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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00793461v2


SELF-SIMILAR PRIOR AND WAVELET BASES FOR HIDDEN
INCOMPRESSIBLE TURBULENT MOTION

P. HÉAS∗, F. LAVANCIER† , AND S. KADRI-HAROUNA‡

Abstract. This work is concerned with the ill-posed inverse problem of estimating turbulent
flows from the observation of an image sequence. From a Bayesian perspective, a divergence-free
isotropic fractional Brownian motion (fBm) is chosen as a prior model for instantaneous turbulent
velocity fields. This self-similar prior characterizes accurately second-order statistics of velocity
fields in incompressible isotropic turbulence. Nevertheless, the associated maximum a posteriori
involves a fractional Laplacian operator which is delicate to implement in practice. To deal with
this issue, we propose to decompose the divergence-free fBm on well-chosen wavelet bases. As a
first alternative, we propose to design wavelets as whitening filters. We show that these filters are
fractional Laplacian wavelets composed with the Leray projector. As a second alternative, we use
a divergence-free wavelet basis, which takes implicitly into account the incompressibility constraint
arising from physics. Although the latter decomposition involves correlated wavelet coefficients, we
are able to handle this dependence in practice. Based on these two wavelet decompositions, we
finally provide effective and efficient algorithms to approach the maximum a posteriori. An intensive
numerical evaluation proves the relevance of the proposed wavelet-based self-similar priors.

Key words. Bayesian estimation, fractional Brownian motion, divergence-free wavelets, frac-
tional Laplacian, connection coefficients, fast transforms, optic-flow, isotropic turbulence.

AMS subject classifications. 60G18, 60G22, 60H05, 62F15, 65T50, 65T60

1. Introduction. This work is concerned with the ill-posed inverse problem of
estimating turbulent motions from the observation of an image sequence. Turbulence
motion phenomena are often studied in the context of incompressible fluids, which is
the setting of this paper. This inverse problem arises in the context of experimental
physical settings, where one is interested in recovering the kinematical state of an
incompressible turbulent fluid flow from the observation of a sequence of images, e.g.
particle image velocimetry in experimental fluid mechanics, wind or ocean currents
retrieval from satellite imagery in geophysics. Solving accurately this type of inverse
problems constitute an important issue since a complete physical theory is still missing
for turbulence phenomenology.

More specifically, the above inverse problem can be viewed as a Maximum A
Posteriori (MAP) estimation of a vectorial field u over a space of admissible solutions:

u∗(y0, y1) ∈ arg max
u

pδy|upu,

where y0 and y1 are two consecutive observed images, u is a velocity field, and δy
is a function of y0, y1 and u, which characterizes the evolution between y0 and y1.
In this problem, u is not observed and the incompressibility constraint demands the
motion field u to be divergence-free. In this Bayesian framework, pδy|u denotes the
likelihood model, which relates the motion of the physical system to the spatial and
temporal variations of the image intensity. The adjunction of a prior information pu

for the velocity field u is in this case mandatory since, as we will see in section 4, this
non-linear problem is under-constrained.
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Concerning the choice of pδy|u, relevant physical models have been proposed for
fluid flow imagery. A review in the context of experimental fluid mechanics can be
found in [30]. We will assume in this paper the simple model where y0 and y1 are
the solutions between two consecutive times of a transport equation driven by u, see
section 4 for more details.

Concerning the choice of pu, the incompressible Navier-Stokes equations perfectly
describe the structure of an incompressible velocity field, i.e. the prior for u. However,
this implicit choice of constraints leads to an optimization problem which is often
severely ill-conditioned and computationally prohibitive. Some recent works propose
to use a simplified version of Navier-Stokes equations to circumvent this issue (see
e.g. [10, 38]). On the other hand, instead of relying the prior on the Navier-Stokes
equations, spatial regularizers of u have been proposed to serve as a prior. A first
approach in this direction is to assume a low-dimensional parametric form for u, see
e.g. [4, 13]. A second strategy is to choose a prior that introduces some spatial
smoothness for u. Typically, the regularisation penalises in this case the norm of
the gradient (or higher derivatives) of u, see e.g. [24, 25, 45, 52]. Finally, a third
approach consists in the introduction of a self-similar constraint on u. Self-similarity
is a well-known feature of turbulence, theoretically and experimentally attested, see
e.g. [36]. An attempt in this direction has been conducted in [21, 22]. Besides, a
general family of self-similar regularizers has been introduced in [49]. In the same
spirit, our choice for the prior of u is the divergence-free isotropic fractional Brownian
motion (fBm), as we now justify.

In addition to self-similarity, we assume u to be Gaussian. Non-Gaussian tur-
bulent fields is an interesting alternative, which could potentially describe more ac-
curately the structure of turbulence [18], but they will not been considered in this
paper. Note that the definition of such models is still an active domain of investi-
gation, see [9, 27, 28, 36, 43]. Assuming further the stationarity of the increments
of u leads necessarily to u being a vector fBm (see [48]). In order to satisfy the
incompressibility constraint, u is finally demanded to be divergence-free. Although
divergence-free fBm’s can be viewed as a limiting case of the vector fBm’s considered
in [48], we provide a proper definition in section 2. In particular, a spectral integral
representation is deduced.

This choice of prior involves in practice fractional Laplacian operators, which
are numerically delicate to implement. Indeed, there is a lack of effective algorithms
in the literature able to deal in practice with those particular priors. In [49], the
authors circumvent this issue in their numerical applications by limiting themselves
to non-fractional settings. To tackle this problem, we propose to decompose fBms
on well-chosen wavelet bases. This strategy allows us to expand fractional Laplacian
operators on the wavelet components and makes their computation feasible. We focus
on two particular wavelet bases.

- As a first alternative, we propose to design wavelets as whitening filters for
divergence-free isotropic fBms. For scalar fBms indexed by time, fractional
wavelet bases represent ideal whitening filters [16, 35]. In [46, 47, 48], the au-
thors extend these bases to the case of isotropic vector fields, namely they use
the so-called fractional Laplacian polyharmonic spline wavelets. In our case
of divergence-free isotropic vector fBms, we show that for any mother wavelet,
fractional Laplacian wavelet series composed with the Leray projector is an
appropriate whitening filter.

- The second alternative is to use divergence-free wavelet bases, which are well-
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suited to our case. These wavelets simplify the decomposition, since they do
not involve fractional operators and make superfluous the use of Leray pro-
jector [14, 15, 26, 29]. However, the wavelets coefficients are then correlated.

As seen in section 5.1, implementation for the first bases can be accurately performed
in the Fourier domain. For the second bases, the computation of the associated pos-
terior density relies on the covariances of the wavelet coefficients. We provide a closed
form expression for these covariances, which allows us to propose an approximation
of the posterior using wavelet connection coefficients, see sections 5.2.1 and 5.2.2.

Moreover, an additional pleasant feature of wavelet representations is that it is
well adapted to the non-convex optimization problem of MAP estimation, since it
naturally provides a multi-resolution approach. As a matter of fact, this approach
has proved to be experimentally efficient for motion estimation problems (subjected to
different priors) [13, 25, 50]. The optimization algorithms rely on Fast Fourier Trans-
forms (FFT) or on Fast Wavelet Transforms (FWT). Finally, for the divergence-free
wavelet decomposition, we introduce an approximated MAP optimization procedure,
which turns out to be by far the fastest algorithm while being as accurate as the other
approaches.

A numerical comparison with state-of-the-art procedures is performed in section 6
on a general benchmark of divergence-free fBm. Note that, while these fields match
perfectly our priors, they are likely to be in agreement with real fluid flows according
to turbulence phenomenology, as mentioned before. As a result, our procedure seems
to recover more accurately the hidden motion field, in particular when the Hurst
parameter H corresponds to 2D and 3D turbulence models, respectively H = 1 and
H = 1

3 according to physics.
The paper is organized as follows. In section 2, we give a spectral representation

of divergence-free isotropic fBms, which will serve as the basic definition all along the
paper. In section 3, we then provide the two wavelet representations described above.
Section 4 displays the Bayesian modeling of turbulent flows in terms of wavelet coef-
ficients and considers the associated MAP estimators. In section 5, gradient descent
optimization algorithms achieving MAP estimation are presented for both wavelet
bases. The numerical evaluation of the proposed regularizers is presented in sec-
tion 6. Finally, the appendix gathers the technical proofs and some details about
the algorithms and the computation of fractional Laplacian wavelet connection coef-
ficients.

2. Spectral definition of divergence-free isotropic fBm. The unique self-
similar zero-mean Gaussian process with stationary increments is the fractional Brow-
nian motion (fBm), introduced in [34]. The definition of scalar fBm indexed by time
has been extended: to the case of multi-dimensional state spaces, i.e. vector processes
indexed by time [2]; to the field case, namely scalar isotropic fields [41]; and to both
cases, i.e. isotropic vector fields [36, 48].

As far as we are interested in the construction of a prior for turbulent vector
fields, we are particularly concerned with divergence-free isotropic vector fBm in the
following sense. For sake of clarity, this work is restricted to the bi-variate case al-
though it is possible to extend our results to higher dimensions.

Definition 2.1. A bi-variate field u(x) , (u1(x),u2(x))T , x ∈ R2, is a
divergence-free isotropic bi-variate fBm with parameter 0 < H < 1 if

• u is Gaussian;

• u is self-similar, i.e. for any λ > 0, u(λx)
L
= λHu(x);
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• u has stationary increments, i.e. ∀h ∈ R2, u(x)− u(x− h) is stationary;

• u is isotropic, i.e. for any rotation matrix M , u(x)
L
= u(Mx) ;

• u is divergence-free, i.e. div u = 0 almost surely.
Since a fBm is almost surely not differentiable, the divergence operator in the last

property is to be understood in a weak sense: for any test function ψ ∈ C1(R2) with
a fast decay at infinity,

div u , 〈div u, ψ〉 = −〈u/∇ψ〉,

where 〈., .〉 (resp. 〈./.〉) denotes the inner product of two scalar (resp. two bi-variate)
functions, and ∇ denotes the gradient operator. Let us remark that differentiability
in a weak sense is a little bit schematic when compared to real flows, since it is well
known that below the Kolmogorov scale, the field becomes smooth. The fBm model
only constitutes an approximation of turbulence, consistent with the range of scales
modelled in practice.

Isotropic fractional Brownian vector fields have been introduced by Tafti and
Unser [48] as the solution of a fractional Poisson equation, or whitening equation,
see [47] and [48]. Isotropic divergence-free fractional Brownian vector fields, as we
require, turns out to be a limiting case of the solution (corresponding to ξirr = ∞
and ξsol = 0 in the setting of [48]). Specifically, it can be defined by:

u = σ(−∆́)
−H+1

2

div W, (2.1)

where H ∈ (0, 1) is the Hurst parameter, σ is a positive constant, W is a vector of two

independent Gaussian white noise, and (−∆́)
−H+1

2

div is a fractional Laplacian operator,
defined for any f in (L2(R2))2 by

(−∆́)
−H+1

2

div f(x) =
1

(2π)2

∫
R2

(eik·x − 1)

‖k‖H+1

[
I− kkT

‖k‖2

]
F(f)(k)dk,

where F(f) denotes the Fourier transform of f = (f1, f2)T in (L2(R2))2, viz.

F(f)(k) =

(∫
R2

f1(x)e−ik·xdx,

∫
R2

f2(x)e−ik·xdx

)T
.

In the following proposition, we provide a spectral representation of u defined
by (2.1). This proposition gives an explicit representation, therefore it can also be
considered as an alternative definition. In fact, we will only refer in the sequel to this
representation when we consider isotropic divergence-free fractional Brownian vector
fields.

Proposition 2.2. The isotropic divergence-free fractional Brownian vector field
u, as defined by (2.1) admits the following representation, for any H ∈ (0, 1),

u(x) =
σ

2π

∫
R2

(eik·x − 1)

‖k‖H+1

[
I− kkT

‖k‖2

]
W̃(dk), x ∈ R2, (2.2)

where I denotes the identity matrix and W̃ = (W̃1, W̃2)T denotes a bi-variate stan-
dard Gaussian spectral measure, i.e. W̃1 and W̃2 are independent and for i = 1, 2, for
any Borel sets A,B in R2, W̃i(A) is a centered complex Gaussian random variable,
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W̃i(A) = W̃i(−A) and E(W̃i(A)W̃i(B)) = |A ∩B|.

As a by-product, we deduce the following structure matrix function that charac-
terizes the law of the Gaussian vector field u: for any i, j = 1, 2, for any x1,x2,x3,x4

in R2,

Σij(x1,x2,x3,x4) , E[(ui(x2)− ui(x1))(uj(x4)− uj(x3))]

= σ2cH
(
FHij (x2 − x3)− FHij (x2 − x4)− FHij (x1 − x3) + FHij (x1 − x4)

)
, (2.3)

where cH = Γ(1−H)/(π22H+2Γ(H + 1)H(2H + 2)) with Γ(.) denoting the Gamma
function, and

FH(x) = ‖x‖2H
(

(2H + 1)I− 2H
xxT

‖x‖2

)
.

In particular, taking x1 = x2−h and x3 = x4−h, for some h ∈ R2, shows the power-
law structure for the second order moment of the increments. We can also deduce
the generalized power spectrum Ej , j = 1, 2, of each component uj of u, defined
implicitly by (see [17, 41]):

Σjj(x1,x2,x3,x4)

=
1

(2π)2

∫
R2

Ej(k)
(
eik·(x2−x4) − eik·(x2−x3) − eik·(x1−x4) + eik·(x1−x3)

)
dk.

We deduce from the proof in Appendix A.1:

Ej(k) = σ2

(
1−

k2
j

‖k‖2

)
‖k‖−2H−2. (2.4)

While all properties required in Definition 2.1 can be found in [48] going back
to the definition (2.1), they are straightforward consequences of the spectral repre-
sentation (2.2): Gaussianity and H-self-similarity of u are easily seen from (2.2);
Stationarity of the increments and isotropy follow from (2.3); Finally the divergence-
free property of u is a consequence of the presence of the Leray projection operator[
I− kkT

‖k‖2

]
in (2.2), and will appear clearly in the wavelet decomposition of u consid-

ered in the next section.

Remark 1. The definition of u in (2.1) can be extended to H > 1, see [48].
Similarly, the spectral representation (2.2) can be extended to H > 1 by application
of successive integrations as in [41], leading to the representation

u(x) =
σ

2π

∫
R2

(eik·x −
∑bHc
j=0(ik · x)j/j!)

‖k‖H+1

[
I− kkT

‖k‖2

]
W̃(dk). (2.5)

In this case u has stationary increments of order N = bHc + 1, in the sense that
for any (hN , . . . ,h1) ∈ (R2)N , the successive symmetric differences DhN . . . Dh1u(x)
form a stationary process, where Dh : f(·) → f(· + h

2 ) − f(· − h
2 ). These increments

write specifically in this case:

DhN . . . Dh1
u(x) =

σ

2π

∫
R2

eik·x
N∏
j=1

2i sin

(
k · hj

2

)
‖k‖−H−1

[
I− kkT

‖k‖2

]
W̃(dk).
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3. Wavelet representations of divergence-free isotropic fBm. This sec-
tion presents wavelet expansions of the divergence-free isotropic fBm representation of
Proposition 2.2. As pointed out in the introduction, wavelet bases are chosen in order
to make fractional calculus involved by fBms feasible and effective. In practice we
observe u on a bounded domain, say [0, 1]2. For this reason, we focus on the wavelet
decomposition of u in (L2([0, 1]2))2. In the first part, the expansion of u relies on a
fractional Laplacian wavelet basis and finally involves uncorrelated bi-variate random
coefficients. In the second part, the expansion relies on a divergence-free wavelets
basis, which is well-adapted to our setting, and involves mono-variate but correlated
random coefficients. These two wavelet expansions will then allow us to derive ef-
ficient optimization algorithms (see section 5) solving the MAP estimation problem
presented in the introduction.

The construction of these two decompositions relies on an orthonormal wavelet
basis of L2([0, 1]). There are several methods to build orthonormal wavelet bases of
L2([0, 1]) (see [33], chapter 7). For ease of presentation, we consider the simplest one,
which consists in periodizing scalar wavelets of L2(R). Let ψ be a mother wavelet with
compact support and its associated wavelets dilated at scale 2−s+1 and translated by
2−s+1`:

ψ`,s(x) , 2(s−1)/2ψ(2s−1x− `). (3.1)

The wavelet set {ψ`,s(x);x ∈ R, `, s ∈ Z} form an orthonormal basis of L2(R). The
periodized wavelets ψper`,s , `, s ∈ Z is then defined by

ψper`,s (x) =

k=+∞∑
k=−∞

ψ`,s(x+ k), x ∈ [0, 1]. (3.2)

The set {ψper`,s (x);x ∈ [0, 1], s > 0, 0 ≤ ` < 2s−1} with the indicator function over

[0, 1] form an orthonormal basis of L2([0, 1]). We will assume in the sequel that ψ has
M > H vanishing moments and is max(H + 2, 2H) times differentiable.

3.1. Fractional Laplacian wavelet decomposition. Since a divergence-free
fBm does not belong to (L2(R2))2 almost surely, it can not be in principle decom-
posed in a wavelet basis of this space, unless we resort to generalized random fields
[23]. However, even in the later setting, this kind of decomposition typically involves
a sum depending on arbitrarily large scales, which is not suitable for application (see
[35] in the standard fBm case). In contrast, we show in Proposition 3.1 below that in
our case where u is considered on the compact domain [0, 1]2, and under a mild con-
dition (namely

∫
[0,1]2

u(x)dx = 0), the divergence-free fBm enjoys a simple tractable

decomposition in (L2([0, 1]2))2 with respect to fractional Laplacian wavelets.
The bi-dimensional wavelet basis of (L2([0, 1]2))2 is constructed from ψper`,s as

follows. Denoting IA the indicator function over the set A, we form the three following
wavelet sets:

{Φ`1,s1,0,0 = ψper`1,s1
(x1)I[0,1](x2); 0≤`1<2s1−1, s1 > 0},

{Φ0,0,`2,s2 = I[0,1](x1)ψper`2,s2
(x2); 0≤`2<2s2−1, s2 > 0},

{Φ`1,s1,`2,s2 = ψper`1,s1
(x1)ψper`2,s2

(x2); 0≤`1<2s1−1, 0≤`2<2s2−1, s1, s2 > 0}.

Let us denote by Ω the set of indices (`, s) = (`1, s1, `2, s2) involved in these three sets
and {Φ`,s; (`, s) ∈ Ω} the union of them. An orthonormal basis of L2([0, 1]2) is finally
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the union of the latter set with the indicator function I[0,1]2(x) (see Theorem 7.16 in
[33]). A basis of the product space (L2([0, 1]2))2 is deduced by tensorial product.

Let us now consider the extension of Φ`,s to L2(R2) that vanishes outside [0, 1]2,
which will be denoted by Φ0

`,s :

Φ0
`,s(x) =

{
Φ`,s(x) if x ∈ [0, 1]2,

0 if x /∈ [0, 1]2.

For any (`, s) ∈ Ω, we define the fractional Laplacian wavelets, that correspond to an
integration of order H + 1 of Φ0

`,s:

Φ
(−H−1)
`,s (x) , F−1(k 7→ ‖k‖−H−1F(Φ0

`,s)(k)), ∀(`, s) ∈ Ω, (3.3)

where F denotes the Fourier operator in L2(R2) and F−1 the inverse Fourier operator,

F−1(f)(x) =
1

(2π)2

∫
R2

eik·xf(k)dk, ∀f ∈ L2(R2).

This fractional integration operator can be denoted in the spatial domain by (−∆)
−H−1

2 ,

following [35], leading to the relation Φ
(−H−1)
`,s (x) = (−∆)

−H−1
2 Φ0

`,s(x). Note that

{Φ(−H−1)
`,s ; (`, s) ∈ Ω} constitutes a new family of wavelets, which is not orthogo-

nal, unlike {Φ`,s; (`, s) ∈ Ω}, but biorthogonal, where Φ
(H+1)
`,s is the dual wavelet of

Φ
(−H−1)
`,s , i.e. 〈Φ(H+1)

`,s ,Φ
(−H−1)
`′,s′ 〉 = δ`,`′δs,s′ for all `, `′, s, s′ (see [1, 8, 35]).

Let us finally recall the definition of the Leray projector, denoted by P, that maps
square-integrable bi-variate functions v in (L2(R2))2 onto the space of divergence-free
functions:

Pv , F−1

(
k 7→

[
I− kkT

‖k‖2

]
F(v)(k)

)
, (3.4)

where for a bivariate function v = (v1,v2)T ∈ (L2(R2))2, Fv = (Fv1,Fv2)T and
similarly for F−1. This projection operator can be formally represented in the spatial
domain by P(v) = [v −∇∆−1(∇ · v)], for sufficiently smooth functions v.

We are now in position to present the wavelet decomposition of u in (L2([0, 1]2))2.
We assume for simplicity that

∫
[0,1]2

u(x)dx = 0. Note that in practice, we observe u

on a lattice with n × n sites, so the latter assumption roughly means that the mean
value of u on this lattice is assumed to be negligible.

Proposition 3.1. Let u be an isotropic divergence-free fBm with parameter
H ∈ (0, 1). Assuming

∫
[0,1]2

u(x)dx = 0, we have in (L2([0, 1]2))2:

u(x) =
∑

(`,s)∈Ω

P
[
ε`,sΦ

(−H−1)
`,s

]
(x), (3.5)

where coefficients ε`,s , (ε1`,s, ε
2
`,s)

T are i.i.d. bi-variate zero-mean Gaussian random

variables with variance (2πσ)2I, and where Φ
(−H−1)
`,s , (`, s) ∈ Ω, are defined in (3.3),

so that ε`,sΦ
(−H−1)
`,s is the bivariate vector (ε1`,sΦ

(−H−1)
`,s , ε2`,sΦ

(−H−1)
`,s )T .
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Remark 2. As shown from the proof, the simple form (3.5) holds because the
orthonormal basis of L2([0, 1]2) that we have considered (the periodic wavelet basis)
involves a unique scaling function which is the indicator function I[0,1]2(x). It is there-
fore clear that the representation (3.5) remains valid for any other wavelet basis of
L2([0, 1]2) having the indicator function as its unique scaling function. This is in
particular the case for the folded wavelet basis [33].

Remark 3. Following Remark 1, it is easy to adapt the proof of Proposition 3.1 to
the case H > 1 and deduce that (3.5) remains also valid for H > 1, since the assump-
tion

∫
[0,1]2

u(x)dx = 0 removes all constant terms in the wavelet expansion. Moreover,

when H is an integer, there exists no clear representation of the divergence-free fBm.
In particular this case is excluded from the definition in [48]. Since the representation
(3.5) is well defined for any H, we choose to extend by continuity (3.5) to integer
values of H. Note that this convention makes u satisfy all conditions required in Def-
inition 2.1 when H is an integer. In particular self-similarity is ensured.

3.2. Divergence-free wavelet decomposition. Since u is continuous and
divergence-free, then u ∈ L2

div([0, 1]2), where L2
div([0, 1]2) denotes the space of divergence-

free bi-variate fields in [0, 1]2, i.e.

L2
div([0, 1]2) , {v ∈ (L2([0, 1]2))2 : div v = 0}.

In this section we decompose u onto a biorthogonal wavelets basis of L2
div([0, 1]2).

Such basis is constructed from an orthonormal basis of L2([0, 1]2), as described below.
Let us start from the periodized wavelets ψper`,s , `, s ∈ Z defined in (3.2). The

primal divergence-free wavelets Ψ`,s , (Ψ1
`,s,Ψ

2
`,s)

T of the biorthogonal wavelets

basis of L2
div([0, 1]2) are defined for (`, s) ∈ Ω by

- for 0≤`1<2s1−1, 0 ≤`2<2s2−1, s1, s2 > 0 :

Ψ1
`,s(x) = ψper`1,s1

(x1)ψ′per`2,s2
(x2) and Ψ2

`,s(x) = −ψ′per`1,s1
(x1)ψper`2,s2

(x2),

- for 0≤`1<2s1−1, s1 > 0, `2 = 0, s2 = 0 :

Ψ1
`,s(x) = 0 and Ψ2

`,s(x) = −ψ′per`1,s1
(x1)I[0,1](x2),

- for `1 = 0, s1 = 0, 0≤`2<2s2−1, s2 > 0 :

Ψ1
`,s(x) = I[0,1](x1)ψ′per`2,s2

(x2) and Ψ2
`,s(x) = 0,

where ψ′ denotes the derivative of ψ. To complete the primal wavelets family, the func-
tion Ψ0(x) , (I[0,1]2(x), I[0,1]2(x))T is superimposed, leading to the primal divergence-
free wavelets family {Ψ`,s; (`, s) ∈ Ω∪0}. Note that we have Ψ`,s = curl[Φ`,s] where

curl , ( ∂
∂x2

,− ∂
∂x1

)t and Φ`,s is the orthonormal basis constructed in section 3.1.

The dual wavelets Ψ̃`,s , (Ψ̃1
`,s, Ψ̃

2
`,s)

T are then constructed in order to be

biorthogonal to Ψ`,s, i.e. 〈Ψ`,s/Ψ̃`′,s′〉 = δ`,`′δs,s′ for all `, `′, s, s′. They are given

by Ψ̃0 = Ψ0 and for (`, s) ∈ Ω,
- for 0≤`1<2s1−1, 0 ≤`2<2s2−1, s1, s2 > 0 :

Ψ̃1
`,s(x) = −ψper`1,s1

(x1)

∫ x2

0

ψper`2,s2
(x)dx and Ψ̃2

`,s(x) = ψper`2,s2
(x2)

∫ x1

0

ψper`1,s1
(x)dx,
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- for 0≤`1<2s1−1, s1 > 0, `2 = 0, s2 = 0 :

Ψ̃1
`,s(x) = 0 and Ψ̃2

`,s(x) = I[0,1](x2)

∫ x1

0

ψper`1,s1
(x)dx,

- for `1 = 0, s1 = 0, 0≤`2<2s2−1, s2 > 0 :

Ψ̃1
`,s(x) = −I[0,1](x1)

∫ x2

0

ψper`2,s2
(x)dx and Ψ̃2

`,s(x) = 0.

The expansion of u in L2
div([0, 1]2) with respect to the divergence-free biorthogonal

wavelet basis described above writes

u(x) =
∑

(`,s)∈Ω∪0

d`,sΨ`,s(x),

where d`,s , 〈u/Ψ̃`,s〉 are the random divergence-free wavelet coefficients. Unlike de-
composition (3.5), these wavelets coefficients are in general correlated. The following
proposition describes their covariance structure under the assumption

∫
[0,1]2

u(x)dx =

0. Note that in this case, since 〈u/Ψ̃0〉 = 0, the decomposition of u becomes

u(x) =
∑

(`,s)∈Ω

d`,sΨ`,s(x). (3.6)

Proposition 3.2. Let u be an isotropic divergence-free fBm with parameter
H ∈ (0, 1). Assume that

∫
[0,1]2

u(x)dx = 0. Then, the coefficients d`,s, (`, s) ∈ Ω

are zero-mean correlated Gaussian random variables, characterized by the following
covariance function: for any (`, s), (`′, s′) ∈ Ω,

Σ(`, s, `′, s′) , E[d`,sd`′,s′ ] = 4(2πσ)2〈Φ(−H−2)
`,s ,Φ

(−H−2)
`′,s′ 〉, (3.7)

where Φ
(−H−2)
`,s is defined in (3.3).

In the paper remainder, we will assume
∫

[0,1]2
u(x)dx = 0 to fit the assumptions

of Propositions 3.1 and 3.2.

4. MAP estimation. At this point, we have gathered all ingredients necessary
to formalize properly the problem of estimating the incompressible velocity field u of
the introduction by a MAP approach. In this section, we first justify the choice for
the likelihood model pδy|u from physically sound consideration. Then, we express the
fBm prior for u in terms of the two wavelet expansions presented before. Finally, we
deduce the optimization problems to solve in practice in order to obtain the MAP
estimates.

4.1. Likelihood model. Solving a turbulent motion inverse problem consists
in recovering a deformation field, denoted later on by u, from the observation of an
image pair. To this aim, the estimation classically relies on a likelihood model linking
the unknown deformation to the observed image pair {y0, y1}. We first assume that
this image pair is the solution y(x, t) ∈ C1([0, 1]2 × R) taken at times t0 and t1
(with t1 > t0) of the following transport equation, so-called in the image processing
literature “optic-flow equation”:

∂y

∂t
(x, t) + v(x, t) · ∇xy(x, t) = 0

y(x, 0) = y0(x)
, (4.1)
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where v(x, t) is the transportation field that verifies, at any time t ∈ R, v(., t) ∈
L2
div([0, 1]2) due to the incompressibility constraint. It is well known [40] that we can

write y0(x) = y1(Xt1
t0(x)) where the function t→ Xt

t0(x), known as the characteristic
curves of the partial differential equation (4.1), is the solution of the system:

d

dt
Xt
t0(x) = v(Xt

t0(x), t)

Xt0
t0(x) = x

.

Let us remark that system (4.1) constitutes a relevant model frequently encountered
in physics, in particular in fluid mechanics: it describes the non-diffusive advection of
a passive scalar by the flow v [30]. Assuming that

∫ t1
t0

v(Xs
t0(x), s)ds = v(x, t0) when

dt , t1 − t0 is a small increment, then denoting u(x) , dtv(x, t0) we obtain by time
integration the so-called Displaced Frame Difference (DFD) constraint:

y0(x) = y1(x + u(x)).

Moreover, in the context of a physical experiment, the observed image pair is likely
to be corrupted by noise measurement errors. In this context, a standard approach
to estimate u is to adopt a probabilistic framework. We make the assumption that
the quantity y1(x + u(x)) − y0(x) is corrupted by a centered Gaussian noise. More
precisely, we assume that the so-called data-term DFD functional

δy(u) ,
1

2
‖y1(x + u(x))− y0(x)‖2; u ∈ L2

div([0, 1]2), y0, y1 ∈ L2([0, 1]2), (4.2)

follows an exponential law, so that the likelihood model writes

pδy|u = β exp−βδy(u), (4.3)

where β is a positive constant.
A straightforward criterion to estimate deformation field u from the observation

of {y0, y1} is to maximize the likelihood: arg minu∈L2
div
δy(u). Although searching

the deformation field u in L2
div instead of (L2)2 reduces by a factor two the number of

degrees of freedom, this problem remains ill-conditioned. This is due to the so-called
aperture problem [25, 52]. Therefore, a Bayesian framework introducing prior infor-
mation for u is needed for regularization of the solution.

4.2. Prior models. As explained in introduction, we choose as a prior for u the
divergence-free fBm described in section 2. From the wavelets decomposition (3.5) or
(3.6), this prior can

(i) either be represented by a Leray projection of a fractional Laplacian wavelet
series, whose coefficients are distributed according to independent standard
normal distributions.

(ii) or by divergence-free wavelet series, whose coefficients are correlated accord-
ing to (3.7).

In practice, the images y0 and y1 are of size n×n pixels. Accordingly we will truncate
the series (3.5) and (3.6) with respect to the index set

Ωn , {`, s ∈ Ω; s1, s2 ≤ sn , log2(n)}.
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In other words, wavelet coefficients revealing scales smaller than the pixel size will
be neglected. We thus consider the vector of fractional Laplacian wavelet coefficients
εn = (ε1n, ε

2
n)T with εin = {εi`,s; (`, s) ∈ Ωn} and the vector of divergence-free wavelet

coefficients dn = {d`,s; (`, s) ∈ Ωn}.
Further, we assume in practice periodic boundaries, so that the wavelets consid-

ered so far, defined on [0, 1]2, are extended by periodization to R2. Accordingly, the
Fourier transform applied so far becomes the sequence of Fourier coefficients, and the
inverse Fourier transform a Fourier series. They will actually be implemented in the
next section by a simple Fast Fourier Transform.

In order to express the prior for u in this finite dimensional and periodic setting,
we need to introduce some notation. For any function f in L2[0, 1]2, considering its
extension by periodization to R2, we denote its Fourier coefficients by

Fper(f)(k) =

∫
[0,1]2

f(x)e−2πik·xdx, ∀k ∈ Z2,

and for any set of coefficients {f̂(k)}k∈Z2 in `2(Z2), we denote the Fourier series
reconstruction operator on the square by

F−1
per({f̂(k)}k∈Z2)(x) =

∑
k∈Z2

e2πik·xf̂(k), ∀x ∈ [0, 1]2.

For a bivariate function v = (v1,v2)T , Fper(v) , (Fper(v1),Fper(v2))T and similarly
for F−1

per. The Leray projector in this periodic setting is denoted by Pper. It maps
bi-variate functions v in (L2[0, 1]2)2 onto L2

div([0, 1]2):

Pperv , F−1
per

({[
I− kkT

‖k‖2

]
Fper(v)(k)

}
k∈Z2

)
. (4.4)

For any H > 0 we introduce operator Φ(−H−1)
n from (`2(Ωn))2 into (L2([0, 1]2))2

defined for any εn ∈ (`2(Ωn))2 by

Φ(−H−1)
n εn ,

∑
(`,s)∈Ωn

F−1
per

((
ε1`,s‖k‖−H−1Fper(Φ`,s)(k)

ε2`,s‖k‖−H−1Fper(Φ`,s)(k)

)
k∈Z2

)
. (4.5)

We introduce analogously operator Ψn : `2(Ωn) → L2
div([0, 1]2) defined for any

dn ∈ `2(Ωn) by

Ψndn =
∑

(`,s)∈Ωn

d`,sΨ`,s, (4.6)

where the vector dn = {d`,s, (`, s) ∈ Ωn} is a zero-mean Gaussian vector with co-
variance given by an adaptation of (3.7) to the periodic framework. Specifically its
covariance matrix is denoted by Σn whose element at row (`, s) ∈ Ωn and column
(`′, s′) ∈ Ωn is

Σ(`, s, `′, s′) =

σ2〈
{
‖k‖−H−2Fper(Φ`,s)(k)

}
k∈Z2 ,

{
‖k‖−H−2Fper(Φ`′,s′)(k)

}
k∈Z2〉. (4.7)
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where 〈., .〉 denotes here the scalar product in `2(Z2). Finally, to compute the proba-
bility density of dn, we need to invert Σn. We approach this inverse matrix by Σ−1

n

composed of elements

Σ−1(`, s, `′, s′) =

σ−2〈
{
‖k‖H+2Fper(Φ`,s)(k)

}
k∈Z2 ,

{
‖k‖H+2Fper(Φ`′,s′)(k)

}
k∈Z2〉. (4.8)

This choice is justified by the following lemma, proving that this approximation be-
comes accurate for n sufficiently large.

Lemma 4.1. When n → ∞, the matrices Σn and Σ−1
n become operators from

`2(Ω) to `2(Ω), that are inverses of each other.

Henceforth, we use the two following priors:
(i) based on fractional Laplacian wavelet decomposition (3.5):

un = Pper
(
Φ(−H−1)
n εn

)
, (4.9)

with pεn = 1
(2πσ2)n/2

e−
1

2σ2
εTnεn ;

(ii) based on divergence-free decomposition (3.6):

un = Ψndn, with pdn =
1

(2π)
n
2 det

1
2 (Σn)

e−
1
2dn

TΣ−1
n dn . (4.10)

These two priors are adaptations to the finite-dimensional and periodic setting of
the decompositions (3.5) and (3.6). For the sake of conciseness, some multiplicative
constants have been removed to be included in σ2, which becomes a tuning parameter
in the MAP procedure described below.

4.3. Maximum a posteriori estimation. From (4.9) or (4.10), un reduces to
the knowledge of wavelet coefficients εn or dn. Let us rewrite the likelihood in terms
of these coefficients:

pδy|εn = pδy|dn = β exp−βδy,

with the DFD data term (4.2) rewritten as:

δy(·) =
1

2
‖ȳ1(x, ·)− y0(x)‖2, (4.11)

where

ȳ1(x, εn) , y1

(
x + Pper

(
Φ(−H−1)
n εn

)
(x)
)

or ȳ1(x, dn) , y1 (x + Ψndn(x)) .

(4.12)

The MAP estimates are defined by:

εn
∗ =arg max

εn

pδy|εnpεn and d∗n = arg max
dn

pδy|dnpdn . (4.13)

Solving the MAP problems (4.13) is equivalent to minimize minus the logarithm of
the posterior distributions:
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i) with respect to fractional Laplacian wavelet coefficients

εn
∗ = arg min

εn

{δy(εn) +R(εn)} (4.14)

R(εn) ,
1

2βσ2
εTnεn, (4.15)

ii) with respect to divergence-free wavelet coefficients

d∗n = arg min
dn

{δy(dn) +R(dn)} (4.16)

R(dn) ,
1

2β
dn

TΣ−1
n dn, (4.17)

where R’s are so-called regularizers.
In the following we will assume that the Hurst exponent H is known. Posterior

models described above are thus characterized by two free-parameters, namely β and
σ. However, MAP estimates (4.14) and (4.16) only depend on the product of these two
parameters, forming the so-called regularization parameter 1

βσ2 . This regularization

parameter explicitly appears in (4.15) while it is partially hidden in the covariance
matrix inverse in (4.17). Let us mention that an empirical study shows a low sen-
sitivity to the choice of the regularization parameter (see section 6). Nevertheless,
estimation techniques exist when no prior knowledge is available for the adjustment
of Hurst exponent or regularization parameter [20, 32, 44].

5. Optimization. In this section, we introduce algorithms to solve (4.14) and
(4.16). To deal with these non-convex optimization problems, we use a Limited-
memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) procedure, i.e. a quasi-Newton
method with a line search strategy, subject to the strong Wolf conditions [37]. More-
over, as suggested in [13] we propose to enhance optimization by solving a sequence of
nested problems, in which the MAP solution is sequentially sought within higher reso-
lution spaces. More precisely, wavelet coefficients are estimated sequentially from the
coarsest scale 20 to the finest one 2−sn . At each scale, problems (4.14) and (4.16) are
solved by the LBFGS method with respect to a growing subset of wavelet coefficients.
This subset includes all coefficients from the coarsest scale to the current one 2−s,
coefficients estimated at previous coarser scales being used as the initialization point
of the gradient descent. This strategy enables to update those coarser coefficients
while estimating new details at current scale 2−s.

To implement the above procedure, the functional gradient and the functional
itself in (4.14) and (4.16) need to be evaluated at any point εn and dn. Note that
once the functional gradient is determined, the functional value is simple to deduce:
the evaluation of (4.12) needed by (4.11) will be a precondition to the computation of
the DFD functional gradient while (4.15) or (4.17) may be derived from their gradients
by simple scalar product with the vector of wavelet coefficients εn or dn.

The next section provides algorithms to compute exactly the functional gradient
for the two different wavelet representations. Besides, an approached gradient com-
putation is proposed to accelerate the algorithm in the case of the divergence-free
wavelet representation.

5.1. Projected fractional wavelet series.
Proposition 5.1. Let Piper denote the i-th row of the Leray projector Pper

defined by (4.4). The gradient of functional minimized in (4.14) with respect to εi`,s
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is ∂εi`,sδy(εn) + ∂εi`,sR(εn) where for i = 1, 2 and for all (`, s) ∈ Ωn:

∂εi`,sδy(εn) =

〈F−1
per

((
‖k‖−H−1Fper

(
Piper[(ȳ1(·, εn)− y0(·))∇ȳ1(·, εn)]

)
(k)
)
k∈Z2

)
,Φ`,s〉 (5.1)

∂εi`,sR(εn) =
1

βσ2
εi`,s. (5.2)

Based on these formula, we derive a spectral method for the computation of the
gradient of functional minimized in (4.14). It is based on FFT and FWT with recur-
sive filter banks:

Algorithm 1. (functional gradient w.r.t εn)
i) compute the FFT of the components of (ȳ1 − y0)∇ȳ1,

ii) apply operator ‖k‖−H−1 and Leray projection in Fourier domain to get(
‖k‖−H−1Fper

(
Piper[(ȳ1(·, εn)− y0(·))∇ȳ1(·, εn)]

)
(k)
)
k∈Z2 , for i = 1, 2

iii) compute the inverse FFT
iv) decompose each component by FWT using the orthogonal wavelets Φ`,s to

obtain the data-term gradient (5.1),
v) Derive functional gradient by adding vector (5.2) to the data-term gradient.

In order to evaluate ȳ1 or its gradient in the above algorithm, one needs to reconstruct
the unknown un (4.9) appearing in (4.12) from the fractional Laplacian wavelet co-
efficients εn. This can be done by the following spectral computation1 of the inverse
fractional wavelet transform. Indeed, by commuting Leray projector with fractional
integration, from (4.9) we get:

un = F−1
per

((
‖k‖−H−1

[
I− kkT

‖k‖2

]
Fper(Φ(0)

n εn)(k)

)
k∈Z2

)
, (5.3)

where we recall that Φ(0)
n is defined in (4.5). In practice Φ(0)

n εn is obtained on a
finite grid of points (namely the n×n pixels), so that Fourier coefficients and Fourier
series in (5.3) are approximated in practice by FFT and inverse FFT. This yields the
following reconstruction algorithm:

Algorithm 2. (reconstruction of fBm from εn)

i) reconstruct Φ(0)
n εn from εn by inverse FWT of each component using orthog-

onal wavelets {Φ`,s; (`, s) ∈ Ωn},
ii) compute FFT of the two components of the latter function,

iii) compute Leray projection and fractional differentiation in Fourier domain,
iv) compute inverse FFT of the two components to obtain un.

Algorithms 1 and 2 yield the ingredients necessary to approach the MAP estimate
ε∗n with a gradient descent method of theoretical complexity bounded by the FFT
algorithm in O(n log n). Nevertheless, the computation bottleneck comes mainly from
the number of transforms that are required at each gradient decent step: 4 FFT, 4
inverse FFT, 2 FWT and 2 inverse FWT.

1Let us remark that this reconstruction essentially differs from a direct spectral fBm generation
method which is known to bring aliasing side-effects, see [3].
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5.2. Divergence-free wavelet series.

5.2.1. Exact method. For notational convenience we define operators Φi,(−H−1)
n :

`2(Ωn) → L2([0, 1]2) for i = 1, 2 as the two components of the operator defined in
(4.5): (

Φ1,(−H−1)
n ε1n

Φ2,(−H−1)
n ε2n

)
, Φ(−H−1)

n εn. (5.4)

Note that we have Φ1,(−H−1)
n = Φ2,(−H−1)

n .
Proposition 5.2. The gradient of functional minimized in (4.16) with respect

to d`,s is ∂d`,sδy(dn) + ∂d`,sR(dn) where for all (`, s) ∈ Ωn:

∂d`,sδy(dn) = 〈(ȳ1 − y0)∇ȳ1/Ψ`,s〉 (5.5)

and

∂d`,sR(dn) =
1

βσ2
〈Φ1,(H+2)

n dn,Φ
(H+2)
`,s 〉. (5.6)

Based on the previous result, we derive a spectral method for the computation of
the gradient of functional minimized in (4.16). It is based again on FFT and FWT
with recursive filter banks:

Algorithm 3. (functional gradient w.r.t dn)
i) decompose (ȳ1−y0)∇ȳ1 by FWT using dual divergence-free wavelets {Ψ̃`,s; (`, s) ∈

Ωn} to obtain the data-term gradient (5.5),
ii) compute inverse FWT of dn using orthogonal wavelets {Φ`,s; (`, s) ∈ Ωn}.

iii) compute FFT and apply the operator2 ‖k‖2H+4.

iv) compute inverse FFT to get F−1
per

((
‖k‖2H+4Fper(Φ1,(0)

n dn)
)

k∈Z2

)
.

v) compute FWT using orthogonal wavelets {Φ`,s; (`, s) ∈ Ωn} and get (5.6),
vi) derive functional gradient by adding (5.6) to the data-term gradient.

Reconstruction of un from coefficients dn is needed to compute ȳ1. It is easily
done by an inverse FWT.

Algorithm 4. (reconstruction of fBm from dn)
i) Reconstruct un = Ψndn from dn by inverse FWT using divergence-free wavelets
{Ψ`,s; (`, s) ∈ Ωn}.

Algorithms 3 and 4 yield the ingredients necessary to approach the MAP estimate
d∗n with a gradient descent method of theoretical complexity bounded again by the
FFT algorithm in O(n log n). However, it is less time-consuming than the approach
based on fractional Laplacian wavelet series since it requires for each gradient decent
step: 1 FFT, 1 inverse FFT, 2 FWT and 2 inverse FWT. Moreover let us remark that
a simple FWT with recursive filter banks corresponding to the dual divergence-free
wavelet basis [29] is required to compute the data-term gradient.

2This supposes 2H + 4 differentiability of ψ. If we only assume max(2H, H + 2) differentiability,
algorithm 3 can be modified as described in Appendix B.
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5.2.2. Approach method. In this section, we approach the divergence-free
regularizer gradient (5.6) in terms of matrix products, which will make computation
of the gradient more efficient since we avoid intensive use of FFT and FWT as in
algorithm 3. From Proposition 5.2 and the Parseval formula, we have for all (`, s) ∈
Ωn :

βσ2∂d`,sR(dn) (5.7)

=
∑

(`′,s′)∈Ωn

d`′,s′〈
(
‖k‖H+2Fper(Φ`′,s′)(k)

)
k∈Z2

,
(
‖k‖H+2Fper(Φ`,s)(k)

)
k∈Z2
〉.

We hereafter derive a separable approximation of (5.7) in terms of one-dimensional

connection coefficients f
(α)
`′,s′,`,s defined for all (`′, s′), (`, s) ∈ Ωn as

f
(α)
`′,s′,`,s =



(2π)−2α〈ψper`′,s′ ,

(
−∂2

∂x2

)α
ψper`,s 〉 for 0 < s, s′ ≤ sn, 0 ≤ `<2s−1, 0 ≤ `′<2s

′−1

(2π)−2α〈ψper`′,s′ ,

(
−∂2

∂x2

)α
I[0,1]〉 for s = 0, 0 < s′ ≤ sn, l = 0, 0 ≤ `′<2s

′−1

(2π)−2α〈I[0,1],

(
−∂2

∂x2

)α
ψper`,s 〉 for 0 < s ≤ sn, s′ = 0, 0 ≤ `<2s−1, l′ = 0

(2π)−2α〈I[0,1],

(
−∂2

∂x2

)α
I[0,1]〉 for s = 0, s′ = 0, l = 0, l′ = 0

.

(5.8)

Note that for any fixed α ≤ 0 (resp. α ≥ 0), f
(α)
`′,s′,`,s exists whenever ψ possesses

sufficient vanishing moments (resp. is sufficiently differentiable). The two-dimensional

scalar products of `2(Z2) in (5.7) can be written 〈Fper(Φ`′,s′), ‖k‖2(H+2)Fper(Φ`,s)〉.
If H ∈ N, Newton’s binomial theorem applies:

‖k‖2(H+2)
=

1

2

H+2∑
i=0

(
H + 2

i

)(
k

2(H+2−i)
1 k2i

2 + k2i
1 k

2(H+2−i)
2

)
, (5.9)

where (
H + 2

i

)
, (H + 2)(H + 2− 1)...(H + 2− i+ 1)/i! .

So if H ∈ N, plugging (5.9) into (5.7) shows that ∂d`,sR(dn) can be expressed in a
separable form:

∂d`,sR(dn) =
1

2βσ2

H+2∑
i=0

(
H + 2

i

)(∑
`′1,s
′
1

f
(H+2−i)
`′1,s
′
1,`1,s1

∑
`′2,s
′
2

d`′1,s′1,`′2,s′2,f
(i)
`′2,s
′
2,`2,s2

+
∑
`′1,s
′
1

f
(i)
`′1,s
′
1,`1,s1

∑
`′2,s
′
2

d`′1,s′1,`′2,s′2,f
(H+2−i)
`′2,s
′
2,`2,s2

)
. (5.10)

The latter formula can be expressed in terms of matrix products. Let F(α) be
the matrix of size n×n composed at row index (`′, s′) and column index (`, s) by the

element f
(α)
`′,s′,`,s. Let JdnK the n× n matrix whose element at row index (`1, s1) and
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column index (`2, s2) is d`,s. Equation (5.10) can then be written

∂d`,sR(dn) =
1

2βσ2

[
H+2∑
i=0

(
H + 2

i

)(
F(H+2−i)T JdnKF(i) + F(i)T JdnKF(H+2−i)

)]
`,s

,

(5.11)

where [M]`,s denotes the (`, s)-th element of matrix M.
In the general case where H /∈ N, (5.11) does not hold anymore, but in the same

spirit we consider the following natural approximation3:

∂d`,sR(dn) ≈ 1

2βσ2

bH+2c∑
i=0

(
H + 2

i

)(
F(H+2−i)T JdnKF(i) + F(i)T JdnKF(H+2−i)

)
`,s

,

(5.12)

where bH + 2c denotes the integer part of H + 2.
We approximate matrices F(α) by an off-line FWT of scaling function connection

coefficients, as explained in Appendix C and summarized in the following algorithm.
These scaling function connection coefficients are in turn easily computable as a solu-
tion of a linear system, by adapting Beylkin’s fast methods [7, 5, 6], see Appendix C.

Algorithm 5. (off-line computation of matrices F(α))
i) Compute scaling function connection coefficients

eαsn(`, `′) , (2π)−2α〈ϕ(2snx− `),
(
−∂2

∂x2

)α
ϕ(2snx− `′)〉R

for any integers `, `′ by inversion of linear system (C.13) (see the explicit
solution (C.15)), where ϕ denotes the scaling function associated to wavelet
ψ.

ii) Construct the discrete (2sn)-periodic function defined for any integers `, `′

with 0 ≤ `, `′ < 2sn by:{
e

(α)
sn (`, `′) for 0 ≤ |`′ − `| < 2sn−1,

e
(α)
sn (`, `′ − 2sn) for 2sn−1 ≤ |`′ − `| < 2sn .

iii) Approach F(α) by performing the (discrete) FWT of the latter two-dimensional
function multiplied by factor 2sn .

Besides, note that for matrices F(α) with α ∈ N, connection coefficients computed
in step i) of algorithm 5 are classically obtained by solving an eigenvalue problem, see
[12]. Using (5.12), we hereafter propose a fast algorithm for the minimization problem
(4.16).

Algorithm 6. (approach functional gradient w.r.t dn)
i) Decompose (ȳ1− y0)∇ȳ1 by FWT using the dual divergence-free wavelet basis
{Ψ̃`,s; (`, s) ∈ Ωn} to obtain the data-term gradient (5.5),

3This approximation may be justified by considering a truncated version of the Newton’s gener-
alized formula. However, a control of the approximation error of (5.12) is a technical issue, which is
out of the scope of this paper.
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ii) Derive functional gradient by adding the first terms of (5.12) to the data-term
gradient.

The reconstruction algorithm is identical to algorithm 4.

Algorithm 6 can be substituted to algorithm 3 to approach the MAP estimate d∗n.
In theory, it requires a theoretical complexity bounded by matrix multiplication, i.e.
O(n3). In order to reduce this theoretical complexity, one may take advantage of
the very sparse structure of matrices F(α), which could be investigated as in [39].
However, in practice FFT and FWT are the bottleneck of the computational cost.
Algorithm 6 requires only one FWT for each gradient step, in contrast to the numer-
ous FFT and FWT involved in algorithm 3. All in all algorithm 6 turns out to be
much faster than algorithm 3.

6. Numerical evaluation. In this section, we assess the performance of the
proposed estimation algorithms and compare them to recent state-of-the art methods.
As explained below, the numerical evaluation relies on a synthetic benchmark of noisy
image couples revealing the turbulence transport of a passive scalar. Turbulence is
mimicked by synthesizing fBms for various Hurst exponents, which include H = 1

3
and H = 1 modeling respectively 3D and 2D turbulence.

6.1. Divergence-free isotropic fBm fields generation. Divergence-free isotropic
fBms were generated by a wavelet-based method relying on reconstruction formula
(5.3). More precisely, in agreement with the fBm model (4.9), the wavelets coeffi-
cients {ε`,s} were sampled according to standard Gaussian white noise. The fBms
realizations were then synthesized by application of algorithm 2.

In order to form an evaluation benchmark for the regularization model, a set of
5 fBm realizations were synthesized (from an identical white noise realization) with
a resolution 28 × 28 on the domain [0, 1]2. The wavelet generator was constructed
from periodized Coiflets with 10 vanishing moments, so-called Coiflets-10 [33]. Note
that these wavelets are 3 times differentiable so that our regularity assumptions are
satisfied for any H ≤ 1. The realizations are associated to Hurst exponents H1 = 0.01,
H2 = 1

3 , H3 = 1
2 , H4 = 2

3 and H5 = 1. Let us remark that the cases H = 1
3 and

H = 1 are consistent with isotropic turbulence models introduced by Kolmogorov
for 3D flows [27] (resp. by Kraichnan for 2D flows [28]), while the case H = 1

2
constitutes a standard Brownian motion. Parameter σ is chosen so that for any x
belonging to the pixel grid, the displacement |u(x)| is not greater that 10× 2−8, i.e.
10 pixels. Figure C.1 displays vector fields u(x) = (u1(x), u2(x))t and vorticity maps
∂xu2(x)− ∂yu1(x) associated to the 5 fBms.

Let the radial power spectrum of u be defined by:

E(κ) ,
∫
Sκ
E1(x) + E2(x)dx, (6.1)

where Sκ is the circle of radius κ. It is easy to check that according to (2.4), this
function is E(κ) = c κ−2H−1, where c > 0. Therefore, the spectra of our 5 different
fBms decay exponentially with power respectively equal to −1.02, − 5

3 , −2, − 7
3 and

−3.

6.2. Synthetic image couple generation. To simulate the couple (y0, y1) in
the data-term (4.2), we start by a fixed image y1 and derive y0 from the relation
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y0(x) = y1(x + u(x)) derived in section 4.1. Since x + u(x) does not necessarily
lie on the pixel grid, we used cubic B-splines for interpolation of y1. To simulate
realistic measurement conditions, the so-generated images were then corrupted by
i.i.d. Gaussian noise yielding a peak signal to noise ratio (PSNR) on y0 (resp. y1)
of 33.2 dB (resp. 33.5 dB). The resulting image pairs are displayed in figure C.2 for
H = 1

3 and H = 1.

6.3. Optic-flow evaluation procedure. The divergence-free fBm fields were
estimated according to a MAP criterion, solving minimization problems (4.14) or
(4.16). The proposed approaches are compared to two other standard regularizers,
which all require the choice of a basis to decompose u. In order to make relevant
comparisons, we chose the divergence-free wavelet basis for all these alternatives.
The wavelet generator was constructed from divergence-free biorthogonal Coiflets-10
with periodic boundary conditions. Moreover, the optimization procedure used for all
regularizers was the same and relied on an identical data-term.

The five different estimation methods used for evaluation are listed and detailed
hereafter. They are denoted A, B, C, D and E. Methods A and B are state-of-the-art
algorithms while methods C, D and E implement the fBm prior.

A - Penalization of L2 norm of velocity components gradients. The most common
approach in optic-flow estimation, as first proposed in [24], is to penalize the
L2 norm of the velocity gradients. We used the wavelet-based implementation
proposed in [25].

B - Penalization of L2 norm of vorticity gradient. In fluid motion estimation a
popular approach is to penalize the L2 norm of the vorticity gradient [11, 45,
52]. Here again, we used the wavelet-based implementation proposed in [25].

C - fBm regularization in a fractional Laplacian wavelet basis. This corresponds
to solve (4.14) using algorithms 1 and 2.

D - fBm regularization in a divergence-free wavelet basis. This corresponds to
solve (4.16) computed without approximation using algorithms 3 and 4.

E - Approached fBm regularization in a divergence-free wavelet basis. This cor-
responds to solve (4.16) where the regularization term is approached using
algorithms 4 and 6.

Each of the regularizer in methods A, B, C, D and E were optimally tuned, that is
to say regularization coefficient were chosen (using a brute-force approach) in order
to the RMSE detailed hereafter. Note that an implicit regularization by polynomial
approximation has also been tested. It is a well-known approach in computer vision
[4, 13, 31, 50]. The performances were clearly below the previous approaches, so we
do not display the results in this paper.

Let S denote the set of pixel sites. The two following criteria were used to evaluate
the accuracy of estimated fields denoted by u∗: the Root Mean Squared end-point
Error (RMSE) in pixel

RMSE =

(
1

n2

∑
x∈S

∣∣u∗(x)− u(x)
∣∣2) 1

2

,

and the Mean Barron Angular Error (MBAE) in degrees

MBAE =
1

n2

∑
x∈S

arcos

(
u∗(x) · u(x)

|u(x)|2

)
,
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where u represents the synthesized fBm. Moreover, we introduce a criterion to eval-
uate the accuracy of reconstruction of the power-law decay of the radial power spec-
trum. More precisely, in logarithmic coordinates the power-law (6.1) writes as an
affine function of log(κ) of the form −(2H + 1) log(κ) + γ, depending on two parame-
ters, namely the Hurst exponent H and the intercept γ, that can be explicitly related
to σ in (2.4). Performing a linear regression (by the ordinary least squares method)
on the estimated spectrum in logarithmic coordinates, we obtain an estimation of
the affine function parameters denoted by H∗ and γ∗. The quality criterion is then
chosen to be the L1 distance between the estimated and true affine functions within
the interval [log(κmin), log(κmax)] , called the Spectrum Absolute Error (SAE):

SAE =

∫ log(κmax)

log(κmin)

|2x(H −H∗) + γ∗ − γ|dx,

In order to evaluate the power-law reconstruction at small scales, we chose κmin =
10 and κmax = n.

Finally, we performed an additional visual comparison of the accuracy of resti-
tuted vorticity maps.

6.4. Results. In table of figure C.3, the performance of the proposed methods
(C, D and E) can be compared in terms of RMSE, MBAE and SAE to state-of-the-
art approaches (A and B). Let us comment these results. Methods C, D and E yield
the best results with respect to each criterion. Method C, i.e. the method based
on fractional Laplacian wavelets, provides the lowest RMSE and MBAE. An average
RMSE gain of 19% with respect to the best state-of-the-art method is observed, with
a peak at 26% for H = 1

2 . However, considering the 3 criteria jointly, methods D
and E, i.e. exact and approached method based on divergence-free wavelets, provide
the best compromise. In particular, according to SAE it can be noticed that, unlike
method C, methods D and E achieve to accurately reconstruct the power-law decay
of the fBm spectrum. This is illustrated in figure C.4. Moreover, the approximation
used to derive method E seems to be accurate since performance of E are very close to
those of D. In figure C.5, one can visualize estimated vorticity maps with the different
methods for H = 1

3 and H = 1, i.e. fBms modeling respectively 3D or 2D turbulence.
This figure clearly shows the superiority of methods D and E in reconstructing the
fractal structure of the vorticity fields.

Plots of figure C.6 show the influence of the regularization parameter in terms of
RMSE, MBAE and SAE for H = 1

3 and H = 1. Clear minima of RMSE and MBAE
are visible for methods A, B, D and E. On the other hand, method C, i.e. fractional
Laplacian wavelet basis, seems to be ‘unstable’ in the sense that it yields inhomoge-
neous performances for small variations of regularization parameter. The saturation
of the RMSE and the MBAE for large values of the regularization parameter shows
that, on the contrary to state-of-the-art methods, sensitivity of method D and E to
the latter parameter is weak, in the sense that it yields reasonable estimation error
even for regularization parameter far from an optimal value. This error saturation
effect is illustrated in figure C.7. It displays vorticity maps produced by the different
methods for a very large regularization coefficient.

7. Conclusion. This work addresses the inverse-problem of estimating a hidden
turbulent motion field from the observation of a pair of images. We adopt a Bayesian
framework where we propose a family of divergence-free, isotropic, self-similar priors



Self-similar prior and wavelet bases for hidden incompressible turbulent motion 21

for this hidden field. Self-similarity and divergence-free are well known features of
incompressible turbulence in statistical fluid mechanics. Our priors are bivariate frac-
tional Brownian fields, resulting from the extra assumptions that the hidden field is
Gaussian and has stationary increments. The main purpose of this article is the design
of effective and efficient algorithms to achieve MAP estimation, by expanding these
specific priors into well-chosen bases. From a spectral integral representation proved
in Proposition 2.2, we represent divergence-free fBms in two specific wavelet bases.
The first option (Proposition 3.1) is a fractional Laplacian wavelet basis which plays
the role of a whitening filter in the sense that the wavelet coefficients are uncorrelated.
The second alternative is to use a divergence-free wavelet basis, which is well-suited
to our case. The latter wavelets simplify the decomposition, since they neither in-
volve fractional operators nor Leray projector on the divergence-free functional space.
However, the wavelets coefficients are then correlated. We provide a closed-form ex-
pression for the induced correlation structure (Proposition 3.2), which is necessary to
implement this second approach in practice. For these two approaches, the algorithms
to reach the MAP involve gradient based LBFGS optimization procedures and rely
on fast transforms (FFT or/and FWT). Moreover we propose an approximation of
the correlation structure of the coefficients in the divergence-free wavelets expansion.
It is based on off-line computation of fractional Laplacian wavelet connection coeffi-
cients. This approximation leads to the fastest algorithm without loss of accuracy.
According to an intensive numerical evaluation carried out in section 6, all proposed
algorithms clearly outperform the state-of-the-art methods. Finally, in the light of our
experiments, the divergence-free wavelet expansion seems to be the most appropriated
representation to solve our MAP inverse-problem.

An obvious and important perspective is the assessment of the develops algo-
rithms in the context of real turbulence. To simplify the exposition, this work es-
sentially focuses on the bi-variate case, which is of interest in particular geophysical
contexts. However, there may be some limitations in studying three-dimensional
turbulence from bi-dimensional slices or projections of the flow [18]. Acquisition of
three-dimensional data is not an easy task. In fact volume data is generally recon-
structed from bi-dimensional information and this inverse problem still represents an
active domain of research. Nevertheless, extension of our algorithms to the three-
dimensional case is straightforward since no theoretical or technical issue constitute
a block.

Acknowledgements. The authors wish to acknowledge Pierre Dérian for fruit-
ful discussions on wavelets and their implementation. They are also sincerely grateful
to anonymous referees for their numerous insightful comments and suggestions which
considerably helped them in improving the first version of the paper.

Appendix A. Proofs.

A.1. Proof of Proposition 2.2. Let us recall (see e.g. [51]) that given a
standard Gaussian spectral measure W̃1, the integral

∫
f(k)W̃1(dk) is well-defined

whenever f ∈ L2(R2), has zero expectation and for f, g in L2(R2):

E
(∫

f(k)W̃1(dk)

∫
g(k)W̃1(dk)

)
=

∫
f(k)g(k)dk. (A.1)

In (2.2), the matrix P(k) ,
[
I− kkT

‖k‖2

]
corresponds to the Leray projection matrix

in the Fourier domain. It is easily verified that all entries of P are in [0, 1]. For this
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reason the integral (2.2) is well defined, since for all x ∈ R2 and all H ∈ (0, 1), the
function k 7→ (eik·x − 1)‖k‖−H−1 belongs to L2(R2).

Let us show that the structure function of u is given by (2.3). For j = 1, 2,
denote ej the bivariate vector whose j-th component is equal to one while the other
component is zero. For all i, j = 1, 2, from (2.2) and (A.1), since P2 = P, we get

E[(ui(x2)− ui(x1))(uj(x4)− uj(x3))]

=
σ2

(2π)2

∫
R2

‖k‖−2H−2eTi P(k)ej
(
eik·x2 − eik·x1

) (
e−ik·x4 − e−ik·x3

)
dk

=
σ2

(2π)2

∫
R2

‖k‖−2H−2eTi P(k)ej

(
eik·(x2−x4) − eik·(x2−x3) − eik·(x1−x4) + eik·(x1−x3)

)
dk.

We use Lemma 2.2 in [48] to get the following Fourier transform: for any x ∈ R2

1

(2π)2

∫
R2

‖k‖−2H−2P(k)eik·xdk = cH‖x‖2H
(

2H
xxT

‖x‖2
− (2H + 1)I

)
.

where cH = Γ(1−H)/(π22H+2Γ(H + 1)H(2H + 2)). The structure function (2.3) is
then deduced.

Finally (2.3) coincides with the structure function obtained in [48] Section 4.5
when u is defined by (2.1). As this structure function characterizes the law of the
Gaussian vector field u, this shows that the two vector fields defined by (2.2) and
(2.1) share the same distribution.

�

A.2. Proof of Proposition 3.1. Let us denote by Φ0 the indicator function
I[0,1]2(x), so that according to the construction explained in Section 3.1, the wavelets
Φ`,s, for (`, s) ∈ Ω ∪ 0, form an orthonormal basis of L2([0, 1]2). For any function
v ∈ L2([0, 1]2), we have v(x) =

∑
(`,s)∈Ω∪0〈v,Φ`,s〉Φ`,s(x) in L2([0, 1]2), where 〈., .〉

denotes the scalar product in L2([0, 1]2). The same relation holds in L2(R2) if each
function is extended outside [0, 1]2 by zero, and we denote these extensions v0 and
Φ0
`,s respectively. Hence, by the Plancherel’s theorem, we deduce that Fv0(k) =∑
`,s〈Fv0,FΦ0

`,s〉FΦ0
`,s(k) in L2(R2), where now 〈., .〉 denotes the scalar product in

L2(R2). Therefore, for j = 1, 2,∫
R2

Fv0(k)W̃j(dk) =
∑
`,s

〈Fv0,FΦ0
`,s〉η

j
`,s (A.2)

with

ηj`,s =

∫
R2

FΦ0
`,s(k)W̃j(dk). (A.3)

From (A.1) and the Plancherel’s theorem, since the wavelets are orthogonal and
normalized in L2, we note that ηj`,s are i.i.d standard Gaussian random variables.

Now recall from (2.2) that u(x) = (u1(x),u2(x))T where for i = 1, 2, ui(x) =∫
Fv0

i1(k)W̃1(dk) +
∫
Fv0

i2(k)W̃2(dk) with

Fv0
ij(k) =

σ

2π
(eik·x − 1)‖k‖−H−1(δij − kikj/‖k‖2). (A.4)
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Applying (A.2) to v = vi1,vi2, we obtain for i = 1, 2

ui(x) =
∑

(`,s)∈Ω∪0, j∈{1,2}

ηj`,s〈Fv0
ij ,FΦ0

`,s〉

=
∑

(`,s)∈Ω∪0, j∈{1,2}

ηj`,s

∫
R2

Fv0
ij(k)FΦ0

`,s(k)dk,

and from (A.4) we deduce the representation

u(x) =
σ

2π

∑
(`,s)∈Ω∪0

∫
R2

(eik·x − 1)

[
I− kkT

‖k‖2

]
η`,s‖k‖−H−1FΦ0

`,s(k)dk, (A.5)

where η`,s , (η1
`,s, η

2
`,s)

T .
Since the mother wavelet ψ has M vanishing moments, for any (`, s) ∈ Ω, Φ`,s

has M vanishing moments along at least one direction (say x1). As a consequence,
there exists a bounded function θ`,s such that FΦ0

`,s(k) = (−ik1)Mθ`,s(k) (see [33]).

So |‖k‖−H−1FΦ0
`,s(k)| = |‖k‖−H−1(−ik1)Mθ`,s(k)| ≤ c‖k‖M−H−1, where c is some

positive constant. Since M > H, the latter bound shows that k 7→ ‖k‖−H−1FΦ0
`,s(k)

is square-integrable on any compact. Moreover it is square-integrable at infinity as
k 7→ FΦ0

`,s(k) is, while k 7→ ‖k‖−H−1 asymptotically vanishes. Hence, for any

(`, s) ∈ Ω, k 7→ ‖k‖−H−1FΦ0
`,s(k) ∈ L2(R2) and the integral in (A.5) can be split,

leading to the representation in (L2([0, 1]2))2,

u(x) = 2πσ
∑

(`,s)∈Ω

P
[
η`,sΦ

(−H−1)
`,s

]
(x)− P

[
η`,sΦ

(−H−1)
`,s

]
(0)

+
σ

2π

∫
R2

(eik·x − 1)

[
I− kkT

‖k‖2

]
η0‖k‖−H−1FΦ0

0(k)dk, (A.6)

where Φ
(−H−1)
`,s and P are respectively defined in (3.3) and (3.4), and η`,sΦ

(−H−1)
`,s is

the bivariate vector (η1
`,sΦ

(−H−1)
`,s , η2

`,sΦ
(−H−1)
`,s )T .

The decomposition (3.5) is a consequence of (A.6), where ε`,s , 2πση`,s, provided
we prove that

∑
(`,s)∈Ω

P
[
η`,sΦ

(−H−1)
`,s

]
(0) =

1

(2π)2

∫
R2

(eik·x − 1)

[
I− kkT

‖k‖2

]
η0‖k‖−H−1FΦ0

0(k)dk.

(A.7)
Since by assumption

∫
[0,1]2

u(x)dx = 0, integrating both sides of (A.6) on [0, 1]2

leads to∑
(`,s)∈Ω

∫
[0,1]2

P
[
η`,sΦ

(−H−1)
`,s

]
(x)dx− P

[
η`,sΦ

(−H−1)
`,s

]
(0)

+
1

(2π)2

∫
[0,1]2

dx

∫
R2

(eik·x − 1)

[
I− kkT

‖k‖2

]
η0‖k‖−H−1FΦ0

0(k)dk = 0. (A.8)

Let z(x) = η`,sΦ
(−H−1)
`,s (x). Since wavelets possess at least one vanishing moment∫

[0,1]2
z(x)dx = 0. According to Definition (3.4) of the Leray projector this implies
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that
∫

[0,1]2
Pz(x)dx = 0 and therefore∑

(`,s)∈Ω

∫
[0,1]2

P
[
η`,sΦ

(−H−1)
`,s

]
(x)dx = 0. (A.9)

Now consider the last term in (A.8). We have for j = 1, 2

∂

∂xj

∫
R2

(eik·x − 1)

[
I− kkT

‖k‖2

]
η0‖k‖−H−1FΦ0

0(k)dk

=

∫
R2

(ikj)e
ik·x

[
I− kkT

‖k‖2

]
η0‖k‖−H−1FΦ0

0(k)dk

=

∫
R2

eik·x
[
I− kkT

‖k‖2

]
η0‖k‖−H−1

(∫
R2

e−ik·x
∂

∂xj
I[0,1]2(x)dx

)
dk = 0.

Therefore, we obtain∫
[0,1]2

dx

∫
R2

(eik·x − 1)

[
I− kkT

‖k‖2

]
η0‖k‖−H−1FΦ0

0(k)dk

=

∫
R2

(eik·x − 1)

[
I− kkT

‖k‖2

]
η0‖k‖−H−1FΦ0

0(k)dk. (A.10)

Using (A.9) and (A.10) in (A.8) proves (A.7), which concludes the proof.
�

A.3. Proof of Proposition 3.2. From (3.5), we have

d`,s =
∑

(i,j)∈Ω

〈P
[
ε(i,j)Φ

(−H−1)
(i,j)

]
/Ψ̃`,s〉 =

∑
(i,j)∈Ω

〈ε(i,j)Φ
(−H−1)
(i,j) /P

[
Ψ̃`,s

]
〉,

where the scalar product is in (L2([0, 1]2))2. In the above formula and in the following,

Ψ̃`,s is extended outside [0, 1]2 by zero, so that the operation P
[
Ψ̃`,s

]
makes sense

according to Definition (3.4). In other words, the definition of Ψ̃`,s in Section 3.2

becomes in this case FΨ̃`,s = (−1/(ik2)FΦ0
`,s(k), (1/ik1)FΦ0

`,s(k))T .

Since ε(i,j) are iid zero-mean Gaussian random variables with variance (2πσ)2I,
we have

(2πσ)−2E[d`,sd`′,s′ ] =∑
(i,j)∈Ω

〈Φ(−H−1)
i,j ,P1Ψ̃`,s〉〈Φ(−H−1)

i,j ,P1Ψ̃`′,s′〉+〈Φ
(−H−1)
i,j ,P2Ψ̃`,s〉〈Φ(−H−1)

i,j ,P2Ψ̃`′,s′〉,

where Pk is the k-th row of matrix operator P, i.e. given in the Fourier domain by
FP1 = (1− k2

1/‖k‖2,−k1k2/‖k‖2) and FP2 = (−k1k2/‖k‖2, 1− k2
2/‖k‖2).

Let us simplify the sum above. First, recall that Φ
(−H−1)
`,s (x) = (−∆)

−H−1
2 Φ0

`,s(x),
so for any k = 1, 2:∑
(i,j)∈Ω

〈Φ(−H−1)
i,j ,PkΨ̃`,s〉〈Φ(−H−1)

i,j ,PkΨ̃`′,s′〉

= 〈
∑

(i,j)∈Ω

Φ
(−H−1)
i,j 〈Φ(−H−1)

i,j ,PkΨ̃`′,s′〉,PkΨ̃`,s〉

= 〈
∑

(i,j)∈Ω

Φ0
i,j〈Φ0

i,j, (−∆)
−H−1

2 PkΨ̃`′,s′〉, (−∆)
−H−1

2 PkΨ̃`,s〉.
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Since the mother wavelet ψ has M > H vanishing moments, similar arguments as in
the proof of Proposition 3.1 lead to |‖k‖−H−1F [PkΨ̃`′,s′ ](k)| ≤ c‖k‖M−H−1, where
c is some positive constant. So∫

[0,1]2
(−∆)

−H−1
2 PkΨ̃`′,s′(x)dx = ‖k‖−H−1F [PkΨ̃`′,s′ ](k)

∣∣∣
k=0

= 0

and we have the equality in L2([0, 1]2) :∑
(i,j)∈Ω

Φi,j〈Φ0
i,j, (−∆)

−H−1
2 PkΨ̃`′,s′〉 =

∑
(i,j)∈Ω∪0

Φi,j〈Φ0
i,j, (−∆)

−H−1
2 PkΨ̃`′,s′〉

= (−∆)
−H−1

2 PkΨ̃`′,s′ .

Therefore∑
(i,j)∈Ω

〈Φ(−H−1)
i,j ,PkΨ̃`,s〉〈Φ(−H−1)

i,j ,PkΨ̃`′,s′〉 = 〈(−∆)
−H−1

2 PkΨ̃`′,s′ , (−∆)
−H−1

2 PkΨ̃`,s〉

and

E[d`,sd`′,s′ ] = (2πσ)2〈(−∆)
−H−1

2 PΨ̃`,s/ (−∆)
−H−1

2 PΨ̃`′,s′〉. (A.11)

Since the operators P and (−∆)
−H−1

2 commute, and P is self-adjoint with PP =
P, we have

E[d`,sd`′,s′ ] = (2πσ)2〈(−∆)
−H−1

2 PΨ̃`,s/ (−∆)
−H−1

2 Ψ̃`′,s′〉,

that is by Parseval relation

E[d`,sd`′,s′ ]

= (2πσ)2〈‖k‖−H−1

[
I− kkT

‖k‖2

](− 1
ik2
FΦ0

`,s(k)
1
ik1
FΦ0

`,s(k)

)
/ ‖k‖−H−1

(− 1
ik2
FΦ0

`,s(k)
1
ik1
FΦ0

`,s(k)

)
〉

= (2πσ)2〈‖k‖−2H−2

(
k2

2

‖k‖2
1

k2
+
k1k2

‖k‖2
1

k1

)
1

k2
FΦ0

`,s(k),FΦ0
`,s(k)〉

+ (2πσ)2〈‖k‖−2H−2

(
k1k2

‖k‖2
1

k2
+

k2
1

‖k‖2
1

k1

)
1

k1
FΦ0

`,s(k),FΦ0
`,s(k)〉

= (2πσ)2〈4‖k‖−2H−4FΦ0
`,s(k),FΦ0

`,s(k)〉.

= 4(2πσ)2〈Φ(−H−2)
`,s ,Φ

(−H−2)
`′,s′ 〉,

where the existence of wavelet Φ
(−H−2)
`,s is guaranteed by the M > H vanishing

moments of the mother wavelet ψ.
�

A.4. Proof of Lemma 4.1. When n→∞, the matrix Σn becomes the operator
Σ : `2(Ω)→ `2(Ω) defined for any a ∈ `2(Ω) by:

[Σa]`,s ,
∑

(`′,s′)∈Ω

a`′,s′Σ(`, s, `′, s′), ∀(`, s) ∈ Ω, (A.12)
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where Σ(`, s, `′, s′) is given by (4.7). Similarly, the matrix Σ−1
n becomes the operator

Σ−1 given for any a ∈ `2(Ω) by:

[Σ−1a]`,s =
∑

(`′,s′)∈Ω

a`′,s′Σ
−1(`, s, `′, s′), ∀(`, s) ∈ Ω, (A.13)

where Σ−1(`, s, `, s) is given by (4.8).

We denote Φ
(−H−2)
per;`,s , F−1

per

({
‖k‖−H−2Fper(Φ`,s)(k)

}
k∈Z2

)
and similarly Φ

(H+2)
per;`,s,

that are well-defined since the mother wavelet ψ has M > H vanishing moments and

is H + 2 times differentiable. Using the fact that the wavelets Φ
(−H−2)
per;`,s and the dual

wavelets Φ
(H+2)
per;`,s form a biorthogonal basis of L2([0, 1]2) when (`, s) ∈ Ω, we have for

any a ∈ `2(Ω):

[ΣΣ−1a]`,s =
∑

(i,j)∈Ω

∑
(`′,s′)∈Ω

a`′,s′Σ
−1(i, j, `′, s′)Σ(`, s, i, j)

=
∑

(`′,s′)∈Ω

∑
(i,j)∈Ω

a`′,s′〈Φ
(H+2)
per;`′,s′ ,Φ

(H+2)
per;i,j 〉〈Φ

(−H−2)
per;`,s ,Φ

(−H−2)
per;i,j 〉

=
∑

(`′,s′)∈Ω

a`′,s′〈Φ
(H+2)
per;`′,s′ ,

∑
(i,j)∈Ω

Φ
(H+2)
per;i,j 〈Φ

(−H−2)
per;`,s ,Φ

(−H−2)
per;i,j 〉〉

=
∑

(`′,s′)∈Ω

a`′,s′〈Φ
(H+2)
per;`′,s′ ,Φ

(−H−2)
per;`,s 〉

= a`,s.

We can show similarly that Σ−1Σa = a. Therefore operator Σ−1 corresponds to the
inverse operator of Σ.

�

A.5. Proof of Proposition 5.1. The gradient with respect to ε1`,s of the data-
term δy(εn) in (4.14) is given by inner products with the fractional divergence-free
wavelets. Indeed, we have:

∂ε1`,sδy(εn) = 〈(ȳ1(x, εn)− y0(x)),∇ȳ1(x, εn)T
∂

∂ε1`,s
Pper

[
Φ(−H−1)
n εn

]
(x)〉

= 〈ȳ1(x, εn)− y0(x))∇ȳ1(x, εn)/
∂

∂ε1`,s
Pper

[
ε`,sΦ

(−H−1)
`,s

]
(x)〉

and by Fourier-Plancherel formula:

∂ε1`,sδy(εn) =

〈Fper ((ȳ1(k, εn)− y0(k))∇ȳ1(k, εn)) /
∂

∂ε1`,s

[
I− kkT

‖k‖2

]
ε`,s‖k‖−H−1Fper(Φ`,s)(k)〉

= 〈Fper ((ȳ1(k, εn)− y0(k))∇ȳ1(k, εn)) /‖k‖−H−1

(
1− k21

‖k‖2

− k1k2‖k‖2

)
Fper(Φ`,s)(k)〉

= 〈‖k‖−H−1

(
1− k21

‖k‖2

− k1k2‖k‖2

)T
Fper ((ȳ1(k, εn)− y0(k))∇ȳ1(k, εn)) ,Fper(Φ`,s)(k)〉
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where scalar products are in `2(Z2). Hence (5.1) is deduced when i = 1 by Parseval
formula. The gradient with respect to ε2`,s is obtain similarly. The gradient of the

regularization term is simply: ∂εnR(εn) = 1
βσ2 εn. �

A.6. Proof of Proposition 5.2. The gradient (5.5) of the data-term δy(dn)
is obtained analogously to (5.1). For the gradient of the regularizer term, by Defini-
tion (4.8) of Σ−1

n :

∂d`,sR(dn) =
1

β

∑
(`′,s′)∈Ωn

Σ−1
n (`, s, `′, s′)d`′,s′

=
1

βσ2

∑
(`′,s′)∈Ωn

〈Φ(H+2)
`,s ,Φ

(H+2)
`′,s′ 〉d`′,s′

Formula (5.6) follows from definition of Φ1,(H+2)
n , see (5.4).

�

Appendix B. Adaptation of algorithm 3 for irregular wavelets.

If ψ is not 2H + 4 but only max(2H,H + 2) times differentiable, one may replace
iii)-v) in algorithm 3 by the following steps:

- compute F−1
per

(
‖k‖2HFper(Φ1,(0)

n dn)
)

by FFT

- compute the FWT using orthogonal wavelets {Φ`,s; (`, s) ∈ Ωn} to get the
n×n matrix denoted by JenK whose element at row index (`1, s1) and column

index (`2, s2) is 〈F−1
per

(
‖k‖2HFper(Φ1,(0)

n dn)
)
,Φ`,s〉.

- compute off-line matrices F(α) for α = 0, 1, 2 with algorithm 5 (section 5.2.2)
- obtain the scalar product in (5.6) by addition of matrix products

〈Φ1,(H+2)
n dn,Φ

(H+2)
`,s 〉

=
∑

(`′,s′)∈Ωn

(
〈F−1

per

(
‖k‖2HFper(Φ1,(0)

n dn)
)
,Φ`′,s′〉

〈F−1
per

(
‖k‖2Fper(Φ`′,s′)

)
,F−1

per

(
‖k‖2Fper(Φ`,s)

)
〉
)

=
(
F(2)T JenKF(0) + 2F(1)T JenKF(1) + F(0)T JenKF(2)

)
`,s
,

where (M)`,s denotes the (`, s)-th element of matrix M

Appendix C. Matrices of mono-dimensional connection coefficients.

The matrices F(α) involved in (5.12), where 0 ≤ α < H + 2, are composed of
wavelets connection coefficients defined in (5.8). Note that F(0) is the identity ma-
trix since we are considering an orthonormal basis. Moreover, for α being a positive
integer, fractional Laplacian operator v 7→ F−1

per (‖k‖αFper(v)) becomes a standard

differentiation up to factor (−2π)α and F(α) can be computed by solving an eigen-
value problem as detailed in [5, 12]. However, in the more general case of fractional
Laplacian differentiation, no method have been explicitly proposed in literature. In
this appendix we provide an approximation of F(α) in terms of scaling functions con-
nection coefficients, that turn out to be easily computable as the solution of a linear
system, as explained in the following.
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C.1. Matrix F(α). In this section we assume α > 0 and we show that any

entry f
(α)
`,s,`′,s′ of F(α) can be determined recursively from an infinite series of connec-

tion coefficients of scaling functions defined at the finest scale sn = log2(n). These

connection coefficients, denoted by e
(α)
sn , are given for any `, `′ ∈ Z by

e(α)
sn (`, `′) , 〈ϕ(2snx− `),

(
−∂2

∂x2

)α
ϕ(2snx− `′)〉R (C.1)

where ϕ denotes the scaling function associated to wavelet ψ. An efficient algorithm

for the computation of e
(α)
sn is obtained in section C.2. We hereafter propose an

approximation of f
(α)
`,s,`′,s′ as a truncation of these infinite series of scaling function

connection coefficients.

Let us begin by recalling the two-scale relations associated to the orthonormal
wavelet basis {ψ`,s(x);x ∈ R, `, s ∈ Z} defined in (3.1), see [33]:

ϕ(x) =
√

2
∑
k

hkϕ(2x− k), (C.2)

ψ(x) =
√

2
∑
k

gkϕ(2x− k), (C.3)

where h and g are the conjugate mirror filters of finite impulse response given by hk =
1√
2
〈ϕ(x), ϕ(2x−k)〉 and gk = 1√

2
〈ψ(x), ϕ(2x−k)〉. For any function b(`, `′) ∈ L2(Z2),

let us define the following convolution operators:

G1b(`, `
′) ,

∑
k

gkb(2`+ k, `′). (C.4)

G2b(`, `
′) ,

∑
k

gkb(`, 2`
′ + k) (C.5)

H1b(`, `
′) ,

√
2
∑
k

hkb(2`+ k, `′) (C.6)

H2b(`, `
′) ,

√
2
∑
k

hkb(`, 2`
′ + k). (C.7)

We also consider operator H
(i)
1 (resp. H

(i)
2 ) defined by iterating i times operator H1

(resp. H2). Following the methodology introduced in [7] (see details in [39]), we
obtain from (C.2)-(C.7) that for s, s′ ≤ sn

〈ψ`,s,
(
−∂2

∂x2

)α
ψ`′,s′〉 = G1G2H

(sn−s)
1 H

(sn−s′)
2 e(α)

sn (`, `′). (C.8)

To get a similar representation for f
(α)
`,s,`′,s′ , we need to consider the same procedure

with periodized wavelets and scaling functions instead of ψ and ϕ. It can be shown
that in the case of scaling functions defined at scale sn and periodized over [0, 1],
connection coefficients are (2sn)-periodic functions

+∞∑
k,k′=−∞

〈ϕ(2snx− `+ k),

(
−∂2

∂x2

)α
ϕ(2snx− `′ + k′)〉[0,1] =

+∞∑
k=−∞

e(α)
sn (`+ k2sn , `′),
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provided the latter series converges. Therefore, by redefining operators (C.4)-(C.7)
with circular convolution on (2sn)-periodic signals, we obtain similarly as (C.8): for
0 < s, s′ ≤ sn and for 0 ≤ `<2s−1, 0 ≤ `′<2s

′−1,

f
(α)
`,s,`′,s′ = (2π)−2αG1G2H

(sn−s)
1 H

(sn−s′)
2

+∞∑
k=−∞

e(α)
sn (`+ k2sn , `′), (C.9)

provided the latter series is convergent. The remaining terms of F(α) can be treated
in the same way: for 0 < s ≤ sn, 0 ≤ `<2s−1

f
(α)
0,0,`,s = (2π)−2αG2H

(sn)
1 H

(sn−s)
2

+∞∑
k=−∞

e(α)
sn (k2sn , `)

f
(α)
`,s,0,0 = (2π)−2αG1H

(sn−s)
1 H

(sn)
2

+∞∑
k=−∞

e(α)
sn (`+ k2sn , 0)

f
(α)
0,0,0,0 = (2π)−2αH

(sn)
1 H

(sn)
2

+∞∑
k=−∞

e(α)
sn (k2sn , 0)

. (C.10)

Recursive formulae (C.9)-(C.10) show that the knowledge of e
(α)
sn entirely determines

the matrix Fα.
Finally, as it will be explained in section C.2, e

(α)
sn (`, 0) ∼ cα|`|−1−2α as ` → ∞,

where cα > 0. Since e
(α)
sn (`, `′) = e

(α)
sn (`− `′, 0), we deduce that for any 0 ≤ `, `′<2sn ,

and for any k 6= 0, e
(α)
sn (`+k2sn , `′) behaves as cα|`′−`−k2sn |−1−2α if 2sn is sufficiently

large. This shows that the terms associated to k 6= 0 in (C.9)-(C.10) are negligible with
respect to the the terms associated to k = 0, provided 2sn is sufficiently large. The
latter condition is a reasonable assumption in standard image setting where typically
sn ≥ 8. This is the reason why we propose the following approximation, for any
0 ≤ `, `′<2sn :

+∞∑
k=−∞

e(α)
sn (`+ k2sn , `′) ≈

{
e

(α)
sn (`, `′) for 0 ≤ |`′ − `| < 2sn−1,

e
(α)
sn (`, `′ − 2sn) for 2sn−1 ≤ |`′ − `| < 2sn .

(C.11)

This approximation is based on the above explanation when |`′ − `| < 2sn−1 and is
extended to 2sn−1 ≤ |`′ − `| < 2sn in order to respect (2sn)-periodicity.

The derivation of matrix F(α) is thus very simple: from (C.9)-(C.10), we see
that matrix F(α) is a bi-dimensional anisotropic discrete wavelet transform of the

(2sn)-periodic function
∑+∞
k=−∞ e

(α)
sn (` + k2sn , `′), where the latter is approximated

by (C.11). In other words, relations (C.9)-(C.10) perform a basis change from the
orthonormal family {

∑
k,k′ ϕ(2sn(x1 + k) − `)ϕ(2sn(x2 + k) − `′); 0 ≤ `, `′ < 2sn}

to the orthonormal family {Φ`,s; (`, s) ∈ Ωn ∪ 0}. Indeed, recursive convolutions
appearing in (C.9)-(C.10) implement (up to the multiplicative constant 2sn) the fast
recursive filtering algorithm proposed by Mallat [33] for FWT. In practice, we thus
compute F(α) by a simple FWT of the discrete function defined in the right hand side
of(C.11) multiplied by factor (2π)−2α.

C.2. Computation of connection coefficients e
(α)
sn . We hereafter adapt the

general framework proposed by Beylkin in [5, 6] to the case of the computation of
scaling function connection coefficients appearing in (C.11).
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The fractional Laplacian operator is rewritten as a convolution operator for any
scaling function with a compact support. Indeed, if α− 1/2 ∈ R\N, fractional Lapla-
cian can also be defined by Riesz potential4 [19]:

ϕ(α)(x) ,

(
−∂2

∂x2

)α
ϕ(x) =

1

cα

∫ +∞

−∞
ϕ(z)

1

|x− z|2α+1
dz,

with cα =
√
πΓ(−α)2−2α

Γ((1+2α)/2) . In the previous expression, the convolution kernel writes

k(x) =
1

cα|x|2α+1
. (C.12)

Since we have e
(α)
sn (`, `′) = e

(α)
sn (` − `′, 0), the computation of all scaling function

connection coefficients reduces to the computation of e
(α)
sn (`, 0) for ` ∈ Z. From (C.2),

we derive that

ϕ(α)(x) =
√

2

L−1∑
k=0

hk

(
−∂2

∂x2

)α
ϕ(2x− k) =

√
222α

L−1∑
k=0

hkϕ
(α)(2x− k),

where L denotes the number of non zero coefficients of the scaling filter h. Using
(C.2) for ϕ and the above relation for ϕ(α) in (C.1) leads to

e(α)
sn (`, 0) = 22α

L−1∑
k=0

L−1+2`−k∑
j=2`−k

hkhk−2`+j e
(α)
sn (j, 0). (C.13)

Moreover, an asymptotic behavior can be derived from the Taylor expansion of
the kernel (C.12) as in [5, 6]: for `→∞,

e(α)
sn (`, 0) =

1

cα|`|1+2α
+O

(
1

|`|1+2α+2M

)
. (C.14)

In order to compute e
(α)
sn (`, 0), we solve the linear system (C.13) subjected to the

above asymptotic behavior as boundary conditions. Specifically, for |`| > `min, where

`min is chosen sufficiently large (typically `min > n/8), we set e
(α)
sn (`, 0) = 1

cα|`|1+2α .

Then for ` = −`min, ..., `min, an analytical solution e
(α)
sn (`, 0) of (C.13) is obtained as

described below.
Let Hk be the function defined for any of `, j ∈ Z by

Hk(`, j) =

{
hkhk−2`+j if 2`− k ≤ j ≤ L− 1 + 2`− k,
0 otherwise.

Let Hk be the matrix of size (2`min + 1) × (2`min + 1) whose element at row ` and
column j is Hk(`− `min, j − `min). Let I denote the identity matrix. Then

e(α)
sn = [22α

L−1∑
k=0

Hk − I]−1b (C.15)

4This definition can be extend to α− 1/2 ∈ N using some appropriate kernel, see e.g. [42]
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where e
(α)
sn and b are (2`min+1)-dimensional vector whose components are respectively

e
(α)
sn (`, 0) and

b` = −22α

 `min+L∑
j=`min+1

L−1∑
k=0

Hk(`− `min, j)
cα|j|1+2α

+

−`min−1∑
j=−`min−L

L−1∑
k=0

Hk(`− `min, j)
cα|j|1+2α

 .
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H = 0.01

H = 1
3

H = 1
2

H = 2
3

H = 1

Fig. C.1. Synthesized fBms u(x) = (u1(x), u2(x))T for different values of H (left). Associated
vorticity maps, i.e. ∂xu2(x)− ∂yu1(x) (right) .
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H = 1
3

H = 1

Fig. C.2. Initial image y0 (left), deformation field u (middle) and final image y1 (right) for
H = 1

3
and H = 1. Images y0 and y1 have been corrupted by a white noise.

H RMSE/MBAE/SAE

A B C D E
0.01 2.03/37.67/10.12 2.09/38.59/12.95 1.69/30.23/2.34 1.96/34.46/1.88 1.96/35.73/2.08
1/3 1.50/19.60/5.08 1.55/20.44/11.55 1.15/15.18/3.20 1.35/17.41/1.01 1.36/17.52/1.11
1/2 1.19/12.71/4.04 1.25/13.55/11.10 0.88/9.52/3.17 1.14/12.31/1.40 1.11/11.98/1.31
2/3 0.89/7.77/4.16 0.93/8.37/10.67 0.68/6.08/10.16 0.87/7.55/0.84 0.85/7.51/1.00
1 0.46/3.40/3.25 0.45/3.38/9.87 0.41/3.21/9.18 0.44/3.27/2.28 0.43/3.24/2.23

Fig. C.3. Performance of the regularizers according to the value of H. Regularization coefficient
for methods A to E (see section 6.3 for a description) were chosen to minimize the RMSE. The
given criteria are in order RMSE/MBAE/SAE. For each value of H, the 3 best results with respect
to each criterion are displayed in blue.
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Fig. C.4. Radial power spectrum estimates in logarithmic coordinates (above) and ordinary
least squares fitting (below) for methods A to E (see section 6.3 for a description) for H = 1

3
(left)

and H = 1 (right), compared to ground truth and the theoretical decay. Regularization coefficients
where chosen to minimize the RMSE.



36

H = 1
3
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Fig. C.5. Estimated vorticity maps for methods A to E (see section 6.3 for a description) and
for H = 1

3
(above) and H = 1 (below). Regularization coefficients were chosen to minimize the

RMSE
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Fig. C.6. Influence of regularization coefficient on the accuracy of the estimate in terms of
RMSE (above), MBAE (middle) and SAE (below) for methods A to E (see section 6.3 for a de-
scription) and for H = 1

3
(left) and H = 1 (right).
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Fig. C.7. Estimated vorticity maps for methods A to E (see section 6.3 for a description) for
H = 1

3
and H = 1 in the case of a very large regularization coefficient (∼ 1e6)


