546 research outputs found

    Fuzzy Logic

    Get PDF
    Fuzzy Logic is becoming an essential method of solving problems in all domains. It gives tremendous impact on the design of autonomous intelligent systems. The purpose of this book is to introduce Hybrid Algorithms, Techniques, and Implementations of Fuzzy Logic. The book consists of thirteen chapters highlighting models and principles of fuzzy logic and issues on its techniques and implementations. The intended readers of this book are engineers, researchers, and graduate students interested in fuzzy logic systems

    The GIST of Concepts

    Get PDF
    A unified general theory of human concept learning based on the idea that humans detect invariance patterns in categorical stimuli as a necessary precursor to concept formation is proposed and tested. In GIST (generalized invariance structure theory) invariants are detected via a perturbation mechanism of dimension suppression referred to as dimensional binding. Structural information acquired by this process is stored as a compound memory trace termed an ideotype. Ideotypes inform the subsystems that are responsible for learnability judgments, rule formation, and other types of concept representations. We show that GIST is more general (e.g., it works on continuous, semi-continuous, and binary stimuli) and makes much more accurate predictions than the leading models of concept learning difficulty,such as those based on a complexity reduction principle (e.g., number of mental models,structural invariance, algebraic complexity, and minimal description length) and those based on selective attention and similarity (GCM, ALCOVE, and SUSTAIN). GIST unifies these two key aspects of concept learning and categorization. Empirical evidence from three\ud experiments corroborates the predictions made by the theory and its core model which we propose as a candidate law of human conceptual behavior

    On the semantics of fuzzy logic

    Get PDF
    AbstractThis paper presents a formal characterization of the major concepts and constructs of fuzzy logic in terms of notions of distance, closeness, and similarity between pairs of possible worlds. The formalism is a direct extension (by recognition of multiple degrees of accessibility, conceivability, or reachability) of the najor modal logic concepts of possible and necessary truth.Given a function that maps pairs of possible worlds into a number between 0 and 1, generalizing the conventional concept of an equivalence relation, the major constructs of fuzzy logic (conditional and unconditioned possibility distributions) are defined in terms of this similarity relation using familiar concepts from the mathematical theory of metric spaces. This interpretation is different in nature and character from the typical, chance-oriented, meanings associated with probabilistic concepts, which are grounded on the mathematical notion of set measure. The similarity structure defines a topological notion of continuity in the space of possible worlds (and in that of its subsets, i.e., propositions) that allows a form of logical “extrapolation” between possible worlds.This logical extrapolation operation corresponds to the major deductive rule of fuzzy logic — the compositional rule of inference or generalized modus ponens of Zadeh — an inferential operation that generalizes its classical counterpart by virtue of its ability to be utilized when propositions representing available evidence match only approximately the antecedents of conditional propositions. The relations between the similarity-based interpretation of the role of conditional possibility distributions and the approximate inferential procedures of Baldwin are also discussed.A straightforward extension of the theory to the case where the similarity scale is symbolic rather than numeric is described. The problem of generating similarity functions from a given set of possibility distributions, with the latter interpreted as defining a number of (graded) discernibility relations and the former as the result of combining them into a joint measure of distinguishability between possible worlds, is briefly discussed

    Uncertainty Management of Intelligent Feature Selection in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN) are envisioned to revolutionize the paradigm of monitoring complex real-world systems at a very high resolution. However, the deployment of a large number of unattended sensor nodes in hostile environments, frequent changes of environment dynamics, and severe resource constraints pose uncertainties and limit the potential use of WSN in complex real-world applications. Although uncertainty management in Artificial Intelligence (AI) is well developed and well investigated, its implications in wireless sensor environments are inadequately addressed. This dissertation addresses uncertainty management issues of spatio-temporal patterns generated from sensor data. It provides a framework for characterizing spatio-temporal pattern in WSN. Using rough set theory and temporal reasoning a novel formalism has been developed to characterize and quantify the uncertainties in predicting spatio-temporal patterns from sensor data. This research also uncovers the trade-off among the uncertainty measures, which can be used to develop a multi-objective optimization model for real-time decision making in sensor data aggregation and samplin

    Against the Tide. A Critical Review by Scientists of How Physics and Astronomy Get Done

    Get PDF
    Nobody should have a monopoly of the truth in this universe. The censorship and suppression of challenging ideas against the tide of mainstream research, the blacklisting of scientists, for instance, is neither the best way to do and filter science, nor to promote progress in the human knowledge. The removal of good and novel ideas from the scientific stage is very detrimental to the pursuit of the truth. There are instances in which a mere unqualified belief can occasionally be converted into a generally accepted scientific theory through the screening action of refereed literature and meetings planned by the scientific organizing committees and through the distribution of funds controlled by "club opinions". It leads to unitary paradigms and unitary thinking not necessarily associated to the unique truth. This is the topic of this book: to critically analyze the problems of the official (and sometimes illicit) mechanisms under which current science (physics and astronomy in particular) is being administered and filtered today, along with the onerous consequences these mechanisms have on all of us.\ud \ud The authors, all of them professional researchers, reveal a pessimistic view of the miseries of the actual system, while a glimmer of hope remains in the "leitmotiv" claim towards the freedom in doing research and attaining an acceptable level of ethics in science

    A connection between computer science and fuzzy theory: midpoints and running time of computing

    Get PDF
    Following the mathematical formalism introduced by M. Schellekens [Elec- tronic Notes in Theoret. Comput. Sci. 1 (1995), 211-232] in order to give a common foundation for Denotational Semantics and Complexity Analysis, we obtain an application of the theory of midpoints for asymmetric distances de ned between fuzzy sets to the complexity analysis of algorithms and pro- grams. In particular we show that the average running time for the algorithm known as Largetwo is exactly a midpoint between the best and the worst case running time of computingPeer Reviewe

    Statistical reasoning with set-valued information : Ontic vs. epistemic views

    Get PDF
    International audienceIn information processing tasks, sets may have a conjunctive or a disjunctive reading. In the conjunctive reading, a set represents an object of interest and its elements are subparts of the object, forming a composite description. In the disjunctive reading, a set contains mutually exclusive elements and refers to the representation of incomplete knowledge. It does not model an actual object or quantity, but partial information about an underlying object or a precise quantity. This distinction between what we call ontic vs. epistemic sets remains valid for fuzzy sets, whose membership functions, in the disjunctive reading are possibility distributions, over deterministic or random values. This paper examines the impact of this distinction in statistics. We show its importance because there is a risk of misusing basic notions and tools, such as conditioning, distance between sets, variance, regression, etc. when data are set-valued. We discuss several examples where the ontic and epistemic points of view yield different approaches to these concepts

    The legacy of 50 years of fuzzy sets: A discussion

    Get PDF
    International audienceThis note provides a brief overview of the main ideas and notions underlying fifty years of research in fuzzy set and possibility theory, two important settings introduced by L.A. Zadeh for representing sets with unsharp boundaries and uncertainty induced by granules of information expressed with words. The discussion is organized on the basis of three potential understanding of the grades of membership to a fuzzy set, depending on what the fuzzy set intends to represent: a group of elements with borderline members, a plausibility distribution, or a preference profile. It also questions the motivations for some existing generalized fuzzy sets. This note clearly reflects the shared personal views of its authors
    • 

    corecore