x)

+
∑
j>J0

∑
k

d(J0,j),k ψh,(J0,j),k(x)

+
∑
j>J0

∑
k

d(j,J0),k ψv,(j,J0),k(x)

+
∑

j1,j2>J0

∑
k

d(j1,j2),k ψd,(j1,j2),k(x),

and a 2-D wavelet transform, which we call the scale-mixing wavelet trans-
form is obtained. The motivation for the name scale-mixing is obvious.
Unlike the atoms in the traditional 2-D wavelet transform, the scale-mixing
atoms mix the scale indices thus capturing the “energy flux” between the
scales.

The scale-mixing detail coefficients are defined as

d(J0,j),k = 2(J0+j)/2
∫
f(x) ψ∗h(2J0x− k1, 2jy − k2) dx dy,

d(j,J0),k = 2(j+J0)/2
∫
f(x) ψ∗v(2

jx− k1, 2J0y − k2) dx dy,

d(j1,j2),k = 2(j1+j2)/2
∫
f(x) ψ∗d(2

j1x− k1, 2j2y − k2) dx dy, (8)

where ψ∗ is a complex conjugate of ψ. Note that (j1, j2) in (6) and (7) can
be indexed as (j1, j1 + s) with s ∈ Z.

Similar to the traditional one- and two-dimensional cases, the complex
scale-mixing detail coefficients are linked to the original image (2-D signal)
through a matrix equation. Suppose that a 2n × 2n image (matrix) A is
to be transformed into the wavelet domain. The complex wavelet matrix
W is first composed by the complex scaling and wavelet filter coefficients
hk and gk as in Vidakovic (1999). Note that the wavelet filter is given by
gk = (−1)kh∗1+N−k and N is a shift parameter which affects the location
of the wavelet. Then the rows of A are transformed by a one-dimensional
transform given by the wavelet matrix W , resulting in WA†. The same is
repeated on the rows of WA†. The result is

B = W (WA†)† = WAW †, (9)

the scale-mixing wavelet transform of matrix A, which will be the basis for
defining the scale-mixing spectra. Here C† denotes Hermitian transpose
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Figure 2. Tessellations for 2-D wavelet transforms. (a)
Traditional 2-D transform of depth 4; (b) Scale-mixing
wavelet transform of depth 4.

of a complex matrix C. The representation in (9) is a finite-dimensional
implementation of (8) for signal f(x) sampled in a matrix form.

The tessellation induced by transform in (9) is shown in Figure 2 (b).
A more general transform can be obtained as an iterative repetition of the
transform in (9) with depth k, applied only on the “smooth part” of the
previous iterative step. This general approach unifies the traditional and
scale-mixing 2-D wavelet transforms.

The scale-mixing 2-D transform is operationally appealing. Constructing
appropriate W is computationally fast and, since W is unitary, the inverse
transform is straightforward:

A = W †BW.

By inspecting the tessellation in Figure 2, several hierarchies of detail spaces
can be identified. The diagonal hierarchy interfaces coefficients with the
same component scales and coincides with the diagonal hierarchy in the
traditional 2-D spectra. One level above and below the diagonal hierarchy
are hierarchies of detail spaces that interface the scales that differ by 1. For
the hierarchy above the diagonal, the scales along x-direction are interfaced
by the next coarser scale along y-direction. For the hierarchy below the
diagonal, the roles of x and y are interchanged.

The unitarity of W implies

trace(AA†) = trace(BB†)

for B = WAW †, implying the total energy in the image A

E = trace(AA†)

is preserved.
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Figure 3. (a) Three detail-space hierarchies generating the
scale-mixing 2-D transform, where (j1, j2) is indexed as
(j, j + s), s ∈ Z. Circles correspond to s = 0, triangles
to s = 1, and squares to s = −1. The scales (j0, j), j0 = 7
(squares), and (j, j0), j0 = 6 (triangles) are shown in the
figure.

3.3. The complex scale-mixing wavelet spectra. The scale-mixing
spectra is defined in terms of the complex scale-mixing coefficients in (8)

S(j) = log2 E
(
|d(j,j+s),k|2

)
, (10)

where j, s ∈ Z are fixed. Note that s = 0 in (10) corresponds to the diagonal
2-D spectra.

To calibrate the scale-mixing spectra, consider now a 2-D fractional
Brownian motion, BH(u). For such a process, the scale-mixing detail coef-
ficients are given by

d(j,j+s);k = 2j+
s
2

∫
BH(u)ψ∗

(
2ju1 − k1, 2j+su2 − k2

)
du. (11)

where ψ∗ denotes the complex conjugate of ψd, the wavelet atom in the
diagonal direction defined in (7). These coefficients are random variables
with zero mean and variance (Heneghan et al., 1996), which leads to

E
[
|d(j,j+s);k|2

]
= 22j+s

∫
ψ
(
2ju1 − k1, 2j+su2 − k2

)
×ψ∗

(
2jv1 − k1, 2j+sv2 − k2

)
E [BH(u)BH(v)] du dv. (12)

As in Veitch and Abry (1999), it is assumed here that the coefficients within
and across the scales are uncorrelated.
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From (12), it can be shown that

E
[
|d(j,j+s);k|2

]
= 2−j(2H+2) Vψ,s(H), (13)

where Vψ,s(H) is an expression depending on ψ, H and s, but not on the
scale j,

Vψ,s(H) = −
σ2H
2

∫ ∫
ψ(p + q) ψ∗(q) |ps|2H2−s dp dq. (14)

A proof of (13) is provided in the Appendix. By taking logarithms in (13)

log2 E
[
|d(j,j+s);k|2

]
= −(2H + 2)j + log2 Vψ,s(H) (15)

for j ∈ Z, the Hurst exponent can be estimated from the slope of the linear
equation (15). Finally, the empirical counterpart of (15) is a regression
defined on pairs j, log2

1

n

∑
j,j+s

∣∣d(j,j+s),k∣∣2
 , j, s ∈ Z. (16)

The slope of the regression would estimate the Hurst exponent, i.e., H =
−(slope + 2)/2. Instead of the sample mean in (16), different location
measures could be used, such as the median.

Although (16) is traditionally fitted by the ordinary least squares (OLS)
regression, the level-wise variance of wavelet coefficients is not constant.
Therefore one can improve the estimator by using more robust approach
that accounts for the heteroscedasticity. Veitch and Abry (1999) used
weighted linear regression to improve the estimator. This method weights
each level by the inverse of the variance of that level. Hamilton et al.
(2011) proposed estimation methods that are based on the Theil regres-
sion, that is, a weighted average of all pairwise slopes sij between levels
i and j. Given a weight wij , the estimator of the overall slope in (16)
is then

∑
i,j wijsij/

∑
i,j wij . Different types of weights are proposed, from

which we obtain more robust estimation methods. For example, one can use
harmonic average weighted slope which is theoretically optimal, or level-
enhanced weights that favor slopes from finer levels. In this paper we
adopted robust estimators proposed in the literature along with the OLS
regression based estimator to perform more comprehensive comparison.

3.4. The complex phase information. It is known that phase and spec-
trum are intertwined in a nontrivial way to describe the data. While phases
encode most of the coherent (in space and scale) structure of the image,
the spectrum mostly encode the strength of local information that could be
corrupted with noise (Clonda et al., 2004). For this reason phase informa-
tion have been used in edge detection and in the reconstruction of images.

São Paulo J.Math.Sci. 8, 2 (2014), 265–284



Mammogram Diagnostics via 2-D Complex Wavelet-based Self-similarity Measures 275

A classical illustration is given in Oppenheim and Lim (1981) where the
image reconstruction is more driven by the phase of the Fourier transform
rather than by the magnitude.

To elucidate this point we conducted a simple experiment, illustrated
in Figure 4. Noiseless images of Lenna and Barbara are transformed to
the complex wavelet domain using Daubechies 6-tap complex wavelet fil-
ter. Each image resulted in magnitude and phase matrices of the same
sizes as the original image. Next, we switched the phase matrices, and
transformed the objects back to the original domain. This resulted in two
surrogate images, the first from Lenna modulus and Barbara phase, and
the second from Barbara modulus and Lenna phase. Although the modulus
carries information about the “energy” of the image, the phase information
dominates the reconstruction, as evident from the second row of images in
Figure 4.
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Figure 4. Images of Lenna and Barbara (first row) are decomposed
using Daubechies complex 6 tap filter. In the wavelet domain the phase
information is switched and images transformed back. Note that phase
information dominates in the back-transformed images.
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Recently, many research studies have focused on using phase informa-
tion from the complex wavelet transforms (Anderson et al., 2005; Hua and
Orchard, 2008; Miller and Kingsbury, 2008; Rakvongthai and Oraintara,
2008; Remenyi et al., 2014). In the wavelet domain the phase of a coef-
ficient near an isolated feature varies linearly with its distance from the
feature. Despite of the numerous literatures focused on the usage of phase
in detecting edges and the feature orientations, the discriminatory power
of phase in the complex wavelet domain has not yet been systematically
studied.

In contrast to magnitudes of complex wavelet coefficients, their phases
do not exhibit any scaling property. However, some summary statistics
of the phases turn out to be discriminatory. In the following section, we
demonstrate how the phase information could be used as a classification
modality.

4. Mammogram Classification

In this section we illustrate how the complex wavelet-based spectra and
the phase information can be used to classify digitized mammograms. We
demonstrate that the spectra slope and phase, as descriptors of digitized
images, have good discriminatory power. It is straightforward to implement
the described analysis in various scientific areas in which 2-D data are
instrumental, such as geoscience or industrial applications.

For every sub-image of size 1024 × 1024, we performed discrete real-
valued wavelet transform (DWT) and discrete complex wavelet transform
(DCWT) using Daubechies 6 tap filter. After each transform, we esti-
mated the slope of wavelet spectra using traditional ordinary least squares
regression (OLS) along with three robust estimation methods described
in Section 3.3. The robust estimation approaches include Abry-Veitch
weighted regression (AV), level enhanced OLS (EOLS) and harmonic aver-
age weighted slopes (HA). For more details on these robust estimators, we
refer the readers to Veitch and Abry (1999); Hamilton et al. (2011). Note
that the wavelet spectra slope is used as a predictor instead of the Hurst
exponent. It is because the estimated Hurst exponent H is empirical, and
the slowly decaying spectra (with slope > −2) caused by the presence of
colored noise, could render H to be negative.

For each classification method, we randomly selected 67% of the data as
a training set to fit the classifier and used the remaining 33% of the data to
test performance. The random selection of training and testing sets was re-
peated 10,000 times, so the reported prediction measures are averaged over
10,000 runs. Performance was compared in terms of sensitivity, specificity,
and overall correct classification rate.
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The most parsimonious classification approach would be logistic regres-
sion involving only the wavelet spectra slope as a predictor. The result is
summarized in Table 1. Regardless of estimation methods, the performance
is comparable to the status quo with rate ranging from 0.62 to 0.68. And
this diagnostic classification does not require any skills or training and it
only uses background regularity of the image summarized by wavelet spec-
tra slope.

Table 1. Logistic classification based on the wavelet spectra slope;
four different estimation methods were compared, each with real-valued
(DWT) and complex (DCWT) wavelet transform.

Method Sensitivity Specificity Correct Classification
OLS DWT 0.93 0.10 0.63

DCWT 0.94 0.07 0.62
AV DWT 0.86 0.37 0.68

DCWT 0.85 0.35 0.66
EOLS DWT 0.93 0.13 0.63

DCWT 0.93 0.10 0.63
HA DWT 0.87 0.30 0.66

DCWT 0.87 0.29 0.65

One of the interesting findings is that the phase contains information to
classify normal images from malignant. Since the features and directions of
background tissue is best preserved in the level of finest detail, we focus on
the phase information of finest detail. Figure 4 shows how the estimated
density of the phase average and coefficient of variation (CV) at the finest
level from normal images differ from cancer images. In this case, we hy-
pothesize control mammograms have no clusters of consistent features and
edges in the detailed wavelet space.

To validate the discriminatory power of the phase information, we as-
sessed the logistic models by using each of the three summary statistics
(average, variance, coefficient of variation) of the phases at the finest level.
As Table 2 shows, any single predictor classifies malignant and normal im-
ages with correct classification rate of 61-65%.

We then conducted classification analysis based on the complex wavelet
spectra slope and the phase average. Figure 6 shows a scatter plot of cases
by complex spectra slope versus phase average, illustrating the differentia-
tion between benign and malignant cases.
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Figure 5. Left panel : Estimated density of phase average at the
finest level. Right panel : Estimated density of phase coefficient of
variation at the finest level. The solid line corresponds to malignant
cases and the dotted line to normal cases.

Table 2. Logistic classification based on summary statistics of phase
information at the finest level.

Method Sensitivity Specificity Correct Classification
Phase Average 0.82 0.35 0.65

Variance 0.87 0.15 0.61
CV 0.78 0.43 0.64

We combined complex wavelet spectra obtained from four different esti-
mation methods with the phase average. For each of the four pairs, we per-
formed logistic, linear and quadratic classification. By combining wavelet
spectra slope with phase average, we obtain classification rate of up to
0.68 with stable sensitivity and specificity rate. Several wavelet bases and
level combinations have been compared but the results and the conclusion
remain the same.
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Figure 6. Scatter plot of Complex spectra slope (obtained by AV
estimation method) versus Phase average. The symbols denote: circles
for normal mammographies, crosses for malignant mammographies.

5. Conclusions

In this paper we proposed a complex scale-mixing 2-D wavelet transform
in the context of assessing regularities of 2-D objects. The proposed trans-
form is implemented by matrix operations, and it guarantees unitarity, low
computational cost, directional insights, interplay between the scales, and
a straightforward inverse transform. We then explored the spectra and self-
similarity measures based on the proposed complex wavelet transform and
demonstrated its utility in the context of mammogram image classification.
The procedure is based on assessing the regularity of background tissues
of images rather than mammogram features such as microcalcification and
tumor masses. This approach is an unused diagnostic modality in the field.

To obtain the estimates of Hurst exponent, we used three robust estima-
tion methods (AV, EOLS and HA) along with the ordinary least squares
estimator. We also studied phase statistics at the finest level as a classifier.
From the logistic classification model, we found that robust Hurst expo-
nent estimates and the phase average have enough power to differentiate
benign from malignant cases, with correct classification rate of 62-68%. We
also showed that by combining spectra slope estimates with phase average,
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Table 3. Logistic, Linear and Quadratic classification based on the
pair of complex wavelet spectra and the phase average.

Correct
Method Sensitivity Specificity Classification

(OLS; phase average) Logistic 0.83 0.35 0.65
Linear 0.59 0.58 0.58
Quadratic 0.58 0.73 0.62

(AV; phase average) Logistic 0.82 0.43 0.67
Linear 0.59 0.68 0.62
Quadratic 0.65 0.76 0.68

(EOLS; phase average) Logistic 0.83 0.36 0.65
Linear 0.59 0.58 0.59
Quadratic 0.59 0.73 0.63

(HA; phase average) Logistic 0.83 0.40 0.67
Linear 0.60 0.63 0.61
Quadratic 0.64 0.73 0.66

we obtained high classification rate with stable sensitivity and specificity.
Therefore, complex wavelet transform greatly appeals to investigators seek-
ing more robust and reliable classification method for various application
area.

It is well known that for the real wavelets there is no symmetric and com-
pactly supported scaling function defining an orthogonal MRA. Complex
wavelets assure symmetry, compact support and orthogonality (that is uni-
tarity) of decomposing atoms which is desirable in image representations.
Since complex wavelets provide the only compactly supported and symmet-
ric basis which are unitary, it better represents the image than real-valued
wavelet transform. By using proposed method, complex wavelet transforms
can be readily performed and applied to various domains to summarize,
classify or interpret highly complex data.
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Appendix

Derivation of expression (13). The scale-mixing detail coefficients of a
2-D fBm (11) are

d(j,j+s);k = 2j+
s
2

∫
BH(u)ψ

(
2ju1 − k1, 2j+su2 − k2

)
du.

These coefficients are random variables with zero mean and variance
(Heneghan et al., 1996)

E
[
|d(j,j+s);k|2

]
= 22j+s

∫
ψ
(
2ju1 − k1, 2j+su2 − k2

)
×ψ∗

(
2jv1 − k1, 2j+sv2 − k2

)
E [BH(u)BH(v)] du dv. (17)

Since

E [BH(u)BH(v)] =
σ2H
2

(
|u|2H + |v|2H − |u− v|2H

)
,

and∫
ψ
(
2ju1 − k1, 2j+su2 − k2

)
du =

∫
ψ
(
2jv1 − k1, 2j+sv2 − k2

)
dv = 0,

it can be easily seen that (17) becomes

E
[
|d(j,j+s);k|2

]
= −

σ2H
2

22j+s
∫ ∫

ψ
(
2ju1 − k1, 2j+su2 − k2

)
×ψ∗

(
2jv1 − k1, 2j+sv2 − k2

)
|u− v|2Hdu dv.

Next, define substitutions

p = (p1, p2) =
(
2j(u1 − v1), 2j+s(u2 − v2)

)
,

Then, if ps ≡ (p1, 2
−sp2),

E
[
|d(j,j+s);k|2

]
= −

σ2H
2

22j+s
∫ ∫

ψ(p + q)

ψ∗(q) 2−2jH |ps|2H 2−4j−2s dp dq

= −
σ2H
2

2−j(2H+2)

∫ ∫
ψ(p + q) ψ∗(q) |ps|2H2−s dp dq

= 2−j(2H+2) Vψ,s(H),

where

Vψ,s(H) = −
σ2H
2

∫ ∫
ψ(p + q) ψ∗(q) |ps|2H2−s dp dq, (18)

is an integral depending on ψ, H, and s, but not on the scale j.
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