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UNCERTAINTY MANAGEMENT OF INTELLIGENT FEATURE SELECTION 

IN WIRELESS SENSOR NETWORKS 

 
SANCHITA MAL-SARKAR 

 
 

ABSTRACT 
 

Wireless sensor networks (WSN) are envisioned to revolutionize the paradigm of 

monitoring complex real-world systems at a very high resolution. However, the 

deployment of a large number of unattended sensor nodes in hostile 

environments, frequent changes of environment dynamics, and severe resource 

constraints pose uncertainties and limit the potential use of WSN in complex 

real-world applications. Although uncertainty management in Artificial 

Intelligence (AI) is well developed and well investigated, its implications in 

wireless sensor environments are inadequately addressed. This dissertation 

addresses uncertainty management issues of spatio-temporal patterns generated 

from sensor data. It provides a framework for characterizing spatio-temporal 

pattern in WSN. Using rough set theory and temporal reasoning a novel formalism 

has been developed to characterize and quantify the uncertainties in predicting 

spatio-temporal patterns from sensor data. This research also uncovers the trade-

off among the uncertainty measures, which can be used to develop a multi-

objective optimization model for real-time decision making in sensor data 

aggregation and sampling. 
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CHAPTER I 
INTRODUCTION 

 

1.1 Chapter Introduction 
 

This chapter introduces the research problems and challenges in developing the 

uncertainty management scheme of wireless sensor networks (WSN). The 

research motivation of this thesis is derived from limited support for the 

uncertainty management of traditional approaches in WSN. Some motivating 

applications are described in the context of spatio-temporal pattern-based data 

aggregation and uncertainty management. The research questions are 

formulated from the statement of problems and the research scopes are outlined. 

The contributions of this thesis are summarized. The research methodology and 

the validation of its contributions are also briefly described. 
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1.2 An Overview of Wireless Sensor Networks 
 

 

The popularity of an array of wireless devices, such as PDAs (Personal Digital 

Assistants), palmtops, cell phones, and laptops results from the motivation of 

being untethered and yet to be connected. There are two complementary 

technologies for connecting these devices: cellular data networks that connect 

these devices to the internet using base stations, and ad hoc networks that 

connect the devices through multi-hop wireless networks without using base 

stations. Wireless sensor networks is an ad hoc networks that consists of a large 

number of inexpensive, low-powered, multi-functional sensor nodes, each 

equipped with a sensing circuit, a digital signal processor, and radio links 

(Akyildiz, Su, Sankarasubramaniam, & Cayirci, 2002). Furthermore, each sensing 

circuit includes one or multiple sensing devices, such as acoustic, seismic, still or 

motion video camera, infrared (IR) or magnetic sensors. 

 

Often, the design and the deployment of sensor networks are application 

specific, unlike traditional data networks such as the Internet. Broadcasts, or 

multicast operations, are fundamental to the realization of these networks. In a 

typical problem scenario, several thousands of sensor nodes are deployed, either 

manually or by robots, and each sensor node communicates with a few other 

neighbors. They communicate in an energy-efficient manner within radio 

communication range using radio links, in order to collectively establish an ad 
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hoc network. The sensor nodes operate and respond to a very dynamic and often 

harsh environment; they adapt their over-all sensing accuracy to resource-

constrained (e.g. energy, bandwidth, and memory) environments.  

 

Sensor networks are envisioned to revolutionize the paradigm of collecting and 

processing information, both in an urban environment as well as in inaccessible 

terrain. They can be used for monitoring complex real-world systems at a 

temporal and spatial granularity which was not previously possible (Bhaskar 

Krishnamachari, 2005). They are one of the most rapidly developing new 

information technologies that have the potential to be used for a wide range of 

applications: health monitoring, military surveillance and target tracking, 

ecological habitat monitoring, environmental monitoring, and industrial sensing 

and diagnostics.  

 

However, the deployment of a large number of unattended sensor nodes in 

hostile environments, frequent changes of the environment dynamics, and severe 

resource constraints pose uncertainties that prevent WSN from meeting its full 

potential in real-life applications. Another challenge is its interdisciplinary nature 

– research in sensor networks requires contributions from signal processing, 

networking, database and information management, data mining, GIS 

(Geographic Information System), machine learning, AI (Artificial Intelligence), 

and distributed algorithms and architectures. 
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 Sensor networks are expected to provide large scale, yet fine-grained coverage 

by employing a large number of inexpensive sensor nodes. However, these 

inexpensive nodes can be unreliable and error prone. Besides, nodes are often 

deployed in harsh environments such as, forest fires or underwater. It is 

important to ensure that the system performance will not degrade below a 

certain threshold, despite its individual node failures. The uncertainties in every 

aspect of the system need to be identified and quantified. These include sensed 

data uncertainty, actuator uncertainty, sensor status uncertainty, limited sensing 

ranges, compromised nodes, channel mal function, transmission collision, 

imprecision in localization and synchronization, topology and routing 

uncertainty, mobile uncertainty, and resource uncertainty, and so forth. (Y. Liu & 

Das, 2006). Visions of large numbers of nodes will remain unrealized in practice 

until some uncertainty handling mechanism is formally incorporated in model to 

ensure its robustness and reliability. 

1.3 Research Problem Statement 
 

Albert Einstein said, “The mere formulation of a problem is often far more 

essential than its solution.” The definition and articulation of problems is a 

critical task for analysis and design of a system and should be performed in a 

systematic order within a system framework. It allows one to develop a complete 

and comprehensive understanding of the nature of a problem, underlying 

physical phenomena, and processes for achieving a set of objectives. The 
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boundary of a system is determined from the mission, goals, and objective of the 

analysis, and performance (Ayyub & Klir, 2006). 

 

There is an increasing awareness that there are several phenomena and 

problems, such as uncertainty, that cannot be well explained within the 

boundaries of individual disciplines of science. Uncertainty is an important 

measure in the analysis of risk. In recent years, it has been recognized that 

uncertainty management is an interdisciplinary research area and should be 

formally considered in decision making at all levels in a system framework. 

 

In real life, sensor data streams are coming from different sources at different 

space and times and they can be unbounded for constantly evolving entities, 

such as temperature, pressure, etc. The challenge is how to aggregate these 

unbounded data streams at different space and times and provide decisions 

making in real-time. Traditional data processing techniques are not suitable for 

streams data processing since unbounded data streams cannot be stored on the 

processing system on entirety. The inability to store an entire data stream 

suggests the use of some form of approximations. As a consequence of 

approximation in data aggregation, it is not always possible to obtain the exact or 

precise results and uncertainty may result.  
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Pattern discovery plays an important role in data aggregation. By identifying 

generic patterns from data streams without human supervision, pattern 

discovery algorithms can extract the most relevant information with high fidelity 

and remove the irrelevant patterns. Such pattern based data aggregation schemes 

have a potential to significantly reduce data communications when data has 

spatial and temporal correlations. However, the challenges of pattern discovery 

for target objects include that the data sets are, in general, not task-specific and 

the features collected for target objects are not always relevant for their 

classifications and hence should be pruned out or filtered. It is difficult to 

construct an information feature space because of the uncertainty about the 

relevance of the features. Several unsupervised clustering approaches are 

proposed in the literature, such as hierarchical clustering, k-mean clustering, self-

organizing maps, and so forth. The goal of these approaches is to partition the 

datasets into statistically meaningful classes. Rough set theory is a well-known 

formalism for feature selection and rule generation. By employing rough set 

formalisms on dataset, whether numeric or symbolic, one can determine the 

features that are redundant and the features that are most relevant to a given 

application. 

 

Besides there are several inherent issues in WSN such as, the deployment of a 

large number of unattended sensor nodes in hostile environments, frequent 

changes of environment dynamics, and severe resource constraints, that 
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contribute to the significance of uncertainties in WSN and prevent its potential to 

revolutionize many segments of life and economy. It is difficult to completely 

capture the nature of uncertainty in WSN and to cover all of its aspects because 

of its complex nature, application domain dependency and its propagation 

through all epistemological levels of a system by varying degree (Ayyub & Klir, 

2006). In order to make wise decision even in the presence of uncertainty, it is 

imperative to characterize and quantify the potential uncertainties. To 

characterize uncertainties in WSN, the first step is to determine the sources of 

uncertainties for a particular application domain. Once the sources of 

uncertainties are identified, one may identify and quantify the uncertainties by 

employing existing formalisms, or by developing new formalisms. 

 

The uncertainties in WSN stem from the missing or unreliable data. Missing data 

may arise during sensor reading, data sampling, format conversion, data 

discretization, data aggregation, feature selection, data routing, data savings to 

storage devices, incorrect data labeling, and so forth. Unreliable data may result 

from random noise, actuator uncertainty, sensor status uncertainty, limited 

sensing ranges, compromised nodes, improper channels, transmission collisions, 

routing uncertainty, or resource uncertainty (Kargupta, 2007; Y. Liu & Das, 2006).   

 

The problem of characterizing uncertainty in sensor networks is that it requires 

in-depth knowledge of philosophical foundations of uncertainty, conceptual 
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frameworks underlying the uncertainty analysis, and technical methods to 

realize the uncertainty analysis (Ayyub, 2003). Philosophically, uncertainty can 

be classified into ontological uncertainty and epistemic uncertainty. Broadly, 

ontological uncertainty in sensor networks can be attributed to two distinct 

sources: the uncertainty regarding the frequency of distinct samples to be 

covered by the network, and the number of observable attributes to be 

monitored by each sensor node. On the other hand, epistemic uncertainty stems 

from a lack of complete knowledge and can be reduced at the cost of increased 

resources (I. U. Sikder, 2003). 

 

Uncertainty in sampling frequency can be handled by a means of statistical 

estimation, such as simulation of space-time sample distribution, by using Monte 

Carlo simulation and domain specific a priori distribution. However, reducing 

the dimensionality of attributes is a difficult task because the dataset size needed 

to approximate a multivariate function grows exponentially with the number of 

variables of the function (Bellman, 1961). A high dimensional attribute-oriented 

sensor networks can adversely affect communication as well as data processing 

performance (e.g., training in learning systems).  

 

Moreover, many real world systems exhibit non-polynomial complexity with 

respect to attribute dimensionality.  For example, a large scale water treatment 

plant may require a huge number of attributes to be monitored through sensors 
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for performing diagnostic fault detection. The impact of removing even a few 

attributes can make a significant improvement in inference speed. The impact of 

removing 4 variables from NP-hard inference engines (given O (2n)) results in the 

increase of the inference speed by a factor of 16. Moreover, the costs associated 

with maintaining connections to diagnostic computing equipments can be 

reduced since the points of failure (malfunctioning sensors or overly noisy 

sensors) are reduced significantly  (Chouchoulas, 2001; Shen & Chouchoulas, 

2000). 

 

Sensor networks, capable of reducing multidimensional features at the node 

level, have immense potential of handling complex learning algorithms, 

producing significant patterns, and at the same time reducing energy 

consumption for data transmission. The shortcomings of the conventional hill-

climbing approaches to feature selection are well documented (Jensen & Shen, 

2004). In particular, traditional feature reduction approaches tend to change the 

underlying semantics of the sensor parameters after reduction, such as 

transformation-based approaches (Devijver & Kittler, 1982).  For example, 

principal component analysis (PCA) (Jolliffe, 1986), a canonical means of data 

transformation and feature reduction, irreversibly destroys the underlying 

semantics of the dataset. It can only deal with linear projections, ignoring any 

non-linear structure in the data. Moreover, only purely numerical (non-symbolic) 

datasets may be processed by PCA. Further, reasoning about the data is almost 
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never possible, prohibiting the use of PCA as a pre-processor for symbolic or 

descriptive fuzzy modeling and other approaches dependent on data semantics. 

Hence, the application of PCA in sensor networks is limited.  

1.4 Research Questions 
 

The current research identifies the following questions based on the problem 

statements provided in the previous section: 

 

 Can we provide a formalism for pattern-based data aggregation techniques in 

WSN that has the potential to reduce data communications as well as to 

support rule mining for symbolic, quantitative, and outlier data? 

 Can we establish a formalism that would incorporate uncertainty, stemming 

from imprecision and vagueness of attributes, in the context of spatio-

temporal patterns discovered from sensor data?  

 Can we develop an algorithm to generate spatio-temporal patterns and 

reason about the “part and whole,” or spatio-temporal mereological 

relationship, of the network while preserving the semantics of the sensor 

attributes?  

 Can we characterize and qualify data uncertainty from the spatio-temporal 

patterns generated from the time series of sensor data in real time? 
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 Can we uncover the correlations among the uncertainty measures and 

determine whether the correlation is statistically significant in the context of 

WSN? 

 In collaborative processing, how can we measure the dependencies of sensor 

attributes and identify redundant as well as indispensable parameters 

considering the space-time dependency and data aggregation? 

 

The research questions identified above are not necessarily mutually exclusive. 

These questions have been narrowed down within the limited scope of data 

aggregation issues in wireless sensor networks. 

1.5 Research Motivation: Some Application Scenarios 
 

 

The current research can be applied to a number of domains: 

- forest fires 

- aquatic biodiversity mapping 

- precision agriculture 

 

The first scenario is based on the environmental problem of determining the 

most critical climatologic conditions; for instance, temperature, relative 

humidity, and wind speed that contribute to the forest fires, and find their 

spatiotemporal patterns. The second motivating example includes the problem of 
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determining the quality of water or biodiversity by measuring its characteristics, 

such as temperature, density, salinity, acidity, chemicals, conductivity, PH and 

oxygen. The current research can determine the redundant attributes and find 

the spatiotemporal patterns for aquatic biodiversity. The third motivating 

scenario is based on the problem of finding the spatiotemporal patterns in 

precision agriculture. In all the applications mentioned above, it is also possible 

to indentify and quantify different types of uncertainties from the spatiotemporal 

patterns so that they can be incorporated in the model parameters. With a model 

optimized in the context of uncertainty, one can make more realistic decisions. 

 

1.5.1 Early detection of Forest Fires 
 

Forest fires often start unnoticed and spread very quickly, causing millions of 

dollars in damage and claiming many human lives every year in the United 

States as well as Canada. For example, on June 21, 2008, a lightning-sparked 

forest fire started in the scenic town of Big Sur in Northern California and 

quickly turned into an uncontrollable firestorm due to a strong wind. More than 

1,200 fire fighters, several thousand armed forces, and several hundred national 

guards and volunteers were unable to stop the firestorm even after two weeks of 

battling.  It burned more than 1,100 square miles and destroyed about 100 homes. 

Officials have said this unprecedented fire season, plagued by drought and high 

temperatures, has seen the most fires burning at any one time in recorded 

California history.  
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The National Weather Service predicted more dry lightning toward the end of 

the week of the California disaster; however, forecasters did not expect such a 

severe firestorm, when nearly 8,000 lightning strikes sparked about 800 fires. 

Early detection of hot spots and appropriate measures could prevent, or, at least 

minimize the damage and casualties. Common causes of forest fires are 

lightning, extreme hot and arid weather, severe drought, and human 

unawareness. The lack of a high resolution forest fire detection system prevents 

forecasters from predicting this disaster early on, with high accuracy. 

 

Current forest fire detection systems are based on satellite imagery; they take a 

longer amount of time, typically one to two days, to provide a complete image of 

the Earth. Additionally, satellite-based systems cannot detect fire unless it 

spreads at least 0.1 hectare and its location accuracy is 1 km  (Li, Nadon, & 

Cihlar, 2000) (Lohi, Ikola, Rauste, & Kelha, 1999) Another limitation of the 

satellite-based system is that its efficiency is affected by weather conditions, such 

as clouds, fogs and rains. Although it can scan a large area at one time, it cannot 

detect forest fires with high accuracy in real time because of its low resolution 

and long period of scan.  

 

With the advancements of wireless sensor networks, it is anticipated that real 

time forest fire detection systems can be developed using wireless sensors data, 

with high precision and accuracy (Hefeeda, 2008). Thousands of disposable 
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sensors can be densely scattered over a disaster prone area to form a wireless 

sensor network in a forest.  The sensors collect environmental data, such as 

temperature, relative humidity, soil moisture, barometric pressure, wind speed, 

and wind direction - potential attributes to forest fires and its spread. Sensed 

data is reported to the processing center, and the processing center, after 

analyzing the data, directs the appropriate agency to dispatch fire fighters 

and/or to evacuate local residents, depending on the extracted information from 

sensor data.  

 

Sensor nodes are self-organized into geographic clusters and one node in a 

cluster is designated as cluster head by employing a distributed algorithm. Since 

a cluster head requires more communications than other sensor nodes in the 

cluster, the role of the cluster head is rotated among the sensor nodes to prolong 

network lifetime. Communication within a cluster is either single-hop or multi-

hop. Data, before sending to the data processing center, can be aggregated locally 

at each cluster head to reduce communication, to save energy, power and 

bandwidth, and to improve data quality. By analyzing the data stream, 

aggregated at cluster level, homogeneous patterns can be generated and sent to 

the sink for decision making.  

 

We propose to employ the notion of temporal templates on sensor data stream, 

gathered at each cluster head, to generate homogeneous spatio-temporal patterns 
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and the corresponding if-then rules from temporal information systems for 

determining potential hot spots in near real time. It is possible by generating 

temporal templates from the change of attributes, and comparing them with the 

temporal templates generated from the historical data. For example, when the 

change of temperature suddenly gets very high and the humidity is very low, the 

chance of forest fires is very high. To the best of our knowledge, this is the first 

attempt to use the notion of temporal templates in wireless sensor networks. The 

satellite data is useful to determine the spatiotemporal patterns; however, the 

sensor based temporal template can generate the patterns with high precision 

and accuracy.  

 

Analyzing spatio-temporal patterns of data at each time step is not possible 

because of the huge time series. It is important to find the area of the data where 

the changes to the spatial patterns are most likely to occur and to focus the 

analysis in this portion of the data to find the spatiotemporal patterns preceding 

the forest fires. Before generating spatio-temporal patterns, we can reduce the 

number of attributes, and determine the most important attributes for forest 

fires, by employing the indiscernibity concept of rough set theory.  

 

Our model, equipped with the uncertainty handling mechanism, works even 

when data is imprecise, incomplete, or ambiguous, which is common in resource 

constraint sensor networks, consisting of inexpensive, unreliable and error prone 
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nodes. Besides, often times nodes are deployed in harsh environments (e.g. forest 

fires) and some of the sensor nodes may fall into the fire zone and be destroyed, 

or they may die because of energy depletion and are unable to send data. Sensor 

nodes can also send ambiguous data because of low power levels. Sensors within 

the burn zone, before being scorched, can record the change of attributes, such 

as, the increase of temperature or the decrease of barometric pressure and 

humidity as the flame front advances.  It is important to ensure that the system 

performance will not degrade below a certain threshold, despite its individual 

node failures. 

1.5.2 Aquatic Biodiversity Mapping 
 

The application scenario is an aquatic sensor network-based, biodiversity 

mapping. Underwater sensors can be used to determine the quality of water, or 

biodiversity, by measuring its characteristics, such as temperature, density, 

salinity, acidity, chemicals, conductivity, PH, oxygen, dissolved methane gas and 

turbidity (Akyildiz, 2005). A sensor can sense single or multiple attributes and 

multiple sensors can sense the same attribute. The sensors in a cluster are 

equipped with domain specific function procedures or lookup tables with 

limited computing capability. A sensor node that can reach the maximum 

number of sensor nodes in one hop is selected as a cluster head; it broadcasts an 

advertisement to all other nodes in the network. However, there are several 
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algorithms that can be used to determine the cluster head, depending on the 

residual energy of the node, maximum number of neighbors, and so forth. 

 

The cluster head nodes gather data from all ordinary nodes or non-cluster-head 

nodes, aggregate data, and send the data to the sink or base station. Cluster-head 

nodes consume more energy than non-cluster-head nodes because the cluster-

head needs to receive data from all cluster members in its cluster and then send 

the data to the sink. The cluster heads are selected in each round to make sure 

that the energy consumption is evenly distributed among all the sensor nodes to 

prolong network lifetime. The scheme uses TDMA MAC for intra-cluster 

communications and CDMA for inter-cluster transmissions. TDMA has two 

phases: the setup phase to organize the clusters and the steady-state phase to 

allow all nodes to periodically transmit during their time slots. 
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Since the data is processed locally and only the result is sent to the sink, this data 

aggregation technique decreases energy consumption during data transmission. 

Figure 1.1 represents a series of geographical clusters. F is selected as the cluster-

head in cluster 1 because it has the highest number of nearest neighbors (A, B, C, 

D and E). Similarly, node C and node E are selected as cluster-heads for cluster 2 

and cluster 3 respectively. Using rough set formalism, we show that it is possible 

to reason over uncertain data, stemming from incomplete and inconsistent 

information received from spatially distributed sensors. 

1.5.3 Precision Agriculture 
 

Precision agriculture, an agricultural concept relying on the existence of in-field 

variability, is one of the most promising application areas of wireless sensor 

networks. It can be useful for irrigation management, frost detection and early 

warning, pesticide application, harvest timing, and water quality measurement 

and control ("Crossbow Technology Inc.," 2005). Researchers are working to gain 

a better understanding about the potential of sensor networks in precision 

agriculture. It has been shown that the variability within a site is substantial and 

often cannot be predicted by statistical models ("Intel Research," 2005; "Intel 

Research," 2008). 
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Precision agriculture, instrumented with wireless sensor networks, is capable of 

providing detailed and site-specific knowledge on the crop production 

variability and management by exploiting their spatiotemporal variability of soil, 

light, temperature, and nutrition stress. It promises higher yield and lower 

production costs by streamlining (standardizing) and centralizing agricultural 

management, hence reducing the labor cost ("NanoTechnology," 2007). It can 

help feed the expanding population of the world by increasing the viability of 

semi-arable lands ("Intel Research," 2005).  

 

Advances in wireless sensor technology have made the practical deployment of 

various site-specific services possible, which until recently were considered 

extremely costly and labor intensive. By employing wireless sensors, it is 

possible to monitor the plants in real time on a much finer level than traditional 

precision agriculture techniques. Real time, yet fined-grained information of the 

field will provide a solid base for farmers to remotely monitor agricultural 

practices, and to adjust strategies accordingly at any time. The real time 

climatologic data and environmental data, such as air temperature, relative 

humidity, soil moisture, light, wind speed, wind direction, leaf wetness and 

nutrition stress are sensed by heterogeneous sensor nodes and relayed to a 

cluster node. Then the cluster node can perform pattern-based data aggregation 

and send the patterns or rules to the central repository for decision making.  
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By employing a real time decision support system (DSS), we can make critical 

decisions on when, where and how to apply water, fertilizer, lime, and 

pesticides. For example, Phytophtora is a common fungal disease in potato fields. 

The development and the spread of this disease strongly depend on the 

climatologic conditions, such as humidity and temperature. Another important 

attribute that helps develop fungal infection in a crop field is leaf wetness 

(Baggio, 2005). By recording these critical conditions with the use of sensors, it is 

possible to determine which part of the crop field is at high risk for developing 

fungal disease and where to apply fungicide.  They can also detect frost and send 

early alerts on potential damage of the crop.  

 

Another potential application includes a vineyard that consists of different 

regions with different types of soil, and different levels of soil moisture, sun 

exposure, and temperature. The regions with heavy clay soil and less exposed to 

sun ( in a shed) can hold water for a longer time, while the regions with sandy 

soil that are more exposed to the sun are likely to dry out faster. It is important to 

monitor soil moisture at different depths at each location since water moves 

through the soil at different rates ("NanoTechnology," 2007) . With precision 

knowledge of the soil moisture status at different locations and different depths, 

it is possible to minimize water use while optimizing the yield and quality of 

grapes, which is critical for dry seasons.  
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The success depends not only on the ability to collect data by employing sensor 

networks, but also on the ability to analyze the data even in the presence of data 

uncertainty and to apply it for real time decision making in agricultural practices.  

1.6 Research Scope 
 

The sensors are assumed to be static and have some processing capabilities. The 

sensor nodes may not be homogeneous in terms of power or memory. For 

example, the nodes designated as cluster head may be more powerful compared 

to other regular sensor nodes. In order to generate a useful number of spatio-

temporal templates, attribute values should not change very frequently and they 

must have some spatial and temporal correlations. 

1.7 Research Contribution 
 

The current research is expected to produce significant contributions which may 

have practical implications to deal with the intelligent feature selection, data 

stream processing, knowledge discovery, and uncertainty management in 

wireless sensor networks.  In particular, the specific contributions are as follows: 

 

 Formalization of a novel pattern-based data aggregation technique that has 

the potential to reduce data communication, due to the fact that only the rules 

are sent to the sink. 
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o Discovery of spatio-temporal patterns and RS rule induction from 

sensor data stream by intelligent feature selection. 

o Support for symbolic, quantitative, and outlier data mining.  

 Foundation of uncertainty management in real time sensor database systems 

for constantly-evolving entities. 

 Characterization and quantification of uncertainties in wireless sensor 

networks environments by introducing a hybrid model of uncertainty 

management based on rough set theory and Dempster Shafer theory of 

evidence. 

 Demonstration of trade off among the uncertainty measures in the context of 

WSN. 

 

1.8 Validation of Research Contribution 
 

The research proposed in the thesis is based on a formal approach derived from 

the approximate reasoning methods of rough set theory (Pawlak, 1992b) in the 

context of the uncertainty management of sensor networks.  The proposed 

method is applied on NOAA‟s TAO/TRITON sensor data, and spatio-temporal 

patterns are generated from the time series of the dataset. Since we are not aware 

of any publicly available real data generated by WSN, effort is made to simulate 

sensor network data by performing some preprocessing steps, such as spatial 

clustering, from the time series of TAO/TRITON sensor data in order to increase 

data correlation and data homogeneity. In the context of current research, data 

correlation and data homogeneity are the two important aspects of WSN that are 
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exploited in discovering spatio-temporal patterns and rule generation. Moreover, 

our research is not only restricted to WSN, it is applicable for any environments 

that involve constantly evolving sources of data and data correlation. In general, 

most research in the area of WSN use simulated data since it is difficult to obtain 

real sensor data. 

 

We use rough set feature selection technique to remove the irrelevant patterns 

that have no impact on decision making. This step is important to generate a 

fewer number of compact rules from the data, given that the sensor data set has 

spatio-temporal correlation. The use of rough set theory for the feature selection 

is well recognized in literature (Swiniarski & Skowron, 2003). Then the rule 

validation is performed on different parts of the patterns taken in random 

sequence to reduce the bias. The rule validation ensures that the rules faithfully 

represent the data set and the rules are self-consistent. This is important in the 

context of current research because only the rules are periodically sent to the sink 

where the critical decision is made only based on the rules. It is to be noted that 

the proposed model is a pattern-based data aggregation model, not a prediction 

model. 

 

The uncertainties in spatio-temporal patterns stemming from missing and 

inconsistent data are characterized and quantified by logical extension of rough 

set theory in the WSN environment. Some well-established uncertainty 
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measures, such as entropy and nonspecificity are redefined in the research 

context and some new uncertainty measures, such as time window, pattern 

quality, pattern variance, pattern frequency variance, and so forth are established 

in the context of pattern generation from constantly evolving entities. Also, the 

sensitivity analysis is performed on the uncertainty measures and their statistical 

significance is demonstrated. 

1.9 Research Methodology 
 

The research reported in this dissertation identifies a research problem that is not 

only important for wireless sensor networks, but also for many real systems 

because uncertainty is an inherent attribute of real systems. Some applications 

described allow for current research to be very useful.  

 

As the first step, the existing approaches in the context of the current research are 

critically examined, and their limitations in the context of current research are 

outlined. Then, the formalism for the current research is developed by enhancing 

and integrating the existing theories. The methodology also identifies the 

boundary conditions in the context of the current research and provides the 

research results by employing the formalism on sensor data within the research 

boundary. As a result, a series of spatio-temporal patterns are discovered from 

the datasets. Uncertainties in the patterns are characterized and quantified by 

employing the formalism on the patterns. The methodology also provides the 
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scheme on rule validation for spatio-temporal patterns and sensitivity analysis 

performed on uncertainty measures. The statistical validation of the correlation 

of the uncertainty measures is established. Finally, it provides the summary of 

the results, conclusion, and possible future work in the direction of current 

research. 

1.10 Organization of the Dissertation 
 

The remainder of the dissertation is organized as follows: Chapter II explains 

related literature and provides a critical review in the context of pattern 

generation and uncertainty management in WSN. Chapter III provides the 

methodological foundation of the current research in terms of mathematical 

formalism development and rule validation. Chapter IV provides validation of 

the mathematical formalism for rule generation and uncertainty management, as 

well as the significance of the research findings. Chapter V concludes with a brief 

summary of the current research, research significance, and potential future 

direction of the research. 
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CHAPTER II 
LITERATURE REVIEW 

 

2.1 Chapter Introduction 
 
This chapter examines the context and relevance of the existing approaches to 

pattern-based data stream aggregation and uncertainty management in Wireless 

sensor networks. In this chapter, we provide an extensive literature review of 

data stream processing, data aggregation protocols, soft computing approaches 

of pattern generation and rule induction, and uncertainty handling formalisms, 

in the context of wireless sensor networks and uncertainty management. Each 

section concludes with a brief summary of the literature review for that section, 

along with an explanation of the direction and the motivation of the current 

research. Finally, the chapter ends with a critical summary of the literature 

review in the context of uncertainty management of WSN.  
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2.2 Data Stream Processing in WSN 
 

 

A data stream is a real-time, continuous, and ordered (implicitly by arrival time 

or explicitly by timestamp) sequence of elements. In many applications - such as 

network monitoring, financial analysis, clickstream monitoring, manufacturing, 

wireless networks, radio frequency identification (RFID), and sensor networks - 

data takes the form of continuous data streams rather than finite stored data sets 

and clients require long-running continuous queries instead of one-time queries. 

The traditional data processing techniques may not work because of the 

unbounded nature of data stream. The differences between traditional data 

mining and stream data mining are as shown in Table 2.1 (Kargupta, 2007; 

Ulrych, 2008). 

Table 2. 1: Traditional vs. Stream Data 

 Traditional Data Processing Stream Data Processing 

Storage capacity Unbounded Bounded 

Number of passes Multiple One or very  few 

Type of result Accurate Approximate 

Update type Arbitrary modifications Append 

Distributed No Yes 

Query type 

Data Representation 

One time, transient 

Relations 

Continuous, persistent 

Time series 

 

A sensor network can be modeled as a distributed system of data streams, a 

sequence of data elements which arrive online.  It is not possible to control the 

order in which the elements arrive, nor is it possible to store the sensor data 

stream on the processing system in its entirety since the number of data elements 
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in a stream can be unbounded and larger than the storage capacity of the stream 

processing system. Thus, the query processing systems need to process these 

elements as soon as they arrive without storing and making multiple passes over 

it.  

2.2.1 Traditional and Sensor Network Stream Data Processing  
 

Data stream processing systems in WSN need to address new issues and 

challenges, which may not be required in traditional stream processing systems. 

The major differences between the traditional data stream processing and the 

data stream processing in WSN are as follows (Elnahrawy, 2003; Kargupta, 2007): 

 Spatial and temporal attributes are important in sensor networks 

applications, whereas they have no major impact on data stream in other 

applications, such as web log and click streams. In wireless sensor networks, 

it is important to know the exact time and exact location for an application, 

such as forest fire. 

 Data duplication in WSN is common since a large number of sensors are 

deployed densely in the environment monitor the similar environment. This 

correlation in data should be accounted while developing data mining 

techniques. 

 Sensor data streams are often more noisy compared to traditional data 

streams because of resource constraints, the harsh environment of sensor 
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deployment, and the large number of inexpensive sensors. Data cleaning and 

uncertainty management are important to ensure the reliability of WSN. 

 In the WSN environment, another major issue is energy efficiency, whereas in 

traditional stream data stream processing energy is not a major concern.  

 In WSN, in-network aggregation is the acceptable mode of operation because 

of its severe resource constraints. On the other side, traditional data stream 

processing does not need to deal with these constraints and is performed 

outside of the network. 

 Distributed processing of queries is the computational model in WSN, 

whereas centralized data stream processing serves as a basic model in 

traditional data stream management systems. 

 

Learning in the dynamic environments with large number of distributed sources 

(sensors) of continuously evolving data, in addition to severe resource 

constraints of sensors, requires intelligent analysis of the data sets describing real 

world problems like weather forecasting or web log processing. Processing data 

streams requires adaptive algorithms that can deal with concept drift and are 

capable of incorporating new information and disregarding outdated 

information since the data collected from the sensor field may shift from time to 

time after some minimum permanence.   
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Algorithms, systems, and frameworks that address all these issues and 

challenges have been developed in recent years from the existing statistical and 

computational approaches. The approaches can be categorized into two groups, 

such as task-based and data-based. In task-based approaches, the techniques are 

adopted from computational theory so that they are space and time efficient. On 

the other hand, the data-based approach relies on the selection of a subset of the 

whole dataset or vertical or horizontal transformation of the dataset to an 

approximate and smaller data representation (Gaber, Zaslavsky, & 

Krishnaswamy, 2005). 

2.2.2 Task-based Approach of Data Stream Processing: Time Window 
 

 

Task-based approaches involve modifying existing techniques or developing 

new ones that address all computational challenges and issues of stream data 

processing in WSN mentioned in the previous section. There are several task-

based approaches, such as approximate algorithms, sliding windows, and 

algorithm output granularity (Gaber, Zaslavsky et al., 2005). Approximate 

algorithms provide an approximate solution with error bounds for 

computationally hard problems. However, it is not appropriate for resource 

hungry WSN unless supported by other tools (Cormode & Muthukrishnan, 

2005).   The algorithm output granularity (AOG) is the resource-aware data 

processing approach that supports high and fluctuating data rates (Gaber, 

Krishnaswamy, & Zaslavsky, 2005). The motivation of the sliding window 
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approach is the applications where people are interested in the most recent data 

streams, instead of old streams. We will mainly focus on this sliding window in 

the context of the current research, where most recent patterns are of utmost 

importance. 

 

Sliding Window 

Because of the unbounded nature of the sensor data stream, we cannot store an 

entire data set on the stream processing systems. Thus, the important issue is 

which part of the data stream is selected for stream mining. There are three data 

stream processing models, such as absolute (or fixed), landmark, and sliding 

windows. The absolute model mines all frequent itemsets over the entire history 

of stream data within a specific time window where both the start and the end of 

the window are specified.  

 

The Landmark model mines all frequent itemsets from a specific time to the 

present. This model is not appropriate when the most recent information of a 

data stream is of only importance, such as stock monitoring systems. The sliding 

window model mines all frequent itemsets contained in the sliding window and 

both ends of the window change with time as it slides. The data items within the 

sliding window are considered fresh. The information is discarded when the 

timestamp expires and they are out of the range of the sliding window. In 

general, the size of the sliding window depends on the applications and system 
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resources (Jiang & Gruenwald, 2006).  There is also another model called damped 

model which mines frequent itemsets in stream data by assigning more weight to 

most recent transactions compared to older ones (Chang & Lee, 2003).    

 

Most of the research in the data stream model is based on the assumption that all 

elements in the data stream are equally important and representative; however, 

in sensor networks applications, this assumption is not always true. In many 

sensor network applications, recent data elements are more useful than old data 

elements, and we can use sliding window model, where each element of the data 

streams expires after N (window size) time steps and the set of last N elements is 

the relevant part of the data stream for gathering statistics, generating rules or 

answering queries (Elmagarmid, Ghanem, Hammad, Mokbel, & Aref, 2007).  

2.2.3 Data-based Approach of Data Stream Processing 
 

 

Data-based techniques involve either the summarization of the whole dataset or 

the selection of a subset of the whole data stream. The most commonly used 

methods for data reduction are data sampling, synopsis and histograms, 

principal component analysis (PCA), and wavelets. Sampling, an old statistical 

technique, involves probabilistically selecting some tuples while others are 

skipped for data processing. We can sample instances at some periodic intervals, 

and, thus, if the rate of streams arrival exceeds the capacity of processing 

systems, sampling can manage this situation.  It can be used to find approximate 
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results when the most expensive operation in database processing, namely join, 

is required (Kargupta, 2007). It executes random samples and then joins over 

samples instead of entire streams. However, the traditional sampling algorithm 

is not appropriate for stream data processing because traditional sampling 

requires the total number of tuples to be known in advance. Another 

disadvantage of sampling is that it does not support the application where data 

rates fluctuate (Gaber, Zaslavsky et al., 2005). A large number of sampling 

algorithms have been developed recently for stream processing by enhancing the 

traditional sampling algorithms mostly with the time based sliding window 

mechanism (Gibbons & Tirthapura, 2002). Reservoir sampling is a well-known 

technique for sequential random sampling over data streams (Vitter, 1985). But 

the conventional reservoir sampling assumes a fixed size reservoir, and it does 

not work with moving windows. 

 

Synopsies and histograms are summarization techniques that can be used to 

compute the frequency distribution of stream elements, and they can be used in 

range queries (Babcock, Babu, Datar, Motwani, & Widom, 2002). A histogram is 

defined by a set of non-overlapping intervals, defined by the boundaries and 

frequency counts. The sketch, a special case of synopsis, vertically samples the 

incoming data stream and does not maintain the sequence of sensor streams. 

Hence, augmented with hashing and time-based windowing schemes, sketch 

support stream processing.  
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Another data reduction technique is PCA, a mathematical tool for transforming a 

number of possibly correlated variables into a smaller number of uncorrelated 

variables, called principal components (PC). The first component represents the 

variability as much as possible in data and the subsequent components represent 

the variability as much as possible in the remaining data. (Kargupta, Puttagunta, 

Klein, & Sarkar, 2006; Y. Zhang & Edgar, 2006) suggest the use of PCA as a data 

reduction technique in sensor data stream processing. However, PCA can 

process only numeric data (non-symbolic data), destroys the underlying data 

semantics, and only can deal with linear data. 

 

Another data reduction tool is wavelets. Wavelets transforms are used in several 

applications since most signals can be represented by small set of coefficients 

(Chakrabarti, Garofalakis, Rastogi, & Shim, 2001; Guha & Harb, 2005). The 

limitations of wavelets are as follows: they do not work for symbolic data and 

they only work for numerical data. Besides the technical disadvantage, the Haar 

wavelet is not continuous and thus not differentiable. Though the research in 

wavelets is a fast growing area, there are some unresolved issues. “For example, 

what is the best choice of wavelet to use for a particular problem? How far does 

the harmonic wavelet transform computational simplicity compensate its slow 

decay rate in the -domain? How it can be used for the solution of 

integrodifferential equations, and many others? The disadvantage of harmonic 
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wavelets is that its decay rate is relatively low (proportional to ), therefore, its 

localization is not precise” (Cattani & Kudreyko, 2008). 

2.2.4 Rough Sets and Feature-Selection-based Data Reduction 
 

Rough set theory is a well-known formalism for feature selection and rule 

generation. By employing rough set formalisms on datasets, whether numeric or 

symbolic, one can determine the features that are redundant and the features that 

are most relevant to a given application. Thus one can determine the set of 

sensors that participate in decision making. This is very important for stream 

data processing in WSN, where space, energy, bandwidth, and time are crucial.  

2.2.5 Synopsis of Existing Data Stream Processing Techniques 
 

The inability to store an entire data stream suggests the use of some form of 

approximations, such as synopses. As a consequence of approximation, it is not 

always possible to obtain the exact or precise results and uncertainty may result. 

Thus in order to make wise decisions, even in the presence of imprecision, it is 

imperative to identify potential uncertainties that stem from these 

approximations of sensor data streams in a particular application domain. Once 

we can identify the type of uncertainties, we can quantify them either by 

employing the existing mathematical formalisms or by developing new 

formalisms that are appropriate for stream data processing. However, the 
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literature review shows that the existing strategies barely address uncertainty as 

one of the important dimensions in the optimization space for data stream 

processing. Given the growing demands for complex domain specific 

applications of sensor networks such as object tracking and event identification, 

high resource constraints of sensor nodes and the characteristics of sensor data 

streams, it is important to deal with the uncertainty and the uncertainty 

propagation through stream data processing in a real time environment. 

Therefore, the existing stream processing algorithms for wireless sensor 

networks should be enhanced by incorporating uncertainty handling 

mechanisms in their model parameters.  

 

There are several issues that need to be addressed while mining stream data in 

WSN. First, a compact data structure is needed to store, retrieve, and update the 

information because of the bounded memory requirement. There are several data 

structures - such as tree, array, and link lists - that can be considered depending 

on the applications. The second issue is the granularity of approximate results. 

Third is the speed of processing. The fourth concern is uncertainty or error. The 

fifth one is whether the data stream mining algorithm can handle a large amount 

of data. The sixth concern can be whether there are tradeoffs among them. For 

instance, high granularity in approximation may result in more resource 

consumption or processing delays.  
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One of the possible solutions can be to develop a formalism for sensor network 

data stream processing which exploits spatial and temporal correlation in sensor 

data stream and removes irrelevant information by intelligent feature selection 

so that it satisfies the space, energy, bandwidth requirements as well as 

incorporates uncertainty handling mechanisms.  The notion of temporal 

templates (Synak, 2001), homogeneous patterns occurring at regular intervals, 

can be used for processing sensor data streams. Spatio-temporal patterns can be 

extracted from temporal information system by employing the concept of sliding 

windows and then, if … then … rules, can be generated using a formalism, rough 

set theory, which is data driven and inherently equipped with uncertainty 

handling mechanism formalism. It is expected that there is a strong regularity in 

sensor data for some intervals since the data is gathered continuously from 

densely populated sensors.  

 

2.3 Data Aggregation in WSN 
 

Data aggregation plays an important role in severely resource constraint WSN, 

where a large number of sensors are densely deployed in an unfriendly 

environment. In wireless sensor networks, data is gathered at intermediate 

points from multiple sources and periodically transmitted to the sink or base 

station for processing. The amount of data gathered at the sink could be 

overwhelming if all sources send the data directly to the sink. Besides this, there 
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is a high probability of redundancy and correlation in data since data is often 

collected from densely deployed neighboring sensors. Not only sensor data have 

spatial correlation, but also they have temporal correlation since sensors are 

continuously monitoring the environment. By exploiting these correlations in 

data while aggregating data at intermediate sensor nodes, a significant amount 

of savings in terms of data communication, energy, and bandwidth can be 

achieved. Other advantages of data aggregation at intermediate nodes include 

improvement in data quality, reduction in overall traffic in the network and 

network delay, improvement in the performance, and reduction in the power 

consumption in transmitting information. In-network data aggregation is 

considered an effective technique in sensor networks since the communication 

cost is often much higher compared to the computation cost (Kargupta, 2007).  

 

Data aggregation is application-dependent, and the data aggregator depends on 

the target application. Sensor network applications have different needs, 

different traffic patterns (one-to-many, many-to-one and many-to-many), and 

different data rates (fixed and variable, frequent and infrequent). There is no 

algorithm that matches the requirements of all applications. Energy savings 

depend on the type of aggregator.  

 

The important issue of data aggregation is where to conduct the processing of 

the data. If data is processed locally and only the result is sent to the sink, it will 
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increase the energy consumption by the processor and decrease the energy 

consumption during data transmission. If raw data is sent to the sink for 

processing, it will decrease the energy consumption in processing but increase 

the energy consumption of data transmission. The problem of determining the 

optimal selection and location of aggregation points in sensor networks is NP-

complete, in general. However, attempts have been made to find an approximate 

solution for the data aggregation problem.  

 

The design of efficient data aggregation techniques is an inherently challenging 

task. Network life time, data accuracy, data freshness and latency are some of the 

important measures of data aggregation schemes. Timing plays an important 

role in determining data accuracy and data freshness; the important decision is 

how long a node should wait to receive data from its downstream nodes before 

forwarding to the sink or base station. Longer waiting time increases data 

accuracy but decreases data freshness. We can save a significant amount of 

energy by proper selection of data aggregation and forwarding intervals. There is 

a trade-off among network life time, data accuracy, data freshness, and latency 

(Solis & Obraczka, 2003). 

2.3.1 Existing Data Aggregation Methods in WSN 
 

 

Data aggregation techniques can be broadly classified into two categories, such 

as data-centric and hierarchical. Unlike traditional networks, it is not feasible to 
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assign global identifiers to each node of the sensor networks since the number of 

nodes is often very large and thus it is hard to select a set of sensors to be 

queried. Data is generally transmitted from every sensor node within the 

deployment region with significant redundancy, which is very energy inefficient. 

This leads to the development of data-centric routing, which is capable of 

selecting a set of sensor nodes and performing data aggregation as well as data 

routing without using nodes‟ addresses. The advantages of data centric routing 

include energy savings through data negotiation and the elimination of 

redundant data. The major drawback of the data centric routing is that it can 

result in excessive communication and computation at the sink node. Besides 

that, sink failure can bring the entire network down. The concept of a 

hierarchical approach was developed to enhance scalability and energy efficiency 

of the sensor networks. The advantages of hierarchical data aggregation methods 

include routing simplicity, lower latency, and implementation of node 

heterogeneity. However, the routing is not always optimal with a hierarchical 

approach, where as optimal routing is guaranteed in data-centric scheme at the 

cost of overhead (Rajagopalan & Varshney, 2006).  

2.3.2 Data Centric Algorithms 
 

In data centric routing, the base station sends queries to certain regions and waits 

for data from sensors located in those selected regions. Two important dada-

centric protocols are Sensor Protocols for Information via Negotiation (SPIN) and 
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Directed Diffusion. SPIN is the first data-centric protocol which is a push 

diffusion protocol for data collection and dissemination (W. Heinzelman, Kulik, 

& Balakrishnan, 1999). Later, Directed Diffusion was developed and became very 

popular (Intanagonwiwat, Govindan, & Estrin, 2000). Then, several algorithms 

have been developed either based on Directed Diffusion (Braginsky & Estrin, 

2002; Chu, Haussecker, & Zhao, 2002; Schurgers & Srivastava, 2001) or similar 

ideas (Manjeshwar & Agrawal, 2001; Sadagopan, Krishnamachari, & Helmy, 

2003; Shah & Rabaey, 2002; Yao & Gehrke, 2002).  

 

SPIN 

In SPIN, the sources initiate the diffusion and the sink responds to the sources. 

The initiating node that has new data advertises the data to the neighboring 

nodes in the network using the metadata, description of data. A neighboring 

node interested in that data sends a request to the initiator node for data. The 

initiator node responds and sends data to the sinks. It only sends the requested 

data and avoids the cost of sending data needlessly; however it incurs the 

overhead associated with the negotiation phase. It uses point-to-point 

communication among pairs of nodes to eventually convey data to all interested 

participants. SPIN does not use an explicit aggregation mechanism and 

aggregation is performed implicitly during the initial negotiation between two 

nodes using meta-data to decide whether actual data will be exchanged (Solis & 

Obraczka, 2003).  
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SPIN incurs at a factor of 3.5 less energy consumption compared to flooding and 

is able to distribute 60% more data per unit of energy compared to flooding. 

SPIN is suitable for environments with mobile sensors since the forwarding 

decisions are based on local neighborhood information. One of the main 

advantages of SPIN is that topological changes are localized since each node 

requires the knowledge of its single hop neighbors. The main disadvantage of 

SPIN is its inability to guarantee data delivery. For instance, in intrusion 

detection applications, if the nodes interested in the data are further away from 

the source node, and the intermediate nodes are not interested in the data, then 

the data is not delivered to the nodes (Rajagopalan & Varshney, 2006). 

 

Direct diffusion 

 

In direct diffusion, a two-phase pull diffusion scheme, the sink broadcasts the 

query throughout the network with a rich set of attribute-value pairs describing 

the desired data to ensure that every node gets it (Intanagonwiwat et al., 2000). 

These queries are cached by the sensor nodes and data are sent to the sink once 

they are available to the sources (sensors).  Gradients, reply links, are established 

between neighboring nodes during the broadcasting and used by the sources to 

select a path for data transmission to the sink.  There are several paths as 

exploratory data is transmitted to the sink from different gradients. The sink 

selects one of the multiple paths by sending message reinforcement and the real 
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data is transmitted using the selected path.  Since the interest message, 

exploratory data, and reinforcement message are generated periodically, direct 

diffusion can accommodate node failures by updating the paths between the sink 

and the source.  

 

Direct diffusion is appropriate for many sources and few sinks. The performance 

of data aggregation depends on the position of source and sink and on network 

topology. By checking the sequence of interests it receives, a node can find out its 

nearest neighbors. Even if the source and the sink are close to each other, many 

unnecessary communications are involved resulting in energy-inefficiency. If 

there is one source and multiple sinks, direct diffusion is not a suitable choice 

because it involves many unnecessary communications. Another drawback of 

direct diffusion is that it does not support applications that require continuous 

data transmissions to the sink. (B. Krishnamachari, Estrin, & Wicker, 2002) have 

shown the impact of source-destination placement and network density on the 

energy in data aggregation. 

 

COUGAR 

COUGAR is a data-centric protocol that uses declarative queries in order to 

abstract query processing from network layer functions, such as selection of 

leader nodes to perform in-network data aggregation and transmit the data to 

the sink. This abstraction is performed through a new layer between the network 
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and the application layers. The drawbacks of COUGAR include extra overhead 

due to additional query layers on each node, additional node synchronization, 

dynamic maintenance of leader nodes (Akkaya & Younis, 2005; Yao & Gehrke, 

2002). 

 2.3.3 Hierarchical Algorithms 
 

 

Hierarchical networks are comprised of two-layer routing where one layer is 

used to select cluster heads and the other layer is used for routing. The main idea 

of a hierarchical algorithm is to maintain the energy consumption of the sensor 

nodes by means of multi-hop communication within a particular cluster and 

performing data aggregation and fusion before the data sent to the sink (Akkaya 

& Younis, 2005). Examples of hierarchical algorithms include cluster-based 

algorithms and tree-based algorithms. LEACH is one of the first hierarchical 

routing algorithms for sensor networks where cluster formation is mainly based 

on the energy reserve of the sensors and the sensors‟ proximity to the cluster 

head (W. Heinzelman, Chandrakasan, & Balakrishnan, 2000).  Later, several 

hierarchical algorithms have been proposed based on LEACH (Lindsey & 

Raghavendra, 2002; Lindsey, Raghavendra, & Sivalingam, 2002; Manjeshwar & 

Agrawal, 2001, 2002). 
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TEEN & APTEEN 
 

Energy Efficient sensor Network protocol (TEEN) is based on a hierarchical 

approach, combined with a data-centric scheme useful for reacting in time-

critical events. In the cluster formation phase, the closer nodes form clusters, and 

this process of forming clusters continues in several hierarchies until the sink is 

reached. After the cluster formation, the cluster head broadcasts two thresholds 

to the nodes, such as hard and soft thresholds. A hard threshold reflects the 

minimum possible value of an attribute for which the nodes are supposed to 

switch on their transmitter and send the information to the cluster head. On the 

other hand, a soft threshold provides the minimum possible change in the 

attribute values for which the sensor nodes are expected to transmit data to the 

sink (Akkaya & Younis, 2005). Thus, this protocol can control numbers of packets 

for time-critical applications. However, TEEN is not appropriate for the 

applications where periodic reports are required. Adaptive Threshold sensitive 

Energy Efficient sensor Network protocol (APTEEN) is an enhanced version of 

TEEN and APTEEN is  useful for periodic data collections and reacting to time-

critical events (Manjeshwar & Agrawal, 2001, 2002). 

 

LEACH 

W. Heinzelman et al (2000) propose a hierarchical clustering algorithm, Low 

Energy Adaptive Clustering Hierarchy (LEACH), where the cluster-heads 
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aggregate data and communicate directly with the sink or base station. LEACH 

uses TDMA MAC for intra-cluster communications and CDMA for inter-cluster 

transmissions. TDMA has been used to avoid collisions within a cluster and 

CDMA supports simultaneous communications of cluster-heads with the sink. 

The cluster-head node consumes more energy than the non-cluster-head node 

because the cluster-head needs to receive data from all cluster members in its 

cluster and then send the data to the sink. A node elects itself to become a 

cluster-head by some probability and broadcasts an advertisement to all other 

nodes in the network. A non-cluster-head node selects a cluster head based on 

the signal strength. TDMA has two phases: a setup phase to organize the clusters 

and a steady-state phase to allow all nodes to transmit periodically during their 

time slots. The nodes send their data to the cluster-head and the cluster-heads 

send the aggregated data to the sink at the end of each cycle. The cluster heads 

are randomly selected in each round to make sure that the energy consumption 

is evenly distributed among all the sensor nodes. There are several enhance 

versions of LEACH, such as LEACH-C (W. R. Heinzelman, Chandrakasan, & 

Balakrishnan, 2002) and LEACH-F (W. Heinzelman, 2000). In LEACH-C, the sink 

broadcasts the cluster-head assignment to ensure even distribution of cluster-

heads in the sensor networks and to prolong network lifetime, whereas in 

LEACH-F clusters are formed once and then they are fixed to reduce set-up 

overhead at the beginning of each round.  
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PEGASIS 

Power-Efficient Gathering in Sensor Information System (PEGASIS) is an 

enhanced version of LEACH (Lindsey & Raghavendra, 2002). Instead of forming 

multiple clusters, it forms chains from all sensor nodes so that each node 

transmits to and receives from its neighbors and the nodes take a turn as a 

cluster-head. The chain can be formed from a greedy distribution algorithm, or 

can be computed by the sink and sent to all the sensor nodes by broadcasting. It 

supports multi-hop routing by forming the chains and selecting only one node as 

cluster head that transmits to the sink (Akkaya & Younis, 2005). 

 
EADAT 
 

Energy Aware Distributed Aggregation Tree (EADAT) is proposed as an energy 

aware distributed heuristic to construct and maintain an aggregation tree in 

sensor networks (Ding, Cheng, & Xue, 2003). It is initiated by the sink which 

broadcasts the control message which includes five fields: sensor ID, parent, its 

residual power, status (leaf or non-leaf), and hopcount (number of hops from the 

sink). Data aggregation is performed only by the non-leaf nodes and the 

aggregated data is sent to the root node. The main idea is to turn off the radio of 

all leaf nodes to save power, and thereby extend the network lifetime. Therefore, 

in order to save the number of broadcasting messages, only the nonleaf nodes in 

the tree are responsible for data aggregation and traffic relay. EADAT algorithm 

makes no assumption of local network topology and is based on residual power. 
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It makes use of neighboring broadcast scheduling and distributed competition 

among neighbors (Rajagopalan & Varshney, 2006).  

 

ESPDA 

Cam, Özdemir, Nair, Muthuavinashiappan, & Sanli (2006) propose an energy-

efficient secure pattern code based data aggregation scheme called ESPDA. It can 

prevent the redundant data transmission from sensor nodes to cluster-heads by 

implementing a pattern code based data aggregation. All except one of the 

sensor nodes are put into sleep mode, and pattern codes are generated from the 

sensed data. Cluster-heads compare patterns and send only distinct patterns, in 

encrypted form, to the sinks. Thus cluster-head do not need to know the sensed 

data for data aggregation. This process does not require the exchange of 

encryption and decryption key between sensor nodes and cluster-heads. This 

approach makes ESPDA energy efficient as well as secure. The authors in (Cam 

et al., 2006) have employed symmetric key cryptographic algorithm since WSN 

has limited energy, power, and storage.  

 

Trust based Secure Data Aggregation 

W. Zhang, Das, & Liu (2006) propose a trust-based framework, rooted in 

statistics and other distinct yet closely coupled techniques. Trustworthiness of 

individual nodes is evaluated by means of an information theoretical measure, 

Kulback-Leibler distance, and the compromised nodes are identified using an 
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unsupervised learning algorithm. Then an opinion, based on the degree of belief, 

is computed which represents the uncertainty stems from data aggregation. 

2.3.4 Synopsis of Existing Data Aggregation Techniques 
 

 

Many data aggregation techniques ignore the spatio-temporal correlation in 

sensor data. A significant savings in terms of data communication as well as 

processing can be made by exploiting such correlation (Kargupta, 2007). An 

overview of data aggregation techniques in wireless sensor networks is shown in 

Table 2.2 (Akkaya & Younis, 2005; Akyildiz et al., 2002; Rajagopalan & Varshney, 

2006).  

 

Table 2. 2: An Overview of Data Aggregation Tecniques 

Authors 
 

Methods 
(Categories) 

Descriptions 

W. Heinzelman et al.(1999) SPIN 
(Data-centric) 

Sends data to sensor nodes only if they are 
interested. Data aggregation is performed 
implicitly during the initial negotiation 
between two nodes using meta-data to 
decide whether actual data will be 
exchanged. 

Intanagonwiwat et al.(2000) Directed Diffusion 
(Data-centric) 

Diffuses data through sensor nodes by using 
a naming scheme of the data. It sets up 
gradients for data to flow from source to 
sink during interest dissemination. 

Yao & Gehrke (2002) COUGAR 
(Data-centric) 

Uses declarative queries in order to abstract 
query processing from network layer 
functions, such as selection of leader nodes 
to perform data aggregation and transmit 
the data to the sink. 

Manjeshwar & Agrawal 
(2001; Manjeshwar & 
Agrawal, 2002) 

TEEN & APTEEN 
(Data-centric & 
hierarchical) 

Forms clusters in hierarchies from the closer 
nodes and this process continues in several 
hierarchies until the sink is reached. By 
means of soft and hard thresholds, TEEN 
can respond to time-critical events, whereas 
APTEEN is useful for both periodic data 
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collections and reacting to time-critical 
events. 

W. Heinzelman et al.(2000) LEACH 
(Hierarchical 
clustering) 

Forms clusters to minimize energy 
dissipation. It has two phases: a setup phase 
to organize the clusters and a steady-state 
phase to allow all nodes to transmit 
periodically during their time slots. The 
nodes send their data to the cluster-heads 
and the cluster-heads send the aggregated 
data to the sink at the end of each cycle.  

Lindsey & Raghavendra 
(2002) 

PEGASIS 
(Hierarchical 
clustering) 

Forms a chain from all sensor nodes so that 
each node transmits to and receives from its 
neighbors and the nodes take a turn as a 
cluster-head. It is an enhanced version of 
LEACH and achieves significant energy 
savings compared to LEACH. 

Ding et al.(2003) EADAT 
(Hierarchical tree) 

Forms a tree where data aggregation and 
data relay are performed only at non-leaf 
nodes and the aggregated data is sent to the 
root node designated as a sink.  The 
algorithm is initiated by the root node 
which broadcasts a control message to 
inform about the sensor ID, its parents, its 
status, and its residual power, and hopcnt.  

Cam et al.(2006) ESPDA 
(Secure pattern 
code based) 

Presents a secure energy-efficient data 
aggregation scheme that prevents the 
redundant data transmission from sensor 
nodes to cluster-heads by implementing a 
pattern code based data aggregation. 

W. Zhang et al.(2006) Trust based Secure 
Data Aggregation 
(Secure Trust 
based) 

Proposes a trust based framework, rooted in 
statistics and other distinct yet closely 
coupled techniques. Trustworthiness of 
individual nodes is evaluated by means of 
an information theoretic measure, Kulback-
Leibler distance, and the compromised 
nodes are identified using an unsupervised 
learning algorithm.  

 

Regardless of the techniques employed, the existing strategies hardly mention 

one important dimension in the optimization space for data routing and data 

aggregation, namely uncertainty. Most of the data aggregation methods are 

optimized base on energy, power, or bandwidth. Recently some researchers 

addressed security and developed pattern-based model for data aggregation in 
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WSN (Cam 2006; Zhang 2006). However, they do not address uncertainty in a 

broader or more general frame. Given the growing demands for complex domain 

specific applications of sensor networks, unfriendly environment of sensor 

deployment, and severe resource constraints of sensor nodes, it is imperative to 

deal with the uncertainty and the uncertainty propagation through data 

aggregation in a real time environment. Therefore, aggregation-driven routing 

protocols for wireless sensor networks cannot optimize over only energy, power, 

bandwidth, or network life time – uncertainty should be included in 

optimization space. Thus a pattern-based data aggregation where energy, 

bandwidth, memory, security, uncertainty, and spatio-temporal correlation of 

data – are all addressed may be a potential solution for WSN. 

2.4 Soft Computing Approaches for Rule Extraction 
 

 

There are several soft computing approaches for rule mining, such as rough set 

theory, decision tree, and neural networks. Each of them has a distinct 

methodology for addressing problems in different application domains. We need 

to understand the issues better and determine or develop an efficient data 

mining algorithm in the context of streams and distributed systems.  

2.4.1 Rough Set Theory and Rule Extraction 
 

Rough set theory is very useful to discover hidden patterns in data and it is well 

recognized as a data mining tool (S. Mitra, Pal, & Mitra, 2002). It induces a set of 
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rules in IF-THEN form from decision tables. In rough set theory, data is 

represented in a two dimensional table or matrix called information tables 

(sometimes called a decision table). An information system (S) is expressed as S = 

(U, A), where U is a nonempty finite set called the universe and A is a nonempty 

finite set of attributes.   Each attribute a  A can be considered as a function that 

maps elements of U into a set Va , where Va represents the value set of attributes, 

such that 

a: U Va  

For every subset of attributes  one can associate equivalence or an 

indiscernibility relation IB on U such that IB = {(x, y)  U: a B, a(x) = a(y)} and 

. The B-lower and B-upper approximations are defined, respectively 

as: 

  and , where  

represents the equivalence class of the object  with respect to IB.  

X is B-exact or B-definable in S if . The boundary region is represented 

as follows: 

BNDB(X) =  - . If  , the boundary region is empty. The boundary 

region is the set of objects that we cannot determine with certainty whether a 

member or nonmember of X. The rules induced from the boundary region are 

uncertain or inconsistent rules and we cannot classify the objects with certainty 

by using these inconsistent rules. The decision rules can have two conditional 
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probabilities associated with them - certainty and coverage which are closely 

related to the fundamental concepts of lower and upper approximations (Peters 

& Skowron, 2002).  

 

Before generating the rules, one has to remove the redundant attributes from the 

information system and determine the minimal subset of attributes (called 

reducts) that are important for decision making by analyzing data dependency. It 

is simple to identify the redundant or indispensable attributes by using the 

concept of indiscernibility or equivalent relation. If a set of attributes and its 

superset correspond to the same discernibility relation, then any attribute that is 

a member of the superset but not to the set is considered as redundant (Pawlak, 

Grzymala-Busse, Slowinski, & Ziarko, 1995). The major applications of rough set 

in data mining include decision rule induction from attribute value tables and 

data filtration by template generation (L. Polkowski & A. Skowron, 1998; 

Skowron, 1995). 

2.4.2 Decision Tree (ID3) and Rule Extraction 
 

 

A decision tree is a machine learning technique based on constructing a decision 

tree. The concept for decision tree was popularized by Quinlan with ID3, 

Interactive Dichotomizer 3 (Quinlan, 1986). ID3 develops a decision tree based on 

the greedy algorithm of entropy reduction to classify objects and make 

predictions for discrete class intervals. ID3 prunes a search tree based on the 
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entropy. Classification is based on recursive partitioning of the data set into 

categories involving intersection among the variables in various values. At each 

node of the decision tree, the remaining variables with highest reduction in 

entropy, or highest information gain, would be selected for the next stage of 

partitioning. 

 

Decision trees do not require any prior knowledge of the data distribution and 

they work well on noisy data (Sushmita Mitra & Acharya, 2003). They reduce a 

volume of data by generating a fewer number of compact rules, while preservers 

the essential characteristics and accuracy. They determine whether the data has 

well-separated classes of objects. The most important feature of decision tree is 

their capability of breaking down a complex decision making process into a 

series of simpler decisions that are easily interpretable (Safavian & Landgrebe, 

1991).  

2.4.3 Neural Networks and Rule Extraction 
 

A neural network is used to build an intelligent system based on the model that 

simulates the working network of simple processing elements or neurons in 

human brain (Hopfield, 1982; Thangavel & Pethalakshmi, 2009). It is believed to 

be responsible for the intelligence and discriminating power of humans. A 

neuron is made up of several protrusions called dendrites and a long-branch 

called the axon.  Millions of neurons are linked together through the dendrites in 
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a massively parallel manner. The dendrites of neurons meet to form synapses 

where the message pass, and the neurons receive the pulses via the synapses.  

 

When a neuron receives a set of input pulses, internal processes take place such 

as activation of neurons, and then the neuron sends out another pulse that is a 

function of the input pulses. Suppose the inputs x1, x2, …, xn are coming to the 

neuron and each input xi is multiplied by its corresponding weight wi, then the 

product wixi is fed to the neuron. The weight wi represents the biological 

synaptic strength in a natural neuron. The neuron adds up all the weighted 

inputs as follows: 

 

Finally, the neuron computes its output as a function of net, i.e. y = f(net) where f 

is called the activation or transfer function. The activation functions depend on 

the characteristics of applications. The neuron is considered a black box that 

receives input vector x and sends out a scalar output y. The same output y can be 

sent out through the multiple dendrites emerging from the neuron. Artificial 

neural networks can be viewed as a weighted directed graph where artificial 

neurons are nodes and directed edges are connections between neuron outputs 

and neuron inputs.  
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Though the current neural networks are far from achieving the real intelligence, 

as it was predicted, they have several real life applications that include pattern 

classification, clustering, optimization, and forecasting. A neural network can 

learn from the “environments” by employing one of the three paradigms of 

learning: supervised, unsupervised, and reinforcement. In supervised learning, 

each network output is compared against the desired output for each input. In 

unsupervised learning, neural networks are given some general guidelines and 

then learn by themselves.  No specific input-output comparisons are made in this 

paradigm of leaning. Instead the network is tuned to certain criteria or 

algorithms to form categories (partition) by optimizing with respect to some 

independent parameters of the network (e.g. global energy). Reinforcement can 

be viewed as a special case of supervised learning and it learns the input-output 

mapping by trial and error while maximizing a performance index called a 

reinforce signal (Sushmita Mitra & Acharya, 2003). 

2.4.4 Rough Set theory and Decision Trees (ID3) 
 

 

Both rough sets and decision trees require data discretization since they cannot 

deal with continuous data. However other decision trees, such as CART or C4.5, 

are able to deal with continuous data. Neither rough sets nor ID3 requires any 

prior knowledge of the data distribution.  ID3 may be more efficient than rough 

sets when the number of rules is very high, but it may overlook useful rules. 

Another difference is the way to represent knowledge or rules: rough set theory 
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develops an information table, while ID3 uses decision trees. Rough set may be 

selected for the problems that are better represented by tables than trees. On the 

other hand, ID3 is a right choice when the problems are better represented by a 

tree. In general, a tree data structure is efficient for searching and very inefficient 

for merging. Tables are easy to merge but difficult to search for information. A 

comprehensive comparison of rough set and decision tree (ID3) is provided in 

(Beynon & Peel, 2001; Daubie, Levecq, & Meskens, 2002; Mak & Munakata, 2002).  

2.4.5 Rough Set Theory and Neural Networks 
 

 

The major advantage of neural networks is their capability of parallelism with 

ease since each neuron can work independently. It can perform, with some 

degradation in service, even when a part of the network is damaged. It can deal 

with linear as well as nonlinear problems that are difficult to solve 

mathematically. Once we train a neural network, it can deal with new patterns 

which are similar to learned patterns. However, its weights have no direct 

meaning to us, and we cannot extract the underlying rules that may be generated 

from the neural network. Some research has been done on this issue, but no 

satisfactory solution has obtained yet (Munakata, 2008). Neural networks are also 

criticized for their poor scalability, longer computation time and occasional 

inconvergency. But once they converge, they can be copied to other systems and 

significant benefits can be obtained. Compare to neural networks, rule extraction 

is relatively easy for rough sets. Rule filtration is also more efficient in rough sets 
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compared to neural networks. It is also shown that the neural network performs 

best in robustness (90%) but its prediction ability is slightly worse compared to 

rough sets and ID3 (Mak & Munakata, 2002). 

2.4.6 Synopsis of Existing Soft Computing Approaches for Pattern Generations 
(RS, DT, and NN)  
 

Table 2. 3: An Overview of Soft Computing Approaches: RS, DT, NN 

 Rough Sets (RS) Decision Tree (DT) Neural 

Networks (NN) 

Deductive System No No No 

Inductive System Yes Yes Yes 

Primarily Numeric Data No No Yes 

Numeric and Descriptive Data Yes Yes No 

Data Filtration Easy Easy Difficult 

Ease of Rule Extraction Yes Yes No 

Rule Comprehensibility Simple Simple Complicated 

Training Time Shorter Shorter Longer 

Convergent Yes Yes Not Always 

Robustness high Higher Highest 

Classification Accuracy Slightly Higher Slightly Higher High 

 

An overview of the existing soft computing approaches for pattern generation - 

such as, rough sets, decision tree (ID3), and neural networks - is shown in Table 

2.3. Rough sets, decision trees, and neural networks are all examples of inductive 

systems, where rules are induced by the systems rather than by the experts, 

unlike deductive systems, such as chaos and fuzzy systems, where rules are 

provided by the experts and output is determined by applying appropriate rules 
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for inputs. Primary inputs, intermediate data, and outputs are numeric for neural 

networks, whereas data can be high level description (e.g. very high, high, or 

low) or numeric (10 yrs) in rough sets or decision trees. Thus, if the data is in 

non-numeric form it must be converted to numeric before we can use it in neural 

networks.  

 

Rule extraction and data distillation in rough sets and ID3 are easily compared to 

neural networks. The training phase of neural networks is much longer 

compared to rough sets and ID3. Moreover, neural networks may fail to 

converge sometimes when the data are inconsistent or incomplete. However, 

neural networks are much more robust compared to rough sets and ID3. Thus, if 

the data type is numeric and the objective of the data analysis is robustness, then 

neural networks are the best option in modeling training data. On the other 

hand, if the data type is qualitative (nonnumeric) and the objective is to obtain an 

easy-to-use decision table, then rough sets or ID3 is the better options.  

 

In general, it is difficult to compare the two attribute-based learning techniques: 

rough sets and ID3 (Mak & Munakata, 2002). However, rough set theory is 

preferred as a rule induction approach in the context of the current research for 

the following reasons: 

 Although, the tree structure of ID3 appears to be easy to understand, the rules 

or the patterns can be very complex and difficult to manipulate if we have 
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many attributes with numerous modalities (Daubie et al., 2002). Thus, ID3 is 

not appropriate in WSN, given that the sensor network problems are 

characterized by a large number of variables or sensors that produce 

continuous data (Kargupta, 2007).  

 RS is well known for its feature reduction capabilities, which is important for 

high dimensional feature-oriented WSN (Pawlak, 2004). This feature is 

extremely important to many real world systems that exhibit non-polynomial 

complexity with respect to attribute dimensionality. An example includes a 

large scale water treatment plant that may require a huge number of 

attributes to monitor through sensors to perform diagnostic detection of 

faults ((Shen & Chouchoulas, 2000). 

 Trees are extremely vulnerable to packet loss, which is often the case with 

WSN because of the unreliable transmission protocol. If the packet sent to the 

parent is lost, then the information to the entire subtree will be lost. Thus 

packet loss near the base station or sink can lead to disaster (Kargupta, 2007). 

 Merging tables in RS for a knowledge base may be easier than merging trees 

in ID3 (Munakata, 2008). This feature of rough sets can be extremely useful 

while developing concurrent decision systems by transferring the RS rules to 

PetriNet, discussed in chapter five. 

 The rules derived from RS are more extensive, while the rule generation by 

ID3 focuses on important rules based on the entropy measure (Munakata, 

2008). This feature of RS can be very useful for some WSN applications, such 
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as forest fire detection when a large number of sensors fall in coverhole 

regions and are scorched in fire. The rules can be generated from the 

remaining sensors by employing RS theory. 

 Rule generation by ID3 may take longer computation time compared to RS, 

since ID3 is based on entropy, a concrete quantitative measure in information 

theory. This is an important issue for highly resource-constraint WSN. 

 There is no algorithm in decision trees that supports multivalued decision 

systems. However, there are well known algorithms in rough sets for multi-

valued decision systems, which support the existence of multiple patterns 

that are generated at the same interval of time, and provides the association 

rule generation techniques for those patterns (Rzasa, Paluch, & Suraj, 2004). 

This is an essential feature of RS in the context of current research. 

 Another important deciding factor is RS‟s inherent uncertainty handling 

capacity, given that the main focus of this research is uncertainty 

management in WSN. 

2.5 Uncertainty Management in WSN 
 

 

Uncertainty is an important measure in the analysis of risk. The problem of 

characterizing uncertainty in complex systems (e.g. sensor networks) is 

inherently interdisciplinary that requires in-depth knowledge of philosophical 

foundations of uncertainty, conceptual frameworks underlying the uncertainty 
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analysis, and technical methods to realize the uncertainty analysis (Ayyub, 2003). 

Besides, it is difficult to completely capture the nature of uncertainty and cover 

all its aspects because of its complex nature and its propagation through all 

epistemological levels of a system by varying degrees (Ayyub & Klir, 2006).  

 

The uncertainties in sensor data streams may stem from missing data or 

unreliable data. Missing data may arise during sensor reading, format 

conversion, data discretization, data aggregation, data routing, data savings to 

storage devices, incorrect data labeling, etc. Unreliable data is either random or 

systematic. Random noise is an intrinsic part of data, caused by the movement of 

electrons or incorrect deployment of sensor nodes (Kargupta, 2007). Systematic 

errors can result from actuator uncertainty, sensor status uncertainty, limited 

sensing ranges, compromised nodes, improper channels, transmission collisions, 

routing uncertainty, and resource uncertainty (Y. Liu & Das, 2006).   

2.5.1 Taxonomy of Uncertainty 
 

 

Philosophers defined the nature and methods of acquiring knowledge and that 

knowledge evolved over time and produces different schools of thought. 

Uncertainty can be defined as “inherent deficiencies with acquired knowledge” 

(Ayyub & Klir, 2006). B. M. Ayyub‟s classification of uncertainty is shown in 

Figure 2.1. Philosophically, uncertainty can be broadly classified into objective 

(aleatory) uncertainty and subjective (epistemic) uncertainty. Some events or 
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variables are inherently random and nondeterministic in nature. This type of 

uncertainty cannot be reduced by increasing the knowledge and are called 

aleatory uncertainty. On the other hand, epistemic uncertainty stems from a lack 

of complete knowledge. Epistemic uncertainty can be reduced at the cost of 

increased resources, and this is the most common type of uncertainty in risk 

management. These two types of uncertainty can be combined together. 

However, this classification is not enough to define all aspects of uncertainty.  

 

Figure 2. 1: B. M Ayyub's Classification of Uncertainty 

 

Uncertainty can be classified based on its sources into three categories, such as 

ambiguity, approximations, and likelihood. In general, ambiguity and likelihood 

types of uncertainties in predicting the behavior and designing engineering 

systems are addressed by probability, statistics, and Bayesian methods. 

Probability distribution functions are used to model the uncertain parameters of 

Uncertainty

Ambiguity

Unspecificity

Nonspecificity

Approximations

Vagueness

Coarseness

Likelihood

Randomness

Sampling



64 

 

 

 

the system. Probabilistic methods that are useful for modeling this uncertainty 

include reliability methods, probabilistic engineering mechanics, stochastic finite 

element methods, etc. However, the axioms of probability and statistics are 

limited for the proper modeling, and analyzing the uncertainty arises from 

approximations. Uniform and triangular probability distributions are used to 

model some uncertainty parameters. The Bayesian approach is also another way 

to deal with this type of uncertainty by combining empirical and subjective 

information about the parameters (Ayyub & Klir, 2006). However, fuzzy set 

theory or rough set theory may be more appropriate to deal with this type of 

uncertainty as they are inherently more tolerant of imprecision.  

 

Ambiguity arises from the possibility of multiple outcomes in outcome space 

(Ayyub & Klir, 2006). If the list of possible outcomes does not include all the 

outcomes from the outcome space, unspecificity will result. If the outcomes are 

not properly defined, nonspecificity will arise. Likelihood involves chances and 

gaming. Likelihood leads to randomness and sampling. Randomness is the result 

of non-predictability of outcomes, while sampling stems from using samples 

from populations. 

 

Approximation arises from human cognition and intelligence, and thus the 

uncertainty that stems from approximations is subjective. It may result from the 

use of vague semantics in language, approximate reasoning, and removing 
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irrelevant components. Thus approximation results in vagueness, coarseness, 

and simplification. Vagueness arises from the imprecision of the membership of 

the elements to a set (Zadeh, 1965). Coarseness in information results from 

approximating an unknown relationship or a set by partitioning the universal 

space with the associated belief level for the partitioning subsets in representing 

the unknown relationship or set (Pawlak, 1992b). This approximation is 

addressed in rough set theory (Pal & Skowron, 1999; Pawlak, 1982).  

 

In developing engineering models, simplifying assumptions are common 

practice for making the systems tractable. Errors resulted from these 

simplifications can be addressed by introducing biased random variables that are 

assessed empirically.  Simplifications in systems can be also caused by using 

knowledge-based if –then rules to represents behavior based on fuzzy logic and 

approximate reasoning (Zadeh, 1965, 1975). 

2.5.2 Formalisms of Uncertainty Measurement 
 

 

Several formal and informal systems have been developed to characterize and 

model uncertainty in order to reason under uncertainty. Historically, the first 

approach for describing uncertainty has been the probabilistic method, in which 

the uncertainty is described by probability measures. The probabilistic approach 

works well in many engineering and scientific applications where we can 

determine the probabilities by observing the frequencies of the events or using 
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expert judgments (Nguyen, Kreinvich, & Dhompongsa, 2007).  However, a 

problem arises when there is not enough statistics to determine the probabilities 

(i,e. instead of frequencies, we have the intervals of possible values of the 

quantity)  or when the expert judgments are expressed in imprecise terms, such 

as “high” , “low”, etc. Fuzzy set theory, proposed by Lotfi Zadeh (Zadeh, 1965), 

was one of the first formalisms to describe theses imprecise sets or fuzzy sets. 

Later in 1982, interval-uncertainty was addressed by Z. Pawlak  by developing a 

new formalism called rough set theory  (Pawlak, 1982).  In the mean time, “A 

Mathematical Theory of Evidence” or Dempster-Shafer theory was published by 

Shafer in 1976 (Shafer, 1976) after reformulating the work of Dempster, which 

was a generalization of Bayes‟ theorem (Dempster, 1967, 1968).  

 

All of these formalisms are well defined and well studied in various applications. 

Each of these formalisms can address certain types of uncertainties. However, 

the main challenge is to develop a mathematical formalism by combining several 

formalisms so that the uncertainty handling mechanism does need to be confined 

to a particular formalism to address real-life uncertainties that are often a 

combination of several types of uncertainties (Nguyen et al., 2007).  

2.5.3 Probability Theory of Uncertainty 
 

 

The concept of probability has its root in games of chance, where probabilities 

are computed based on the repetitions of an experiment and counting the 
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number of outcomes in an outcome space. This is considered a relative frequency 

based probability, which is a ratio of the number of occurrences of an event by 

the total number of repetitions. However, many real-world problems do not 

involve large numbers of repetitions, such as the probability of a satisfactory or 

unsatisfactory performance of a machine. To compute the probability for such 

systems, the idea of subjective probability came into the picture. The subjective 

probability or judgmental probability depends on the nature of the underlying 

event. The subjective probability is expected to reflect our knowledge about the 

systems regarding the occurrences of the events of interest. The events of 

satisfactory performance and unsatisfactory performance are mutually exclusive 

and collectively exhaustive in the universal outcome space. Thus subjective 

probability can be associated with degrees of belief and can form a basis for 

Bayesian methods (Ayyub & Klir, 2006; Ayyub & McCuen, 2003).  

 

An axiomatic definition of probability is commonly given in the literature 

(Ayyub & McCuen, 2003; Lindley, 1975).  The probability P should satisfy three 

axioms, which govern the basic uncertainty measures. The first axiom of 

probability states that the probability of an event A, which belongs to the set of 

all possible outcomes of the system (i.e. universal set X) is inclusively between 0 

and 1 such that  

                                                           2.4 
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The second axiom is derived from the definition of the universal set X, the set of 

all possible outcomes. The second axiom, the additive axiom, combines the 

probability of all events in universal set X, such that  

                                                         2.5 

If the probability of the universal set does not equal to 1, the universal set was 

not defined properly.  

The third axiom, the axiom of multiplication, states that the occurrence 

probability of the union of mutually exclusive events is the sum of their 

individual occurrence probabilities such that  

 

where,  are mutually exclusive events. 

The third axiom is the basis of probability theory. Two important concepts, the 

relative frequency and subjective probability, meet this definition of probability 

and they are used as major tools to deal with uncertainty and model uncertainty. 

By increasing the number of repetitions, we can improve the estimate of the true 

probability in case of relative frequency at the cost of resources. However, a true 

probability may not exist specially for subjective probability. However, they 

provide a consistent, systematic, and robust framework for uncertainty 

management and decision making (Ayyub & Klir, 2006). 
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It is common to encounter problems in real-life that are associated with both 

objective (or empirical) and subjective (e.g. experience, intuition) types of 

information. It is wise to utilize both types of information and derive the 

probability that can be useful in uncertainty management and decision making. 

Bayesian probability can be calculated by assuming the subjective probability as 

a prior knowledge and frequency-based probability as objective information, and 

combining these two types into posteriori knowledge. The combination can be 

achieved by employing Bayes‟ theorem (Ayyub & McCuen, 2003; I. U. Sikder, 

2003). If  represents the objective information or event and B1, B2, …, Bn 

represent the prior or subjective information, we can compute the probability of 

an event by using the theorem of total probability as follows: 

P(A) = P(B1)P(A|B1) + P(B2)P(A|B2) + …+P(Bn)P(A|Bn)    

 2.5 

where, P(Bi) is the probability of the event Bi and A|Bi is the occurrence of A 

given Bi for i = 1, 2, …, n. This theorem is very useful to calculate the probability 

from the probabilities of the partitioning events and conditional probabilities, 

where it is difficult to calculate the probability directly (Ayyub & Klir, 2006). 

Bayes‟ theorem can be used to compute the posterior probability as follows: 

                   2.6 

Where, the denominator represents the P(A),  denotes the prior knowledge 

and  represents the posterior knowledge. 
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2.5.4 Fuzzy Set Theory of Uncertainty 
 

 

Fuzzy sets were introduced in 1965 by Lotfi Zadeh to represent vagueness or 

fuzziness in real life data. Fuzzy set theory is a way of capturing the vagueness 

present in the real world, which was difficult to achieve by using traditional set 

theory. Fuzzy logic is not fuzzy but a precise logic of imprecise information and 

approximate reasoning. It provides an approximate but reasonable solution for 

systems that are either too complex or ill-defined for precise mathematical 

solutions (Zadeh, 1975, 1978).  

 

People have started to recognize that objects, handwriting, voice, images, and 

other patterns are often distorted, incomplete, and fuzzy, and thus a pattern 

should be allowed to have membership to more than one class. For instance, a 

patient with a certain set of symptoms can be simultaneously suffering from 

multiple diseases and the symptoms are not always numeric, such as low, high, 

very high, etc. Fuzzy concept was developed to explain this situation. 

  

Often the logic behind human reasoning is not the traditional two-valued or 

multivalued logic, but logic with fuzzy truths and fuzzy rules of inference 

(Sushmita Mitra & Acharya, 2003). In classical set theory, the elements either 

fully belong to the set (i.e. membership of 1) or not at all (i.e. a membership of 0). 

Fuzzy set theory relaxes this restriction by associating any value in the range of 0 
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and 1 (0 ≤ degree ≤ 1) as a membership for each element. The membership value 

shows the degree of compatibility or similarity of an event with an imprecise 

concept representing a fuzzy set, while the probability of an event is based on the 

frequency of the occurrences. A fuzzy set can be defined as a set of ordered pair 

The function  is called the membership function for 

A, mapping each element of the universe U to a membership degree in the range 

[0, 1]. Fuzzy membership function  has the following properties: 

  for any  

  for any  

  for any  

 

This shows that the membership of an element to the union (or intersection) of 

sets is uniquely determined by its memberships in the constituent sets. This is an 

important property of fuzzy set in theoretical as well as practical aspects since 

this property allows simple set operations on fuzzy sets (Pawlak, 2004). 

 

An example of a fuzzy set can be “All tall students in the class”. Obviously 

“tallness” is not a step function from 1 to 0 at a certain height, say 6‟. Thus it 

would be natural to associate a degree of tallness to each element of the fuzzy set. 

In extreme cases, if the degree is zero the student does not belong to the set and if 

the degree is 1 the student belong 100 % to the set of tall students. Besides, it is 

context dependent, since tallness depends on the student‟s gender, ethnicity, etc. 
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Fuzzy set theory is well recognized in reasoning under uncertainties stems from 

deficiencies of information and in decision making under risks, subjective 

judgment, vagueness, and ambiguity. The deficiency results from incomplete, 

imprecise, vague, or contradictory information. As a generalized theory of 

classical set theory, fuzzy sets theory offers greater flexibility to handle 

uncertainty issues. 

2.5.5 Dempster-Shafer Theory of Uncertainty 
 

 

Evidence theory, also called Dempster-Shafer theory was introduced by A. P. 

Dempster (Dempster, 1967, 1968) and further developed by G. Shafer (Shafer, 

1976). It is a generalization of probability theory where the sample space of 

probability theory corresponds to the frame of discernment in evidence theory. 

In probability theory, unlike evidence theory, a probability is assigned to each 

element of a sample space and the probability of any event or a subset of the 

sample space can be computed by Kolmogorov‟s addition axiom in probability 

theory (Kolmogorov, 1956). However the basic idea of evidence theory is a basic 

probability assignment, where function  such that  

 

 

m(X) is called the basic probability number of X. Thus in evidence theory, basic 

probability numbers are assigned to the members of the subsets of the frame of 
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discernment, where in probability theory probabilities are assigned to singleton 

sets. In evidence theory, it is possible to have the situation when  and 

 for  However in probability theory if  then . A 

subset X of the frame of discernment is called a focal element if m(X) > 0. 

 

There are two commonly used functions in evidence theory, a belief function and a 

plausibility function. A belief function  over  is defined as follows: 

 

A plausibility function  over  is defined as follows: 

 

 

The two measures are related to each other as follows: 

 

There are certain types of uncertainties that cannot be classified by traditional 

probability theory, such as nonspecificity that stems from imprecision associated 

with the sizes or cardinalities of relevant sets of alternatives. For example, if we 

have multiple patterns occurring at the same interval and there is no specific 

choice, then nonspecificity arises. A basic probability can be assigned to each 

alternative of the template sets by employing Demster-Shafer theory of evidence, 

and nonspecificity can be computed by using these probability assignments and 

extending the Hartley function.  
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2.5.6 Rough Set Theory of Uncertainty 
 

Although rough set theory has been developed to deal with uncertainty and 

imprecision where there are some overlap with other formalisms such as fuzzy 

set theory (Dubois & Prade, 1990), evidence theory (Skowron & Grzymala-Busse, 

1994) and statistics (Krusinska, Slowinski, & Stefanowski, 1992),  it stands in its 

own right (Pawlak, 1992a).  

 

Rough set theory has emerged as a major mathematical tool for managing 

uncertainty that arises from granularity in the domain of discourse or 

discernibility between objects in a set. The objective of this theory is to 

approximate a rough or imprecise concept in the domain of discourse by a pair 

of exact concepts, such as lower and upper approximations. These exact concepts 

are determined by an indiscernibility relation, developed from the attribute sets 

of the objects in the domain. The lower approximation is the set of objects that 

are certainty belong to the imprecise concept, while the upper approximation is 

the set of objects that possibly belong to the rough concept.  

 

These two approximations are used to define the discernibility matrix, 

discernibility function, reducts, and the degree of dependency among the 

attributes – all of them help reduce data and manage uncertainty stems from 

data granularity and discernibility. The effectiveness of this theory has been 

studied in the domains of artificial intelligence and cognitive sciences for 
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representation and reasoning under vague and imprecise knowledge, data 

classification, data mining, and knowledge discovery (Slowinski, 1992). 

 

Some important uncertainty measures that have been developed in rough set 

theory include a quality measure of lower approximation and a quality measure 

of upper approximation. For a given set X, the quality of lower approximation is 

the ratio of the number of all elements in the lower approximation of X to the 

total number of elements in the information tables. Similarly, the quality of 

upper approximation is the ratio of number of all elements in the upper 

approximation of X to the total number of elements in the information table 

(Pawlak et al., 1995). The details of RS formalism are provided in the following 

chapter. 

2.5.7 Rough Set Theory and Probability Theory of Uncertainty 
 

 

Both theories deal with similar problems such as reasoning under uncertainty 

about data; however their approaches are different. In general, some problems 

are solved better by traditional probability theory, while the others are well 

addressed by rough set theory. For instance, probability theory may work better 

when the data sample size is large and the data distribution is close to normal. 

On the other hand, for fewer sample size or non-normal distribution of dataset 

rough set may be a potential candidate since rough set, unlike traditional 

probability theory, does not make any priori assumptions of data size or its 
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normal distribution. However, there is no theory that determines exactly what 

circumstances which approach works better; they complement each other 

(Munakata, 2008).  

 

Bayes‟ theorem is the essence of probability theory and statistical inference. It 

provides posterior distribution from the prior distribution, when combined with 

the evidence provided by the data. Rough set theory sheds new light on the 

Bayes‟ theorem to explore a new direction in traditional Bayesian data analysis. It 

does not involve prior or posterior probability, instead it provides some 

probabilistic structure of the data being analyzed. It is shown that any decision 

table satisfies total probability and Bayes‟ theorem. With the help of this 

property, it is possible to draw decisions and discover data patterns from data 

without any prior knowledge. The difference between the role of Bayes‟ theorem 

in statistical reasoning and its role in rough set theory is clearly demonstrated in 

a book by Z. Pawlak (Pawlak, 2004). 

2.5.8 Rough Set Theory and Fuzzy Set Theory of Uncertainty 
 

 

Fuzzy set can be considered as a specialization of rough sets (Jenssen, 

Komorowski, & Øhrn, 1998). However, there are basic differences between then 

them. Fuzzy sets represent vagueness of a quantity, such as obtaining linguistic 

quantities from experts, while the rough sets represent coarseness as an 

approximation of a crisp set. In fuzzy sets, the temperature of a sensor can be 
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both as high or very high, but with different membership values in the range of 

[0,1]. But in rough sets, the temperature of a sensor is either high or very high, 

but the cardinality of the sets of the sensors with high temperature and very high 

temperature are uncertain. Fuzzy sets are well suited for control system, while 

rough sets are well known for classification. 

 

The comparison between rough set and fuzzy set theories can be explained with 

an example. Consider a group of people who have applied for an auto loan in 

2008 as the universe of objects under consideration. The number of people who 

applied for auto loan in 2008 is a crisp set and there is no vagueness associated 

with this set. However, if we want to know “how many young people have 

applied for auto loan in 2008?” The answer is a fuzzy set since „young‟ is a vague 

concept and the measure of youngness does not change abruptly and it ranges 

from 0 to 1. According to Fuzzy theory, we can associate a degree of youngness, 

ranging from 1 to 0, to each person who has applied for auto loan if we know the 

age of each applicant. People with 18 <age> 25 can be assigned 1, 25 < age < 30 

can be assigned 0.8, 30 <age < 35 can be assigned 0.6, etc.  

 

How we will count the number of young applicants for an auto loan if we do not 

know the age of each applicant? Using rough set theory we can determine the 

relevant attributes regarding age and estimate the age of each applicant. The 

useful information regarding a person‟s age in this context can be his or her year 
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of high school diploma, highest academic degree, work experience, current 

salary, marital status, number of children, etc. Before we determine the 

important attributes for decision making, we need to create a training set from 

previous applicants where the age of every people were known. The training set 

contains all possible information about the applicants, including their age. 

However, applicants do not always provide correct information – some 

information is missing, incorrect, or irrelevant. By employing rough set theory on 

the training set, we can determine the importance of attributes and their degree 

of dependency even when data is not precise or complete.   After the training 

session, we can use the useful information for actual dataset (test dataset) and 

estimate the age of each applicant.  

 

Fuzzy set can do the same task by developing many fuzzy if-then rules, but it 

would be time-consuming. Instead, it is recommended to use rough set as a 

front-end of a fuzzy system to estimate the age. In some problems where 

condition attributes are expressed in terms of fuzziness and fuzzy logic, fuzzy set 

can be used as a front-end of a rough set system. In this case, some condition 

attributes are preprocessed to create a smaller number of intermediate attribute 

values by using fuzzy logic. Thus, rough set and Fuzzy set can complement each 

other (Munakata, 2008).  Fuzzy rough sets are rough sets derived from fuzzy 

partitions, whereas rough fuzzy sets are rough set approximations of fuzzy sets 

derived from crisp partitions (Ayyub & Klir, 2006). 
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2.5.9 Rough Set Theory and Dempster-Shafer Theory 
 

 

Rough set theory and Dempter-Shafer theory of evidence are both well-known 

for dealing uncertain knowledge and approximate reasoning. However, 

Dampster-Shafer theory uses belief or plausibility functions as a major computing 

tool, while rough set theory uses lower and upper approximation sets to 

represent the relations among the attributes. However, Grzymala-Busse and 

Skowron suggested a clear connection between rough sets theory and evidence 

theory, and they also showed that a belief function in Dempster-Shafer theory can 

be computed from the quality of lower approximation in rough sets and the 

plausibility function in Dempster-Shafer theory corresponds to the quality of 

upper approximation in rough sets (Grzymala-Busse, 1991; Skowron & 

Grzymala-Busse, 1994). The following description is adopted from (Skowron & 

Grzymala-Busse, 1994). 

 

Let  be the frame discernment defined by the decision d in the 

decision system S = (U, A  {d}), where U is a non-empty finite set of objects 

called the universe and A is a non-empty finite set of attributes and   A is the 

decision attribute. Each attribute a  A can be considered as a function that maps 

elements of U into a set Va. Va represents the value set of attributes, such that 

a: U Va  

For any    the following equality holds 
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                                           2.1 

It defines the relationship between the belief function in Dempster-Shafer 

theory and the quality of the lower approximation in rough set theory. Thus the 

belief function  is defined as the ratio of the number of elements that are 

certainty classified into the union of to the number of elements in U. 

Similarly, for any    the following equality holds 

    2.2 

It defines the relationship between the plausibility function in Dempster-

Shafer theory and the quality of the upper approximation in rough set theory. 

Thus the plausibility function  is defined as the ratio of the number of 

elements that can be possibly classified into the union of to the number 

of elements in U. 

 

Another difference between rough sets theory and Dempster-Shafer theory is 

that rough set theory is data-driven and objective but the Dempter-Shafer theory 

can be subjective when the basic probabilities are assigned by experts‟ judgments 

(Munakata, 2008). The qualities of the approximations in rough set theory are 

computed from the given information table since rough set theory is objective. 

On the other hand, the values of belief or plausibility are assumed to be provided 

by an expert in Dempster-Shafer theory as the theory is based on the subjective 

paradigm (Skowron & Grzymala-Busse, 1994). However, we can compute the 



81 

 

 

 

basic probability assignment in practical applications without any knowledge of 

subjective or expert judgments by employing the rough set based evidence 

theoretic approach mentioned above (equation 2.1 and 2.2).  

2.5.10 Synopsis of Existing Uncertainty Handling Formalisms 
 

 

Probability theory can be considered as a special case of the Dempster-Shafer 

theory of evidence. When all the focal elements for a given basic assignment, m, 

are singletons, the belief measure and the plausible measure merge into a single 

measure, which corresponds to a classical probability measure. The term 

singleton means that each subset Ai of the family A of subsets (i.e. evidence 

body), contains only one element. The differences between the evidence theory 

and probability theory (Ayyub & Klir, 2006) are as follows:  

 By using a basic assignment in evidence theory, we can compute the belief 

and plausibility measures that map the power set of X to the range [0, 1]. 

 A probability assignment, such as a probability mass function in probability 

theory, maps the universal set X to the range [0, 1]. 

 

The concept of rough membership function, introduced by Pawlak (Pawlak, 

1982), is to some extent comparable to fuzzy membership function. However, 

Pawlak argues that the concept of rough membership is wider than fuzzy 

membership because of the following reasons:  
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Rough membership function  has the following properties: 

 for any  

 for any  

 

This shows that the rough membership of an element to the union (or 

intersection) of sets is uniquely determined by its memberships to the constituent 

sets. This is an important properly of rough set in theoretical as well as practical 

aspects since this property allows simple set operations on rough set. The same 

properties were shown previously for fuzzy set, where the corresponding 

relationships for fuzzy members are equalities. By comparing theses properties 

for rough sets and fuzzy sets, it is clear that rough membership can be regarded 

formally as a generalization of fuzzy membership (Jenssen et al., 1998). An 

overview of uncertainty management techniques based on different 

mathematical formalisms is provided in Table 2.4.  

 

Table 2. 4: An Overview of Uncertainty Management Techniques 

Author Formalism Description 

Lakshmanan, 
Leone, Ross, & 
Subramanian 
(1997) 

Probability 
Theory 

Computed probabilities of complex events from the 
elementary events by considering the 
interdependencies of events, attributes, and tuples. 
They also developed a system called ProbView, based 
a single unified framework, for combining probabilities 
from known interdependencies. 

Morrissey (1990) Probability 
Theory 

Proposed a method that estimates the uncertainty 
introduced by imprecise information and ranks objects 
for presentation to a user. Their uncertainty estimation 
is based on both self-information and entropy 
measures. However their representation did not 
consider interdependencies of events and subjective 
probability estimates as the part of attribute values. 



83 

 

 

 

Yager (2000) Dempster-Shafer 
Evidence Theory 

Focused on the development of multi-criteria decision 
function based tools that are capable of mimicking the 
complexity of human intelligence. They obtained a 
class of ordered aggregation functions from two 
important measures of Dempster-Shafer theory 
plausibility and belief. They also have shown how 
different components, such as value, a subset of 
criteria, and a list for combining the criteria, were 
combined for hierarchical decision making. 

Zhou & 
Mourelatos (2008) 

Dempster-Shafer 
Theory& Bayesian 
Approach 

Proposed an optimization method based on the 
evidence theory which is capable of handling epistemic 
as well as random uncertainties. Instead of expert 
systems, they have used Bayesian approach to form the 
basic probability assignment for a specified confidence 
percentile, using only the available sample points 
within ranges. They demonstrated the merit of their 
optimization technique by examples. 

Grzymala-Busse 
(2003) 

Rough Set Theory Described incompletely specified decision by 
introducing characteristic relations, which is reduced 
to an indiscernibility relation for completely specified 
decision table. The characteristic relations were 
computed by using an idea of block of attribute-value 
pairs, used in some rule induction methods (e.g.LEM2). 
They also provided several definitions of lower and 
upper approximations, which converge to traditional 
approximations in the absence of missing attribute 
values. 

Düntsch & Gediga 
(1998) 

Rough Set Theory Proposed three approaches for prediction based on RS 
by using various entropy measures, excluding 
statistical entropy measure. They developed a 
procedure called SORE (Searching Optimal Rough 
Entropy Sets), based on the principle of indifference 
combined with the maximum entropy. They 
demonstrated the applicability of the proposed method 
by comparing its error rate with C4.5 for 14 published 
datasets. 

Wu & Mendel 
(2007) 

Fuzzy Set Theory Defined and derived formulas for computing four 
uncertainty measures of interval type-2 fuzzy sets (IT2 
FSs): cardinality, fuzziness, variance, and skewness. 
Definitions are based on Representation theorem 
(Mendel –John representation) for IT2 FSs. These 
measures could be useful in designing IT2 fuzzy logic 
systems based on principle of uncertainty and 
measuring the similarity between two IT2 FSs. 

Ganoulis (2007) Fuzzy Set Theory 
& Partial 
Differential 
Equation 

Proposed a method using fuzzy set theory, in 
combination with partial differential equations, to 
propagate uncertainties and estimate the risk of 
environmental water pollution. Uncertainties in input 
variables and values of the model parameters are first 
introduced as fuzzy numbers and then they are 
propagated using fuzzy arithmetic. The output 
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variables, such as water pollution and environment 
risk, are estimated in terms of fuzzy numbers. They 
have used well-known advection-dispersion 
mathematical model for simulation of environmental 
water quality.  

 

The literature review of uncertainty management formalisms reveals the 

following information: 

 Probability theory is a special case of Damster-Shafer theory of evidence 

(Ayyub & Klir, 2006). 

 Rough membership is a generalization of fuzzy membership (Jenssen et al., 

1998; Pawlak, 1982). 

 The belief/plausibility function in Dempster-Shafer evidence theory can be 

computed from the quality of lower/upper approximation in rough set 

theory (Grzymala-Busse, 1991; Skowron & Grzymala-Busse, 1994). 

 

However, all these formalisms are well developed and thoroughly investigated. 

The selection of the formalisms depends on the application domain and the type 

of uncertainties that need to be addressed. Often a combination of formalisms is 

the solution instead of confining to a single formalism.   

2.5.11 Recent Work on Uncertainty Management in WSN 
 

Research related to uncertainty issues in wireless sensor networks addresses 

broadly two distinct aspects: location or deployment uncertainty and data 

information uncertainty resulting from data aggregation. Location uncertainty 



85 

 

 

 

emerges when the placement of sensors is required in a sensor field but the exact 

locations of the sensors are not known.  From the viewpoint of location 

uncertainty, routing and location protocols have been proposed for events 

reporting to mobile sink or target tracking (Howard, Matari´c, & Sukhatme, 2001; 

Patwari & Hero, 2003; Zou & Chakrabarty, 2004). Zou & Chakrabarty (2004) 

developed a model to optimize the number of sensors and their location in a 

distributed sensor network.   

 

Wang, Yip, Yao, & Estrain (2004) propose a Bayesian method to describe the 

lower bound of localization uncertainty in terms of minimum entropy in sensor 

networks. The dependency of localization uncertainty on the sensor network 

topology is determined by using the Bayesian method and the Cramer-Rao 

bound (CRB). Thus the algorithm identifies the region where the target is 

relatively located with some accuracy by assuming Gaussian sensing 

uncertainty. However, the model did not consider heterogeneous sensors and 

non-Gaussian sensing.  

 

Buttyán, Schaffer, & Vajda (2006) propose RANBER, an algorithm for resilient 

data aggregation in sensor networks by eliminating outliers, based on the well-

known RANSAC paradigm.  The RANBER algorithm is useful even when a large 

percent of the sample has been compromised by an attacker. The model consists 

of an aggregator function and a detection algorithm.  The detection algorithm 
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analyzes the input data before the aggregation function is called and detects 

unexpected deviations in the received sensor readings. The sample is divided 

into two halves and the sum for each half is calculated. If the difference of the 

two sums is greater than a threshold value, it indicates an attack.  

 

Reznik & Kreinovich (2004) investigate the issues for improving the reliability, 

accuracy, and uncertainty management of the decisions based on the application 

of the meta-level models in sensor networks. The meta-level model represents a 

relationship or association between different sensors.  The model depends on 

expert opinion, data mining techniques (genetic algorithm, neural networks, 

decision trees), and the type of data collected from sensors. The model attempts 

to integrate sensor results with the association information available at 

aggregation nodes and considers both neuro-fuzzy and probabilistic methods to 

review sensor results and association information.  

 

From a database point of view, Cheng & Prabhakar (2003) introduce a data 

uncertainty framework that represents different levels of uncertainty in 

information. Depending on the amount of uncertainty in information given to 

the application, different levels of imprecision are presented in a query answer. 

They examine the situations when query answer imprecision can be represented 

qualitatively and quantitatively. An application of range query in a sensor 

network requires handling interval query and management of uncertainty 
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intervals qualitatively; however, the use of other queries, such as nearest-

neighbor queries requires probabilistic threshold information. 

2.5.12 Critical Summary of Literature Review 
 

 

Existing data stream mining or data aggregation based routing algorithms in 

WSN barely address one important dimension in the optimization space for data 

routing and data aggregation, namely uncertainty. Some recent work shows 

some initiations in the area of location uncertainty; however the aspect of data 

uncertainty is largely unexplored. Given the growing demands for complex 

domain specific applications of sensor networks such as object tracking and 

event identification, it is imperative to deal with the uncertainty and the 

uncertainty propagation through data aggregation in a real time environment. 

Therefore, uncertainty - combined with energy, power, bandwidth, and network 

life time - should be incorporated in optimization model of aggregation-driven 

routing protocols for wireless sensor networks.   

 

There are numerous types of uncertainties, already identified, and several well 

established mathematical formalisms to quantify and manipulate these types of 

uncertainties. However, they need to be reinvestigated and readdressed in the 

context of WSN. In general, probability theory is well recognized for handling 

uncertainties caused by random components. Fuzzy set theory may be used to 

manage vague concepts (e.g linguistic attributes), while Dempster-Shafer 



88 

 

 

 

evidence theory can be employed to handle the uncertainty due to information 

incompleteness. Rough set theory can be a potential choice to address 

uncertainty when it stems from coarseness.  However, there is no unified 

mathematical formalism that integrates all existing formalisms and addresses 

real-life uncertainties in wireless sensor networks which are often a combination 

of several type of uncertainties (Nguyen et al., 2007).  

 

The five important steps of our uncertainty management scheme are uncovered 

from our extensive literature review (Ayyub & Klir, 2006; Klir & Folger, 1988): 

 Identify the type of uncertainties in the context of the proposed data 

aggregation scheme in WSN. 

 Find an appropriate mathematical representation of each of the identified 

uncertainty type. 

 Develop a calculus for each of the uncertainty types so that it can be 

quantified and manipulated. 

 Determine a way to measure the uncertainty to the given context of WSN and 

develop a research methodology where all identified types of uncertainties 

are addressed. 
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CHAPTER III 
METHODOLOGICAL FOUNDATIONS OF PATTERNS 
GENERATIONS & UNCERTAINTY MANAGEMENT 

 
 

3.1 Introduction 
 

In the preceding chapter, the research questions have been transformed into a 

theoretical model, consisting of theoretical constructs, causal relationships and 

the measures. The theoretical model has developed based on the analysis of 

literature review. The selection of an appropriate research methodology is critical 

to the success of any research. This chapter describes a research methodology for 

discovering spatio-temporal patterns in sensor data streams and generating 

approximate rules by integrating rough set theory and stream data processing. 

The research methodology also describes uncertainty management issues 

associated with approximate rule generation in WSN by identifying several 

uncertainty measures and determining their tradeoffs in decision making. The 
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research methodology is developed in terms of philosophy, objectives, scope, 

assumptions, algorithms, and validation. 

 

A sensor network gathers a huge amount of stream data from the environment, 

where most of the patterns generated from such data are obvious, redundant or 

uninteresting to the users. We need a technique for identifying the useful and 

interesting patterns that meet some user-defined threshold value so that only 

these interesting patterns can be reported to the sink node in a WSN. This 

technique has a potential to significantly reduce the amount of data 

communication in severely resource-constrained wireless sensor networks 

environment. However, the number of elements in data streams can be 

unbounded as sensors are collecting information for constantly evolving entities 

about the environment like temperature, pressure, etc. Thus, traditional data 

mining techniques are not appropriate to analyze such sensor data streams since 

it is not possible to store the entire data stream in a stream processing system. 

 

One of the potential solutions can be to monitor and analyze sensor data streams 

immediately as they arrive and discover interesting patterns and generate the 

corresponding rules that represent the sensor data stream. Thus instead of 

storing the entire data stream, only the interesting patterns or rules can be stored 

on the processing system and the patterns or rules can be periodically sent to the 

sink. However, the number of patterns or rules generated from unbounded data 
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streams can be very large, which is neither feasible nor economical unless we use 

some form of approximation to reduce the number of rules. All uncertainty 

issues that stems from theses approximations need to be addressed when we 

employ these rules for prediction. Thus, it is important to develop an appropriate 

and well defined methodology that incorporates these vagueness and 

uncertainty measures in its model parameters and provides tractable, robust, and 

low-cost approximate solutions despite its imprecise rules or incomplete data set.   

 

Granular computing is a unified framework for theories, methodologies and 

techniques that can be very useful in finding meaningful patterns in data by 

expressing and processing chunks of information – clumps of attribute values 

drawn together by indistinguishability, equivalence, proximity or functionality 

(Zadeh, 1978). Rough set theory is a popular mathematical framework for 

granular computing. Rough set is suitable for handling the issues related to 

understandability of patterns, uncertainty in data information, and it can provide 

approximate solution quickly. It is a major mathematical tool for handling 

uncertainty that arises from granularity in the domain of discourse or 

indiscernibility between objects. Soft granules can be obtained by membership 

functions or by lower and upper bounds. While increased granularity reduces 

attribute distinctness and results in the loss of useful information, finer 

granularity creates partitioning problem. Soft computing allows one to focus on 
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some specific and problem-oriented subsets of a complete database, resulting in 

modularization (Sushmita Mitra & Acharya, 2003).  

 

The current research is framed in the direction of data uncertainty management 

in artificial intelligence, soft computing, and granular computing. Hence, the 

limitation of classical probability model is replaced by generalized imprecise 

probability model, where the scope of truth functionality of probabilistic 

statements is approximated in the range of upper and lower scopes.  

 

3.2 Elements of Methodology 
 
 

The necessary elements to define the methodology for an information system 

development include an underlying philosophy, a statement of its objective, a 

statement of its scope, premises and assumptions. 

3.2.1 Philosophy 
 

 

The philosophical foundation of the current research methodology is guided by 

the nature of the problem domain and the framework within which the 

phenomena is being carried out. There are two philosophical views of 

uncertainty: ontological and epistemological views. The current research does 

not address the ontological uncertainty that deals with the following questions: 
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where, when, and how densely to deploy the sensors? How many sensors should 

be used to optimize coverage areas? How frequently would the sensors report 

information about the features? How many features will a sensor sense? Instead, 

the current research focuses on the epistemological uncertainty that addresses 

the representational uncertainty in a dataset.  By lowering the degree of precision 

in a dataset, data patterns can be more visible and identifiable. The current 

research methodology focuses solely on the structure of the given dataset instead 

of relying on the model parameters or external parameters, such as membership 

function or normal data distribution. The non-invasive approach (free from data 

distribution assumption) of the research is guided by the philosophy “let the 

data speak for itself.” 

3.2.2 Objectives  
 

 

The methodological objective is to develop a theory for characterizing 

uncertainty and uncovering the tradeoffs among uncertainty measures in spatio-

temporal patterns generated from sensors‟ data in the framework of rough sets, 

granular computing, and data stream processing. The operational objective is to 

test the effectiveness of the theory by employing it in unsupervised classification 

of spatio-temporal templates. The methodological foundation is also provided to 

identify redundant spatio-temporal patterns and select indispensible patterns for 

decision making from symbolic, quantitative, and outlier data by using a rough 

set approach.  



94 

 

 

 

3.2.3 Research Scope 
 

 

Research is an organized and systematic approach to find the truth. It is always 

focused on relevant, useful, and important questions and limited to a specific 

scope. The scope of the current research is as follows: 

 

 Sensors are in general static. 

 Nodes are assumed to have limited local processing capabilities. 

 Our model supports node heterogeneity. 

 Our model is appropriate when data has some spatial and temporal 

correlations. 

 The proposed methodology may not be useful when the signal changes 

very rapidly and does not generate enough tuples to create a temporal 

information system. 

 Our research methodology is architecture independent. 

3.2.4 Premises and Assumptions 
 

 A fundamental assumption stems from the validity of the bias introduced 

in the methodology by selecting rough set formalism in our model. 

 The second assumption is the closed world assumption – the universe of 

discourse U contains no other objects except those we have included in 

our information system. 
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 The third assumption is the fundamental assumption of rough set – we 

can associate some information (data, knowledge) with every object of the 

universe of discourse (Pawlak & Slowinski, 1994). 

 The fourth assumption is that the variables are disjunctive variables that 

have a single value at any given time. Measures of uncertainty have been 

almost exclusively investigated in literature in terms of disjunctive 

variables (e.g. person‟s age, air pressure at a particular location). 

Probability theory, possibility theory, Dempster-Shafer theory, and several 

other theories of imprecision consider only disjunctive variables; they do 

not consider conjunctive variables (e.g. children of a person, courses taken 

by a student) (Ayyub & Klir, 2006). 

 

3.3 Theoretical Foundation 
 

 

It is important to understand and manipulate imperfect knowledge given that 

the sensor data is often imprecise, incomplete, ambiguous, and redundant due to 

the resource constraints of WSN, densely deployed inexpensive and error-prone 

sensors, and the unfriendly environment of their deployment. Often an 

approximate solution is the only viable solution, while precise solutions are 

either unfeasible or too expensive. When the information is incomplete, 

uncertain, or vague, and it is difficult to differentiate elements, it may be 
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convenient to consider granules, clumps or groups of indiscernible elements, for 

performing operations (Pal, Shankar, & Mitra, 2005).  

 

Various soft computing methodologies, such as fuzzy logic (Zadeh, 1971), 

Decsion tree ID3 – Iterative Dichotomizer 3 (Dhar & Tuzhilin, 1993; Pao, 1989; 

Quinlan, 1986, 1992), neural networks (Fu, 1999), and rough set (Pawlak & 

Slowinski, 1994), have been applied to handle the challenges posed by 

uncertainties and provide approximate solutions. Each of them has a distinct 

methodology for addressing problems in its domain and providing an acceptable 

solution at a reasonably low cost by exploiting the tolerance for imprecision and 

uncertainty. For instance, fuzzy sets provide a framework for classifying 

uncertainty in complex problems by allowing gradual changes and descriptive 

expressions. However, the generic fuzzy set theory does not have learning 

capability, and its analysis is based on the fuzzy membership function (Pawlak, 

1997).  

 

ID3 is a decision analysis technique based on the greedy algorithm of entropy 

reduction in constructing the decision tree. ID3 prunes search tree based on the 

entropy. ID3 may be more efficient when the number of rules is very high, but it 

may overlook useful rules. Another difference is the way to represent knowledge 

or rules: rough set theory develops information tables, while ID3 uses decision 
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trees. A comprehensive comparison of rough set and decision tree (ID3) is 

provided in (Beynon & Peel, 2001; Daubie et al., 2002; Mak & Munakata, 2002).  

 

Neural networks and rough sets are commonly used for classification of 

uncertainty and rule generation (Sushmita Mitra & Acharya, 2003). In general, 

the number of rules generated from a given dataset by using neural networks is 

much larger than the rough sets (Al-Qaheri, Hassanien, & Abraham, 2008; Mak & 

Munakata, 2002; Iftikhar U. Sikder & Munakata, 2009). Besides, it is often 

difficult to explain how the data patterns are generated in neural networks 

because of the complexity and nonlinear data transformation taken place in 

multiple hidden layers. Another disadvantage of neural networks is that the rule 

extraction and filtration are less efficient, compared to rough sets. (Mak & 

Munakata, 2002). 

3.3.1 Rough Set Theory 
 

 

The major objective of rough set theory is to generate rules from complex data by 

removing the features that are not important for decision making. The theory is 

based on the assumption that every object in the universe is associated with 

some information (Pawlak & Slowinski, 1994). The decision table generated, 

based on the important attributes, can be ready used in solving multi-attribute 

decision problems. Rough set theory has been successfully applied in medical 
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diagnosis (Tsumoto, 1999), industrial control (Munakata & Pawlak, 1996), and 

marketing analysis (Kowalczyk & Piasta, 2006). 

3.3.1.1 Introduction of RST 
 

 

Rough set theory (RST), proposed by Zdzislaw Pawlak in 1982, has been 

significantly enhanced by a number of researchers and practitioners (Banerjee, 

Mitra, & Pal, 1998; Pawlak et al., 1995; Skowron & Polkowski, 1998). It has been 

widely used in knowledge discovery, data mining and approximate reasoning 

when data set is incomplete or imprecise. The main idea is the classification of 

empirical data by selecting the degree of roughness or precision of data and 

making subsequent decisions. The philosophy of rough set theory is to let the 

data speak for itself. Very few assumptions are made about the data. Attributes 

require only some notion of inequality defined on their domains.  

 

The main advantage of rough set is that it is inherently data driven and 

“noninvasive” (L. Polkowski & A. Skowron, 1998). It does not require any 

additional information about data, like probability in statistics, basic probability 

assignment in Dempster-Shafer theory, or degree of membership in fuzzy set 

theory. By utilizing the structure of the given data from sensor networks, it is 

possible to develop the numerical value of imprecision or a membership function 

without requiring any subjective inference on distribution function. 
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The theory is based on two important ideas: the indiscernibility relation that 

describes indistinguishable objects and the concepts that are represented by 

lower and upper approximations (I. U. Sikder, 2003). Rough sets allow multiple 

memberships to deal with indiscernibility, while fuzzy set uses partial 

membership to deal with uncertainties. Applications of RST include broad 

spectrum of areas: bioinformatics, engineering, finance, marketing and music. 

3.3.1.2 Selection of RST for Analyzing Sensor Data 
 

 Rough set theory is inherently data driven, “non-invasive”, and application 

independent. It is based on the philosophy “let the data speaks for itself.” 

Thus, rough set based methodology developed for one sensor network 

application can be used for another sensor network application with a minor 

or no modification at all. 

 Unlike fuzzy set theory or statistical analysis, a unique advantage of a rough 

set is that it does not rely on additional model assumptions or external 

parameters. It does not require membership function. This is an important 

property for the selection of rough set as a sensor data mining tool.  

 Rough sets may be a better option than statistical analysis (e.g. discriminant 

analysis) when the underlying data distribution significantly deviates from a 

normal distribution since RST does not make assumptions about statistical 

distributions of data (Stefanowski, 1992). In wireless sensor networks, sensors 

are often deployed in harsh and unfriendly environments, such as terrains or 
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battle-fields where a large number of sensors are inaccessible and the only 

data collected by the accessible sensors may not provide a normal 

distribution. 

 Rough sets can be more efficient than statistical analysis when the sample size 

is too small to define a data distribution (Stefanowski, 1992). This feature of 

RST is very useful in sensor networks when a large number of sensors fall 

into the cover hole regions and are destroyed by forest fires. 

 Rough sets are inherently equipped to handle inconsistency and ambiguity in 

data sets. This is an essential feature of rough sets since real data is often 

incomplete, inconsistent and ambiguous. Besides, the sensors deployed in a 

sensor field are inexpensive, often unreliable, and prone to failures.  

 Rough set theory can be employed to reduce the dimensionality of data set as 

a preprocessing step to training a learning system.  A rough set based feature 

or attribute reduction algorithm does not transform the data, and it preserves 

the underlying data semantics. Its only reliance on simple set operations 

makes it suitable as a preprocessor for many complex systems. Many real-

world systems exhibit non-polynomial complexity with respect to attribute 

dimensionality. For example, large-scale water treatment plant requires a 

huge number of attributes to monitor water quality by using sensors. By 

employing rough set theory, the number of attributes can be reduced and 

inference speed can be significantly improved.  
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 Rough set theory can be used to automate or semi-automate a rule-based 

expert system since it can automatically induce if-then rules from empirical 

data. Automated expert systems can be very useful for real time decision 

making in several application areas, such as precision agriculture. In 

precision agriculture, it is possible to automate watering plants in right time 

with right amount by estimating the soil moisture, humidity, and 

temperature in arid regions by using sensors.  

 Rough sets based algorithms are well suited for parallel processing (Pawlak, 

Polkowski, & Skowron, 2005). Since the events in sensor networks are often 

distributed, concurrent, asynchronous, and non-deterministic, a Rough Petri 

net model can be useful for formal inference. 

 Rough sets can deal with both qualitative and quantitative input data. Since 

rough set based feature reduction technique preserves the underlying 

semantics of the data, unlike Principle Component Analysis (PCA), RST is 

recommended as a preprocessing tool for symbolic or descriptive data. 

 RST has greater flexibility to capture various aspects of incompleteness or 

imperfectness in data since it is generalized from classical set theory. 

3.3.1.3 The Basic Idea of Rough sets 
 

 

Real data is often imprecise, incomplete, ambiguous and superfluous. It is 

important to remove the irrelevant information and derive underlying 
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knowledge about the data by representing it in the form of rules, equations, or 

algorithm. Rough set theory provides mathematical tools for reasoning over 

imprecise and ambiguous data by lowering the degree of precision in data and 

deriving underlying rules. Rough set theory expresses vagueness by employing a 

boundary region of a set. If the boundary region of a set is empty, the set is crisp 

(precise), otherwise the set is rough (imprecise).  

3.3.1.4 Rough Sets and Information Tables 
 

 

In a rough set framework, data is represented by a two-dimensional table (i.e. 

matrix), called an information system. Rows of the information table are leveled 

by objects, columns of the table by attributes, and entries of the table are attribute 

values. Each object is characterized by its condition and decision attribute values. 

We can define an information system as S in terms of a pair (U, A), where U is a 

non-empty finite set of objects called the universe and A is a non-empty finite set 

of attributes, i.e. S = (U, A). Each attribute a  A can be considered as a function 

that maps elements of U into a set Va , where Va represents the value set of 

attributes, such that 

a: U Va  

A decision system can be represented as S = (U, A  {d}), where  A 

is the decision attribute and Vd is assumed to be the set of values of d. 
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Examples 3.1: 

U = {1, 2, 3, …, 14}, A = {a, b, c, e} and decision is represented by d.  

 

                                               Table 3. 1: Temporal information systems 

 

 

 

 

 

 

 

 

3.3.1.5 Indiscernibility or Equivalence Relations 
 

 

We can define the Cartesian product (U x V) as U x V = {(u, v) | u  U, v  V}, 

where (u, v) represents an ordered pair. A binary relation, R, is a subset of U x V. 

If V = U, the Cartesian product becomes U x U and binary relation is a subset of 

U x U. We can define various kinds of relations on U depending on the specific 

criteria. For instance, R is an equivalent relation, if 

 Reflexive, i.e., (u, u) for every u  U. 

 Symmetric, i.e. (u, v) implies (v, u) for every u, v  U. 

 Transitive, i.e., (u, v) and (v, w) imply (u, w) for every u, v, w  U. 

 

 

a b c e d 

1 0 0 1 0 1 

2 0 1 0 1 1 

3 0 0 0 1 2 

4 0 1 0 1 2 

5 1 1 1 1 3 

6 1 1 0 0 3 

7 1 0 1 0 3 

8 1 0 0 1 2 

9 0 0 1 1 2 

10 0 0 1 0 1 

11 0 1 0 1 2 

12 1 1 0 0 1 

13 0 0 1 0 1 

14 1 1 1 1 3 
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A partition is induced by the equivalence relation R and the subsets generated 

are called equivalence classes. A partition of a set U is a set of nonempty subsets 

of U (e.g. X1, X2, X3,…, Xn} such that X1 X2 … Xn = U and Xi Xj =   for i ≠ 

j. A partition divides a set into a number of disjoint subsets (or blocks) so that the 

elements in the same subset are related and elements in different subsets are 

unrelated.  An indiscernibility relation expresses the pair of objects that we 

cannot discern. The universe (U) can be partitioned by the equivalent relations 

(R) and the subsets are called the equivalence classes (Munakata, 2008). We can 

define equivalence relations and determine the partitions for condition as well as 

decision attributes.  

 

Example 3.2: Equivalence classes  
 

For a decision table (Table 3.1), we can define the equivalence relation based on 

the condition attributes (a, b, c, and e) and derive equivalence classes X1, X2, X3, 

X4, X5, X6, X7, and X8 such that X1= {1, 10, 13}, X2 = {2, 4, 11}, X3 ={3}, X4 = {5, 

14}, X5 = {6, 12}, X6 = {7}, X7 = {8}, and X8 = {9}. We can also derive equivalence 

classes (e.g. Y1, Y2, and Y3) from Table 3.1 based on the decision attribute (d) 

such as Y1  Y2  Y3 = U and Y1  Y2 = Y1  Y3 = Y2  Y3 =   where,    

Y1 = {1, 2, 10, 12, 13} 

Y2 = {3, 4, 8, 9, 11} 

Y3 = {5, 6, 7, 14} 
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It is important to find the mappings from the partitions induced by the condition 

attributes to the partitions induced by decision attributes.  

3.3.1.6 Partition Induced by Condition and Decision Attributes 
 

 

We can create a partition R1’ induced by the relation R1= {(u,v)|u and v have the 

same values for a, b, c, e}. Thus, R1’ = {X1, X2, X3, X4, X5, X6, X7, X8}, where 

X1= {1, 10, 13}, X2 = {2, 4, 11}, X3 ={3}, X4 = {5, 14}, X5 = {6, 12}, X6 = {7}, X7 = {8}, 

X8 = {9}. We can also create a partition R2’ induced by the relation R2 = {(u, v)|u 

and v have the same values for d}. Thus, R2’ = {Y1, Y2, Y3}, where Y1 = {1, 2, 10, 

12, 13}, Y2 = {3, 4, 8, 9, 11}, and Y3 = {5, 6, 7, 14}. These sets in a partition are 

called concepts (e.g. Y1, Y2). 

3.3.1.7 Approximation Spaces: Lower and Upper Approximations 
 

 

In general, the equivalent class in the partition, induced by the above two 

condition attributes, does not map exactly to a concept in the partition, induced 

by the decision attributes. Elements in an equivalent class map to different 

concepts and this arises because of inconsistent information tables, where the 

same condition attributes do not lead to the same decision attributes. We can 

define approximation spaces as S = (U, R), where U is a finite set of objects and R 

 U x U is an equivalent (or indiscernibility) relation on U. Indiscernibility 

relations are the main concept in rough sets or approximate sets.  The basic idea 
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behind rough sets is to construct approximations of sets using R (Munakata, 

2008). 

 

The lower approximation consists of those objects that certainly belong to X and 

the upper approximation consists of the objects that possibly belong to X. The 

boundary region consists of the objects that we cannot decisively determine 

whether a member or nonmember of X. The boundary region is defined as the 

difference between the upper and the lower approximations. The negative region 

or outside region consists of the objects that are certainly non-members of X. The 

outside region is defined as the complement of the upper approximation. For X 

 U, the definitions are as follows: 

 

Lower approximation ( XS  ): XxUxXS s:  

Upper approximations ( XS ): XxUxXS s:  

Boundary region (BNDs(X)): BNDs(X) = XS  - XS  

Negative region (NEGs(X)): NEGs(X) = U - XS  

Positive region (POSs(X)):  POSs(X) = XS   

 

is the union of all elementary sets of S, where each elementary set is a 

subset of X. XS  is the union of all elementary sets of S, where each elementary 

set contains at least one of the members from X. XS  - XS represents the 

XS
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boundary region, where the elementary set contains elements that are members 

of upper approximation region but nonmembers of lower approximation region. 

U - XS shows the negative or outside region, where the elementary set contains 

elements that are members of the universe but nonmembers of the upper 

approximation region. Positive region XS represents the lower approximation of 

X. Fig. 3.2 shows the graphical representation of lower and upper 

approximations of a rough set. 

 

 

 

                                               

 

 

 

 

 

 

 

 

The accuracy of the approximation is measured by
)(

)(

XS

XS
s , where 

 A set is rough if  < 1 (i.e., X is vague with respect to S). Assuming S and X 

are equivalence relations in U, the concept of positive region   is defined 

as: 

Upper approximation 

Set X 

Lower approximation 

Figure 3. 1: Lower and upper approximations of a rough set 
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Example 3.3: 
 

Example 3.3 shows the lower approximation, upper approximation, boundary 

region and outside region of X1, X2, X3 (classification based on decision d) 

derived from table 3.1. 

 

 Equivalent classes in the Universe (U):  

{1, 10, 13}, {2, 4, 11}, {3}, {5, 14}, {6, 12}, {7}, {8}, {9} 

}13,10,1{1XS  

}}12,6{},11,4,2{},13,10,1{{1XS  

BNDs(X1) = 1XS  - 1XS }13,10,1{}}12,6{},11,4,2{},13,10,1{{ }}12,6{},11,4,2{{  

NEGs(X1) = U - }}14,5{},7{},8{},9{},3{{1XS  

}}8{},9{},3{{2XS  

}}8{},11,4,2{},9{},3{{2XS  

BNDs(X2) = 2XS  - 2XS }}11,4,2{{}}8{},9{},3{{}}8{},11,4,2{},9{},3{{  

NEGs(X2) = U - }}14,5{},12,6{},7{},13,10,1{{2XS  

}}14,5{},7{{3XS  

}}14,5{},12,6{},7{{3XS  

BNDs(X3) = 3XS  - 3XS }}12,6{{}}14,5{},7{{}}14,5{},12,6{},7{{  
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NEGs(X3) = U - }}8{},11,4,2{},9{},13,10,1{},3{{3XS  

 

The table 3.2 summarizes the equivalence classes in lower approximation, upper 

approximation, and boundary region for different decision attributes (d).  

 

Table 3. 2: Equivalence classes in different regions in approximation space S. 

Equivalent Classes  

 Decision d = 1 Decision d = 2 Decision d =3 

Lower 

Approx. 

{1, 10, 13} {3}, {9}, {8} {7}, {5, 14} 

Upper 

Approx. 

{1, 10, 13} 

{2, 4, 11} 

{6, 12} 

{3}, {9},  

{2, 4, 11}, {8} 

{7}, {6, 12}, 

{5, 14} 

Boundary 

region 

{2, 4, 11} 

{6, 12} 

{2, 4, 11} {6, 12} 

Outside 

region 

{3}, {9}, {8}, {7}, 

{5, 14} 

{1, 10, 13}, {7}, 

{6, 12}, {5, 14} 

{3}, {1, 10, 13}, 

{9}, {2, 4, 11}, {8} 

 

3.3.1.8 Rules Generated from the Decision Table: 
 

 

Rules can be derived by mapping the partitions induced by the condition 

attributes to the partitions induced by the decision attributes: 

 

if X1 = {1, 10, 13}, then Y1 = {1, 2, 10, 12, 13} 

if X2 = {2, 4, 11}, then Y1 = {1, 2, 10, 12, 13} 



110 

 

 

 

if X2 = {2, 4, 11}, then Y2 = {3, 4, 8, 9, 11} 

if X3 = {3}, then Y2 = {3, 4, 8, 9, 11} 

if X4 = {5, 14}, then Y3 = {5, 6, 7, 14} 

if X5 = {6, 12}, then Y1 = {1, 2, 10, 12, 13} 

if X5 = {6, 12}, then Y3 = {5, 6, 7, 14} 

if X6 = {7}, then Y3 = {5, 6, 7, 14} 

if X7 = {8}, then Y2 = {3, 4, 8, 9, 11} 

 

Rules can also be defined in terms of attributes: 

a(0) AND b(0) AND e(0) => d(1) 

a(0) AND b(1) AND e(1) => d(1) OR d(2) 

a(0) AND b(0) AND e(1) => d(2) 

a(1) AND b(1) AND e(1) => d(3) 

a(1) AND b(1) AND e(0) => d(3) OR d(1) 

a(1) AND b(0) AND e(0) => d(3) 

a(1) AND b(0) AND e(1) => d(2) 

 

Certain rules: The rules generated from the positive region or lower 

approximations are certain rules. The certain rules for the decision system 3.1 are 

as follows: 

a(0) AND b(0) AND e(0) => d(1) 

a(0) AND b(0) AND e(1) => d(2) 
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a(1) AND b(1) AND e(1) => d(3) 

a(1) AND b(0) AND e(0) => d(3) 

a(1) AND b(0) AND e(1) => d(2) 

 

Uncertain rules and their confidence factors (α): 

The rules induced from the boundary region of the concept are uncertain rules. 

For uncertain rules, the confidence factor (α) can be defined as: 

 

where,  and  are the equivalence classes based on the condition attributes 

and decision attributes, respectively. The uncertain rules for the decision system 

3.1 are as follows: 

a(0) AND b(1) AND e(1) => d(1) OR d(2) 

a(1) AND b(1) AND e(0) => d(3) OR d(1) 

 

Confidence factors of uncertain rules can be calculated as follows: 

if X2 = {2, 4, 11}, then Y1 = {1, 2, 10, 12, 13} with α = |{1}|/|{2, 4, 11}|= 1/3  

if X2 = {2, 4, 11}, then Y2 = {3, 4, 8, 9, 11} with α = |{4, 11}|/|{2, 4, 11}| = 2/3 

 

if X5 = {6, 12}, then Y1 = {1, 2, 10, 12, 13} with α = |{12}|/|{6, 12}|= 1/2 

if X5 = {6, 12}, then Y3 = {5, 6, 7, 14} with α = |{6}|/|{6, 12}|= 1/2 
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3.3.1.9 Approximation Evaluation 
 

 

To evaluate the approximations, we can employ some measures, such as 

sensitivity and specificity of the approximations. Approximation sensitivity is 

defined as the ratio of the number of objects that can be correctly approximated 

as members to the actual number of the members. Approximation specificity is 

defined as the ration of the number of objects that can be correctly approximated 

as non-members to the actual numbers of the non-members. Approximation 

accuracy represents the ratio of the total number of correctly approximated 

objects to the total number of objects. Approximation accuracy can be expressed 

as a sum of some weighted fractions of sensitivity and specificity (Øhrn, 1999).  

Table 3.3 represents the performance measures of the approximations for the 

information table (Table 3.1). 
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Table 3. 3: Evaluation of approximations 

 Performance 

Decision (d) = 1 Decision (d) = 2 Decision (d) = 3 

Sensitivity 3 /5 = 0.60 3/5 = 0.60 3/4 = 0.75 

Specificity 6/9 = 0.66 8/9 = 0.89 9/10 = 0.90 

Accuracy 9/14 = 0.64 11/14 = 0.78 12/14 = 0.86 

 

3.3.1.10 Discernibility Matrix 
 

 

A discernibility matrix, Ms(x, y), is defined as Ms(x, y) = {a  A |discerns (a, x, 

y)}, where discerns (a, x, y)  a(x) ≠ a(y). Each entry of the matrix consists of the 

set of attributes that can be used to discern between objects x and y such that x, y 

 U. We need to include only the pairs of distinct objects while constructing the 

matrix. Since discerns/3 is symmetric and reflexive, Ms(x, y) = Ms(y, x) and Ms(x, 

x) =  for all x, y (Øhrn, 1999). Table 3.4 shows the discernibility matrix for the 

information system table 3.1. 

 

Table 3. 4: Discernibility matrix 

 {1, 10, 13}   {2, 4, 11} {3} {5, 14} {6, 12} {7} {8} {9} 

{1, 10, 13}           

{2, 4, 11} {b,c,e}        

{3} {c,e} {b}       

{5, 14} {a,b,e} {a, c} {a,b,c}      

{6, 12} {a,b,c} {a,e} {a,b,e} {c,e}     

{7} {a} {a,b,c,e} {a,c,e}  {b,c}    
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{8} {a,c,e} {a,b}  {b,c} {b,e} {c,e}   

{9} {e} {b,c}  {a,b} {a,b,c,e} {a,e}   

 

3.3.1.11 Discernibility Function 
 

 

It is possible to determine the reducts or most informative set of attribute by 

using discernibility matrix of the information system. The discernibility function 

s is defined as follows: 

 

The prime implicants of s provide the minimal subsets of attributes. 

 The discernibility function for the table 3.1 is: 

 (b c e) (c e) (b) (a b e) ( a c) (a b c) (a b c) (a e) (a b e) 

(c e) (a) (a b c e) (a c e) (b c) (a c e) (a b) (b c) (b e) (c e) 

(e) (b c) (a b) (a b c e) (a e) 

  (b c e) (b) (a b e) ( a c) (a b c) (a b e) (c e) (a) (a c e) (b e) 

(e) (b c) (a e) 

 a b e 

The prime implicant of s is (a b e). 

3.3.1.12 Dependency and significance of attributes 
 

Dependency of attributes is one of the important measures to select attributes or 

features. If the set of decision attributes D totally depends on the set of condition 
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attributes C, then all values of D are uniquely determined by the attribute set C 

and this dependency is denoted by . If the set of attribute D partially 

depends on the set of attributes C, then some of the values of D are uniquely 

determined by the attribute set C and this partial dependency is denoted by 

 where p =  and 0  ≤p ≤1. γ(C, D) is defined as: 

 

 

 where,  

 

 is the positive region of the partition U/D with respect to C.  

represents the degree of consistency of the decision table or the degree of 

dependency between C and D.  

 

Significance of attributes is also another important measure for attribute 

reduction.  Significance of an attribute represents the importance of the attribute 

for decision making. It can be evaluated by observing the impact of its removal 

from the information table. Let an attribute a  be removed from C, then the 

degree of consistency changes from  to . Then, the 

significance of the attribute a is calculated as: 
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where 0 ≤ σ(a) ≤ 1 

 

If  =  , then  

If   , then   

 

 = 0 implies that the removal of the attribute from the condition attribute 

set C does not have any impact on overall decision making as the degree of 

consistency of the decision table does not change. Thus the sensor, that measures 

attribute a, is dispensable since it does not have any significant contribution in 

decision making.   = 1 implies that the removal of the attribute a from the 

condition attribute set C has significant impact on overall decision making and 

all consistent rules will disappear from the decision table. Thus the sensor, that 

measures attribute a, is indispensable since it is the most significant sensor in 

decision making. 0 < σ(a) < 1 represents the range of attribute significance and 

partial dependency (Mal-Sarkar, Sikder, Yu, & Konangi, 2009).  

3.3.1.13 Elimination of Redundant Attributes: Reducts and Core 
 

The minimal set of attributes that can categorize the objects correctly is called a 

reduct. It represents an attribute subset B  A of an information table such that 
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after removal of A – B superfluous attributes from an equivalent class it 

preserves the equivalent relation and consequently the set approximations. In 

other words, no more attribute can be removed from a reduct without changing 

the equivalent classes. The reduct of an information system is not unique. For a 

complex problem, there may be many of these minimal reducts. The set of prime 

implicants of the discernibility function determines the reducts. The intersection 

of all reducts is called a core which includes the set of most informative 

attributes. Core can be defined as Core (B) = ∩ Reduct (B).  

 

Reducts are very useful in applications where the number of attributes is very 

high, such as large-scale water treatment plant that requires a huge number of 

attributes to monitor water quality and perform diagnostic detection of faults. 

Computing all possible reducts is a non-trivial task; however computing prime 

implicants is an NP-Hard (Wroblewski, 1995) problem. There are reasonably 

good heuristics to find sufficient number of reducts in an acceptable amount of 

time. Heuristic algorithms, such as genetic algorithms (Bazan, Skowron, & 

Synak, 1994) or dynamic reducts (Lech Polkowski & Andrzej Skowron, 1998) can 

be used to generate a computationally efficient set of minimal attributes.  

 

After obtaining reducts, a set of if-then rules can be generated to create a 

classifier. Once the reducts have been computed, then deriving the decision rule 

is a simple task of laying the reducts over the original decision table and 
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mapping the associated values. Such rules derived from the training set can be 

used to classify new instances for which the decision classes are unknown. 

However, it is likely that more than one rule may fire to decide a class for a new 

object. In that case strategies, such as standard voting, are to be adopted to 

resolve conflicts among candidate rules that recognize the same object (Greco, 

Matarazzo, & Slowinski, 2002). 

 

Example 3.4 
 

The information system shown in table 3.1 has four condition attributes, such as 

a, b, c and e, and one decision attribute, d. Attribute c is redundant or σ(c) = 0 

because the removal of this attribute does not cause any change in the equivalent 

class structure. For all other attributes, σ ≠ 0 reflects their importance in decision 

making. The attribute set {a, b, e} is the reduct of the information system because 

the elimination of any of these attributes causes collapse of the equivalent class 

structure. Reduct and core are the same for this information system since there is 

only one reduct. 

3.3.2 Data Streams Processing and Spatio-temporal Patterns 
 

 

“A data stream is a real-time, continuous, ordered (implicitly by arrive time or 

explicitly by timestamp) sequence of items. It is impossible to control the order in 

which items arrive, nor is it feasible to locally store a stream in its 

entirety”(Golab & Özsu, 2003). The examples of online data streams are 
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stocktickers, network measurements and sensor data. With the rapid growth of 

applications on mining data stream, there is an incremental need to perform 

association rule mining on data stream (Jiang & Gruenwald, 2006). By finding the 

temporal association of frequently occurred events, we can unearth causative 

chains of events which are very useful to find out the root causes of persistent 

faults (Laxman, Sastry, & Unnikrishnan, 2007). 

3.3.2.1 Sensor Data Stream Processing 
 

 

A sensor network can be modeled as a distributed system of sensor data streams 

that consist of a sequence of data elements which arrive online.  A sensor data 

stream is a set of timestamped tuples and the order of the sensor data stream is 

derived from the timestamps. The number of data elements in a stream can be 

unbounded and larger than the storage capacity of the stream processing system 

and thus, the query processing systems need to process these elements as they 

arrive without storing and making multiple passes over it. By monitoring and 

analyzing sensor data streams immediately as they arrive, one can discover new 

spatio-temporal patterns that help us better understand the monitored 

environments. Thus instead of storing the entire data stream, the interesting 

patterns or templates along with their durations can be stored on the processing 

systems by employing the concept of time windowing. 
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A windowing mechanism can be used to limit the amount of data that needs to 

be stored for query processing. Windows can be defined using absolute (fixed), 

landmark, or sliding intervals. For absolute intervals, both start and end times 

are explicitly specified (e.g. August 15, 2008). The landmark interval is defined as 

an interval when only the start time is explicitly specified (e.g. from August 15, 

2008 onwards). The sliding intervals are intervals where, neither start time nor 

end time is explicitly defined but the duration of the interval is specified (e.g. last 

2 hours).  Based on the timestamps for each input data stream, the stream 

elements within a particular time window are selected and considered to be 

active. Thus, the lifetime of sensor data streams and queries are bounded and 

they consume resources only when they are active. Lifetimes can be specified in 

terms of explicit start and end times (absolute window), start time (landmark 

window), or duration (sliding window), depending on how windows have been 

defined. 

 

Extracting knowledge from multiple distributed data streams in a sensor 

network environment is a research challenge that needs to be addressed. 

Traditional database systems and data processing algorithms for analyzing static 

data sets are not well suited to handle complex, numerous, and continuous 

queries over data streams and they need to be reinvestigated for continuous, 

high-speed, and time-varying data streams in a distributed sensor network. Very 

few works addressed the problem of processing and analyzing data stream 
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generated from wireless sensor networks (Cantoni, Lombardi, & Lombardi, 2006; 

Elnahrawy, 2003; Elson & Estrin, 2004). 

 

The sensors that are geographically near to each other are likely to produce 

similar data and a sensor that is continually monitoring the same environment 

will produce streams of values which are correlated in time (Kargupta, 2007). 

Since a large number of sensors are scattered densely in a sensor network, it is 

likely that sensor data has strong spatio-temporal correlation. Significant 

reduction in processing and communication can be achieved by taking into 

account such correlations and generating spatio-temporal patterns. Such spatio-

temporal patterns can also be used to reason over imprecise, incomplete, and 

missing sensor data.  

3.3.2.2 Temporal Information System 
 

 

The temporal information system in a sensor network can be represented in the 

form: ),( SU , where U is the closed universe that consists of nonempty finite 

set of observations x1, x2, …, xn at time t1, t2, …, tn. and S is a nonempty finite set 

of sensors s1, s2, …, sn. For   ,Ss sVUs :  , where sV  is a value of sensor s. A 

descriptor is represented by the expression ,Vs  where Ss  and sVV . Each 

column of a temporal information system represents sensors, while rows 
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represent observations in chronological order.  The temporal information system, 

shown in table 3.5, describes the behavior of 5 sensors at time t1, t2, … , t30.  

 

 
Table 3. 5: A temporal information system 

 

 

 

Temporal Information System 

    5 
30 

S[0] S[1] S[2] S[3] S[4] 

1 5 3 7 8 5 

2 4 6 2 4 5 

3 5 3 7 8 1 

4 5 3 7 4 5 

5 4 6 4 4 5 

6 5 3 6 2 5 

7 4 6 7 4 5 

8 5 3 6 2 3 

9 2 5 7 4 5 

10 5 3 6 4 5 

11 5 3 7 8 2 

12 5 3 7 4 5 

13 4 6 4 4 5 

14 5 3 7 8 5 

15 4 6 4 4 5 

16 2 5 6 4 5 

17 4 6 7 8 4 

18 2 5 6 8 4 

19 5 3 8 8 4 

20 3 6 5 8 7 

21 5 3 7 8 7 

22 5 3 7 8 9 

23 4 6 7 8 9 

24 5 3 5 7 6 

25 2 5 7 8 3 

26 4 6 7 8 5 

27 5 3 7 8 3 

28 4 7 9 7 2 

29 5 3 7 8 6 

30 4 7 7 8 6 
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3.3.2.3 Basic idea of temporal templates 
 

One of the aspects of sensor data mining is the analysis of temporal sensor data 

that changes in time. During the analysis of temporal data, homogenous patterns 

can be discovered and the discovered patterns can be expressed in terms of 

production rules if … then. It is possible to simulate both supervised as well as 

unsupervised learning processes by employing these rules. It is also possible to 

determine the quality of the discovered knowledge by implementing a classifier. 

 

Temporal templates are homogeneous patterns generated at regular intervals 

from temporal information systems (Synak, 2001). They can be used to reason 

over missing, fragmented, and incoherent information gathered from an 

aggregation point in wireless sensor networks. For a given information system, a 

generalized template is represented by a set of descriptors as: 

}:){( sVVVs . A signal Ux  matches a generalized template , if it 

matches all descriptors of . A template can be precise if it has only one-value 

descriptors or it can be general if it has multiple descriptors.  A temporal 

template for such a system can be defined as ),,( es tt , where  

},,:){( ABVVBsVs s , ts represents the start time, te represents the end 

time of a temporal template, and .1 ntt es  

Examples of temporal templates are:  

)7,3})},{(}),{({( 211 psvs  and )13,9})},{(}),{({( 432 hsds  
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It is recommended to search for temporal representatives from the set of all 

templates by taking the optimal one with respect to some quality measures, and 

to use them for encoding a sequence of templates (Synak, 2003).  Each template is 

represented as an event and a sequence of templates is considered as a sequence 

of events. The template representatives are used to replace all the templates in a 

sequence that are closest to the representative templates, thus the total number of 

unique templates are reduced to the number of representative templates. In 

general, closeness can be defined as follows: 

cl aacl
Aa

a 2121 ,, . 

 

Example 3.5  
 

Temporal templates are generated by scanning the temporal information system 

within a particular time window (W) and shifting the window by a fixed amount 

(step) in each iteration. The temporal templates derived from the temporal 

information system (table 3.5) are shown in table 3.6 where quality = 50, window 

size (W) = 10, and step = 2. 

 

Table 3. 6: Temporal templates 

Temporal Templates (Quality threshold = 50) 

 

 

Interval Code Template 

 1 0 0  

2 1 1 s0=5 & s1=3 
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3 1 2 s3=4 & s4=5 

4 5 2 s3=4 & s4=5 

5 6 0  

6 9 3 s2=7 & s3=8 

7 10 1 s0=5 & s1=3 

8 10 3 s2=7 & s3=8 

 

Interval represents the iteration or the number of the time moment in which a 

template starts. Each template is uniquely identified by its code.  

 

 

 

For, no. of observation = 30, window size W = 10, step = 2: 

No. of intervals or iteration = (30 - 10)/2 +1 = 11 

 

The templates generated from the temporal information system are as follows: 

Template#0 (code = 0): 0,  

Template#1 (code = 1): s0=5 & s1=3,  

Template#2 (code = 2): s3=4 & s4=5, and  

Template#3 (code = 3): s2=7 & s3=8.  

 

If several templates appear in the same time interval or iteration, they are 

marked with the same color.  For instance, template#1 and templates#2 both 

appear in the interval 1, and they are marked by the same color. The color of the 
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background changes periodically to enhance the visibility of the interval where 

at least one of the templates is different (changed with time). Interval 1 and 

interval 5 are marked with different colors to reflect the fact that interval 1 has 

two templates, such as template#1 and template#2, where as interval 5 has only 

template#2.  

 

The intervals are not recorded if the templates of a given interval do not change 

in consecutive intervals. There is no entry for intervals 2-4 in the temporal 

template table since intervals 2-4 have the same templates as interval 1. We can 

count the number of consecutive occurrences of a set of templates from the table 

by subtracting the interval number of its first occurrence from the following 

interval number. For instance, template#1 and template#2 together last for (5-1) 

=4 consecutive intervals.   

3.3.2.4 Quality of a temporal template 
 

 

The quality of a temporal template can be defined as a function of width, 

support, number of descriptors, and precision. The width of a temporal template 

),,( es tt  is computed by )1( se tt . The support of a temporal template is 

defined as the number of signals during the interval ],[ es tt  that matches all of the 

descriptors from . The precision of the template is defined as 
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 and is a measure of how much a 

descriptor Vs  is specific (Synak, 2003). 

 

In our design, quality is defined as a function of support as follows: 

 

 

  

For window size = 10 and interval 1:  

Quality of the template#1 (s0=5 & s1=3) is (6/10) x 100% = 60% 

Quality of the template#2 (s3=4 & s4=5) is (6/10) x 100% = 60% 

3.3.2.5 Algorithm to Generate Spatio-temporal Patterns and RS Rules: 
 
 
The sensors, densely deployed in a sensing field, collect information for 

constantly evolving entities about the environment, like temperature, pressure, 

humidity, etc. Often the patterns generated by these sensors‟ readings are 

redundant and uninteresting. Sending these redundant data to the sink is neither 

efficient nor economic. Thus we need a technique that can discover interesting 

spatio-temporal patterns from the data streams immediately as they arrive and 

then the data stream will be discarded. Only the interesting patterns are sent to 

the sink. The advantage of this technique is two folds: firstly, it has the potential 

to significantly reduce the data communications from the cluster head to the 
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sink; secondly, it offers a new data stream mining technique that employs the 

concept of a sliding window. The following algorithm has been developed to 

generate spatio-temporal templates and the rough set rules from sensor data 

streams (Mannila, Toivonen, & Verkamo, 1997; Paluch & Rzasa, 2005; Rzasa et 

al., 2004; Synak, 2001, 2003): 

 

 
Algorithm: 

a) Preprocess sensors‟ data by transferring the data to a single, integrated file in a convenient format 

and filling in the missing values by smoothing averages. 

b) Form a hierarchy of sensors that have spatial and temporal correlations by employing a modified 

agglomerative single linkage clustering algorithm. 

c) Select only one cluster based on the linkage threshold – only the sensors within that cluster are 

considered for the current research. Discard the readings from other clusters. 

d) Create a temporal information system  = (U, S) from the remaining sensors‟ readings. 

e) Generate spatio-temporal templates by scanning the information system within a particular time 

window (W) and shifting the window by a fixed amount (s) in each iteration. Spatio-temporal 

templates are defined as T = {(v, ts, te )} where ts = start time =1, te = end time= min {|U|, te}. In 

each iteration, find the sensor values that occur at least q times where q = a threshold value 

(quality). Then find all maximal templates that meet the requirements for the iteration. In the end 

of each iteration update ts and te as ts = ts + s and te = min {|U|, te + s}. Repeat until ts > = |U| and 

obtain a series of spatio-temporal templates for the entire information system. 

f) Create a multi-valued decision system from the series of spatio-temporal patterns where the 

number of condition attributes is k and decision attribute is 1. The ith row of the multi-valued 

decision system is created by placing the spatio-temporal templates generated in the ith, (i+1)th, 

…(i+k)th iterations. 

g)  Remove all irrelevant patterns and generate reducts, a set of most informative patterns for 

decisions, by employing rough set theory. Then, generate decision rules from the reduced decision 

table. 
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The algorithm generates a number of spatio-temporal templates by shifting a 

time window of a given size across the temporal information system and 

scanning the elements within that window. By gradually shifting the time 

window, temporal templates can be compared with respect to some quality 

thresholds and it is possible that the previously found template is still the best 

one in the new window. Thus, we can determine the upper and lower bounds [ts, 

te] of a template where the template is optimal or close to optimal and meets a 

certain acceptable quality level. The algorithm may not generate any template for 

some intervals if there is no strong regularity in sensor readings for those 

intervals. In a highly dynamic environment, where sensor values are changing 

very frequently, we may not get any useful template at all. 

3.3.2.6 Temporal Templates and Quality Threshold Value 
 

 

The number of templates generated from a temporal information system changes 

with the quality threshold. The lower quality templates require fewer matches 

with the row of the temporal information system. Thus, the number of templates 

is expected to increase when the template quality is low. On the other hand, the 

higher quality of templates demands more matches of templates with the row of 

the temporal information system. Therefore, the number of templates is likely to 

decrease when the template quality is high. As a consequence, we can achieve 

more data compression with high quality templates, compared to low quality 

templates. However, in order to understand the impact of template quality on 
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data uncertainty we need to characterize uncertainty first and then we can 

quantify uncertainty for different scenarios. We can also determine the pairwise 

correlation of uncertainty measures and uncover their tradeoffs in different 

scenarios. 
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Figure 3. 2: Frequencies of spatio-temporal templates per window for quality threshold a) 50 b) 
55, and c) 70 respectively. 
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Frequencies of temporal templates per window are plotted at different intervals 

for several quality thresholds: 50, 55, and 70 (Fig. 3.2 a, b, c). Fig 3.2 a shows that 

for quality threshold = 50, we obtain templates T1 and T2 in intervals 1- 4, only 

T2 for interval 5, T3 for interval 9, and T1, T3 for intervals 10 and 11. There is no 

template for intervals 6 – 8. Fig 3.2 b shows that for quality threshold = 55, we 

obtain T1, T2 for intervals 1-3, T2 for intervals 4 and 5, T3 for intervals 9 - 11. 

There is no template for intervals 6 – 8. Fig 3.2 c shows that for quality threshold 

= 70, we obtain T1 in interval 1, T2 in interval 4, and T3 in interval 11. There is no 

template for intervals 1, 3, and 5 – 10. This demonstrates that the number of 

temporal templates decreases as we increase the acceptable level of quality 

threshold. 

3.3.2.7 Dependencies between Temporal Templates 
 

 

We can determine the dependency among temporal templates from a series of 

temporal templates generated by scanning the temporal information system 

(Paluch & Rzasa, 2005; Synak, 2001). One set of temporal templates can follow 

another set of temporal templates. If we know the occurrence of one set of 

temporal templates, we can predict the occurrence of another temporal template 

or a set of temporal templates in the future. For example, consider a series of 

temporal templates: A, B, C, D, E, F, A, C, E, D, F, A, C, E, D, A, F, C. One can 

determine that the occurrence of C follows the occurrence of A, and the 

occurrences of D and E in either order is followed by the occurrence of F.  
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From a series of temporal templates, one can also determine the frequent episode, 

which is a group of events occurring frequently together. An example of frequent 

episode from the above temporal template series is “the occurrence of C follows 

the occurrence of F” since the episode occurs several times in this series. There 

are several data mining and machine learning application areas where these 

dependencies can be very useful, such as, alarms in a telecommunication 

network, user interface actions, and occurrences of recurrent illness. By 

analyzing the on-line alarm stream using these relationships, we can explain the 

problems that cause alarms and suppress the redundant alarms, and predict 

severe faults (Laxman et al., 2007; Mannila et al., 1997).  

3.3.2.8 Single-valued Temporal Decision System 
 

 

A series of temporal templates which are disjoint in time are shown in fig 3.3.  

 

 

 

                                                                                                            t 
 

A single-valued decision system has a single value for its attributes in a given 

time moment.  In table 3.7, we construct a single-valued temporal decision table 

from the series of time-disjoint temporal templates (Fig. 3.3) by considering only 

two consecutive temporal templates (n = 2) from the past as condition attributes 

and the following temporal template as a decision attribute (Synak, 2001). In 

A A B B B   C   C   C D D 

Figure 3. 3: A series of time-disjoint templates 
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general, n represents the number of templates from the past that are required to 

infer the decision template. 

Table 3. 7: Single-valued temporal decision table for templates 

 t -2          t-1 t 

x 1 

x 2 

x 3 

x 4 

x 5 

x 6 

x 7 

x 8 

A           C 

C           B 

B           D 

D           C 

C           B 

B           A 

A           C 

C            B 

B 

D 

C 

B 

A 

C 

B 

D 

 

3.3.2.9 Decision Rules from a Single-valued Decision System 
 

 

We can generate decision rules from the decision table using the rough set 

method (Bazan, 1996; Bazan et al., 1994; Pawlak & Skowron, 1993; Synak, 2001). 

 

Table 3. 8: Temporal rules for single-valued decision system. 

 

R1:          if t-1 =  C then t = B 

R2:          if t-2 = B then t = C 

R3 :         if t-2 = A then t = B 

R4:          if t-2 = C and t-1 = B then t = D or  t = A,  

                          depending on the width of the template B 

R4a:        t = D if width of B=3 

R4b:        t = A if width of B=5 
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The objects x1, x4 and x 7 follow the first rule; objects x3 and x6 follow the second 

rule, and x1 and x7 follow the third rule (Table 3.8). We have an additional 

constraint on width of the template for the fourth rule (Table 3.9). The objects x 2, 

x 8 follow rule R4a and x 5 follows rule R4b. 

 

Table 3. 9: Decision rules depend on the widths of the templates 

Objects Condition Templates Decision  

templates  Width of C  Width of B 

x 2, x 8 4 3 D 

x 5 4 5 A 

 

3.3.2.10 Multi-valued Decision System 
 

 

A multi-valued decision system may have a set of values instead of a single 

value for its attributes in a given time moment (Paluch & Rzasa, 2005).  A multi-

valued decision system is constructed from parallel templates (or nondisjoint 

temporal templates) that occur at the same time interval. The columns represent 

the attributes and the rows represent the cases or observations arranged 

chronologically. The last attribute is the decision attribute.  Table 3.10 shows the 

multi-valued decision system generated from the sequence of nondisjoint 

temporal templates shown in table 3.6. Multiple values for a particular cell are 

placed in braces and are separated by commas. 
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Table 3. 10: A Multi-valued decision system for templates 

Multi-valued Decision System 

         S[0] S[1] Decision 

1 {2} {3} {1,3} 

2 {1,2} {2} {3} 

 

3.3.2.11 Temporal Rules from a Multi-valued Decision System 
 

 

Table 3.11 shows the temporal rules generated from the multi-valued decision 

system by using the rough set method (Bazan, 1996; Bazan et al., 1994; Paluch & 

Rzasa, 2005; Pawlak & Skowron, 1993; Rzasa et al., 2004). Each row represents 

the cases, while each column contains the rules, the “match” for the rules, or the 

“support” for the rules. The “match” determines the number of cases that match 

the predecessor of a given rule, while the “support” determines the number of 

cases that match the predecessor and the successor of a given rule. For the above 

multi-valued decision system, there is only one temporal rule: (3cs1) => D=1.  

The rule reflects the fact that if the template#3 occurs at time interval 1, then the 

next template or decision template will be template#1. “Match” = 1 means that 

there in only one case where template#3 occurs in interval 1. “Support” = 1 

denotes that there  is only one case where template#3 occurs in interval 1 and 

template #1 occurs in the following interval. Thus, for this example the number 

of temporal rules is 1, the number of consistent rule is 1, and the number of 

inconsistent rule is 0.  
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Table 3. 11: Temporal rules for a multi-valued decision system 

Temporal rules 

           Rule Support Match 

1 (3cs1) => D=1 1 1 

 

3.4 Uncertainty Measures of Spatio-temporal Patterns 
 

 

The uncertainty is a growing research area (Ayyub & Klir, 2006; Klir & Folger, 

1988). There are several uncertainty measures that engineers or scientists find 

useful to quantify different categories of uncertainties. The following uncertainty 

measures are identified and quantified in the context of spatio-temporal pattern 

generation in WSN: 

 Entropy-based uncertainty that results from conflict among evidential 

claims. 

 Nonspecificity that stems from imprecision associated with the sizes or 

cardinalities of relevant sets of alternatives. 

 Uncertainty based on inconsistent rules derived from the boundary region 

of concepts. 

 Unique template specifies the number of unique patterns in an 

information system. 

 Mean template recurrence is the average frequency of each template in a 

series of patterns generated from an information system. 
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 Mean template recurrence variability determines the average variation of 

a template recurrence from its mean.  

 Template vacuity determines the number of uninteresting patterns. 

3.4.1 Entropy-based uncertainty 
 

 

Entropy in information science is a measure of uncertainty or disorder in a 

message. The more information the message has, the lesser the value of entropy. 

Entropy in an information system is originated from the concept of entropy in 

thermodynamics and statistical physics. 

The entropy-based uncertainty H(x) in a template generation from temporal 

information system can be quantified as: 

 

where,  is the probability of each template i in template space Ω. 

Tribus (year) coined the term “surprisal” for , which is the degree to 

which one is surprised to see the result. When the probability is 1, there is no 

surprise to see the result. As the probability gets smaller and smaller, the 

surprise goes up and eventually it reaches its maximum, positive infinity. Thus, 

entropy can be considered as a weighted average of surprisals. If the dataset 

contains fewer templates, each with higher probability, then it is unlikely that 

one is surprised very often. On the other hand, the data set with a large number 

of rare templates is likely to produce frequent surprises. 
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Examples 3.6 
 

The probabilities of spatio-temporal templates can be calculated from table 3. 6 as 

follows: 

p1 = P (template#1) = 5/12, p2 = P (template#2) = 5/12, and p3= P (template#3) = 

2/12 where, p1 + p2 + p3 = 1. Once we determine the probability of each template, 

we can determine the entropy-based uncertainty H(x) for the information system 

as:  

 

      = p1  + p2  + p3  

           = 1.48 

 

This implies 1.48 bits of uncertainty. Uncertainty depends on the number of 

templates as well as the split of each template in template space. For instance, if 

there are a large number of templates but very few templates are favored, then 

the entropy will be lower compared to the situation when the template space is 

evenly split. For instance, the entropy of the three equally probable templates can 

be calculated as 1.58 which is larger compared to the entropy calculated above 

for the templates generated in table 3.6. 
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3.4.2 Nonspecificity Measure  
 

 

This type of uncertainty stems from the lack of specificity resulted from the 

existence of more than one template at the same time interval and is measured by 

a well-known Hartley function. When Hartley function (A) is applied to subsets 

of a given finite template set X, it has the form 

: P(X)  [0, ) 

where P(X) denotes the power set of X, the range of the Hartley function is 

, and A is a set of possible templates.  The nonspecificity in 

evidence can be computed by employing the Hartley measure to each subset of 

templates, and computing a weighted sum of all these measures of the subsets 

(focal elements) where the basic assignment is used as weight factors. Thus, the 

nonspecificity N(m) of spatio-temporal templates can be defined as: 

 

where m is the basic probability assignment for a family of subsets of templates, 

A1, A2, …, An  Px and m = {m(A1), m(A2), …, m(An)}, and mi = m(Ai) for i = 1, 2, 

…, n. The  represents the nonspecificity of the evidential claim m(A).  

 

When the focal element is singleton, |X| = 1, there is no uncertainty. When the 

focal element is no more singleton (i.e. |X| > 1), there are a number of possible 

templates or decision classes in a proposition. Consider the situation when there 

is only one focal element X, but the element has three possible templates such as 
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X = {x1, x2, x3}. In this case, Shannon entropy based uncertainty is zero since 

  = 0. However, there is uncertainty regarding the evidence in support 

of the decision class. This type of uncertainty stems from the lack of specificity in 

evidential claim and is known as nonspecificity. 

 

The Bayesian probability measure fails to estimate the nonspecificity in a body of 

evidence. All the focal elements in the probability measure are singleton, 

resulting in zero specificity (|X| = 1 and log2 |X| = 0). This shows that 

probability measures are inherently fully specific and incapable of characterizing 

the nonspecificity dimension of multisource information. 

 

Examples 3.7 
 

The probability assignments of all subsets of spatio-temporal templates can be 

calculated from the table 3. 6 as follows: 

m1 = P{1}=0, m2 = P{2} =1/7, m3 = P{3} = 1/7, m4 = {1 ^ 2} = 4/7, m5 = P{1 ^ 3} = 

1/7, m6 = P{2, 3} = 0, m7 = P{1 ^ 2 ^ 3} = 0 where the power set (excluding the 

null subset) of all templates is Px ={{1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}} and 

 Then, we can determine the nonspecificity-based uncertainty N(m) 

for the information system (Table 3.6) as:  

 

=  +  +  +  
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+  +  +  

= 0 x  + 1/7 x  + 1/7 x  + 4/7 x         

  + 1/7 x  + 0 x  + 0 x   

= 4/7 + 1/7 

 = 5/7 

3.4.3 Uncertainty from Inconsistent Rules Induced from Boundary Region 
 

 

When there is inconsistency in the decision table, the equivalence class in the 

partition, induced by the condition attributes, does not map exactly to a concept 

in the partition, induced by the decision attributes. Thus, the occurrences of the 

same spatio-temporal patterns in previous intervals do not lead to the same 

decision pattern in the following interval. In this situation, an approximation 

space as S = (U, R) needs to be defined where U is a finite set of templates and R 

 U x U is an equivalence or indiscernibility relation on U and approximation of 

sets (rough sets) are constructed from R. We are interested in determining to 

what extent the partition, introduced by the decision attributes, can be 

characterized or approximated by the partition, introduced by the condition 

attributes. There are three distinct regions in an approximation space: positive, 

boundary, and negative regions, explained in section 3.3.1.7. The rules derived 

from the positive, boundary, and negative regions are consistent, inconsistent (or 

uncertain), and unidentified rules. By employing the rules from the boundary 

region of the concept, we cannot certainty predict the causal relationships among 
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the templates and an uncertainty stems from this inconsistency. This type of 

uncertainty , stems from inconsistent rules, for a temporal system can be 

estimated as: 

 

where I is the number of inconsistent rules derived from the boundary region of 

concept, and R is the total number rules induced from the both regions, positive 

as well as boundary regions. This is an important measure for the uncertainty 

management in pattern generation from sensor data. 

3.4.4 Unique Templates 
 

 

The number of unique templates determines the number of unique spatio-

temporal patterns generated from a temporal information system. The number of 

unique templates is another measure of uncertainty in an information system, 

and a fewer number of templates is desirable. When the threshold value of 

template quality is high, the number of unique templates is likely to be low since 

high threshold requires larger number of observations in the table to match with 

the templates. When the sliding time window size increases, the number of 

unique templates is expected to decrease for a particular template quality for the 

same reason: requirement of larger number of observations to match with the 

templates. The number of unique templates can be determined by counting the 
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number of unique template IDs from the series of templates generated from a 

temporal information table. 

 

3.4.5 Mean Template Recurrence 
 

 

Mean template recurrence determines the average frequency of the occurrences 

of a spatio-temporal pattern in a series, generated from a temporal information 

system. It can be used as a measure of uncertainty and the higher the value of 

mean template recurrence, the lower the value of uncertainty in information 

system. Some spatio-temporal patterns are preferred and occur more frequently 

than others in a series and thus, it is important to measure the mean template 

recurrence to quantify uncertainty in an information system. Mean template 

recurrence can be computed as follows: 

 

 

where  is the frequency of the template i and N is the number of total templates 

generated from the information system. 

3.4.6 Mean Template Recurrence Variability 
 

 

Mean template recurrence variability determines the average variation of the 

frequency of occurrences of a spatio-temporal pattern from the mean recurrence. 
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It is a measure of uncertainty and it is not desirable. The higher the value of 

mean template recurrence variability, the higher the uncertainty associated with 

spatio-temporal patterns.  Once we determine the mean template recurrence, 

mean template recurrence variability can be computed by measuring its 

deviation from the mean value and averaging over all templates generated from 

the information system as follows: 

 

 

 

where is the frequency of template i and  is the mean template recurrence. 

3.4.7 Template Vacuity 
 

 

Template vacuity determines the number of vacuous templates in an information 

table, which implies that there is no interesting pattern in the data. It is a 

measure of uncertainty and it is not desirable. The higher the template vacuity in 

the information system, the higher the uncertainty in decision-making since the 

vacuous templates do not provide useful information. The templates for which 

the quality is below a certain threshold are considered as vacuous templates or 

uninteresting patterns and identified as ID = 0.  The template vacuity of an 

information system can be determined by counting the number of templates with 
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ID = 0. Clearly, template vacuity depends on the sliding window size and the 

template quality used for template generation. With the increase of window size, 

more templates cannot meet the quality threshold because the increased number 

of objects are expected to match with the template. For the same reason, if the 

template quality is increased up to certain value, template vacuity can increase 

depending on window size and data type. 

3.5 Research Methodology 
 

 

Fig 3.4 shows the methodological workflow diagram of the current research 

where a square or a rectangle represents a data object, a rounded rectangle 

represents an activity, a solid and a dashed directed line denote control flow and 

data object flow respectively. Functionally, the workflow diagram can be 

partitioned into three phases: 

 Pre-processing phase: The temporal information system (TIS) required for 

discovering spatio-temporal patterns is created in this phase. However, 

before creating a TIS, a number of preprocessing steps that includes data 

cleaning, data sampling, data clustering, data discretization, and data 

encoding are performed. A clean dataset is obtained by replacing the missing 

sensors‟ data by smoothing averages and by converting data into a 

convenient format. Then the sensors that are spatially and temporality 

correlated are indentified by employing the clustering algorithm on a clean 

dataset.  
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Before we use data for analysis, the size of the attributes value set needs to be 

reduced to ensure that the number of patterns is not too large and the rules 

are not too specific (Al-Qaheri et al., 2008). By using the discretization 

technique, we can determine the cuts in the dataset that divide the continuous 

range of data into a number of discrete intervals, and a level is assigned for 

each interval. Thus, a discrete TIS can be obtained by replacing the 

continuous attribute values in the table with their corresponding discrete 

values. A numeric TIS is created by using a ceiling function on continuous 

attribute values. A Boolean TIS is generated by encoding the continuous 

values as 1 if they are above a threshold value and as 0 if they are below the 

threshold. The discrete TIS, numeric TIS, and Boolean TIS are useful for 

symbolic, quantitative, and outlier data mining respectively. 

 Spatio-temporal pattern discovery and rule generation phase: the final goal of 

this phase is to generate rules from TIS and evaluate potential data 

compression for transforming data into rules. There are several steps that 

need to be performed to achieve this goal, such as the discovery of spatio-

temporal patterns, the creation of a multivalued decision system, the 

computation of reducts (a set of most informative patterns), the derivation of 

rules from reducts, the splitting of the dataset, the evaluation and validation 

of rules.  
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Once we have the TIS from the previous phase, the spatio-temporal patterns 

that meet some quality threshold, explained in sections 3.3.2.4 and 3.3.2.5, are 

discovered by scanning the TIS within a particular time window and shifting 

the time window (W) by a fixed amount (S) in each iteration. A multivalued 

decision system is created from a series of spatio-temporal patterns by 

considering k consecutive patterns from the past as the condition attributes 

and the following (k+1)th pattern as the decision attribute, as described in 

sections 3.3.2.6 and 3.3.2.8. A multivalued decision system can have multiple 

patterns for a particular attribute since it supports parallel patterns in the 

same interval.  

 

The next important step is to extract and eliminate redundant patterns and 

determine the most informative patterns for decision making. Redundant 

patterns are a set of patterns that can be removed from a decision table 

without changing the degree of dependency between the remaining patterns 

and the decision and consequently without changing the equivalence relation. 

The reduct is a minimum set of patterns that preserves the equivalence 

relation. The reducts can be computed from the discernibility matrix of the 

decision system by finding the set of prime implicants of the discernibility 

function, as shown in section 3.3.1.11 (Rzasa et al., 2004).  
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However, finding all the reducts from a decision system is an NP-Hard 

problem (Wroblewski, 1995). There are reasonably good heuristic algorithms 

to find a sufficient number of reducts (Bazan et al., 1994; Lech Polkowski & 

Andrzej Skowron, 1998). Rough set theory is very useful to determine the 

reducts by employing two popular attribute reduction measures: degree of 

dependency (or approximation quality /classification quality) and the 

information entropy (Al-Qaheri et al., 2008). In this research, the degree of 

dependency measure is used to compute the reducts.  

 

After obtaining the reducts from the decision table, a simple task of laying the 

reducts over the original decision table and mapping the associated values is 

performed. The data compression can be approximated as the ratio of number 

of rules to the number of objects in the original TIS system since the rule set 

can be considered as a reduced table where each rule corresponds to one 

object. Further reduction is achieved by applying the rough set value 

reduction method.  

 

Then, the set of rules is used as the classifier to validate the rules and to 

ensure that the rules generated from the information system are self-

consistent and closely represent the information system.  The dataset is split 

into two disjoint test datasets. The classifier obtained from the training set is 

applied on the testing dataset to access the performance. A confusion matrix 
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is constructed from the training and testing datasets and the accuracy of the 

methodology of rule induction is estimated. The rule validation is important 

to ensure that the induced rules faithfully represent the dataset since only the 

rules, generated at the cluster head, are sent to the sink, instead of the entire 

datasets. The number of rules is expected to be fewer than the number of 

observations in datasets because of the use of several data reductions 

procedures and the spatio-temporal correlations in sensor data; thus this 

scheme has a potential for data compression. The data compression can be 

calculated based on the number of rules that are generated at the cluster head 

(details are provided in chapter 4). 

 

 Uncertainty management phase: This phase includes the characterization and 

quantification of uncertainty associated with spatio-temporal feature 

selection, the tradeoff of uncertainty measures for decision making, and 

hypothesis testing to establish their correlations. Several uncertainty 

measures are identified and defined in the context of spatio-temporal pattern 

generation from sensor datasets: entropy, nonspecificity, inconsistent rules, 

unique templates, mean template recurrence, mean template recurrence 

variability, and template vacuity. All uncertainty measures are quantified, 

and their tradeoffs are explained and demonstrated in several graphs. The 

pairwise correlations of the uncertainty measures are also shown in 

correlation matrices and the correlation significance is established in a 95%  
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Figure 3. 4: The methodological workflow diagram 
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confidence level. With the knowledge of the tradeoffs and the correlations 

among uncertainty parameters, we can improve our decision making in 

spatio-temporal feature selection in several application scenarios of stream 

data processing, including WSNs. 

3.6 Rule Validation and Accuracy Estimation 
 

 

The confusion matrix is an important tool for analyzing the performance of a 

classifier. It is a table where each column represents the instances in a predicted 

class, and each row represents the instances in an actual class. The diagonal 

elements represent correctly specified objects while the off-diagonal elements 

represent the misclassified objects. The matrix shows the accuracy of the 

classifier as the percentage of correctly classified objects in a given class divided 

by the total number of objects in the class that are classified (I. U. Sikder, 2003). 

Thus, a confusion matrix explains how a classifier behaves for individual classes 

while the overall accuracy does not indicate that. 

 

Sensor data collected from different sensors are clustered to increase the spatial 

homogeneity of the data. Then, RS rules are generated from the dataset and the 

data set is randomly partitioned into two disjoint test datasets to check the rule 

validity and consistency. To reduce the bias, we randomly select different parts 

of the data sets as test sets. Finally, the classifier obtained from the training set is 
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applied on testing data set to access the performance. A confusion matrix is 

constructed from training and the testing data sets and the accuracy and the 

consistency of the rules are estimated as follows: 

 

 

 

where  is the number of all diagonal templates that are classified correctly 

and N is the number of all templates that are classified. 

 

3.7 Correlation Matrix and Statistical Significance 
 
 
The correlation coefficient matrix (R) is calculated from the input matrix (X) 

whose rows are observations and whose columns are uncertainty measures. Each 

element of correlation coefficient matrix (R) is calculated as follows: 

 

 

 

where the covariance matrix C = cov(X), i represents the row and j represents the 

column of matrix R. 

 



154 

 

 

 

A matrix (P) can be calculated where each p-value represents the probability of 

getting a correlation by random chance, but the actual correlation is zero. The p-

values are used to test the null hypothesis that there is no correlation among the 

uncertainty measures. For a pair of uncertainty measures, if the p-value < 0.05 

and the correlation coefficient r > 0.5 then the pairs are positively correlated in a 

95% confidence level. A pair with p < 0.05 and r < 0.5 implies that they are 

negatively correlated in a 95% confidence level. The correlation between a pair 

with p-value > 0.05 is not statistically significant. The confidence bounds are 

computed based on assumptions that the sample size is large and X has a 

multivariate normal distribution. Even when the assumptions do not hold, we 

can use this technique to determine the statistical significance of correlation 

coefficients by employing bootstrap sampling and generating a large sample 

when X has a multivariate normal distribution. 

 

By determining whether the pair of uncertainty measures are positively, 

negatively, or uncorrelated in a 95% confidence level, we can uncover their 

tradeoffs. Once we know their tradeoffs, we can develop the optimization model 

based on these parameters, and alleviate decision making even in the presence of 

uncertainties. 
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CHAPTER IV 
TEMPORAL TEMPLATES GENERATION AND UNCERTAINTY 

MANAGEMENT 

 

4.1 Chapter Introduction 
 

 

 The objective of this chapter is to provide a validation of a mathematical 

formalism for the uncertainty management in wireless sensor networks and to 

provide the validation for the rules generated by a rough set based spatio-

temporal pattern discovery scheme.  The mathematical foundation of the hybrid 

model based on rough set and pattern-based data aggregation formalism is 

established in the previous chapter. The theory of spatio-temporal templates 

generation is discussed in Chapter 3. In this chapter, we employ the formalism in 

real world sensor data for finding the homogeneous patterns in sea surface 

temperature (SST) and generating the association rules. The rules are validated 

by constructing a confusion matrix from several parts of the patterns. The 

uncertainties in the pattern generation of sea surface temperature stemming from 
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the imprecise data or missing data from sensors are characterized and quantified. 

Finally, the correlations among the uncertainty measures are identified and the 

statistical significance of their correlations is established.  This chapter has four 

major sections: data collection and representation, data preprocessing, spatio-

temporal pattern discovery and rule generation, and uncertainty management. 

4.2 Data Collection and Representation   
 

 

Real-time sensor data from moored ocean buoys along the equator in Pacific 

Ocean, maintained by the Tropical Atmosphere Ocean /Triangle Trans-Ocean 

Buoy Network (TAO/TRITON) joint project, have been used for this research. 

Since we are not aware of any publicly available data generated by wireless 

sensor networks, we attempt to simulate sensor network data from real-time 

sensor data by using some preprocessing techniques and forming spatial clusters 

from the time series generated by the TAO/TRITON data. Clustering increases 

data correlation and homogeneity which are important features of sensor 

networks. In the dissertation, we attempt to find out the spatio-temporal patterns 

by exploiting this correlation in data. Thus, we believe that our simulated sensor 

data will suffice our research requirements. 

4.2.1 NOAA and TAO/TRITON Project 
 

National Oceanic and Atmospheric Administration (NOAA) maintains a 

network of buoys, tidal stations and satellite measurements that provide a 
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continuous report of the state of the ocean and Great Lakes. NOAA's Tropical 

Moored Buoy (TMB) projects consist of the Tropical Atmosphere Ocean 

(TAO)/Triangle Trans-Ocean Buoy Network (TRITON), Pilot Research Moored 

Array in the Tropical Atlantic (PIRATA), and Research Moored Array for African-

Asian-Australian Monsoon Analysis (RAMA). The purpose of the project is to 

perform scientific research on warm water in the equatorial ocean and determine 

its effect on world climate change. TAO/TRITON buoys are deployed along the 

equator in Pacific Ocean; PIRATA buoys are in Atlantic Ocean; and RAMA 

buoys are in Indian Ocean (Fig 4.1).  

 

 

Figure 4. 1: Global Tropical Moored Buoy Array 

 

The TAO/TRITON project has been built over the past 15 years; through the 

efforts of many nations, now the TAO project is mainly supported by the 

National Oceanic and Atmospheric Administration (United States), and the 

TRITON project is supervised by the Japan Agency for Marine-earth Science and 

TEChnology (Japan). The TAO/TRITON array consists of approximately 70 

http://www.pmel.noaa.gov/tao/oceansites/images/map_lg.gif
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moorings in the Tropical Pacific Ocean to store real-time oceanic and 

atmospheric data via the Argo satellite system. The TAO/TRITON buoys are 

deployed in the equatorial region of the Pacific Ocean by specially equipped 

ships, and the buoys are anchored to the ocean floor in water at different depths.  

 

The TAO/TRITON buoys are equipped with sensors that collect oceanic and 

atmospheric data such as wind speed, wind direction, air temperature, relative 

humidity, barometric pressure, sea surface temperature, salinity, water pressure, 

and ocean current. Data collected by the sensors are transmitted to the ground 

stations and then to the research stations and WWW several times a day through 

NOAA‟s polar satellite systems. TAO/TRITON data can be downloaded from 

the web or via anonymous FTP. The variations of environmental conditions in 

the tropical Pacific Ocean are illustrated by graphical displays and animations of 

the data in several formats. TAO/TRITON data are freely available to research 

community, operational forecasting community, and the general public. 

4.2.2 Sea Surface Temperature Data Collection 
 

 

Our mathematical formalism has been tested on sea surface temperature data 

from the TAO/TRITON array in the equatorial region of the Pacific Ocean. SST 

data were downloaded from their web site on an-hourly basis for six months, 

starting from February 20th, 2005, to August 20th, 2005. Before we downloaded 

data for this period, we ensured the quality and continuity of data so that our 
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spatio-temporal pattern-based data aggregation was accurate. Fig 4.2, taken from 

the TAO/TRITON web site, shows how to display and deliver data with an easy-

to-use user interface. The small red solid squares within a rectangle represent the 

sensors that have been selected to deliver SST data. The temporal resolution of 

the recoded data can be changed to daily basis or high resolution (once in 10 

minutes).  

 

Figure 4. 2: Data display and delivery 

4.2.3 Data Availability 
 

 

Sometimes buoys are broken, disconnected from the anchors, and drift due to 

tides or strong sea winds, and then the sensors are unable to report 

measurements. Data is not recorded to their databases for that period of time 

unless the buoy is replaced or repaired. In general, almost 15 percent of the data 
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is always missing in the records. This can be determined by inspection of the 

mooring location time series. To obtain good quality data, we needed to locate 

where the data availability was high. We found that a high quality sea surface 

temperature data series was available during the period from February 20, 2005, 

to August 20, 2005; this data series had high resolution (on an hourly basis). Fig 

4.3 shows the available sites for sea surface temperature data at different 

latitudes and longitudes. We can find if there is a discontinuity in the sensor 

reading for some period by a simple click on the site.  

 

Figure 4. 3: Data Availability 

4.2.4 SST Data Format 
 

 

SST data format includes sensor id, sensor latitude, sensor longitude, the date 

and time of measuring SST, and the SST values (Table 4.1). 
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Table 4. 1: Sea Surface Temperatures time series at different locations along the Pacific Ocean. 

Sensor  

ID 

Sensor 

Latitude 

Sensor 

Longitude 

Date 

(YYYYMMDD) 

Time 

(HHMM) 

SST (0C) 

 

sst0n147e_hr 0.0000 147.0000 20050220   0000 29.31 

sst0n147e_hr 0.0000 147.0000 20050220   0300 29.48 

sst2n137e_hr 2.0000 137.0000 20050220  1400 29.05 

… … … … … … 

4.2.5 Time Series Plot 
 

 

The time series were plotted from the SST data recorded by the sensors 

implemented on the buoys deployed in the eastern part of the Pacific Ocean 

during the period from February 20, 2005, to August 20, 2005 (Fig. 4.4).  

 



162 

 

 

 

 

Figure 4. 4: Sea surface temperature data time series 

 

The sensors reported SST every hour for six months, resulting in 4368 

observations for each sensor. The location of each sensor was also noted during 

that period. The time series of SST data clearly show high temporal variations in 

the data. The spatio-temporal patterns can be discovered from the time series by 

using the recent history of the readings.  We can employ these patterns as 

templates to predict the most likely future values. We expected a useful number 

of templates since the time series of SST for the given interval shows significant 

temporal variations.  
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4.3 Data Preprocessing 
 

 

Often data directly collected from the source is raw data, and such data should 

be preprocessed and converted into an appropriate format before it can be 

processed by the data mining algorithm. Data preprocessing is one of the most 

important as well as time consuming tasks in data mining, especially for large 

data sets. Data sets can be large when the dimensionality is high (e.g. gene 

expression data) or/and the number of instances is high (e.g. image data). In 

general, high dimensionality data takes more preprocessing time than the data 

set with a high number of instances. Data preprocessing involves data cleaning, 

data integration, data transformation, data reduction and data discretization.  

 

Real world data is often dirty: incomplete (e.g. lacking attribute values, lacking 

certain attributes of interest, or containing only aggregate values), noisy (e.g. 

containing errors or outliers), and inconsistent (e.g. containing discrepancies in 

codes or names). Data should be cleaned to improve its quality before we use it 

for data mining. There are several methods to clean raw data, such as the binning 

method, clustering, or regression (Sushmita Mitra & Acharya, 2003). In our data 

set of SST, approximately 15% data are missing, and these missing data have 

been replaced by smoothing averages. Missing values also can be replaced by a 

global constant or the most probable value based on Bayesian formula or 

decision tree (P. Liu, El-Darzi, & Lei, 2008).  
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After cleaning, the data have been integrated to a single database from multiple 

sensors.  In the data transformation step, a scaled spatial distance matrix has 

been obtained by employing min-max normalization, and a normalized feature 

distance matrix has been created by employing z-score standardization. A 

weighted matrix is obtained by associating different weights to these two 

normalized matrices and combining them. By employing a clustering algorithm 

on the weighted matrix, we can identify the sensors that are spatially close and 

produce similar SST values and generate a temporal information system (TIS) for 

a particular cluster. The goal of clustering is to obtain reduced representation in 

volume that produces the same or similar analytical results by finding the 

natural groupings in the data.   

 

The last step of the data preprocessing is data discretization and data encoding. 

It is another data reduction technique but with special importance. Data 

discretization converts continuous data attribute values into a finite set of 

intervals with minimal loss of information. Discretization significantly improves 

the quality of the discovered knowledge and expedites several data mining tasks 

such as association rule discovery, classification, and prediction. We have 

discretized the SST time series by using a standard deviation classifier (Table 

4.9).    
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4.3.1 Sensors’ Locations 
 

 

Sensors‟ locations have been represented by their latitudes and longitudes. 

However, since lat-long is not a very convenient way of expressing distance, we 

convert it to a degree decimal notation. Table 4.2 shows the latitude and 

longitude of the sensors used for our research in degree decimal notation. 

Table 4. 2: The Latitudes and longitudes of the sensors 

Sensor 
 ID  

Sensor 
Latitude  

Sensor 
Longitude  

sst0n147e_hr 0.0000 147.0000 

sst0n156e_hr 0.0000  156.0000 

sst2n137e_hr 2.0000 137.0000 

sst2n147e_hr 2.0000 147.0000 

sst2n156e_hr 2.0000 156.0000 

sst2s156e_hr -2.0000 156.0000 

sst5n137e_hr 5.0000 137.0000 

sst5n147e_hr 5.0000 147.0000 

sst5n156e_hr 5.0000 156.0000 

sst5s156e_hr -5.0000 156.0000 

sst8n137e_hr 8.0000 137.0000 

sst8n156e_hr 8.0000 156.0000 
 

4.3.2 Conversion of Sensors’ Spatial Distance to Great Circle Distance 
 

 

The distance between two sensors is not measured in Euclidean distance; it is 

measured in great circle distance (non-Euclidean). A great circle is a section of a 

sphere that contains a diameter of the sphere. The great circle distance is the 

shortest distance between any two points on the surface of a sphere (Fig 4.5).             
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Great-circle distance (d) for radius r is given by:  

where,   

 =  

 

(φs, λs); (φf, λf) are the geographical latitude and longitude of two points 

respectively. 

Δφ, Δλ are their differences, and  is the spherical distance or angular 

difference. 

4.3.3 The Spatial Distance Matrix (in Meter) 
 

 

The distance between two sensors is calculated based on geodesic curves, using 

geographic coordinates projected on to the „GRS 80‟ Spheroid. The spatial 

distance matrix is shown in Table 4.3. 

Table 4. 3: Spatial distance matrix 

Sensor ID sst0n147e_hr sst0n156e_hr sst2n137e_hr sst2n147e_hr … 

sst0n147e_hr 0 1007908.5 1134728.6 221149.45 … 

Great circle 
Small circles 

Figure 4. 5: Great circle of a sphere 
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sst0n156e_hr 1007908.5 0 2117206.4 1007606.7 … 

sst2n137e_hr 1134728.6 2117206.4 0 1112519.6 … 

sst2n147e_hr 221149.45 1007606.7 1112519.6 0 … 

… … … … … … 
 

4.3.4 The Normalized Spatial Distance Matrix 
 

 

The distance between sensors is transformed by using max-min normalization 

technique so that the distance value is scaled to fall in the range of 0 ≤ Sv ≤1. 

 

Table 4.4 shows the normalized spatial distance matrix.  

Table 4. 4: The normalized spatial distance matrix 

Sensor_ID sst0n147e_hr sst0n156ehr_ sst2n137e_hr sst2n147e_hr … 

sst0n147e_hr 0 0.3673942 0.419318 0.0452723 … 

sst0n156e_hr 0.367394195 0 0.8215727 0.3672706 … 

sst2n137e_hr 0.419317976 0.8215727 0 0.410225 … 

sst2n147e_hr 0.045272342 0.3672706 0.410225 0 … 

… … … … … … 
 

4.3.5 The Feature Distance Matrix 
 

 

The feature distance is transformed by employing the z-score standardization 

technique where a z-score is calculated as follows: 
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represents the average feature distance and  specifies the standard deviation. 

The feature distance matrix is shown in Table 4.5.  

 

Table 4. 5: The feature distance matrix 

 
sst0n147e_hr sst0n156e_hr sst2n137e_hr sst2n147e_hr … 

sst0n147e_hr 0 87.38309106 89.86426229 57.77247292 … 

sst0n156e_hr 87.38309106 0 92.93030761 86.43789524 … 

sst2n137e_hr 89.86426229 92.93030761 0 89.16191319 … 

sst2n147e_hr 57.77247292 86.43789524 89.16191319 0 … 

… … … … … … 

       

4.3.6 The Scaled Feature Distance Matrix 
 

 

 The scaled feature distance matrix is obtained from the previous matrix by 

employing the max-min normalization scheme on the data (Table 4.6). 

Table 4. 6: The scaled feature distance matrix. 

 
sst0n147e_hr sst0n156e_hr sst2n137e_hr sst2n147e_hr … 

sst0n147e_hr 0 0.570634163 0.618449479 0 … 

sst0n156e_hr 0.570634163 0 0.67753606 0.55241904 … 

sst2n137e_hr 0.618449479 0.67753606 0 0.604914321 … 

sst2n147e_hr 0 0.55241904 0.604914321 0 … 

… … … … … … 
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4.3.7 The Matrix by Combining Normalized Spatial and Feature Distances 
 

The weighted matrix is obtained by associating different weights to the 

normalized spatial and feature distance matrices and then combing the two 

matrices (Table 4.7). 

In general, weighted matrix = S = S1* ω1 +S2* ω2; for research model, S = 

S1*0.3+S2*0.7 

 
 

Table 4. 7: The weighted matrix by combining normalized spatial and feature distances 

 

 

sst0n147e_hr sst0n156e_hr sst2n137e_hr sst2n147e_hr … 

 
sst0n147e_hr 0 0.509662 0.55871 0.013582 … 
 
sst0n156e_hr 0.509662 0 0.720747 0.496875 … 
 
sst2n137e_hr 0.55871 0.720747 0 0.546508 … 
 
sst2n147e_hr 0.013582 0.496875 0.546508 0 … 

… 
… … … … … 

 

     

4.3.8 The Clustering of Sensor Data 
 

 

Clustering is a useful technique for discovering knowledge from a sensor 

dataset. It is considered an unsupervised learning when data label is undefined. 

Clusters are natural groupings of sensors based on the similarities between them. 

The distance between sensors in a cluster is less than the distance between a 

sensor in a cluster and any sensor outside the cluster. By clustering sensor data, 
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we can find out the sensors in the TAO/TRITON network that are proximal and 

have similar SST measurements. Once the sensors are identified, we can generate 

temporal information system (TIS). The advantages of clustering in WSN that 

come from in-network data aggregation are as follows: 

- Increases data homogeneity 

- Eliminates data redundancy 

- Reduces global communication 

- Improves resource efficiency 

- Prolongs network lifetime 

- Provides load balancing 

- Removes outliers 

4.3.8.1 The Clustering Algorithms for WSN 
 

 

The clustering algorithms for WSN are discussed in detail in Chapter 2. However 

we cannot use them for the current research since most of them require at least 

one real time parameter, which is not available in the public domain of the 

TAO/TRITON project. For instance, the energy-based algorithms LEACH and 

HEED require information about the energy levels of the sensors in real time. 

The Weighted Clustering Algorithm (WCA) elects a node as a cluster head based 

on the number of neighbors, transmission power, battery life and mobility rate of 

the node (Chatterjee, and, & Turgut, 2002; Chatterjee, Das, & Turgut, 2002). 

Hence we selected a simple and basic clustering algorithm in data mining, 
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namely, the hierarchical agglomerative clustering algorithm, with some 

modification, to meet our research requirements. It is noted that the main focus 

of our research is not clustering but management of uncertainty stemming from 

spatio-temporal patterns in WSN. We use clustering as a preprocessing step of 

data preparation to simulate WSN data and to increase data homogeneity. 

 

Hierarchical clustering algorithms create hierarchical nested partitions of the 

dataset by using a tree-structure called a dendogram and some termination 

criteria. It can be categorized as agglomerative or divisive. Hierarchical 

agglomerative clusters are formed in a bottom-up fashion, starting from the 

individual sensors at the leaves as separate clusters and iteratively progressing 

upward by merging closest clusters until all sensors belong to one cluster. On the 

other hand, divisive algorithm clusters are created in a top-down fashion, 

starting from a single cluster at the root and iteratively progressing down to the 

leaves by splitting into clusters. The merging of clusters can be achieved mainly 

in two different ways: single linkage and complete linkage. In single linkage, two 

clusters will combine if the minimum distance between two sensors from two 

different clusters is the least. On the other hand, complete linkage combines two 

clusters if all sensors in one cluster are close to all sensors in the other (Sushmita 

Mitra & Acharya, 2003). Our algorithm is based on single linkage agglomerative 

clustering. 
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4.3.8.2 The Modified Graph-theoretic Single Linkage Clustering Algorithm 
 

 

The algorithm focuses on the weighted sum of the spatial distance and feature 

distance. This is an extension of agglomerative hierarchical algorithm. The nodes 

represent sensors and the edges denote the proximities between sensors. The 

proximity matrix (S) is given by (S) = w1 * S1 + w2 *S2 where, S1 is a scaled 

spatial distance matrix and S2 is a scaled attribute distance matrix; w1 and w2 are 

weights associated with the scaled spatial distance matrix and attribute distance 

matrix, respectively. They are generic and can be defined based on the 

applications. 

 

Single linkage clustering algorithm: 

Input: proximity matrix; Output: sets of clusters. 

 

Let be D(x, y) the distance between clusters x and y and N(x) the nearest neighbor of cluster x. 

1. Initialize as many clusters as the number of sensors 

2. For each pair of clusters (x, y) compute D(x, y) 

3. For each cluster x compute N(x) 

4. Repeat until obtain the desired number of clusters 

a) Determine x, y such that D(x, y) is minimized (i.e  

b) Agglomerate cluster x and y 

c) Update each D(x, y) and N(x) as necessary 

5. End of repeat 

 

The cluster function can be used to prune branches off the bottom of the tree and 

assign all the objects below each cut to a single cluster and creates a partition of 
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the data. The cluster function can create these clusters by detecting natural 

groupings in the hierarchical tree or by cutting off the tree at an arbitrary point. 

 

 4.3.8.3 The Dendrogram for Clustering Spatially Close Sensors 
 

 

Figure 4. 6: A dendrogram for clustering sensors which are spatially close 

 

Leaves represent sensors and the length of the paths between leaves represents 

the spatial distance between sensors. Initially each cluster forms a singleton 

cluster so that there are N singleton clusters for N sensor nodes. Then the two 

closest sensors merge into a single cluster. This process continues until all 

sensors belong to a single cluster. In Fig 4.6, sensors 2 and 5 merge into a single 

cluster since they are the closest neighbors, then sensors 1 and 4 combine, and so 

on. In each iteration, the minimum distance between the clusters is recalculated 

as cluster formation continues and the decision should be made based on the 
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updated distance.  The details of node linkage at different threshold distances are 

shown in Table 4.8.  

 

4.3.8.4 The Sensor Node Linkage at Different Thresholds 
 

 

The leaf nodes in the cluster hierarchy are the sensors in the original dataset, 

numbered from 1 to m. They are the singleton clusters from which all higher 

clusters are built. Each newly formed cluster, corresponding to row i in z, is 

assigned the index m+i, where m is the total number of initial leaves (sensors). 

Table 4. 8: The node linkage at different threshold 

Node 
 

Node 
 

Threshold 
Distance 

2 5 0 

1 4 0.045272 

6 10 0.09055 

3 7 0.09055 

9 12 0.090562 

8 14 0.135822 

11 16 0.158473 

13 15 0.181092 

17 20 0.294286 

18 21 0.415376 

19 22 0.721141 
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4.3.8.5 The Iterations of Clustering Algorithm  
 

   

 
 

 

 
 

 

 
Figure 4. 7 a: Graph-based neighborhoods with spatial and feature distances thresholds 
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       Figure 4. 7b: Graph-based neighborhoods with spatial distance thresholds (Continued). 
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The iterations of the hierarchical algorithm are shown in Fig 4.7a and Fig 4.7b. 

Initially each sensor is considered as a single cluster, called singleton cluster and 

thus the total number of sensors and clusters both initially are 12. The clusters 

are agglomerated depending on the threshold distances, as shown in Table 4.8.  

4.3.8.6 The Validation of Clustering Sensor Data 
 

 

The cophenetic correlation coefficient is a measure used to determine the 

closeness of data and the cluster. The cophenetic correlation coefficient for a 

cluster tree is defined as the linear correlation coefficient between the cophenetic 

distances obtained from the tree (dendrogram), and the original distances (or 

dissimilarities) used to construct the tree. Thus, it is a measure of how faithfully 

the tree represents the dissimilarities among the observations. The closer the 

cophenetic correlation coefficient c gets to 1, the more accurately clustering 

solution reflects the data. The cophenetic correlation between Z and Y is defined 

as: 

 

where, Yij is the distance between object i and j in y 

 Zij is the cophenetic distance between objects i and j, from z 

 y and z are the averages of Y and Z, respectively 

 Y is the distance matrix 



178 

 

 

 

 Z is the cophenetic distance matrix 

 

In general, C = cophenetic (Z, Y) computes the cophenetic correlation coefficient 

for the hierarchical cluster tree represented by Z, where Z = linkage(Y). The 

linkage function creates a hierarchical cluster tree, using linkage algorithm. The 

input matrix, Y, is the distance matrix of length m(m-1)/2 where m is the number 

of sensors. 

4.3.8.7 Dendrogram for Clustering Sensors with Similar SST  
 

cophnet (c) = 0.8938 

 

Figure 4. 8: A dendrogram for clustering sensors which have similar SST values 

 

The dendrogram is created by grouping the sensors with the similar SST values 

by using the same procedure, single-linkage hierarchical clustering. The leaves of 

the dendrogram represent the sensors, and the length of the paths between 
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leaves represents the feature distance between the sensors. The value of 

cophenetic coefficient c = 0.8938 implies the clusters closely reflects the dataset. 

 

4.3.8.8 The Dendrogram for Clustering Using the Weighted Algorithm 
 

The dendrogram in Fig 4.9 is created by grouping the sensors that are spatially 

close and have similar SST values by using the extended single-linkage 

hierarchical clustering where weighted matrix = s1 * 0.3 + s2 * 0.7 ; s1 and s2 are 

the spatial and feature distances of the sensors, respectively. 

 

 

 

 

 

 
 

Figure 4.9: The dendrogram for clustering sensors which are spatially close and have similar 
SST values 
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We associate more weight on feature distance than spatial distance since the 

objective is to discover spatio-temporal patterns from the time series of the 

sensor dataset where feature values are similar. The leaves of the dendrogram 

represent the sensors and the length of the paths between the leaves denotes the 

weighted sum of spatial and feature distances between sensors. The value of 

cophenetic coefficient c = 0.7933 implies high-quality clustering. A cut in the 

dendrogram is made at a threshold > 0.6 and two clusters are obtained, shown 

by two big circles. The sensors within the circle (cluster), denoted by the dotted 

line, are only considered for the current research. 

4.3.9 Data Discretization 
 

 

Once we determine the sensors that are spatially close and have similar SST 

values, we can create temporal information system from the time series of SST 

obtained from the selected sensors. However, real time SST data is a continuous 

data and cannot be used in rough set based rule induction or decision tree 

generation since it is unlikely that these values match with the values of unseen, 

test data. Rough set theory has been mainly developed for nominal feature 

spaces (categorical or symbolic values). In order to use numerical values in RS 

either we need to convert numerical data into symbolic data through 

discretization before rule induction or both at the same time (Grzymala-Busse, 

2003). 
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Discretization algorithms can be broadly classified as supervised and 

unsupervised discretization. In the supervised method, we consider all attributes 

as well as the information about decision or concept membership while the 

unsupervised algorithm only operates on the attributes but not on decisions 

(Grzymala-Busse, 2007). An unsupervised method is a blind method where no 

prior information is available; it solely depends on the distribution of attribute 

values. On the other hand, a supervised method uses domain knowledge and a 

priori information (I. U. Sikder, 2003). If the algorithm works on all attributes at 

the same time, then it is called global; otherwise it is local one i.e. one attribute at 

a time.  Some well-accepted discretization algorithms are those of (Fayyad & 

Irani, 1993) and (Dougherty, Kohavi, & Sahami, 1995):  

Unsupervised discretization method: 

- Equal frequency binning 

- Equal width binning 

- Clustering 

Supervised discretization method: 

- Entropy-based 

- Purity-based 

 

We used the cluster, marked by a dotted line in Figure 4.9, which consists of the 

sensors s3, s7, s8, s9, s11 and s12.  We reduced the number of continuous values of 

SST by dividing the range of the attribute SST into intervals and assigning a label 
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to each interval. The division was based on several global cuts, performed only 

once for all attributes (sensors), and the cuts are at the mean value ( ), at the first 

standard deviation ( ) on the both sides of the mean value, and at 1.5  on the 

both sides of mean value. Then interval labels are used to encode the actual 

attribute values, shown in Table 4.9. Thus, the continuous time series of sea 

surface temperature recorded by these sensors are discretized into five intervals 

as follows: 

T(- ,  - 3 /2[;]  - 3 /2,  - [;]  - ,  [;] ,  + [;]  + ,  + 3 /2[;]  + 3 /2, 

) 

The intervals are numbered from 1 to 5, respectively where mean  = 29.26415, 

standard deviation  = 0.655136. 

 
Table 4. 9: Discretization intervals and the labels 

Interval Range Label 

   

(- ,  - 3 /2) 0 - 28.28145 1 

(  - 3 /2,  - ) 28.28145 - 28.60901 2 

(  - , ) 28.60901 - 29.26415 3 

( ,  + ) 29.26415 - 29.91929 4 

(  + ),  + 3 /2) 29.91929 - 30.24685 5 

 

 

Table 4.10 and Table 4.11 show the continuous values of SST within a cluster 

(before data discretization) and the discretized values of SST within a cluster 

(after discretization), respectively.  
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Table 4. 10 : Sea surface temperature readings within a cluster before discretization 

sst2n137e_hr sst5n137e_hr sst5n147e_hr sst5n156e_hr sst8n137e_hr sst8n156e_hr 

28.88 28.24 29.12 29.16 27.65 28.27 

28.87 28.25 29.15 29.17 27.68 28.29 

29.01 28.25 29.18 29.19 27.72 28.31 

29.12 28.32 29.22 29.2 27.78 28.33 

29.15 28.47 29.24 29.19 27.85 28.33 

29.34 28.53 29.29 29.19 27.92 28.34 

29.26 28.55 29.28 29.19 28 28.34 

29.4 28.55 29.27 29.19 28.03 28.32 

29.33 28.58 29.25 29.19 28.01 28.3 

29.18 28.6 29.22 29.19 27.91 28.29 

29.15 28.55 29.2 29.2 27.85 28.28 

… … … … … … 

 

 
Table 4. 11: Sea surface temperature readings within a cluster after discretization 

sst2n137e_hr sst5n137e_hr sst5n147e_hr sst5n156e_hr sst8n137e_hr sst8n156e_hr 

3 1 3 3 1 1 

3 1 3 3 1 2 

3 1 3 3 1 2 

3 2 3 3 1 2 

3 2 3 3 1 2 

4 2 4 3 1 2 

3 2 4 3 1 2 

4 2 4 3 1 2 

4 2 3 3 1 2 

3 2 3 3 1 2 

3 2 3 3 1 1 

… … … … … … 
 

4.3.10 Temporal Information System of Rough Sets 
 

Once discretized, the nominal data set can be directly used in rough set based 

data mining. The output of each global cut T(- ,  - 3 /2[;]  - 3 /2,  - [;]  - , 
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 [;] ,  + [;]  + ,  + 3 /2[;]  + 3 /2, ) is used as the input of the temporal 

information system in rough set shown in Table 4.12a. 

 

The numeric dataset is created by using the following function: 

 

where, Z is the set of all integers, s(t) is the continuous value of the sensor 

reading, and n is the encoded value of the sensor reading. Each sensor value s(t) 

in Table 4.10 is encoded by the above function, and a temporal information 

system for numeric data is created as shown in Table 4.12b.  

 

The data, capable of handling outlier data, is created by the following function: 

 

where s(t) is the continuous value of the sensor reading and r is the mean value 

calculated from the continuous sensor readings in Table 4.10.  

Whenever the sensor reading s(t) is greater than or equal to the threshold (r), the 

continuous value s(t) is encoded as 1, otherwise s(t) is encodes as 0.  Once we 

determine  

Table 4. 12a, b, c: Temporal information system within a cluster for discrete, numeric, and 
Boolean dataset 

6 
4368 

A[0] A[1] A[2] A[3] A[4] A[5] 

1 3 1 3 3 1 1 

2 3 1 3 3 1 2 

3 3 1 3 3 1 2 

4 3 2 3 3 1 2 
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5 3 2 3 3 1 2 

6 4 2 4 3 1 2 

7 3 2 4 3 1 2 

8 4 2 4 3 1 2 

9 4 2 3 3 1 2 

10 3 2 3 3 1 2 

11 3 2 3 3 1 1 

… … … … … … … 

 
6 

4368 
A[0] A[1] A[2] A[3] A[4] A[5] 

1 29 29 30 30 28 29 

2 29 29 30 30 28 29 

3 30 29 30 30 28 29 

4 30 29 30 30 28 29 

5 30 29 30 30 28 29 

6 30 29 30 30 28 29 

7 30 29 30 30 28 29 

8 30 29 30 30 29 29 

9 30 29 30 30 29 29 

10 30 29 30 30 28 29 

11 30 29 30 30 28 29 

… … … … … … … 

 
6 

4368 
A[0] A[1] A[2] A[3] A[4] A[5] 

1 0 0 0 0 0 0 

2 0 0 0 0 0 0 

3 0 0 0 0 0 0 

4 0 0 0 0 0 0 

5 0 0 0 0 0 0 

6 1 0 1 0 0 0 

7 0 0 1 0 0 0 

8 1 0 1 0 0 0 

9 1 0 0 0 0 0 

10 0 0 0 0 0 0 

11 0 0 0 0 0 0 

… … … … … … … 

 

the outlier and encode the sensor readings in Table 4.10 by employing the above 

function, a temporal information system can be created (shown in Table 4.12c) 

which can then be directly used for outlier data mining. 
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4.4 Spatio-temporal Pattern and Rule Generation 
 

 

The algorithm for template and rule generation explained in Chapter 3 is tested 

on the discrete, numeric, and outlier datasets. The experiment is repeated also for 

several different template qualities and window sizes. However, for the sake of 

space, all results are not shown in this dissertation. 

4.4.1 Spatio-temporal Patterns Generation 
 

4 
214  

Interval  Code  Template  

1  0  0   

2  1  1  a1=29 & a2=30 & a3=30 & a4=28 & a5=29  

3  2  2  a1=29 & a2=30 & a3=30 & a5=29  

4  9  3  a2=30 & a3=30 & a5=29  

5  10  4  a2=30 & a3=30 & a4=28 & a5=29  

6  14  5  a0=30 & a2=30 & a3=30 & a4=28 & a5=29  

7  16  4  a2=30 & a3=30 & a4=28 & a5=29  

8  17  3  a2=30 & a3=30 & a5=29  

9  18  6  a0=30 & a1=30 & a5=29  

10  19  7  a0=30 & a1=30 & a2=29 & a4=28 & a5=29  

11  20  8  a0=30 & a2=29 & a5=29  

12  22  9  a0=30 & a3=30 & a5=29  

13  23  0   

14  25  10  a1=30 & a5=29  

15  27  11  a0=30 & a1=30 & a2=30 & a5=29  

16  28  12  a1=30 & a2=30 & a5=29  

17  29  10  a1=30 & a5=29  

… …  … … 

210  32 8 0   

211 331  85  a0=30 & a2=30  

212  332  107 a2=30 & a4=30  

213 334  68 a1=30 & a2=30 & a4=30  

214 335 69 a0=30 & a1=30 & a2=30 & a4=30  
 

Table 4. 13 Spatio-temporal Templates for numeric data: Window size = 26, Step size = 13, Quality = 90 
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Table 4.13 shows a series of homogeneous spatio-temporal patterns generated by 

scanning the temporal information system for the numeric dataset shown in 

Table 4.12a within a window of 26 hours in each interval.  The threshold used for 

obtaining these patterns is a quality of 90%, which means that the pattern must 

appear at least 90 % of the time the size of the window. Then the upper and the 

lower bounds of the window where the patterns satisfy the quality requirement 

are determined. It is also possible that there is no interesting pattern in an 

interval. The windows are refreshed after 13 hours and the same procedure of 

discovering interesting patterns continues until the last element of the TIS is 

scanned. By scanning the TIS of 4368 objects, we obtained only 107 unique 

spatio-temporal patterns, determined from the unique number called code 

associated with each pattern.  

 

Table 4.13 provides much interesting information, such as the number of unique 

templates in the TIS, probability mass function of the templates, mean template 

density, etc. The probability mass function for the templates generated from the 

numeric data for window size = 26 hours, step = 13 hours, and the quality = 90% 

is shown in Fig. 4.10. The significance of the probability mass function will be 

evident when the uncertainty management issues come in the following sections. 
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Figure 4. 10: Probability mass function of templates 

 

4.4.2 Multi-valued Decision System 
 

Table 4. 14 An Multi-valued Decision System for numeric data: Window size = 26, Step size = 13, Quality = 90 

3 
187  

A[0]  A[1]  Decision  

1  {29}  {30}  {2}  

2  {5}  {4}  {3}  

3  {44}  {37, 43}  {3}  

4  {32}  {33}  {3}  

5  {1}  {2}  {3}  

6  {2}  {3}  {4}  

7  {4}  {5}  {4}  

8  {3}  {4}  {5}  

9  {4}  {3}  {6]  

10  {3}  {6}  {7}  

11  {6}  {7}  {8}  

12  {7}  {8}  {9}  

13  {59, 65}  {66}  {10}  

14  {8}  {9}  {10}  

15  {11}  {12}  {10}  

16  {9}  {10]  {11}  

17  {10}  {13}  {12}  

18  {10}  {11}  {12}  

19  {42}  {43}  {13}  
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20  {12}  {10}  {13}  

21  {13}  {12}  {14}  

22  {20}  {21}  {14}  

…  …  …  …  

 

The multi-valued decision table, shown in Table 4.14, is created from the series of 

the templates generated in the previous section. The table has 187 cases and 3 

attributes. While constructing the decision table, only the templates at time (t-1) 

and (t–2) are considered as the condition attributes for the decision making at 

time t. This table shows that the multi-valued decision systems can have multiple 

values for an attribute i.e. it supports parallel templates. The multi-valued 

decision system is used to generate temporal rules for decision making. 

4.4.3 Rough Set Rule Induction 
 

Table 4. 15 Rough set Rule induction for numeric data set: Window size = 26, Step size = 13, Quality = 90 

3 
264  

Rule  Support  Match  

1  (30ca1) => D=2  1  1  

2  (29ca0) => D=2  1  1  

3  (5ca0) => D = 3  1  1  

4  (44ca0)&(37ca1) => D=3  1  1  

5  (37ca1)&(43ca1) => D=3  1  1  

6  (44ca0)&(43ca1) => D=3  1  1  

7  (33ca1) => D=3  1  1  

8  (32ca0) => D=3  1  1  

9  (1ca0) => D=3  1  1  

10  (2ca0)&(3ca1) => D=4  1  1  

11  (5ca1) => D=4  1  1  

12  (3ca0)&(4ca1) => D=5  1  1  

13  (4ca0)&(3ca1) => D=6  1  1  

…  … … …  

171 (51ca0)&(69ca0) => D=68 1  1  

172 (51ca0)&(51ca1) => D=68 1  1  
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17 3 (68ca1) => D=69 3 3 

… … … … 

260 (68ca0) => D=69 1   2 

261 (68ca0) => D=70 1   2 

262 (58ca0)&(81ca1) => D=78 1  2 

263 (58ca0)&(81ca1) => D=81 1  2 

264 (81ca0)&(73ca1) => D=89 1 2 

 

Before generating the rules from the multi-valued decision system, an important 

step is to extract and eliminate the redundant patterns which are not useful for 

decision making. The next important step is to find the reduct, the minimal set of 

attributes to preserve the equivalence relation. A rough set based heuristic 

algorithm is used to determine the reducts by employing the degree of 

dependency as a measure. Once the reducts are computed, the temporal rules are 

induced by associating the values from the reduced table. Table 4.15 lists the 

temporal rules generated from the multi-valued decision system created in the 

previous section. The table shows that 264 temporal rules are generated from the 

temporal information system of 4368 observations, which implies that a 

significant data reduction can be achieved by employing RS rule mining on 

sensor data. 
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4.4.4 Rough Set Rule Validation and the Confusion Matrix 
 
Table 4. 16 Rough set Rule Validation: Confusion Matrix (Numeric data set) 

Predicted Values 
A

ct
u

al
 V

a
lu

es
 

56 

53  
…  {42,50}  {42}  {43}  {44}  {45}  {46}  {47}  {48}  {49}  … Accuracy  

…  …  …  …  …  …  …  …  …  …  …  … …  

{42,50}  …  0  0  0  0  0  0  0  0  0  … 0  

{42}  …  0  2  0  0  0  0  0  0  0  … 1  

{43}  …  0  0  1  0  0  0  0  0  0  … 1  

{44}  …  0  0  0  1  0  0  0  0  0  … 1  

{45}  …  0  0  0  0  1  0  0  0  0  … 1  

{46}  …  0  0  0  0  0  1  0  0  0  … 1  

{47}  …  0  0  0  0  0  0  1  0  0  … 1  

{48}  …  0  0  0  0  0  0  0  1  0  … 1  

{49}  …  0  0  0  0  0  0  0  0  1  … 1  

Accuracy  …  Unde- 

fined  

1  0.5  1  1  1  1  1  1  … 0.897 

 

Instead of sending the entire temporal information system, only the rules 

generated at the cluster head are periodically sent to the sink. Thus it is very 

important to ensure that these rules represent the temporal information system 

before they are sent to the sink. In other words, we should perform the fidelity 

test on the rules in order to verify how faithfully the rules represent the 

aggregated data at the cluster head. The fidelity test on the rules as a measure of 

rule quality is suggested by many researchers (Bologna, 2002a, 2002b; Craven & 

Shavlik, 1999).  

 

The datasets are randomly partitioned into two disjoint datasets, and tests are 

performed on the both sets to ensure the rule fidelity and consistency. By 
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constructing the confusion matrix where each column denotes the predicted 

templates, each row represents the actual templates, the diagonal elements 

correspond to the correctly classified templates, and the off-diagonal elements 

signify misclassified templates, we perform the rule validation and determine the 

accuracy of classification as described in the following section. The confusion 

matrix shown in Table 4.16 is created from the numeric dataset. 

 

4. 4. 5 The Accuracy Estimation of Rules 
 

The accuracy of the classifier is defined as the ratio of the correctly classified 

templates in a class to the total number of templates in the class that are 

classified. Thus, the accuracy of classification ( ) is computed as: 

  = Xii/N 

  where, 

  Xii is the number of diagonal elements that are classified correctly. 

  N is the number of all elements that are classified.  

The accuracy of the classifier shown in the confusion matrix is 0.897 where we 

use numeric data set, template quality = 90%, window size = 26 hrs, and step size 

= 13 hrs. The accuracy estimation is performed on different datasets and the 

results are summarized in the following section. 
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4.4.6 Comparison of Rule Mining in Discrete, Numeric, and Boolean Datasets 
 

Table 4.17: A comparison of rule mining for discrete, numeric, and outlier datasets 

 
 

Discrete  
data  

Numeric  
data  

Boolean  
data  

Temporal Information System: 
•  No. of Attributes 
•  No. of Objects  

 
6 
4368  

 
6 
4368  

 
6 
4368  

Temporal Templates: 
•  No. of Templates 
•  Parameters of templates: 

•  Quality 
•  Window Size 
•  Step 

 
151 
90 
26 
13 

 
108 
90 
26 
13  

 
93 
90 
26 
13 

Multi-valued Decision System: 
•  No. of Attributes 
•  No. of Objects 

 
3 
191  

 
3 
187  

 
3 
159  

Temporal Rules: 
•  No. of Temporal Rules 
•  Consistent Rules 
•  Inconsistent Rules  

 
317 
315 
2  

 
264 
250 
14  

 
222 
195 
27  

Accuracy: 
•  1st data set:  

•  2
n
dataset: 

 
0.969 
0.848  

 
0.897 
0.891  

 
0.942 
0.778  



194 

 

 

 

Table 4.17 summarizes the results regarding the pattern generation and rule 

extraction from discrete, numeric, and outlier datasets.  For the same template 

quality = 90%, window size = 26 hrs, and step size = 13 hrs, we obtain 151 unique 

templates from discrete data set, 108 unique templates from numeric dataset, and 

93 unique templates from Boolean dataset.  The potential cause for this variation 

may be attributed to the number of discrete levels for each data set. For instance 

we used 5 levels to discretize discrete dataset, 4 levels for the numeric dataset, 

and 2 levels for the Boolean or outlier data set. For numeric data, we do not 

explicitly use 4 levels but we use ceiling function to encode the sensor readings. 

Since the SST values change within 28-31 degree, the encoding based on ceiling 

function produces only 4 levels. Because of the combinatorial effect of different 

encoded values, we get more unique templates from the discrete dataset, 

compared to the other data sets. Consequently, the number of objects in the 

multi-valued decision system and the number of temporal rules are also higher 

for discrete dataset than numeric and Boolean datasets. However, there is no 

significant difference in average estimated accuracy for these datasets. 

4.4.7 Data Compression in Spatio-temporal Pattern Generation 
 

The pattern-based data aggregation technique proposed in the dissertation 

eliminates data redundancy from the sensor reading and extracts the rules at the 

cluster head nodes. It prevents the redundant data transmission from the cluster 

head nodes to the sink by intelligently determining the features that are not 
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important for decision making and eliminating those features locally at cluster 

heads. Thus it has the potential to provide significant reduction in data 

communication as well as energy, given that the data transmission is the major 

cause of energy consumption. In the following section, the data compression is 

estimated for discrete, numeric, and Boolean datasets by varying the quality of 

the templates. 

4.4.7.1 Data Compression vs. Template Quality 

 

Fig. 4.11 shows that a significant data compression can be achieved by 

employing the proposed data aggregation method in the context of constantly 

evolving continuous data, such as WSN data. This result is based on the test 

performed on all three datasets, namely symbolic, numeric, and Boolean, and the 

template quality values ranging from 20% to 99%. 
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Figure 4. 11: Data compression vs. template quality 

 Fig. 4.11 shows that higher data compression is achieved with the increase of 

template quality irrespective of the datasets. This result is expected since fewer 

unique templates that can satisfy the increased quality threshold are sent to the 

sink. Also, the result shows that the highest data compression is possible with 

the Boolean datasets compared to the other datasets. This can be explained by the 

combinatorial effect of a fewer discrete levels which is 2 in the Boolean data set, 

compared to the 4 discrete levels for numeric and 5 discrete levels for discrete 

datasets. The compression is estimated by the number of representative rules 

generated from the spatio-temporal patterns divided by the number of objects in 

the temporal information system since only the rules are sent to the sink. 
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4.4.7.2 Compression Loss Due to Vacuous Templates 
 

 

Figure 4.12: Data compression loss due to vacuous templates 

Fig. 4.12 shows the effect of the data compression loss due to vacuous templates 

for discrete data sets. In order to obtain the actual data compression resulting 

from the data aggregation at the cluster head it is important to compute the 

compression loss due to vacuous templates that do not provide any information 

in the context of data aggregation. Once we know the compression loss due to 

vacuous templates, the effective data compression can be computed by 

subtracting the compression loss from the apparent data compression. Fig 4.12 

shows the apparent and the effective data compression at different quality levels 

for discrete datasets.  
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4.5 Uncertainty Management in WSN 
 

Uncertainty management is a growing research area (Klir & Wireman, 1999). The 

interest in uncertainty management will grow as we continue to develop 

complex systems and the technologies to analyze the complex systems for critical 

decision making. WSN is an example of a complex system that has a potential to 

observe and understand large-scale, real-world phenomena at a fine spatio-

temporal resolution and help us with critical decision making. However, severe 

resource constraints, frequent changes in the dynamics of the environment, and a 

large number of unattended sensors create uncertainties in WSN. Thus it is 

important to characterize and quantify the uncertainties that limit the potential 

applications of WSN in real life problems. In the following sections, several 

uncertainty measures are defined and quantified in the context of the template 

generation and data aggregation in WSN. The sensitivity analysis is also 

performed on the uncertainty measures to determine the tradeoff among them. 

4.5.1 The Formal Definitions of the Uncertainty Measures in WSN 
 

There are several uncertainty measures that engineers or scientists find useful to 

quantify different categories of uncertainties, such as entropy, nonspecificity, 

vagueness, etc. The following uncertainty measures are defined in the context of 

template generation and data aggregation in WSN:  

 Entropy-based uncertainty - results from conflict among evidential 

claims. 
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 Nonspecificity - stems from imprecision associated with the sizes or 

cardinalities of relevant sets of alternatives. 

 Fuzziness or vagueness results from the imprecision in boundaries 

of sets.  

 Unique templates – determine the number of unique spatio-

temporal patterns in a given time period. 

 Template Recurrence – determines the frequency of the occurrences 

of a particular spatio-temporal pattern in a dataset for a given time 

period. 

 Template Recurrence Variability - measures the variation of the 

frequency of occurrences of a particular spatio-temporal pattern in 

a dataset. 

 Template Vacuity – counts vacuous template that implies there is 

no interesting patterns or templates in dataset. 

 

Definition 4.1 The entropy-based uncertainty H (x) in the temporal information 

system S = {x1, x2, …, xn, s1, s2, …, sn} stemming from the templates 

},...,,{ 21 k is defined as:   
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where x1, x2, …, xn are the sensor readings at time t1, t2, …, tn; s1, s2, …, sn are the 

set of sensors within the cluster of interest; and p1, p2, …. pk denote the 

probabilities of the template 1  , 2  , … , k  , respectively, so that   

 

Definition 4.2 The nonspecificity-based uncertainty N(m) in the temporal 

information system S = {x1, x2, …, xn, s1, s2, …, sn} stemming from the templates 

},...,,{ 21 k is defined as: 

 

where x1, x2, …, xn are the sensor readings at time t1, t2, …, tn; s1, s2, …, sn are the 

set of sensors within the cluster of interest; , , …  denote the basic 

probability assignments of the subsets , , …, , respectively;  , , …, 

are the subsets of the power set P(A) of the set of templates 1  = 1  , 2  , … ,

k ; m is the basic probability assignment of the power set P(A) so that  

;  ; and ) for A = 

{ , , …, ). 

 

Definition 4.3 The vagueness-caused uncertainty ( ) in the temporal 

information system S = {x1, x2, …, xn, s1, s2, …, sn} stems from the inconsistent 

rules, derived from the boundary region of approximation space, that cannot 
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certainly predict the causal relationships among the template sets 

},...,,{ 21 k and can be approximated as: 

 

where, I is the number of inconsistent rules derived from the boundary region of 

the concept and R is the total number of rules derived from the approximation 

space of positive, negative, and boundary regions.  

 

Definition 4.4 The template-based uncertainty ( ) in the temporal information 

system S = {x1, x2, …, xn, s1, s2, …, sn} stemming from the templates 

},...,,{ 21 k is defined as follows: 

 

where, k is the number of unique templates ID generated from the information 

system S, defined by the set of sensor readings x1, x2, …, xn at time t1, t2, …, tn and 

set of sensors s1, s2, …, sn and the templates must satisfy the condition 

. ;  is a predefined threshold for quality and the higher value of  

may decrease the template-based uncertainty. 

 
Definition 4.5 The mean template recurrence-based uncertainty ( ) in the 

temporal information system S = {x1, x2, …, xn, s1, s2, …, sn} stemming from the 
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templates },...,,{ 21 k  and characterizes the mean frequency of the 

templates and is computed as: 

 

where x1, x2, …, xn are the sensor readings at time t1, t2, …, tn; s1, s2, …, sn are the 

set of sensors within the cluster of interest; F1, F2, ... Fk denote the frequencies of 

the templates 1  , 2  , … , k  , respectively; The higher values of  implies 

lower mean template based uncertainties of the S. 

 

Definition 4.6 The mean template recurrence variability-based uncertainty ( ) in 

the temporal information system S = {x1, x2, …, xn, s1, s2, …, sn} stemming from 

the templates },...,,{ 21 k  characterizes the mean variation of the templates 

from the average template frequency and is computed as: 

 

where x1, x2, …, xn are the sensor readings at time t1, t2, …, tn; s1, s2, …, sn are the 

set of sensors within the cluster of interest; F1, F2, ... Fk denote the frequencies of 

the templates 1  , 2  , … , k  , respectively; and   represents the mean 

frequency of the templates. The higher values of  implies higher mean template 

recurrence-based uncertainties of the S. 
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Definition 4.7 The vacuous template-based uncertainty  in the temporal 

information system S = {x1, x2, …, xn, s1, s2, …, sn} stemming from the templates 

},...,,{ 21 k  characterizes the templates that have no interesting patterns 

and is computed as: 

 

where, n‟ ≤ N is the number of templates for which template ID = 0 and  

 generated from the information system S, defined by the set of 

sensor readings x1, x2, …, xn at time t1, t2, …, tn and set of sensors s1, s2, …, sn and; 

 is a predefined threshold for quality and in general, the higher value of  may 

increase the vacuous template-based uncertainty. 

4.5.2 The Sensitivity Analysis of the Uncertainty Measures in WSN 
 

After quantifying all the uncertainty measures that we define in the previous 

section, a sensitivity analysis is performed for each pair of uncertainty measures 

and the results are demonstrated in several graphs in the following subsections. 

This analysis is important for uncovering the tradeoff among the uncertainty 

measures.  
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4.5.2.1 Template Entropy vs. Window Size 
 

 

Figure 4.13: Template entropy vs. window size 

 

Fig 4.13 demonstrates the change of entropy by varying the window size from 5 

hours to 78 hours and the template quality from 60% to 90% in step of 10%. It 

clearly shows that the entropy decreases with the increase of window size 

irrespective of the template quality. However the decrease in entropy is drastic 

when the template quality is high. This result is expected based on the formal 

definition of entropy that we provide in the prior section and Chapter 3. The 

entropy depends on the number of templates and the split of each template. Thus 

the decreased number of wider templates brings the entropy down. This effect is 

even more drastic for high quality fewer templates. 
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4.5.2.2 Template Nonspecificity vs. Window Size 

 

Figure 4.14: Template nonspecificity vs. window size 

 
Fig 4.14 shows the change of nonspecificity by varying the window size from 5 

hours to 78 hours and the template quality from 60% to 90% in step of 10%. It 

yields that the nonspecificity increases with the increase of window size 

irrespective of the template quality. However the increase in nonspecificity is 

drastic when the template quality is low. This result is expected based on the 

formal definition of nonspecificity that we provide in the prior section and 

Chapter 3. The nonspecificity depends on the number of parallel templates i.e. 

the templates that occur in the same interval and the basic probability 

assignment of each subset of the set of parallel templates. Thus the increased 

number of low quality templates increases the nonspecificity. This effect is even 
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more drastic when the templates are wider. Although the number of templates is 

decreasing with the increase of window size, the probability assignment for the 

wider template is higher than the narrower templates because of the less 

variability in the wider templates. Thus the nonspecificity increases with the 

increase of window size. 

4.5.2.3 The Boundary Region based Uncertainty vs. Window Size 
 

 

Figure 4.15: The Boundary region based uncertainty vs. window size 
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Fig 4.15 demonstrates the change of boundary-region-based uncertainty or 

vagueness-caused uncertainty by varying the window size from 5 hours to 78 

hours for discrete, numeric, and Boolean datasets. It illustrates that the boundary 

region based uncertainty decreases with the increase of window size irrespective 

of the datasets. However the decrease in the uncertainty is drastic for Boolean 

datasets. This result is expected based on the formal definition of boundary-

region based or vagueness-caused uncertainty that we provided in the prior 

section and Chapter 3. This type of uncertainty depends on the number of 

templates and the granularity in datasets. The Boolean dataset has less 

granularity and hence more uncertainty because of the fewer number of discrete 

levels, which is 2, in contrast to 4 levels in numeric and 5 levels in discrete 

datasets. The increase in window size has a negative impact on the boundary 

region based uncertainty because of the fewer number of templates and 

consequently a fewer number of inconsistent rules induced from the boundary 

region.  

4.5.2.4 The Other Uncertainty Measures vs. Window Size 
 

Fig 4.16a demonstrates the sensitivity of the number of unique templates on 

window size for several different template qualities from 60% to 90% in step of 

10%. 
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Figure 4.16: Other uncertainty measures vs. window size: a) number of unique templates b) 
template recurrence variability c) template vacuity 
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It clearly shows that the number of unique templates decreases with the increase 

of window size irrespective of the template quality. However a further decrease 

in template number is observed when the quality of the template increases. This 

result can be explained based on the formal definition of unique template that we 

provide in the prior section and Chapter 3. The increased window size requires 

the templates to be active on the window for a longer time and hence the 

template becomes wider and the number of templates reduces.  For the same 

reason the number of unique templates decreases with the increase of template 

quality since a fewer number of templates satisfy the increased quality 

requirements. 

 

Fig 4.16b demonstrates the change of the template recurrence variability by 

varying the window size from 5 hours to 78 hours and the template quality from 

60% to 90% in step of 10%. It clearly yields that the templates recurrence 

variability decreases with the increase of window size irrespective of the 

template quality. However a further decrease in template recurrence variability 

is observed when the quality of the template increases. This result can be 

explained based on the formal definition of the template recurrence variability 

that we provide in the prior section and Chapter 3. The increased window size 

reduces the number of unique templates but increases the mean template 

recurrence and hence decreases template recurrence variability. For the same 
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reason, with the increase of template quality, the template recurrence variability 

decreases. 

 

Fig 4.16c demonstrates the change of the number of the vacuous templates by 

varying the window size from 5 hours to 78 hours and the template quality from 

60% to 90% in step of 10%. It clearly shows that the number of vacuous templates 

increases with the increase of window size irrespective of the template quality. 

However a drastic increase is observed when the quality of the template 

increases. This result can be explained based on the formal definition of the 

template recurrence variability that we provide in the prior section and Chapter 

3. The increased window size imposes additional requirements and reduces the 

number of unique templates and hence increases the number of vacuous 

templates. For the same reason with the increase of template quality the number 

of vacuous templates increases.  
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4.5.2.5  H(T)/H(T)max vs. Template Quality  

 

 

Figure 4.17: H(T)/H(T)max vs. template quality 
 

 

Fig 4.17 demonstrates the sensitivity of the normalized entropy with the template 

quality for discrete, numeric, and Boolean datasets. It shows that the ratio  

H(T)/H(T)max tends to 1 with the increase of template quality irrespective of the 

type of datasets. However the normalized entropy is higher for discrete dataset 

in comparison to numeric and Boolean datasets.  The general increase in 

normalized entropy can be explained as a consequence of the increased 

maximum entropy due to high quality fewer templates.  
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4.5.2.6 Template Nonspecificity vs. Template Quality 
 

 

Figure 4.18: Template nonspecificity vs. template quality 

 
Fig 4.18 demonstrates the sensitivity of the nonspecificity with the template 
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nonspecificity-based uncertainty decreases with the increase of template quality 

irrespective of the type of datasets. However the nonspecificity is higher for 

discrete dataset in comparison to numeric and Boolean datasets.  The general 

trend of the decrease in nonspecifity can be explained as a consequence of high 

quality fewer templates. For the same reason, the nonspecificity is lower for the 

Boolean dataset which generates fewer numbers of templates due to a fewer 

number discrete levels, which is 2, compared to 4 levels in numeric, and 5 in 

discrete datasets.  

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Template Non-specificity vs. Template Quality

Window size = 12 and step size = 6.

Template Quality

T
e
m

p
la

te
 N

o
n
s
p
e
c
if
ic

it
y
 (

in
 b

it
)

 

 

Discrete

Numeric

Boolean



213 

 

 

 

4.5.2.7 The Other Uncertainty Measures vs. Template Quality 
 

 

 

 

Figure 4.19: Other uncertainty measures vs. template quality: a) mean template recurrence b) 
template recurrence variability c) template vacuity 
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Figure 4.19a shows that the mean template recurrence decreases with the 

increase of the template quality for all datasets, but an abrupt decrease is 

observed for Boolean dataset. The general trend of the decrease in mean template 

recurrence can be justified by the fewer number of high quality wider templates, 

while the sharp fall of the template recurrence for Boolean dataset may be due to 

the  fewer templates in Boolean datasets compared to other datasets. The higher 

the value of mean template recurrence, the lower the value of uncertainty in 

information systems.  

 

Figure 4.19b shows that the mean template recurrence variability decreases with 

the increase of the template quality for all datasets but an abrupt decrease is 

observed for the Boolean dataset. The general trend of the decrease in mean 

template recurrence variability can be justified by the fewer number of high 

quality wider templates, while the sharp fall of the template recurrence 

variability for the Boolean dataset may be due to the  fewer templates in Boolean 

datasets compared to other datasets. The lower value of template recurrence 

variability is desirable in the context of uncertainty management. 

 

Fig 4.19c demonstrates the sensitivity of the template vacuity with the template 

quality. The increase in the template vacuity with the increase of template quality 

for discrete and numeric datasets can result from the higher number of vacuous 

templates that cannot satisfy the additional quality requirements. However, the 
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result shows that the template quality does not have any significant impact on 

the template vacuity for the Boolean dataset. This may be due to the fewer 

number of templates in the Boolean dataset. 

4.5.2.8 The Correlation Matrix and the Statistical Significance 
 
Table 4. 18: The correlation matrix and the statistical significance in the context of the window size (W = 6-78 

hrs, Q = 70%) 

 Window 
Size  

Unique 
Template  

Mean  
Template 
Recurrence  

Mean  
Template 
Recurrence 
Variance  

Entropy  Template 
Vacuity  

Non-
specificity  

Window Size         

Unique  
Template  

        

Mean 
Template 
Recurrence  

         

Mean 
Template 
Recurrence  
Variance  

          

Entropy             

Template  
Vacuity  

            

Nonspecificity               

 

The correlation matrix signifies the correlation among the uncertainty measures. 

The correlation coefficient matrix (R) is calculated from the input matrix (X) 

where the rows symbolize the observations and the columns characterize the 

uncertainty measures. Each element of correlation coefficient matrix (R) is 

computed, as explained in Chapter 3, by employing the following formula:  

 where, the covariance matrix C = cov(X); i and j symbolize the 
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row and the column of the matrix R. After computing the correlation coefficient 

matrix, we generate another matrix, called matrix (P), to determine the statistical 

significance of the correlation among the uncertainty measures and to test the 

null hypothesis that there is no correlation among the uncertainty measures.   

Table 4.19: The correlation matrix and the statistical significance in the context of template quality (W = 12 hrs, 

Q = 10-90%) 

 

 Quality  Unique 
Template  

Mean 
Template 
Recurrence  

Mean 
Template 
Recurrence  
Variance  

H(T)/H(T)max Template 
Vacuity  

Non-
specificity  

Quality         

Unique  
Template  

        

Mean 
Template 
Recurrence  

       NS  

Mean 
Template 
Recurrence 
Variance  

          

HT)/H(T)max           NS  

Template  
Vacuity  

    NS    NS    

Non-
specificity  

             

 

 

Tables 4.18 and 4.19 show the statistical significances of the correlation of several 

uncertainty measures in the context of variable window size and variable quality, 

respectively. For a pair of uncertainty measures, such as the entropy and the 

unique templates, the p-value < 0.05 and the correlation coefficient r > 0.5 implies 

that the pairs are positively correlated in 95% confidence level. Similarly, the pair 
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of nonspecificity and unique template where p < 0.05 and r < 0.5 implies that 

they are negatively correlated at the 95% confidence level. The correlation 

between the pair of template vacuity and normalized entropy is not statistically 

significant because the p-value > 0.05. In general, „+‟ indicates positive 

correlation, „_‟ signifies negative correlation, and „NS‟ implies non-significant 

correlation between a pair of measures.  

 

The confidence bounds are computed based on the assumptions that the sample 

size is large and X has a multivariate normal distribution. Fig 4.20 shows that the 

empirical dataset has normal distribution.  

 

 

 

Even when the assumptions do not hold, we can use this technique to determine 

the statistical significance of correlation coefficients by employing bootstrap 

Fig 4.20 Comparison of sensor data distribution with normal distribution 
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sampling and generating a large sample when X has a multivariate normal 

distribution. 

 

Once we know the correlation between all possible pairs of uncertainty measures 

and their statistical significance of the correlations in 95% confidence level, we 

can uncover the tradeoff among the uncertainty measures. The knowledge of the 

tradeoff is very important for developing an uncertainty-based optimization 

model. 
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CHAPTER V 
RESEARCH CONCLUSIONS 

5.1 Introduction 
 

This research is motivated by the limited support of uncertainty management in 

the growing and promising technology of WSN. We found the research problem 

using an extensive literature review in the context of data aggregation and the 

uncertainty management in WSN. The principle contribution of this thesis is to 

provide a formalism for pattern-based data aggregation and an uncertainty 

management scheme based on rough set theory. The results are supported by 

validating the RS rules and establishing the statistical significance of the 

correlations among the uncertainty measures in a 95% confidence level. This 

chapter reviews the research results, summarizes the research conclusions, and 

ends with a list of future directions.  

5.2 Research Conclusion and Summary 
 

Wireless sensor networks are a growing research area, with the applications in 

wide range of fields including environmental monitoring, health monitoring, 
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surveillance, security, and so forth. These networks have the potential to observe 

and understand large-scale real-world phenomena at a fine spatio-temporal 

resolution and help us with critical decision making. However, severe resource 

constraints, frequent changes in the dynamics of the environment, and large 

numbers of unattended sensors pose uncertainties and limit their potential use in 

real life applications.  

 

The uncertainties in sensor data streams may stem from missing data or 

unreliable data. Missing data may arise during sensor reading, format 

conversion, data discretization, data aggregation, data routing, data savings to 

storage devices, incorrect data labeling, etc. Unreliable data may result from 

random noise, actuator uncertainty, sensor status uncertainty, limited sensing 

ranges, compromised nodes, improper channels, transmission collisions, routing 

uncertainty, and resource uncertainty (Y. Liu & Das, 2006).  

 

The problem of characterizing uncertainty in complex systems, such as sensor 

networks, is inherently interdisciplinary and it is difficult to completely capture 

the nature of uncertainty and cover all its aspects because of its complex nature 

and its propagation through all epistemological levels of a system by varying 

degrees (Ayyub & Klir, 2006). Some initiation is made in the area of location or 

deployment uncertainty of sensors, but, from the literature reviewed in Chapter 



221 

 

 

 

2 of the dissertation, it is evident that the uncertainty issues in wireless sensor 

networks is largely unexplored.  

 

Given the growing demands for complex domain specific applications of sensor 

networks such as object tracking, pattern generation, and event identification, it 

is imperative to deal with uncertainty and uncertainty propagation through all 

the epistemological levels of a system in a real time environment. Another 

important issue in WSN is in-network data aggregation which saves energy, a 

major resource constraint in battery operated wireless sensor networks. A data 

aggregation technique that exploits the spatial and temporal correlation in sensor 

data at the node level has a potential to significantly reduce the data 

communication to the sink (Kargupta, 2007). The feature selection and reduction 

are also critical for large-scale attribute-oriented WSN. 

 

In Chapter 2, we explained numerous types of uncertainties and several well-

established mathematical formalisms to quantify and manipulate these types of 

uncertainties. We also reinvestigated and readdressed these uncertainties and the 

existing formalisms for characterizing theses uncertainties in the context of WSN. 

All of the uncertainty formalisms were developed and investigated in several 

application domains. Each of them is capable of handling certain types of 

uncertainties. In general, probability theory is appropriate for handling 

uncertainties caused by random components. Fuzzy set theory is well-known for 
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managing vague concepts (e.g. linguistic attributes). Dempster-Shafer evidence 

theory can be used to quantify the uncertainty due to information 

incompleteness. Rough set theory can be employed to characterize and quantify 

the uncertainty when it stems from coarseness.  However, there is no unified 

mathematical formalism that integrates all existing formalisms and addresses 

real-life uncertainties in wireless sensor networks that are often a combination of 

several type of uncertainties (Nguyen et al., 2007).  

 

We also reviewed several formalisms for data aggregation and rule generation, 

and investigated their possibilities in the context of WSN. Rough set theory 

appears to be the appropriate formalism for data aggregation as well as rule 

generation in WSN because of its well-known feature reduction capability.  

Other advantages of RST in the context of WSN include the capability of 

handling numeric as well as symbolic data, preservation of data semantics, 

shorter training time, ease of rule extraction, simple rule comprehensibility, data-

driven approach, and independency on external parameters.  

 

In Chapter 3, we presented the theoretical foundation of spatio-temporal pattern 

and rule generations and the uncertainty management in the pattern generation. 

The formalism for pattern-based data aggregation is explained in the context of 

WSN. A quality threshold is used to determine the interesting patterns. After 

discovering the patterns from the data, the next step is rule generation. In order 
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to reduce data communication from the cluster head to the sink, an important 

step is to extract and eliminate the redundant patterns which are not useful for 

decision making before generating the rules from the multi-valued decision 

system. The association rules are generated from the reducts, the minimal set of 

attributes to preserve the equivalence relation. A rough set based heuristic 

algorithm is used to determine the reducts by employing the degree of 

dependency as a measure.  

 

The mathematical foundation of the hybrid model based on the rough set theory 

and a pattern-based data aggregation method is established in Chapter 3. In this 

chapter we also provided the definition of several uncertainties that are 

identified in the context of pattern generation in WSN. We also provided the 

mathematical representation of each uncertainty measure and the research 

methodology to quantify and manipulate these uncertainties. 

 

In Chapter 4, we provided the validation of a mathematical formalism for 

uncertainty management in wireless sensor networks and the validation for the 

rules generated by rough set based spatio-temporal pattern discovery scheme. 

We employed the formalism in real world sensor data to find the homogeneous 

patterns in sea surface temperature (SST) and to generate the association rules. 

The formalism is tested on the discrete, numeric, and Boolean datasets. For each 

dataset, the experiment was repeated for several template qualities and window 
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sizes and the results were summarized in Chapter 4. Table 4.17 shows that 222, 

264, and 317 temporal rules are generated from Boolean, numeric, and discrete 

datasets, each with 4368 observations, which implies that a significant data 

reduction can be achieved by employing RS rule mining on sensor data. The 

result also shows a fewer number of templates and association rules for Boolean 

datasets, compared to the other datasets, which implies a larger reduction in data 

communications in Boolean datasets. The results are illustrated in tables as well 

as in graphs. The result is consistent with the theory developed in Chapter 3.  

 

Given that the rules generated at the cluster heads are sent periodically to the 

sink instead of the datasets, it is important to ensure that the rules faithfully 

represent the datasets. Thus we validate the rules by constructing a confusion 

matrix where each column denotes the predicted templates, each row represents 

the actual templates, the diagonal elements correspond to the correctly classified 

templates, and the off-diagonal elements signify misclassified templates. The 

confusion matrix is created from several parts of the patterns to confirm the self 

consistency of the rules (Bologna, 2002a, 2002b; Craven & Shavlik, 1999) and the 

accuracy of classification is computed. The results show an average accuracy of 

89% for the template quality of 90%. 

 

The uncertainties in the pattern generation of sea surface temperature (SST) 

stemming from imprecise data or missing data from sensors are characterized 
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and quantified by employing a rough set and Dempster-Shafer evidence theories. 

Finally, the correlations among the uncertainty measures are identified and the 

statistical significances of their correlations are established. The proposed model 

was tested on the discrete, numeric, and Boolean datasets. For each dataset, the 

experiment was repeated for several template qualities and window sizes and 

the results were summarized in several graphs. The graphs show the tradeoff 

among every possible uncertainty measures identified in the context of pattern 

generation for all three datasets. This result is consistent with the theory 

developed in Chapter 3. Finally, the correlations among the uncertainty 

measures were established in a 95% confidence level. 

 

In summary, in this research we identified the useful and interesting spatio-

temporal patterns from imprecise and uncertain sensor datasets by employing a 

rough-set rule induction method and provided a hybrid model of rough set 

theory and pattern-based data aggregation formalism to characterize and 

quantify the uncertainties in the context of pattern generation in WSN. The RS 

based feature selection plays an important role while generating the spatio-

temporal patterns by removing the redundant features that are irrelevant for 

decision making.  

 

The proposed research has the potential to produce significant contributions in 

the area of sensor data mining, data aggregation, intelligent feature selection, 



226 

 

 

 

data streams processing, knowledge discovery, and uncertainty management in 

wireless sensor networks.  In particular, the specific contributions are as follows: 

 

 We provide a formalization of a novel pattern-based data aggregation 

technique that has a potential to reduce data communication since only the 

rules are sent to the sink. The formalism discovers the spatio-temporal 

patterns and generates RS rules from the sensor data stream by intelligent 

feature selection. It not only provides the support for the symbolic and 

quantitative data but also for the outlier data. We provide the foundation of 

the uncertainty management in real time sensor database systems for 

continuous data. 

 We develop a framework for the characterization and the quantification of 

uncertainties in wireless sensor networks environments by employing a 

hybrid model of uncertainty management based on rough set theory and 

pattern-based data aggregation formalism. We also demonstrate the trade off 

among the uncertainty measures in the context of WSN. 

 We present a data-driven approach which is inherently non-invasive in 

nature. It also preserves the underlying data semantics. The proposed 

scheme does not require a normal distribution of the dataset. 

 

5.3 Future Directions 
 

The current research can be used as a framework to open up new directions in 

research. The challenges in this area of research and the possible future works 

can be summarized as follows:  

 



227 

 

 

 

 Development of the aggregation-driven routing protocols for wireless sensor 

networks where energy, bandwidth, power, networks lifetime, security as 

well as uncertainty are considered. 

 Design of an optimization model based on uncertainty formalism beyond 

classical information theory in WSN. The disadvantage of the optimization 

based on the principle of maximum entropy is that it may lead to nonlinear 

programming (Klir and Yuan 1995). On the other hand, the optimization 

based on the nonspecificity lead to linear programming. Other types of 

uncertainties can be used if the non-specificity based optimization cannot 

provide a unique solution.  

 Development of a multi-objective Pareto optimization model where 

identifying the Pareto Front from a set of points in a multi-objective space is 

the most important task. Multi-objective space in the context of WSN may 

include energy, bandwidth, power, security, and uncertainty. It is important 

to represent the possible trade-offs among the multiple conflicting objectives. 

The common approach to solve the multi-objective optimization is combining 

multiple objectives into a parametric scalar objective by using a weighted 

sum function (Huang, Fery, Xue, & Wang, 2008). Pareto optimization ensures 

that no further Pareto improvement is possible beyond the Pareto Front (i.e. it 

is not possible to improve any of the objectives without deteriorating the 

others) (Sushmita Mitra & Banka, 2006).  
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 Development of a real time concurrent environment that manages sensor 

information dynamically by transforming rough set rules to Petri Nets.  The 

execution of Petri nets is nondeterministic and multiple transitions can be 

enabled at the same time in the Petri nets. Since Petri nets can have multiple 

tokens and one of their transitions may fire, they are well suited for modeling 

concurrent behavior of distributed systems, such as WSN (Skowron & Suraj, 

1995). 

 Development of a data aggregation scheme where rules are generated at the 

cluster heads from the temporal information system using dominance based 

rough set theory. In DRST, each attribute of the temporal information system 

is assigned a cost or gain function with respect to the decision attribute, and 

the attributes that are not directly associated with cost or gain function are 

labeled as none. By generating a dominance matrix and performing 

approximations of upward unions and downward unions of uncertainty classes, 

one can determine the reducts or the optimal set of attributes indespensible 

for decision making. The advantages of using DRST include that it does not 

require discretization for numerical attributes, nor does it require the removal 

of missing values (Iftikhar U. Sikder, Mal-Sarkar, & Mal, 2006).  

 Design of a rule-based automated or semi-automated expert system by 

automatically inducing if-then rules from the empirical data. Automated 

expert systems can be very useful for critical decision making in real time 

where human access is infeasible. 
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 Expansion of the model where several security issues are addressed. The 

proposed scheme can easily incorporate security measures by encrypting the 

templates or patterns before sending to the sinks. This approach has the 

potential to reduce the cost associated with the security management since 

only the templates are required to be encrypted and decrypted, instead of 

encrypting and decrypting the entire temporal information system. With the 

increase of the network density and data correlation, this reduction in the cost 

can be significant.  

However, the basic framework that has been proposed in this dissertation may 

require significant modifications of boundary conditions and assumptions to 

accommodate the future directions outlined above. Some of the domain 

constraints of rough set theory may require further evaluation. 
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