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ABSTRACT 

This paper presents a formal characterization of  the major concepts and con- 
structs o f  fuzzy logic in terms of  notions o f  distance, closeness, and similarity 
between pairs o f  possible worlds. The formalism is a direct extension (by recogni- 
tion of  multiple degrees o f  accessibility, conceivability, or reachability) of  the 
major modal logic concepts of  possible and necessary truth. 

Given a function that maps pairs of  possible worlds into a number between 0 
and 1, generalizing the conventional concept of  an equivalence relation, the major 
constructs of  fuzzy logic (conditional and unconditioned possibility distributions) 
are defined in terms of  this similarity relation using familiar concepts from the 
mathematical theory of  metric spaces. This interpretation is dO~ferent in nature and 
character from the typical, chance-oriented, meanings associated with probabilistic 
concepts, which are grounded on the mathematical notion of  set measure. The 
similarity structure defines a topological notion of  continuity in the space of  
possible worlds (and in that of  its subsets, i.e., propositions) that allows a form of  
logical "'extrapolation'" between possible worlds. 

This logical extrapolation operation corresponds to the major deductive rule of  
fuzzy logic- the compositional rule o f  inference or generalized modus ponens of  
Zadeh-  an inferential operation that generalizes its classical counterpart by virtue 
of  its ability to be utilized when propositions representing available evidence match 
only approximately the antecedents of  conditional propositions. The relations 
between the similarity-based interpretation of  the role of  conditional possibility 
distributions and the approximate inferential procedures of  Baldwin are also 
discussed. 

A straightforward extension of  the theory to the case where the similarity scale 
is symbolic rather than numeric is described. The problem of  generating similarity 
functions from a given set of  possibility distributions, with the latter interpreted as 
defining a number o f  (graded) discernibility relations and the former as the result 
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of combining them into a joint measure of distinguishability between possible 
worlds, is briefly discussed. 

KEYWORDS: f u z o '  logic, semantics, modal logics, possible worlds, gen- 
eralized modus ponens 

INTRODUCTION 

This paper presents a semantic characterization of the major concepts and 
constructs of fuzzy logic in terms of notions of similarity, closeness, and 
proximity between possible states of a system that is being reasoned about. 
Informally, a "possible state" (to be formalized later using the notion of 
"possible world") is an assignment of a well-defined truth value (i.e., either 
true or false) to all relevant declarative knowledge statements about that 
system. 

The primary goal that guided the research leading to the results presented in 
this work was one of conceptual clarification. A great deal of energy has been 
directed in the past few years to debating the methodological necessity and 
relative merits of various approximate reasoning methodologies. As a result of 
these exchanges, the need to consider certain nonclassical approaches has been 
questioned on a variety of bases. 

Recognizing the need for the development of sound semantic formalisms that 
shed light on the nature of different approaches, I have pursued, in the past few 
years, a line of theoretical research seeking to describe various approximate 
reasoning methodologies using a common framework. These investigations 
have recently shown the close connection between the Dempster-Shafer [38] 
calculus of evidence [35] and epistemic logics. This relationship was elucidated 
by straightforward application of conventional probabilistic concepts to models 
of knowledge states that distinguish between the true of a proposition and 
knowledge (by rational agents) of that truth. Central to this development is the 
notion of "possible world" used by Caruap [6] to develop logical bases for 
probability theory. 

The central notion of possible state of affairs is also the conceptual basis of 
the results presented in this paper, which is aimed at establishing the semantic 
bases of possibilistic logic with emphasis on the study of its possible relations 
and differences, if any, with probabilistic reasoning. 

The results of this investigation clearly show that possibilistic logic can be 
interpreted in terms of nonprobabilistic concepts that are related to the notions 
of continuity and proximity. The major functional structures of fuzzy logic, 
possibility and necessity distributions,1 may be defined in terms of the more 
primitive notion of similarity between possible states of a system using 
constructs that are the direct extension of well-known concepts in the theory of 

I R is important to remark that the scope of this work is limited to the most fundamental concepts 
and constructs of fuzzy logic without examining related notions such as generalized quantifiers. 
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metric spaces. The topological metric structure that is so defined may be used 
to derive a sound inferential rule that is a form of logical "extrapolation." 
This rule is also shown to be the compositional rule of inference or generalized 
modus ponens proposed by Zadeh [53]. Conversely, possibility distribu- 
t ions-expressing resemblance in some specific regard--may be used to derive 
the actual similarity functions, discerning between possible worlds from the 
multiple points of view. 

The constructs that are used to derive the interpretation presented in this 
paper are formally, structurally, and conceptually different from those that 
explain probabilistic reasoning, in either its objective or subjective interpreta- 
tions, irrespective of methodological reliance on interval-based approaches to 
represent ignorance. The latter class of methods--measuring the relative 
proportion of the (either observed or believed) occurrence of some event--are 
based on the mathematical notion of set measure, while the former--seeking to 
establish similarities between situations that may be used for analogical reason- 
i n g - a r e  related to the theory of distances and metric spaces. 

This presentation of the relationships between similarity-based concepts and 
possibilistic notions, while grounded on a formal treatment that is based on 
rigorous logical and mathematical formalisms, will be kept at a level that is as 
informal as possible. The purpose of this presentation style is to facilitate 
comprehension of major ideas without the clutter that would otherwise need to 
be introduced keep matters strictly precise. For this reason, I will refrain from 
formal introduction of structures and axiom schemata, that, although correct 
and proper, may encumber understanding of the basic concepts. 

Before we proceed to the detailed consideration of semantic models, I must 
briefly remark on the epistemological implication of these developments. The 
present interpretation is not the only that may be advanced to define the notion 
of possibility in terms of simpler concepts, nor do I claim that it may not be 
sometimes possible, even desirable, to model possibilistic structures from other 
bases. My intent is not to prove the conceptual superiority of one approach 
over another or to argue about the relative utility of different technologies. 
Rather, I hope that these results have contributed to establish the basic 
conceptual differences in the treatment of imprecise and uncertain information 
that are inherent in probabilistic and possibilistic methods--the former oriented 
toward quantifying believed or measured frequency of occurrence, and the 
latter seeking to determine propositions, implied by the evidence, that are 
similar in some sense to a hypothesis of interest. In other words, beyond 
accidental domain-specific relations, both types of methods are needed to 
analyze and clarify the significance of imprecise and uncertain information. 

APPROXIMATE REASONING AND POSSIBLE WORLDS 

Our point of departure is the model-theoretic formalisms of modal logics. 
Let us assume that declarative statements about the state, situation, or behavior 
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of a real-world system under study are symbolically represented by the letters 
of some alphabet 

. . . .  } 

which are combined in the customary way using the logical operators 7, v ,  A, 
---,, and ~ (to be interpreted with their usual meanings) to derive a language 
.Y (i.e., a collection of sentences). Furthermore, we augment this language by 
the use of two unary operators N and II ,  called the necessity and possibility 
operators, respectively, having usage governed by the rule 

If  ~b is a sentence, then Nck and Ilck are also sentences, 

which introduces the ability to represent different modalities for the truth of 
propositions. 

A model for this propositional system is a structure consisting of three 
components: 

1. A nonempty set of possible worlds q/ introduced to represent states, 
situations, or behaviors of  the system being modeled by our sentences. In 
what follows we will refer to this set as the universe o f  discourse, or 
universe for short. 

We will also need to consider a nonempty subset # of the universe q/, 
which is introduced to model the set of conceivable worlds that are 
consistent with observed evidence. This set (possibly equal to the whole 
universe q/) will be called the evidential set. Throughout this paper, we 
will assume that evidence about the world is always given by means of 
conventional propositions that allow us to determine, without ambiguity, 
whether a possible world either is or is not a member of the evidential 
set. 

2. A function (called a valuation) that assigns one and only one of the truth 
values true or false to every possible world w in the universe q/ and 
every sentence ~ in the language. Assignment of the truth value true to a 
pair (w, ¢,) will be denoted w ~ ~ (i.e., ~ is true in the world w). 

In what follows, we will use the same symbols to describe subsets of 
possible worlds and the propositions that are true only in worlds that are 
members of such subsets. For example, the symbol 6 ~ will be used to 
denote both the evidential set and the proposition that asserts the validity 
of the corresponding evidential observations. Using this notation, for 
example, we will write w t-- d' to indicate that the world w is compatible 
(i.e., logically consistent) with the evidence ~'. Furthermore, we will use 
the symbol ~ ,  introduced above as a set of  well-formed sentences, to 
denote also the power set of  the universe q/. Rigorously, subsets of  q/ 
strictly correspond to the classes of equivalence of the sentence set -Y 
that are obtained by equating logically equivalent sentences. In the same 
simplifying vein, we will also drop the customary distinction between 
sentences--the linguistic expressions of something that may be true or 
false--and propositions--the actual things being asserted. 
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3. A binary relation R between possible worlds, called the accessibility, 
conceivability, or teachability relation, introduced to model the seman- 
tic of the modal operators N and II. 

It is not necessary to review here the well-known axioms (Hughes and 
Creswdl [21]) that restrict the assignment of truth values to well-formed 
sentences according to the rules of propositional logic. To facilitate compre- 
hension of our formalism, we need to recall solely the rules that constrain 
assignment of truth values to sentences formed by prefixing other valid 
expressions with the modal operators, that is, 

1. The sentence ~b is necessarily true in the possible world w (i.e., 
w ~ N~) if and only if it is true in every world w' that is related to the 
world w by the relation R. 

2. The sentence ~ is possibly true in the possible world w (i.e., w ~- II~) 
if and only if it is true in some world w' that is related to the world w by 
the relation R. 

If, for example, the relation R relates worlds that share the same (possibly 
empty) subset of true sentences of the prespecified set of expressions 

Y =  {~, ,  ~2 . . . .  } 

that is, if R(w,  w') if and only if any sentence ~ in ~- is either true in both w 
and w' or false in both w and w', then the resulting system has an "epistemic" 
interpretation that regards related possible worlds as "being possible for all we 
know" (i.e., observed evidence, corresponding to a subset of ~-, is the same 
for both worlds). In this case, the necessity operator N corresponds to the 
epistemic operator K of epistemic logics, with the corresponding system 
having the properties of the modal system $5, which was used in the context of 
probability theory as the semantic basis for the Dempster-Shafer [38] calculus 
of evidence (Ruspini [35]). 

If, on the other hand, the original interpretation of logical necessity--corre- 
sponding to a relation R that is equal to q/× q~, that is, that relates every pair 
of possible worlds--is given to the operator N, then a proposition is necessar- 
ily true if and only if it is true in every possible world. 

If the relation R is chosen as 

R = ~ ' x ~  

then this interpretation may be used to characterize approximate reasoning 
problems as those where a hypothesis of interest is neither necessarily true nor 
necessarily false in worlds in the evidential set ~, reflecting the inability of 
conventional deductive techniques to unambiguously determine the truth value 
of the hypothesis. 2 

2The notion of approximate reasoning problem is often extended to encompass situations where 
deductive techniques cannot always be used because of practical limitations on computational 
resources. 
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In those problems, in spite of this fundamental impossibility, we may resort 
to approximate reasoning methods to describe various properties of the eviden- 
tial set ~. For example, the probabilistic structures used by various probabilis- 
tic reasoning approaches typically characterize relations of the form 

~(~A e) : ~ ( ~ ^  e) 

between the measures of the subsets of the evidential set ~ where a hypothesis 
is true or false, respectively. 

Our aim will be to study how other structures, defining a metric or distance 
in the universe q/, can be used to describe the nature of the evidential set. To 
do so, we will assign a different meaning to the accessibility relation, giving it 
an interpretation that regards related worlds as "similar" or "c lose"  in some 
sense. We will require, however, a scheme that is richer than that provided by 
a single relation so that we can extend modal notions and derive semantics 
bases for fuzzy logic, which relies on concepts of degrees of matching or 
closeness expressed by real numbers between 0 and 1. 

In what follows we will use the symbols = and ~* to denote strong 
implication and equivalence, respectively. A proposition q strongly im171ies 17 
(denoted q ~ 17) if and only if 17 is true in any world where q is. Similarly, /7 
is logically equivalent to q (denoted/7 ~ q) if and only if p and q are true 
in the same subset of worlds of q/. 

Following traditional terminology, we will say also that a proposition 17 is 
satisfiable if there exists a possible world 17 such that w ~- p.  

EXTENDED MODALITIES 

We first turn our attention to the problem of generalizing modal logic 
formalisms to explain the structures and functions of fuzzy logic. 

A number of authors have studied various relations between fuzzy and 
modal logics. Lakoff [24], Murai et al. [28], and Schocht [36] have proposed 
graded generalizations of basic modal constructs. Dubois and Prade [13, 14] 
have also explored analogies between these nonstandard logics. In a recent 
paper [12], they developed, in addition, a modal basis for possibility theory by 
introducing fuzzy structures into modal frameworks with the goal of deriving 
proof mechanisms that can be used in possibilistic reasoning. 

The goal for the model presented in this paper is somewhat different from 
the objectives guiding those efforts. We will seek explanations for possibilistic 
constructs on the basis of previously existing notions rather than generaliza- 
tions of modal frameworks by means of fuzzy constructs. The model presented 
here is not based on the use of graded notions of possibility and necessity as 
primitive--and, by implication, easy to understand--structures. The founda- 
tion for this model is provided by a generalization of the accessibility relation, 
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which is given a simple interpretation as a measure of resemblance and 
proximity between possible worlds. 

We will extend the notion of accessibility relation to encompass a family of 
nonempty binary relations R ,  that are indexed by a numerical parameter t~ 
between 0 and 1. These relations, which are nested, 

R,~ c R t~ whenever/~ _< ot 

are introduced to represent different degrees of similarity, using a scheme that 
is akin to that used by Lewis in his study of counterfactuals [25]. The family of 
accessibility relations introduced here differs from that proposed by Lewis, 
however, in its use of numerical indexes 3 and in the nature of the overall 
modeling goals that, in Lewis's formalism, are intended to represent changes 
of scale induced by consideration of different restrictive statements. 

Similarity Relat ions 

To facilitate the definition of a family of accessibility relations, we introduce 
a similarity function 

S: ~ '×  ~ [0,11 

assigning to each pair of possible worlds (w, w') a unique degree o f  similarity 
between 0 (corresponding to maximum dissimilarity) and 1 (corresponding to 
maximum similarity). 

With the help of this function, we will then say that w and w' are related to 
the degree or, denoted R~(w, w3, if and only if S(w, w3 >- or. In this way, 
the relations R ,  have the required nesting property with R o corresponding to 
the whole Cartesian product q /x  q/ (or, every possible world is at least 
similar in a degree zero to every other possible world). 

Some properties are required to assure that the function S has the required 
semantics of a metric relationship capturing the intuitive notion of similarity or 
"proximity."  It is first necessary to demand that the degree of similarity 
between any world and itself be as high as possible, that is, 

S( w, w) = 1 for all w in q/ 

This property assures that every one of the accessibility relations R~ will be 
reflexive and, following the nomenclature introduced by Zadeh for fuzzy 
relations [52], we will also say that the similarity relation is reflexive. 

Next, we will call for the function S to be symmetric, that is, 

S( w, w') = S( w', w) for any worlds w and w' in q/ 

3We will later see that similarities can be measured by using more general, nonnumeric, scales. 
For simplicity reasons, I will avoid at this point the introduction of more general scheraes that 
unnecessarily complicate the exposition. 
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This is a very natural requirement of any relation intended to represent a 
relation of resemblance between objects. 

Finally, and most important, we will impose a form of transitivity require- 
ment upon the similarity function S that turns it into a generalized equivalence 
relation. The purpose of this restriction is to assure that S has reasonable 
behavior as a metric in the universe of  possible worlds. It would certainly be 
surprising if, for some similarity S, we were to be told that w and w' are very 
similar and that w' and w" are also very similar, but that w does not resemble 
w" at all. Clearly, there should be a lower bound on the possible values of  
S(w, w") that can be expressed as a function of the values of S(w, w3 and 
S(w', w"). We will express such a constraint using a numeric operation, 
denoted ®, that takes as arguments two real numbers between 0 and 1 and 
returns another number in the same range, that is, 

® :  [0, 1] × [0, 1] ,--. [0, 1] 

in the form of the inequality 

S (w,  w") _ S (w,  w ' ) ® S ( w ' ,  w") 

assumed valid for any worlds w, w', and w" in the universe q/. Reverting to a 
modal terminology, the above transitivity constraint, which will be called 
®-transitivity, may be rewritten in relational form as 

R,,~ a c R,, * R a for all 0 _< a, 3 -< 1 

making obvious its generalization of the conventional definition of transitivity 
for ordinary binary relations, that is, 

R ~ R * R  

Since the role of  ®, through recursive application, is that of providing a 
lower bound for the similarity between the two end members w I and w n of a 
chain of  possible worlds [ w 1, w 2 . . . . .  wn], it is obvious that the operation ® 
should be commutative and associative. Furthermore, it should also be nonde- 
creasing in each argument, as it is reasonable to ask that the desired lower 
bound be a monotonic function of its arguments. Finally, it is also desirable to 
ask that 

t~®l = l®tx = ot 

that is, that the values of the similarities of two indistinguishable objects to a 
third should be the same. These requirements are equivalent to demanding that 
the operation ® be a triangular norm (Schweizer and Sklar [37]), or T-norm, 
for short. 

Triangular norms, originally introduced in the theory of probabilistic metric 
spaces to treat certain statistical problems, play a distinguished role in [0, 1]- 
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multivalued logics (Alsina and Trillas [1], Dubois and Prade [11], Gaines [17], 
Rescher [31]) as the result of imposing reasonable requirements upon opera- 
tions that produce the truth value of the conjunction of two expressions as a 
function of the truth values of the conjuncts. Furthermore, generalized similar- 
ity relations (called B-R relations by Zadeh [54]) also have an important 
function, to be examined further later in this paper, in the generalization of the 
inferential rule of modus ponens (Dubois and Prade [10], Trillas and Valverde 
[43]). Our axiomatic derivation for the requirement that ® be a T-norm is 
based, however, solely on metric considerations, applied here to a space of 
possible worlds but valid in general metric spaces. 

From the axioms of triangular norms, it is easy to see that 

~®~ _ min(~,  ~) 

which shows that the minimum function, itself a T-norm, is the largest element 
in this class of operations. Its minimal element, on the other hand, is the 
noncontinuous function ® defined by 

i if/~ = 1 
or®/3 = if ot = 1 

otherwise 

In what follows, we will also impose a most reasonable additional assump- 
tion of continuity of ® with respect to its arguments (i.e., why should there be 
a jump in the value of a lower bound provided by ® when the values of its 
arguments are slightly changed?). The class of continuous T-norms does not 
have a minimal element, although under certain additional assumptions (requir- 
ing T-norms to be also J-copulas [37]), the inequality 

max(oL + ~ - 1,0) <__ a®/3 

also holds true, showing that certain important continuous T-norms lie between 
that of the ~ l-logic of Lukasiewicz (see [17]) and that of the original fuzzy 
logic proposed by Zadeh [53]. 

Continuous triangular norms play a significant part in the theories of pattern 
recognition and automatic classification (Ruspini [32]). In [33] I proposed the 
use of generalized similarity relations based on the T-norm of Lukasiewicz to 
generalize existing classification techniques--based on the mapping of a simi- 
laxity function into a conventional equivalence relation--to the fuzzy domain 
by mapping these T-norms (which I called likeness relations) into generalized 
fuzzy partitions. Bezdek and Harris [3] independently studied axiomatic ap- 
proaches to cluster analysis based on the use of continuous T-norms. 

I have also studied [34] the possible relation between the multivalued logic 
and similarity related aspects of T-norms, and suggested that the degrees of 
similarity between two objects A and B may be regarded as the "degree of 
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truth" of the vague proposition 

" A  is similar to B . "  

Having argued that S should have the structure of  a generalized equivalence 
relation, we will assume, mainly for reasons of simplicity, that the function S 
is the dual of  a " t r ue"  distance, that is, that 

S(w, w') = 1 if and only if w = w' 

This restriction, which is not substantial, is introduced primarily to assure that 
different possible worlds may be distinguished by means of the function S. 
Otherwise, the equivalence relation that relates two worlds w and w' if and 
only if S(w, w') = 1 may be used to partition our universe ql into "indis- 
tinguishable" nonintersecting classes, indicating that our metric cannot dis- 
criminate between significant differences in system state. 

Before closing our presentation of generalized similarity relations, it is 
important to remark upon the close relation between the notion of similarity 
and that of  distance. I f  a function 6 is defined in terms of a similarity function 
S by the simple relation 

6 = l - S  

then it is easy to see that the function 6 has the properties of a metric or 
distance. This is evident if the operation ® corresponds to the T-norm of 
Lukasiewicz, since the transitivity condition is equivalent to the well-known 
triangular inequality, that is, 

6(w, w") _< 6(w, w') + 6(w', w") 
If  other T-norms are used, even stronger inequalities hold, with the so-called 
"ultrametric inequality" 

6( w, w") <_ max[ 6( w, w') , 6( w', w") ] 

being valid for the T-norm of Zadeh. In this case, each of the relations in the 
family R~ (known in fuzzy set theory as the or-CUt 4 of the similarity S) is a 
conventional equivalence relation. This fact was exploited, prior to the intro- 
duction of fuzzy set theory and fuzzy cluster analysis, by a variety of clustering 
procedures of the "single-link" type (Jardine and Sibson [22], Sokal and 
Sheath [40]). 

Possible and Necessary Similarity 

Our semantic formalization needs require the introduction of constructs to 
indicate the extent by which a concept exemplifies, illustrates, or is an 

4The ~-cut [46] of a fuzzy set /t: ql ~ [0, 1] is the conventional set of all points w such that 
/~(w) > c~. A similar concept is defined for relations as subsets of a product space ql x ~. 
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adequate model of another concept. Our interpretations will therefore be 
oriented toward characterization of the degree to which a concept can be said 
to be a good example of another concept with the purpose of defining vague 
concepts by means of measures of proximity between defined and defining 
concepts. In our treatment, each of the multiple "definiens" will be a 
conventional proposition corresponding to a subset of possible worlds. It is 
conceivable, however, that new vague concepts might also be described metric 
relations to other vague concepts. 

The required constructs are based on the idea that whenever p and q are 
propositions such that p ~ q, then any p-world is an "example" of a 
q-world. This basic notion will be generalized by the introduction of modal 
structures that define to what degree possible worlds that satisfy a certain 
proposition q fit a vague concept. Some of those possible worlds are "para- 
digmatic" of the vague concept, that is, they fit it to a degree equal to 1 in the 
same sense that we may say, for example, that somebody whose height is 7 ft 
is definitely " ta l l . "  If we use a notion of graded fitness, however, certain 
worlds will fit the concept to a degree, that is, they resemble (or are similar to) 
some paradigmatic example of the vague concept. 

The conventional interpretation of possibility must be modified, therefore, to 
capture the idea that a particular possible world is similar in some degree to 
another world that satisfies a "reference"  proposition. 

More generally, however, we will be interested in relations of similarity 
between pairs o f  subsets of possible worlds rather than between pairs of 
possible worlds. This requirement complicates matters considerably, because 
we will be forced to consider both the "val idi ty" of a proposition p in some 
world where another proposition q is true and its applicability in every world 
where q is true. In the former case, we will care about the existence of 
q-worlds that are similar to some degree to some p-world, whereas in the 
latter we will be concerned with the size of the minimum neighborhood of p 
(as a subset of the universe ~ )  that fully encloses the subset q. 

This dual concern for what may possibly apply and what must necessarily 
hold--an essential aspect of modal logic--is typical of situations where 
relationships between ensembles of objects are described in terms of relations 
between their members. In the probability calculus, for example, knowledge of 
probabilities over certain families of subsets provides "sharp"  upper and 
lower bounds (called lower and upper probabilities, respectively) for the 
probabilities of other subsets--an important fact in the extension of set 
measures to larger domains (Halmos [19]). The role and properties of these 
bounds in the Dempster-Shafer [38] calculus of evidence is well known, 
having been described in the original paper of Dempster [8], related to 
concepts of modal logic by Ruspini [35], and being also the subjects of 
considerable formal study (Choquet [7]) as mathematical structures. 
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Analogies between the role of  probabilistic bounds (i.e., bounds for proba- 
bility values) and possibility/necessity distributions, have been the source of  
much of  the confusion about the need for possibilistic schemes. Each 
upper/ lower-bound pair, however,  leads to a substantially different description 
of  the nature of  a subset of  possible worlds, being, in either case, measures 
that arise naturally when pointwise properties are extended to set partitions. 
General properties of  these measures have been studied by Dubois and Prade 
[15] in the context o f  approximate reasoning and in other regards by Pavlak 
[30]. 

Our generalizations of  the notions of  possibility and necessity are related to 
the so-called de re (Hughes and Creswel [21]) interpretation of  the statement 
" I f  q, then p is possible" as the modal propositional relation 

q ~  H p  

We will say that the proposition q implies, or is a necessary model of, the 
proposition p to the degree ct if  and only if for every q-world w there exists a 
p - w o r d  w'  that is at least oL-similar to it [i.e., S(w, w') > or] or, equivalently, 
whenever 

q =  H , , p  

Similarly, we will say that the proposition q is consistent with, or is a 
possible model of, the proposition p to the degree ct 5 if and only there exist 
a q-world w and a p-world  w' that are at least c~-similar or, equivalently, 
whenever 

~ ( p  ~ ~ I I~q )  

The similarity function that we have introduced in the universe qz provides 
us with a simple mechanism to quantify both the extent of  " inclusion" and that 
of  the " in tersect ion"  between pairs of  subsets of  possible worlds. 6 

Possibilistic Implication and Consistency 

The notion of  subset inclusion and its related concept of  set identity are of  
central importance in deductive logic, since subsets o f  possible worlds are 
formally equivalent to propositions with subset inclusion and identity corre- 

5Note that our characterizations of both possibility and necessity distributions are based in the 
modal possibility operators II,~. 
6For reasons that by now should be evident, we will not need to introduce a concept of 
"unconditioned possibility" although it would be easy to do so using q = ~. Being concerned 
with the power of certain propositions to exemplify other conditions, we will not have much 
eceassion to deal with the strength of tautologies in that regard. 
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sponding to logical implication and equivalence, respectively. These proposi- 
tional relationships are the basis of derivation rules such as the modus ponens. 
The notion of intersection plays a similar role in modal analyses because of its 
ability to express the potential validity of  a statement. 

Classical accounts, however, recognize only two "degrees"  of inclusion 
corresponding to the cases when either a set q is a subset of another set p or it 
is not, with a similar dichotomy applying to degrees of intersection. Our 
generalization exploits the metric structures defined between sets of possible 
worlds by introducing measures that describe a subset as enclosed in a 
neighborhood (of some size) of another set while intersecting another of its 
neighborhoods (of "smal ler"  size). 7 The problem of measuring the " s i ze"  of 
those neighborhoods is the subject of our immediate considerations. 

DEGREE OF IMPLICATION Our definition of partial implication between 
propositions was based on conditions that determine whether, given two 
propositions p and q, one of them implies the other to the same value ct. In 
particular, since every world w is always similar in a degree that is at least 
equal to zero to any other world w', it is always true that any proposition q 
implies any other proposition p to the degree zero. It is often the case, 
however, that the degree of implication between p and q is at least equal to 
some certain positive value or. 

I f  we want to generalize procedures based on inclusion relationships, such as 
the modus ponens, in an efficient fashion, we will need to measure the 
"opt imal"  (or maximum) value of the parameter o~ such that q implies p to 
the degree or. This value is a measure of the degree to which the set of all 
p-worlds must be "stretched" to encompass the set of all q-worlds. The least 
upper bound of the values of the similarities between any q-world w' and some 
p-world w is given by the degree o f  implication function: 

DEFn, aTION 1 The degree of implication of  p by q is the value 

I ( p [ q )  = inf s u p S ( w , w ' )  
w" b-q wb-p 

Defined in this way, the degree of implication I ( p [  q) is a measure of the 
"minimal amount" of stretching required to reach a p-world from any 
q-world, in the sense that if /5 < I ( P l  q), then 

q ~ IIt~ p 

7It is important to recall that, owing to our reliance on similarity rather than on the dual notion of 
dissimilarity or distance, high values of ~ correspond to low values of "stretching" or to smaller 
set  neighborhoods. 
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Furthermore, c~ is the largest real value for which the above statement may be 
made. 

As the following theorem makes clearer, this function provides the basis for 
the generalization of the modus ponens. This truth-derivation procedure may 
be thought of as an expression of the nesting relationships that hold between 
the sizes of neighborhoods of such subsets. 

THEOREM 1 The degree of  implication function, 

I :  Lf × L/~ [0, 1] 

has the following properties: 
(i) I f  p ~ r, then l(p l q) <_ I(r [ q) 

(ii) I f  p ~ r, then I(P [ q) >- I(P [ r) 
( i i i )  l(p l q) >- l(p l r)® I(r l q) 

where p,  q, and r are any satisfiable propositions. 

Proof The first two properties are an immediate consequence of the 
definition of degree of implication. To prove the third, observe that by 
definition of similarity, 

S(w,  w') >_ S(w,  w")®S(w", w') 

for any worlds w, w', and w n. 
Taking the supremum on both sides of this inequality with respect to all 

worlds w t-  p,  it follows, because ® is continuous, that 

sIw, w') _> [sup s(w, w')]®s(w', w') sup 
w ~ - p  t w t - p  .I 

Since this expression is true, in particular, for all worlds w ~ t- r, it is true that 

sup S(w,  w') > [ inf sup S(w, w ' ) ] ® S ( ~ ,  w') 
w l - p  L w "  I--r w l - -p  1 

= I (p l r )®S( f v ,  w') 

where ~ is any world such that ¢v t- r. 
From this inequality, it follows, since ® is continuous, that 

S(w,  w') > I ( p  I r )®[  supS(~ ,  w')] sup 
w ~ - p  ¢v~-r 

Taking now the infimum on both sides of this expression over all worlds w' 
such that w' t- q, it is easy to see, using again the continuity of ®, that 

inf supS(w,w' )  >_ l(plr)®[ inf supS(l~,,w')] 
w ' t - q  w l - -p  t w ' t - q  ¢¢1--r 

proving the ®-transitivity of I. • 
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Note, that since I(q I q) = 1 for any proposition q, the following statement 
is also true. 

COaOLLAaV I f  p and q are propositions in ~ ,  then 

I ( p l q  ) = sup[I(plr)®I(r lq)]  
r 

Notice also that if I(p [q) = 1, then 

sup S ( w ,  w') = 1 for all w' t- q 
w ~ p  

Under minimal assumptions (assuring that the supremum operation is actually a 
maximization), this relation is equivalent to stating that q strongly implies p ,  
or that any q-world is also a p-world. 

The nonsymmetric function I measures the extent to which every world w' 
in a certain class resembles some world w (dependent on w)  in a reference 
class, explicating the nature of the nonsymmetric assessments (Tversky [44]) 
found in psychological experimentation when subjects are asked to evaluate the 
degree to which an object "resembles" another. The results obtained in those 
experiments suggest that human beings, when assessing similarity between 
objects, use one of them (or a class of similar objects) as a reference landmark 
to describe the other. Such asymmetries might be explained by noticing that, in 
general, I ( p  I q) g: I (q  I p),  indicating that the stronger stimulus might gener- 
ally be used to construct a reference class, which is then used to describe other 
stimuli. 

The degree of implication of one proposition by another can be readily used 
to generate a measure of similarity between propositions that generalizes our 
original measure of similarity between possible worlds: 

S ( p ,  q) = min[ I (p  I q ) , l ( q l  P)] 

quantifying the degree by which the propositions p and q are equivalent. It 
can be readily proved (Valverde [45]) from its definition and from the 
transitivity property of I that S is a reflexive, symmetric, and ®-transitive 
function between subsets of possible worlds. This similarity function is the 
dual of the well-known Hausdorff distance, defined between subsets of a 
metric as a function of the distance between pairs of their members (Dieudonn~ 
[9]), which is given by the expression 

8 ( A ,  B) = max{[sup i n f ' ( x ,  y ) ] ,  [sup in fS(x ,  y ) ] }  
L x~.A y ~ B  x¢ B  y~_A 

The result expressed by the transitive property of the degree of implication 
may be stated using modal notation in the form 

q ~, II~r and r = I I , p  imply that q = I I~ .~p  

as the simplest form of the generalized modus ponens rule of Zadeh. 
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Figure 1. The generalized modus ponens. 

The relationship between this rule and the classical modus ponens is easier 
to perceive if it is remembered that classical conditional propositions of the 
form " I f  q, then p "  simply state that the set of q-worlds is a subset of the set 
of p-worlds. Such relationships of inclusion can also be described in metric 
terms by saying that every q-world has a p-world (i.e., itself) that is as similar 
as possible to it. 

Logic structures, however, only allow us to say either that q implies p or 
that q implies its negation ~ p ,  or that neither of those statements is true. By 
contrast, similarity relations allow measurement of the amount by which a set 
must be "stretched" (as illustrated in Figure 1) to enclose another set. Using 
such metrics, we can describe the generalized modus ponens as a relation 
between the stretching required to reach p from any point of the set r,  the 
stretching required to reach r from any point of the set q, and the stretching 
required to reach p from any point of the set q. 

In the section Generalized Inference, we will derive alternative expressions 
for the generalized modus ponens that allow us to propagate both measures 
characterizing degree of implication and degree of consistency; a dual concept 
that plays, with respect to the notion of possibility, the function that is fulfilled 
by the degree of implication function with respect to necessity. In those 
derivations, by introducing sharper bounds for certain conditional concepts, we 
will also be able to improve the quality of the bounds provided by generalized 
modus ponens rules while being closer in spirit to its usual fuzzy-logic 
formulation. 

DEGREE OF CONSISTENCY A notion that is dual to that of degree of 
implication is given by a function that measures the pointwise proximity 
between pairs of possible worlds from an "optimistic" point of view character- 
izing the degree to which statements that are true in some worlds may apply in 
others. By contrast, the degree of implication measures the extent to which 
statements that are true in p-worlds must hold in q-worlds. 

DEFINITION 2 The degree of consistency o f  p and q is the value 

C ( p l q )  = sup s u p S ( w , w ' )  
W'l.--q wl--p 

An immediate consequence of this definition that C(" I • ) is a symmetric 
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function that is increasingly monotonic in both arguments (with respect to the 
=) .  It is also easy to see that the values of the degree of consistency function 
are never smaller than the corresponding values of the degree of consistence 
function, 

l(pl q) -< C ( P l  q) 

as the amount of stretching required to reach p from some "convenient" 
q-world is smaller (i.e., higher values of S) than that required to reach p from 
any q-world. In general, however, the degree of consistency function is not 
transitive, preventing the statement of a "compatibility" counterpart of the 
generalized modus ponens rule. Its relationship with the degree of implication 
function expressed by the expression 

C ( P l  q) = sup I ( P l  w') = sup I (q l  w) 
w" I.--q wl.--p 

will permit us, nonetheless, to derive a useful bound-propagation expression. 

POSSIBILITY A N D  NECESSITY DISTRIBUTIONS 

This section presents interpretations of the major constructs of fuzzy 
logic--possibility and necessity distributions--in terms of similarity-based 
structures. Possibility and necessity distributions are functions that measure the 
proximity of either all or some of the worlds in the evidential set to worlds in 
other sets that are employed as reference landmarks. 

The role played by possibility and necessity distributions is similar to that 
performed by lower and upper bounds of probability distributions (or by the 
belief and plausibility functions of the Dempster-Shafer calculus of evidence) 
with respect to probability distributions. The essential difference between these 
bounds and those provided by possibility/necessity pairs lies in the fundamen- 
tally dissimilar character of what is being bound--metric structures relating 
pairs of worlds in one case and measures of set size in the other. Furthermore, 
in the model of possibilistic structures that is presented in this paper, necessity 
(possibility) distributions are any lower (upper) bounds of a certain metric 
function rather than its "bes t"  or "sharpest" bounds. The operations of fuzzy 
logic allow computation of bounds for some of these measures as a function of 
bounds of other measures. 

Inverse o f  a Triangular Norm 

When working in ordinary metric spaces, it is often convenient to express 
the conventional statement of the triangular inequality, 

8( w, w') _ 8( w, w + 8( w w') 
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Table 1. Triangular Norms, Conorms, and Pseudoinverses 

Name T-Norm a® b Conorm a • b Pseudoinverse a ~  b 

Lukasiewicz max(a + b - 1,0)) min(a + b, 1) min(1 + a - b, 1) 
Product ab a + b - ab a/b i f b > a  

1 otherwise 
Zadeh min(a, b) max(a, b) a if b > a 

1 otherwise 

in the equivalent form 

~(w, w') _ I~(w,  w')  - ~(w',  w") I, 

which utilizes a form of inverse (i.e., the subtraction operator - )  of the 
function used to express the original inequality (i.e., the addition operator +) .  
This notion of inverse can be directly generalized (Schweizer and Sklar [37]) to 
provide us with the tools required to define possibility and necessity functions 
and to derive useful forms of the generalized modus ponens involving either 
type of these constructs. 

DEFI~a'rIoN 3 I f  ® is a triangular norm, its pseudoinverse Q is the 
function defined over pairs of  numbers in the unit interval o f  the real 
line by the expression 

a ~ b  = sup{c: b®c <_ a} 

From this definition it is clear that aQb is nondecreasing in a and 
nonincreasing in b. Furthermore, at~ 0 = 1 and a~)1  = a for any a in 
[0, 1]. Other important properties of the pseudoinverse function are given in 
the works of Schweizer and Sklar [37], TriUas and Valverde [43], and 
Valverde [45]. 

Examples of the pseudoinverses of important triangular norms are given in 
Table 1 together with the corresponding conorms. 

Unconditioned Necessity Distributions 

We introduce first a family of functions that bound from below the value of 
the similarity between any evidential world in ~ and some world where 
another proposition p is true. These unconditioned necessity distributions are 
lower bounds for values of the degree of implication I ( p  I ~), which measures 
the extent to which statements that are true in a reference set (i.e., the subset of 
p-worlds) must hold in the evidential set. 

As observed before, whenever I ( p [ ¢ ) =  1, it is true, under minimal 
assumptions, that the evidential subset ~ is a subset of the set of all p-worlds, 
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or that p necessarily holds in #. If, on the other hand, l ( p ]  #) = cx < 1, then 
p must be stretched a certain amount--with smaller o~ corresponding to 
greater stretching--in order for one of its neighborhoods to encompass #. 

D~FINmOr~ 4 I f  ~ is an evidential set, then a function Nec(') defined 
over propositions in the language L/ is called an unconditioned necessity 
distribution for  ~ i f  

Nec(p)  _< I ( P l  e )  

Unconditioned Possibility Distributions 

The dual counterpart of the unconditioned necessity distribution is provided 
by upper bounds of the degree of consistency C(p  I ~). Whenever C(p  I ~) = 
1, it is easy to see that, under minimal assumptions, there exists a p-world w 
that is in the evidential set ~ or, equivalently, that p (for all we know) is 
possibly true. If, on the other hand, C(P l  #) = a < 1, then there exists a 
neighborhood (of "s ize"  cx) of some p-world that intersects the evidential set. 

DEFINITION 5 I f  ~ is an evidential set, then a function Poss(') defined 
over propositions in the language L/ is  called an unconditioned possibility 
distribution for  ~ i f  

Poss(p) > C ( P l e )  

Since the value Poss(p) of any possibility function Poss(.) is an upper bound 
of the value C(p I #) of the degree of consistence, the corresponding value 
Nec(p) of any necessity function Nec(.) is a lower bound of I(p ] q), it follows 
that values of a possibility function can never be smaller than the correspond- 
ing values of any necessity function, that is, that 

Nee(p)  _< Poss(p) 

Properties of Possibility and Necessity Distributions 

In this subsection we will develop similarity-based interpretations for some 
basic formulas of possibilistic calculus. These expressions may be thought of 
as mechanisms that allow the extension of a partially known possibility 
distribution. For example, the property that 

max[Poss(p) ,  Poss(q)] _> C( p v q l e )  

which is proved below, is the similarity interpretation of the standard rule that 
allows computation of the value of the possibility of a disjunction in fuzzy 
logic, that is, 

Poss(p v q) = max[Poss(p),  Poss(q)] 



64 Enrique H. Ruspini 

THEOREM 2 l f  p and q are propositions, and i f  the quantities Poss(p),  
Poss( q), Nec( p), and Nec( q) are such that 

Nec(p) _< I (p [  ~) ,  Nec(q) _< I(q I ~) 

Poss(p) _> C(pl ~'), Poss(q) -> C(ql x) 
then the following statements (similarity-based interpretations o f  the 
basic laws o f fuzzy  logic) are valid: 

max[Nec(p), Nec(q)] _< l ( p V  ql #) 

max[Poss(p), Poss(q)] _ C ( p v  ql e )  

min[ Poss(p), Poss(q)] >_ C( p A q I e~ ) 

Proof Note first that since C(. ] • ) is nondecreasing (with respect to the 
~, order) in its arguments, it is true that 

Poss(p) -> C(pl e) _> C(pAql e) 

Poss(q) > C(ql X) - C(p^q l  ~') 

whenever p ^ q is satisfiable, from which it is easy to see that 

min[Poss(p), Poss(q)] _> C(p A q l~') 

The corresponding result is obvious when p ^ q is nonsatisfiable. 
A similar argument shows, for necessity functions, that 

max[Nec(p), Nec(q)] _< I ( p v  q] £) 

To prove the disjunctive law for possibilities, notice that if f is any function 
mapping elements of a general domain D into real numbers, then 

sup{f(d) : deA t.J B} = max[sup{f(d): deA},sup{f(d): deB}] 

From this equality, it is easy to see that if Poss(p) and Poss(q) are upper 
bounds of I (p  I #) and I(q ] #), respectively, then 

max[Poss(p), Poss(q)] _> C ( p v  ql £)  

which completes the proof of the theorem. • 

Note, however, that another law commonly given as an axiom for necessity 
functions does not hold valid in our interpretation. As illustrated in Figure 2, 
the distance from a point to the intersection of two sets may be strictly larger 
than the distance to either set (i.e., the similarity will be strictly smaller). In 
general, therefore, 

min[N (p), Nec(q)] l(p^ql e) 
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W 

Figure 2. Failure of conjunctive necessity. 
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making invalid, under this interpretation, the conjunctive law for necessities 
(Dubois and Prade [11]) 

N e c ( p  A q) = min[Nec(p) ,  Nec(q)]  

We may also note in this regard that the similarity-based model that is 
discussed here does not make use of the notion of negation either as a 
mechanism to generate dual concepts or in its own fight as an important logical 
concept. It is my intent to study, in the immediate future, alternative models in 
which notions of negation and maximal dissimilarity play more substantive 
roles. 

Conditional  Possibilities and Necessities 

The concepts of conditional possibility and necessity are closely related to 
the previously introduced unconditioned structures. These structures may be 
thought of as a characterization of the proximity of a world w to some or all of 
the worlds where a proposition p is true, given that w is similar in the 
degree 1 to the evidential set g (i.e., w ~ ~). With this fact in mind, we 
could have used the somewhat baroque formulation 

C ( p l  ~)  = sup [ I ( p [  w ) Q I ( ~  I w)] 
wl--~ 

to define unconditioned possibility distributions--a rather unnecessary effort if 
we consider that I (#  [ w) = 1 whenever w ~- ~, showing its obvious equiva- 
lence to the simpler form used in the previous section. In spite of such 
observation, the above identity is important in understanding the purpose of the 
definitions that follow. Those definitions interpret conditional possibilities and 
necessities as a measure of the proximity of worlds on the evidential set t to 
(some or all) worlds satisfying a (conditioned) proposition p relative to their 
proximity to (some or all of) the worlds that satisfy another (conditioning) 
proposition q. 
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q 

W 

Figure 3. Similarities as viewed from the evidential set. 

The mechanism used to specify that relationship, which is closely related in 
spirit to results of Valverde [45] on the structure of indistinguishability 
relations, is based on the pseudoinverse function introduced earlier. The basic 
idea used by these definitions is also illustrated in Figure 3, where, from the 
perspective of the evidential word  w, the similarity between the p-world u 
and the q-world v is estimated by means of an inequality that generalizes the 
"absolute value" form of the triangular inequality, 

~(u,  v) _ I~(u,  w) - ~(o, w) l 

to its similarity-based form 

S(u ,  v) _ nan[ S(u,  w ) O S ( v ,  w),  S(v,  w) O S ( u ,  w)] 

The required interplay between similarities to conditioning and conditioned 
sets is captured by the following definitions. 

DEFINITION 6 Let ~ be an evidential set. A function Nec(" I " ) map- 
ping pairs o f  propositions in the language ~ into [0, 1] /s called a 
conditional necessity distribution for  ~ i f  

Nec(ql  p ) _< i n f [ l ( q l w ) ( ~ l ( p l w ) ]  

for  any propositions p and q in ~ .  

DEmm'laON 7 Let # be an evidential set. A function Poss(" I " ) map- 
ping pairs o f  propositions in the language L/ into [0, 1] /s called a 
conditional possibility distribution for  I i f  

Voss(q[ p) >_ sup [I(q[ w)t~I(p[ w)] 
wt--~ 

for  any propositions p and q in .~. 

It is easy to see from these definitions that the values of a conditional 
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necessity distribution are never larger than the corresponding values of a 
conditional possibility distribution, that is, 

Nec(q I P) -< Poss(q I p)  

Furthermore, since I(" [ • ) is ®-transitive, it is 

l ( q  I w) > l ( q l  p ) ® I ( p l  w) 

From this inequality and the definition of psuedoinverse of a triangular norm, it 
is easy to see that I(q I p) is a conditional necessity function, showing also that 
the bounds provided by the evidential-set perspective are better than those that 
can be obtained by direct use of the degree of implication as the definition of 
conditional necessity, s 

Note also that if N e e ( p ) =  1, indicating that I (p[  # ) =  1, and if 
Nec(q [ p) = 1, then the above definition of conditional necessity shows that 
I ( q [ # )  = 1, indicating that Nee(q) may be taken to be equal to 1, thus 
generalizing the well-known axiom (consequential closure) of certain modal 
systems (e.g., the system T, as discussed in Hughes and Creswell [21]) 

I f N p  and N ( p  --+ q) ,  then Nq. 

The definitions above can also be further interpreted as a way to compare the 
similarities between evidential worlds and those in the conditioning and 
conditioned sets by noting that whenever 

l ( q l  w) ___ I ( P l  w) 

for every evidential world w t- 8, then Nec(q I P) may be chosen to be equal 
to 1. Similarly, if there exists some world w I-- 8 where this inequality holds, 
then it is Poss(q I P) = 1. In either case, however, the maximum value for the 
conditional distribution (i.e., 1) is reached when the proximity of one eviden- 
tial world w, in the case of possibilities, or of every one of them, in the case of 
necessities, to a world wq in the conditioned set exceeds the proximity of w to 
the conditioning set p.  In either case, once again returning to an apparent 
notational overkill, we may state this fact by means of the identity function r 
in the unit interval: 

T: [0,1] ~ [0,1] :(~ ~ .  

in the form 

I (q  I w) >_ r ( I ( p  I w)) 

for some w ~- # in the case of possibilities, with the same inequality holding 

SA dual result for possibilities involving C(q [ p )  does not hold in general. It is easy to see, 
however, that C(q [ 8)01(p [ ¢) is a possibility function for q given p. 
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l(qlw) l 
0 1 

I (p lw)  

i 

Figure 4. Examples of possible similarity relationships between conditioning and 
conditioned sets. 

for every w t- ~ in the case of necessities. We can, however, conceive of 
other functions 

3': [0, 11 ~ [0, 1]: ct ~ 3"(ct) 

with 3"(t~) _> ot to specify a stronger form of implication, as illustrated in 
Figure 4, that is, 

l ( q f  w) _> 3 ' (I(Pl  w)) 

Similarly, we can also conceive of functions ff with ~k(a) -< ot that can be 
used to model weaker forms of implication. 

Possibilistic calculi based on the propagation of truth mappings of this type, 
first proposed by Baldwin [2], are utilized in the RUM (Bonissone and Decker 
[4], Bonissone et al. [5]) and MILORD (Godo et al. [18]) expert systems. The 
particular case when 3' = r, stating that every t~-cut of the conditioning 
proposition p is fully enclosed (in the conventional sense) in the o~-cut of the 
conditioned proposition q, has been called truth mapping in fuzzy logic 
literature. 

The primary purpose of conditional distributions, however, is to provide a 
quantitative measure of the degree to which one proposition may be said to 
imply another with a view to extending inferential procedures by means of 
structures that superimpose the topological notion of continuity upon a logical 
framework concerned with propositional validity. 

GENERALIZED INFERENCE 

The major inferential tool of fuzzy logic is the compositional rule of 
inference of Zadeh [53], which generalizes the corresponding classical rule of 
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inference by its ability to infer valid statements even when a perfect match 
between facts and rule antecedent does not exist, that is, from 

P 
p - ~ q  

q 

to its "approximate" version 
pl 
p ~ q  

q' 

where p '  and q' are similar to p and q, respectively. In this sense, the 
generalized modus ponens operates as an "interpolation" (or, more precisely, 
as an "extrapolation") procedure in possible-word space. 

Unlike the interpolation procedures of numerical analysis, however, which 
yield estimates of function value, this extrapolation procedure approximates 
truth in the sense that it produces a proposition that is more general than the 
consequent of the inferential rule but resembles it to some degree (which is a 
function of the degree to which p '  resembles p). The "extrapolated conclu- 
sion," however, is a correctly derived proposition, that is, the result of a 
sound logical procedure rather than of an approximate heuristic technique. 

Generalized Modus  Ponens  

The theorems that are proved below are based on the use of a family ~ of 
propositions that partitions the universe of discourse q/ in the sense that every 
possible world will satisfy at least one proposition in ~ .  

D~.F~rnON 8 I f  ~ is a subset o f  satisfiable propositions in L~ such that 
i f  w is a possible world in the universe q[, then there exists a proposition 
p in ~ such that w ~ p ,  then the family  ~ is called a partition o f  q[. 

These results make use of information such as the values of the unconditioned 
necessity or possibility distributions for antecedent propositions p in the 
family ~ together with the values Nec(q I p) or, respectively, Poss(q I p) to 
"extend" the unconditioned distributions to the "consequent" proposition q. 
In this sense, these findings interpret, in the same spirit used in Theorem 2 for 
other basic laws, the generalized modus ponens laws of fuzzy logic: 

Nec(q) = sup[Nec(ql  p )®Nec(p) ]  

Poss(q) = sup [Poss(q[ p)®Poss(p)]  

THEOREM 3 (GEN~.RALIZED MODUS PONENS FOR NEc~srrv FUNCTIONS) Let  
be a partition o f  ql and let q be a proposition. I f  Nec(p)  and 
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Proof 
since 

Nec( q ] p) are real values defined for  every proposition p in the parti- 
tion ~ such that 

Nec(p) _< l ( p ] # )  

Nec(q] p ) <  i n f [ l ( q l w ) ~ l ( p l w ) ]  

then the following inequality is valid: 

sup [Nec(q I p)®Nec(p)] _< l (ql  #) 

Note first that since Q is nonincreasing in its second argument and 

I ( p l ~  ) -< I (p l  w) 
for every evidential world w, 

Nec(q [ p) < i n f [ l ( q [  w ) Q I ( p [  w)] < i n f [ l ( q [  w) (~ l (p  I #)] 

It follows then from the monotonicity and continuity of ® with respect to its 
arguments that 

Nec(p)®Nec(q I P) -< l (P l  #)® infe[l(q I w ) ~ l ( p  I #)] 

= i n f { l ( p l ~ ) ® [ l ( q l w ) Q I ( p [ 8 ) ]  } 

_< inf I(q I w) 
w ~  

= I(ql e)  
since 

I ( P l X ) ® [ I ( q ] w ) Q I ( p ] # ) ]  < I(ql  w) 

because of the definition of • and the continuity of ®. 
Since the above inequality is valid for any proposition p in ~,  Theorem 3 

follows. • 

A dual result also holds for possibility functions. 

THEOREM 4 (GENBRALIZED MODUS PONENS FOR PossmmrrY FUNCTIONS Let 
be a partition o f  ~ and let q be a proposition. I f  Poss(p) and 

Poss( q [ p) are real values, defined for  every proposition p in ~ ,  such 
that 

Poss(p) > C ( p l 8  ) 

Poss(ql p) -> sup [I(ql w ) ~ l ( p l  w)] 
wl--  ~" 
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then the following inequality is valid: 

sup [Poss(q I p)®Poss(p)] > C(q I e)  

Proof Note first that if w is an evidential world, then 

C(p l  ~) _> I (p [  w) 

It follows then from the nonincreasing nature of @ with respect to its second 
argument that 

Poss(ql p ) _ sup [l(qlw)~l(plw)] 
wl--- ~ 

-> sup [l(qlw)Q12(pl#)] 

and therefore that 

Poss(q I p)®Poss(p) _> sup [l(q I w ) ~ C ( p  I ~)]®12(Pl ~) 
w l - ~  

Taking now, in the above expression, the supremum with respect to all 
propositions p in N, it is 

sup [Poss(q I p) ®Poss( p)] > 

sup{ sup [I(q I w)~C(pl#)]®C(pl#)}  (1) 

Note, however, that since ,# is a partition, there always exists a proposition 
/3 in N such that t2(/31 ~) = 1 (i.e., ~ "intersects'" ~), and therefore 

sup {sup [I(q I w)(~)C(p I ~)] ®C(p  [ o~)} 

_> sup [l(q I w)@C(/3 1 ~)]®C(/31 ~) 
w ~ o "  

= supl(ql  w) 
wI-6"  

= C(ql  #) (2) 

Theorem 4 follows at once by combination of the inequalities (1) and (2). • 

Finally, notice also that, although Theorems 3 and 4 have been characterized 
as duals, it is not necessary that : be a partition for the generalized modus 
ponens for necessities to hold, although the proof of its possibilistic counterpart 
relies on such an assumption. It should be clear, however, that richer proposi- 
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tional collections ~ would lead to better lower bounds for values of the degree 
of implication l (q  ] ~ ). 

Variables 

The ®-transitivity property of I is the essential fact expressing the relation- 
ships between the degrees of implication of the propositions that were proved 
in the previous section. The statements of these relations in most works 
devoted to fuzzy logic are made, however, using special subsets of the universe 
of discourse that are described through the important notion of variable. 
Introduction of this concept, which is also central to other approximate 
reasoning methodologies, permits us to make a clearer distinction between 
similarities defined, in some absolute sense, from the several viewpoints and 
related proximity measures that compare objects (in our case, possible worlds) 
from the marginal viewpoint of one or more variables. 

In what follows, we will assume that only certain propositions, specifying 
the value of a system variable belonging to a finite set 

{ x , r , z  . . . .  } 

will be used to characterize possible worlds. 
The propositions of interest are those formed by logical combination of 

statements of the type 

"The value of the variable V is o . "  

where V is in the variable set ~ and v is a specific value in the domain ~ (V)  
of the variable V. 

We will also assume that, in any possible world, the value of any variable is 
a member of the corresponding domain of definition of the variable. In the 
context of our discussion, we will not need to make special assumptions about 
the scalar or numeric nature of the state variables, using the notion in the same 
primitive and general sense in which it is customarily used in predicate 
calculus. 

We will be specially interested in subsets, called variable sets, of the 
universe ql consisting of worlds where the value of some variable V is equal 
to a specified value v. We will denote by [ X  = x] (similarly [Y = y],  etc.) 
the set of all possible worlds where the proposition "The  value of the variable 
X i s  x "  is true. Clearly, the variable-sets in the collection 

{ [ X =  x l : x  isin 9 ( X ) }  

partition the universe into disjoint subsets. These collections have been used to 
characterize the concept of rough sets (Pavlak [30]), of importance in many 
information system analysis problems, including some that arise in the context 
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of approximate reasoning. A similar notion has been used also to describe 
algorithms for the combination of probabilities and of belief functions (Shafer 
et al. [391). 

To simplify the notation we will write 

w t - x ,  w t - y ,  . . .  

as shorthand for w t- [ X = x], w t-- [ Y = y] . . . . .  respectively. 

POSSIBILISTIC STRUCTURES AND LAWS The usual statements of the laws of 
fuzzy logic are made, as mentioned before, through the use of variables rather 
than by means of general propositional expressions. It is customary, for 
example, to speak of the possibility of the variable X taking the value x to 
describe the value that a possibility function for an evidential set ¢ attains for 
the proposition [ X  = x]. 

In our model, we will therefore say that a function 

Poss( ')  : ~ ( X ) -  [0,1] 

is a possibility function for the evidential set # and the variable X whenever 

Poss(x) >_ C ( [ X =  x l l e  ) 

for all values x in the domain ~ (X) .  Similarly, we will say that Nec(.) is a 
necessity function for X whenever 

Nec(x) < l ( [ X = x ] l #  ) 

for all values x in Y(X). 
If possibility distributions are defined in this way as point functions in the 

variable domain ~ ( X ) ,  then it is possible to use the disjunctive laws of fuzzy 
logic proved in the section Properties of Possibility and Necessity Functions to 
extend their definition over the power set of Y(X), that is, 

Nec(A U B) = max[Nec(A),  Nec(B)] 

Poss(A U B) = max[Poss(A),  Poss(B)] 

where A and B are subsets of the domain 2 (X) .  These equations are usually 
given as the basic disjunctive laws of possibility distributions. 

Note that, using such extensions, both possibility and necessity functions are 
nondecreasing functions (with respect to the order induced by set inclusion). 
The value of Nec(A) measures the extent to which the evidence supports the 
statement that the variable value necessarily lies in the subset A of its domain 
of definition, with a dual interpretation being applicable for possibility distribu- 
tions. 
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MARGINAL AND JOINT POSSIBILITIES The original similarity relation intro- 
duced earlier may be considered to be a measure of proximity between possible 
worlds from the joint viewpoint of all system variables. The notion of variable, 
however, permits the definition of similarities from the restricted viewpoint of 
some variables or subsets of variables. 

These restricted perspectives play a role with respect to the original similar- 
ity S that is analogous to that of marginal probability distributions with respect 
to joint probability distributions. To derive useful expressions that describe 
similarities between two values x and x" of the same variable X,  it should be 
noted first that the degree of implication I(" I " ) is transitive. This fact permits 
the application of a theorem of Valverde [45] to define a function S x by means 
of the expression 

Sx:  ~ ( X  ) x ~ ( X ) ~ .  [o, 1] : ( x , x ' ) ~ .  m i n [ l ( x l x ' ) , I ( x ' l x ) ]  

Defined in this way as a "symmetrization" of the preorder induced by the 
degree of implication I(" ] " ), the marginal similarity S x has the properties of 
a similarity function. Furthermore, the "projection" operation entailed by the 
use of l (x]x ' ) ,  based on the projection of every x'-world into the set of 
x-worlds, may be considered to be the basic mechanism to transform the 
original similarity function into one that discerns differences only in the values 
of the variable X. 

It must be noted, however, that unless additional assumptions are made 
about the nature of the original similarity S, the function S x fails to satisfy the 
intuitive requirement 

S( w, w') _~ S.,.(w, w') 

whenever w ~- x and w' ~- x',  that is, the similarity between two objects from 
a restricted viewpoint is always higher than their similarity from more general 
viewpoints that encompass additional criteria of comparison. 

Although considerable research remains to be done to identify alternative 
definitions of marginal similarities that are not hampered by this problem, a 
basic result of Valverde [45] presented later in this paper, appears to provide 
the essential tool that must be employed to produce the required coarser 
measures. Additional reasonable assumptions that might be demanded from S 
to facilitate the construction of marginal similarities with desirable characteris- 
tics are also an object of current investigation. 

CONDITIONAL DISTRIBUTIONS AND GENERALIZED INFERENCE The basic 
conditional structures of fuzzy logic are usually defined as elastic constraints 
that restrict the values of one variable given those of another. By simple 
extension of our previous convention to conditional structures, we will write 
Nec(y ] x) and Poss(y ] x) as shorthand for 

Nec([r=y]l[X=x]) and Poss([r=y]l[X=x]) 
respectively. 
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Figure 5. Inference as a compatibility relation. 

I f  a classical (i.e., Boolean) inferential rule of the type 

I f  X = x ,  then Y is in R ( x ) .  

is thought of as the definition of a relation R defined over pairs (x ,  y)  in the 
Cartesian product X x Y, then such a relation may be used to define a 
multivalued mapping that maps possible values of X into possible values of Y 
as illustrated in Figure 5. 

Such a compatibility relation perspective is an essential element of the 
original formulations of  both the Dempster-Shafer calculus of evidence (De- 
mpstcr [8]), where distributions in some space (i.e., the domain of some 
variable X )  are mapped into distributions of  another variable (i.e., the domain 
of another variable Y) by direct transfer of " m a s s "  from individual values to 
their mapped projections, and of the compositional rule of inference (Zadeh 
[51]). 

Note that whenever Poss(yl  x ) = i, if the bound is actually attained, that 
is, if 

sup [ I ( y l w ) Q I ( x l w ) ]  = 1 
w~e 

then it is possible for an evidential world w in [ X  = x] [i.e., I ( x [  w) = 1] to 
be such that w I-- y. Pairs (x ,  y)  such that Poss(y I x) = 1 may be considered 
to approximate the core 9 of a generalized inferential relation that allows us to 
determine bounds for the similarity between evidential worlds and those in the 
variable set [ Y = y]  on the basis of knowledge of similar bounds applicable to 
the variable set [ X = x].  This relation, which is the fuzzy extension of the 
classical compatibility mapping R illustrated in Figure 5, may be thought of  as 
a descriptor of the behavior, for x-worlds, of the values of the variable Y 

9The core of  a fuzzy set #: q / ~  [0, 1] is the set of  all points w such that /~(w) = 1, that is, the 
points that " fu l ly"  belong to #. 
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"near"  R. The compatibility relation is itself approximated by (or embedded 
in) the core of the conditional possibility distribution, that is, worlds w such 
that w }- x and w }-- y,  and such that Poss(y I x) = 1. 

Since the collection of the sets [ X = x] partitions the universe q/ into 
disjoint sets, then the generalized modus ponens laws can be readily stated in 
terms of variable values as 

Nec (y )  = sup[Nec(y  I x ) ® N e c ( x ) ]  
x 

Poss(y)  : sup [Poss(Yl x) ®Poss(x)] 
x 

which clearly shows the basic nature of inferential mapping as the composition 
of relational combination (i.e., ®-"intersection") and projection (i.e., maxi- 
mization). 

FUZZY IMPLICATION RULES We will now examine proposed interpretations 
for conditional rules, usually stated in the form 

If X is A ,  then Y is B. 

within the context of possibilistic logic. Whereas in two-valued logic any such 
rule simply states that whenever a condition A is true, another condition B 
also holds, various interpretations have been proposed for rules expressing 
other notions of conditional truth. 

In the case of probabilities, for example, degrees of conditionality have been 
modeled either by means of conditional probability values Prob(A I B), which 
measure the likelihood of B given the assumed truth of A,  or by the 
alternative interpretation Prob( ~ A V B), used by Nilsson [29] in his probabilis- 
tic logic, which essentially quantifies the probability that a rule is a valid 
component of a knowledge base. Either one of these interpretations is valid in 
particular contexts being, respectively, the probabilistic extensions of the 
so-called de re, that is, 

p ~ IIq 

and de dicto, that is, 

r l ( p ~  q) 

interpretations of conditionals in modal logic. 
In fuzzy logic, two major interpretations have been advanced to translate 

conditional rules,l° with A and B corresponding to the fuzzy sets 

#A: X ~  [0, 1] and #n:  Y ~  [0, 1] 

t°A rather encompassing account of potential fuzzy reasoning mechanisms may be found in a paper 
by Mizumoto et al. [27]. 
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The first interpretation was originally proposed by Zadeh [52], as a formal 
translation of the statement 

If #,t is a possibility for X ,  then #B is a possibility distribution for Y. 

This conditional statement, which may be regarded as a constraint on the 
values of one variable given those of another, states the existence of a 
conditional possibility function Poss(" I " ) such that 

#B(Y) -> sup [Poss(Yl X)(~I-I'A(X)] ~ Voss(y[ X)®#A(X) 
x 

Recalling now the definition and properties of the pseudoinverse, we may 
restate this particular interpretation as 

Poss(y  I x)  = ~B(Y)Q~A(x) >-- I (Yl  w ) Q I ( x [  w) 

for every world w ~- e ~. 
In Zadeh's original formulation, made within the context of a calculus based 

on the minimum function as the T-norm, conditionals were, however, formally 
translated by means of the pseudoinverse of the Lukasiewicz T-norm. Certain 
formal problems associated with such a combination were pointed out by 
Trillas and Valverde [42], who developed translations consistent with the 
T-norm used as the basis for the possibilistic calculus. 

Using the characterization of conditionals introduced earlier, this relation 
may also be thought of as a measure of the degree to which a possibility for Y 
exceeds a fraction (measured by the conditional possibility distribution) of a 
given possibility distribution for X. In particular, whenever Poss(y [ x) = 1, 
then #B(Y) >- #A(X), indicating the possible existence, since Poss(yl x) is 
only an upper bound of I (y  I w ) Q l ( x l  w), of an evidential world such that 
w ~ x a n d  w t - y ,  with x i n  A and y i n  B. 

As illustrated in Figure 6, where it has been assumed that the underlying 
metric (i.e., dissimilarity) is proportional to the Euclidean distance in the 
plane, the core of the corresponding conditional possibility distribution is an 
(upper) approximant of a classical compatibility relation (indicated by the 
shaded area in the figure) that fans outward from the Cartesian product of the 
cores of A and B. If this interpretation is taken whenever several such rules 
are available, then each one of these rules will lead to a separate possibility 
distribution. Combination of these upper bounds by minimization results in a 
sharper possibility estimate that represents the "integrated" effect of the rule 
set. 

The second interpretation of conditional relations, leading to a wide variety 
of practical applications (Sugeno [41]), was utilized by Mamdani and Assilian 
[26] to develop fuzzy controllers. The basic idea underlying this explanation 
follows an approach originally outlined by Zadeh [47, 48, 49, 50, 51]. In this 
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F i g u r e  6. Rules as possibilistic approximants of a compatibility relation. 

case, a number of conditional statements of the form 

If X is Ak,  then Y is Bk, k = 1,2 . . . . .  n 

are given as a combined "disjunctive" description of the relation between X 
and Y, rather than as a set of independently valid rules. The purpose of this 
rule set is the approximation of the compatibility relation by a "fuzzy curve" 
generated by disjunction of all the rules in the set, as shown in Figure 7. 

Y 
i i 

l it  

X 
Figure 7. Rule sets as disjunct approximants of a compatibility relation. 
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Figure 8. A possibilistic conditional rule (ZTV). 

Recalling the characterization of conditioning as an extension of a classical 
compatibility relation, we may say that the core of the compatibility relation is 
approximated by above by the union 

// 

U [c°re(/~m,) X core(/~Bk)] 
k = l  

of the Cartesian products of the cores of the fuzzy sets for A k and B k. In this 
case the multiple rules are meant to approximate some region of possible 
(X,  Y) values, and the results of application of individual component rules 
must be combined using maximization to produce a conditional possibility 
function. We may say, therefore, that under the Zadeh-Mamdani-Assilian 
(ZMA) interpretation, the function 

Poss(yl  x) = sup {min[/zA(x), #n(Y)]} 
k 

is a conditional possibility for Y given X. 
It is important to note that the two interpretations of fuzzy rules that we have 

just examined are based on different approaches to the approximation (by 
above) of the value 

sup [ I (y  I w ) • l ( x  I w)] 
w~e 

being, in the case of the Zadeh-Trillas-Valverde (ZTV) method, the result of 
the conjunction of multiple fuzzy relations such as that illustrated in Figure 8, 
while in the case of the ZMA logic the construction requires disjunction of 
relations such as that illustrated in Figure 9. 

The difference between the two approaches when combining several rules is 
illustrated also in Figures 10 and 11, showing the contour plots for the a-cuts 
of the fuzzy relations that are obtained in a simple example involving four 
rules. In these figures, the rectangles with a dark outline correspond to the 
Cartesian products of the cores of the antecedents A k and B k. Darker shades 
of gray correspond to higher degrees of membership. 
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Figure 9. A component of a disjunctive rule set (ZMA). 

The reader should be cautioned, however, about the potential for invalid 
comparisons that may result from hasty examination of these figures. Each 
formalism should be regarded as a procedure for the approximation of a 
compatibility relation that is based on a different approach for the description 
of relationships between variables. In the case of the ZMA interpretation, the 
intent is to generalize the interpolation procedures that are normally employed 
in functional approximation. As such, this approach may be said to be inspired 
by the methodology of classical system analysis. The ZTV approach, by 
contrast, is a generalization of classical logical formulations and may be 
regarded, from a relational viewpoint, as a procedure to describe a function as 
the locus of points that satisfies a set of constraints rather than as a subset of 
"fuzzy points" of a Cartesian product. 

Figures 10 and 11, while showing that the same rule sets would lead to 
radically different results, should not be considered, therefore, to discredit 
interpolative approaches, as such techniques, proceeding from a different 

Y 

X 
Figure 10. Contour plots for a rule set (ZTV). 

L 

w 



On the Semantics of Fuzzy Logic 81 

Y 

? i ̧ i iii i~ii ~i!ii/ii!i;ili:ii i!i! ¸ ¸ ¸ l  

X 
Figure 11. Contour plots for a rule set (ZMA). 

perspective, should normally be based on rule sets that are different from those 
used when rules are thought of  as independent constraints. 

THE NATURE OF SIMILARITY RELATIONS 

In this closing section, we will examine issues that arise naturally from our 
previous examination of the role of similarities as the semantic basis for 
possibility theory. 

Our discussion focuses on two topics. We look first at the requirements that 
our theory imposes upon the nature of the scales used to measure proximity or 
resemblance between possible worlds. Finally, our examination of the inter- 
play between similarities and possibilities turns to issues related to the genera- 
tion of similarity relations from such sources as domain knowledge that 
describe significant relations between system variables. 

On Similarity Scales 

Our previous interpretation of possibilistic concepts and structures was based 
on the use of  measures of  proximity that quantify interobject resemblance using 
real numbers between 0 and 1. Our assumptions about the use of the [0, 1] 
interval as a similarity scale have been made primarily, however, as a matter 
of  convenience to simplify the description of our model while being consistent 
with the customary definitions of  possibility and necessity distributions as 
functions taking values in that interval. 

Close examination of the actual requirements imposed upon our similarity 
scales reveals, however, that our measurement domain may be quite general so 
as to include symbolic structures such as 

{ identical, very similar . . . . .  completely dissimilar } 
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Our model is based on the use of a partially ordered set having a maximal and 
a minimal element representing identity and complete dissimilarity, respec- 
tively. Furthermore, we have assumed the existence of a binary operation (the 
triangular norm ®) mapping pairs of possible worlds into real numbers, with 
certain desirable order-preserving and transitive properties. The concept of 
triangular norm, however, does not rely substantially on the use of real 
numbers as its range and may be readily extended to more general partially 
ordered sets with maximal and minimal elements. 

We have also assumed a continuity property for the triangular norm opera- 
tion. This property, however, simply requires that a notion of proximity also 
exist among similarity values so as to provide a form of (order-consistent) 
topology in that space. While, in general, more precise scales will result in 
more detailed representations of interworld similarity, it is important to stress 
that the similarity-based model presented here does not rely on "density" 
assumptions such as the existence of an intermediate value c between any 
different values a and b i n  the similarity-measurement scale. 

From a practical viewpoint, the major requirement is to quantify proximity 
in such a way as to be able to determine that two quantities are similar to some 
degree (i.e., approximate matching). The degree of precision that such a 
matching entails is problem-dependent and will typically be the result of 
conflicting impositions between the desire, on the one hand, to keep granularity 
relatively low to reduce complexity, and the need, on the other, to describe 
system behavior at an acceptable level of accuracy. The work of Bonissone and 
Decker [4] is a significant example of the type of systematic study that must be 
carded out to define similarity scales that are both useful and tractable. 

The Origin of Similarity Functions 

The model of fuzzy logic presented in this paper is centered on the metric 
notion of similarity as a primitive concept that is useful in explaining the nature 
of possibilistic constructs and the meaning of possibilistic reasoning. In this 
formulation, similarities are defined as real functions defined over pairs of 
possible worlds. 

From this perspective, similarities describe relations of resemblance between 
objects of high complexity, which, typically, result from consideration of a 
large number of system variables. Reliance on such complex structures has 
been the direct consequence of a research program that stressed conceptual 
clarification as its primary objective. In practice, however, it will be generally 
difficult to define complex measures that quantify similarity between complex 
objects on the basis of a large number of criteria. 

Similarities provide the framework that is required to understand approxi- 
mate relations of corelevance, usually stated as generalized conditional rules. 
The practical generation of similarity functions typically proceeds, however, in 
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the opposite direction, from separate statements about limited aspects of system 
behavior to general metric structures. Once such resemblance measures are 
defined, they may be used to express and acquire new laws of system behavior 
determined, for example, from historical experience with similar systems. 
Furthermore, such similarity notions may be used as the basis for analogical 
reasoning systems that try to determine the system's state on the basis of 
similarity to known cases (Kolodner [23]). 

Perhaps the simplest mechanism that may be devised to generate complex 
metrics from simpler ones is that which starts with measures of resemblance 
that quantify proximity from a limited viewpoint. These metrics are usually 
derived, using a variety of techniques, in unsupervised pattern classification (or 
clustering) problems (Hartigan [20]). In many important applications, hierar- 
chical taxonomies--a feature of many representation approaches in artificial 
intelligence--may be used, often in connection with a variety of weighing 
schemes, quantifying branching importance, to generate metrics that often 
satisfy the more stringent requirements of an ultrametric (Jardine and Sibson 
[22]). 

Classification hierarchies such as those may be though of as sets of general 
rules, having a particularly useful structure, that specify interest proximity 
from relevant, but restricted, viewpoints, eventually providing measures of 
similarity between variable values (i.e., the "leaves" of the taxonomic tree). 
More generally, however, we may expect that sets of possibilistic rules (i.e., a 
general knowledge base) defining a general semantic network of corelevance 
relations may be available as the source for the determination of interobject 
proximity. These possibilistic semantic networks resemble conventional seman- 
tic networks in most regards, being more general in that, in addition to 
specifying knowledge about system behavior in some subsets of state-space, H 
they also specify characteristics of behavior in neighborhoods of those subsets. 

We may think, therefore, that the antecedents of implicational rules define 
general regions in state-space where existence of relevant knowledge may 
increase insight through application of inferential rules. Using Zadeh's termi- 
nology, these antecedents define "granules" that identify important regions of 
state-space and indicate the level of accuracy (or granularity) that is required 
to perform effective system analysis. In this case, the possibilistic granules 
correspond to fuzzy sets that are used to specify both what is true in the core of 
the granule and, with decreasing specificity, what is true in a nested set (i.e., 
the o~-cuts) of its neighborhoods. The ability to specify behavior using such a 
topological structure results in inferential gains that are the direct consequence 
of our ability to reason by similarity--an ability that is made possible by the 
approximate matching property of the generalized modus ponens. From an- 

HThe expression "state-space" is loosely used here to indicate the space defined by all system 
variables. 
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other perspective yet, the fuzzy granules identified by possibilistic rules may 
also be thought of as generalizations of the arbitrary variable sets used in a 
variety of artificial intelligence efforts aimed at understanding system behavior 
using qualitative descriptions of reality (Forbus [16]). 

A number of heuristics may be easily formulated to integrate "marginal" 
measures of resemblance into joint similarity relations. More generally, how- 
ever, we may state the problem of similarity construction as that of defining 
metric structures on the basis of knowledge of the aspects of system behavior 
that are important to its understanding--the previously mentioned granules, 
which define what must be distinguished. Since generally those granules are 
fuzzy sets, the relevance to similarity construction of the following representa- 
tion theorem, due to Valverde, may be immediately seen. 

THEOREM 5 (VALVERDE)) A binary function S mapping pairs o f  objects 
o f  a universe o f  discourse ql into [0, 1] is a similarity relation i f  and 
only i f  there exists a family ~ o f fuzzy  subsets o f  q/such that 

S (w ,  w') = i ~ { m i n [ h ( w )  ~ ) h ( w ' ) , h ( w ' )  Q h ( w ) ] }  

for  all w and w' in q/, where the infimum is taken over all fuzzy  subsets 
h in the family ~,~e. 

Besides its obvious relevance to the generation of similarity relations from 
knowledge of important sets in the domain of discourse, Valverde's 
theorem--resulting originally from studies in pattern recognition--is also of 
potential significance to the solution of knowledge acquisition problems be- 
cause of the important relations that exist between learning procedures and 
structure-discovery techniques such as cluster analysis. 

CONCLUSION 

This paper has presented a similarity-based model that provides a clear 
interpretation of the major structures and methods of possibilistic logic using 
metric concepts that are formally different from the set-measure constructs of 
probability theory. Regardless of the potential existence, so far unestablished, 
of probability-based interpretations for possibilistic structures, this metric 
model makes clear that there are no compelling reasons to confuse two rather 
different aspects of uncertainty into a single notion simply because one's 
favorite theoretical framework, in spite of its otherwise many remarkable 
virtues, fails to fully capture reality. 

Succinctly stated, being in a situation that resembles a state of affairs S does 
not make S likely or vice versa. Furthermore, our reference state may not 
even be possible in the current circumstances, which would make it completely 
unlikely, but we may still find it useful as a comparison landmark. This use of 
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"impossible" examples as a way to illustrate system behavior is very prevalent 
in human culture, being exemplified by such utterances as "he had the strength 
of a horse and the swiftness of a swallow," even if it is obvious to all that no 
such beast exists other than for such metaphorical purposes. 

The insight provided by this model makes it rather obvious that very little 
can be gained by continuing to assert a potential--although never reveal- 
ed-encompassing probabilistic interpretation for possibilistic structures that, 
presumably, would render them unnecessary as serious objects of scientific 
discourse. In addition, and quite beyond whatever understanding theory may 
provide, the current success of possibilistic logic as the basis for major systems 
of important human value (Sugeno [41]), often unmatched by other ap- 
proaches, should be enough to convince those having more pragmatic perspec- 
fives as to its utility. 

The task for approximate reasoning researchers is to proceed now beyond 
unnecessary controversy into the study of the issues that arise from models 
such as the one presented in this paper. Among such questions, further studies 
of the relations between the notions of possibility, similarity, and negation and 
of those between probability and possibility are of major importance. 
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