
Mathware & Soft Computing 15 (2008) 251-261

A Connection Between Computer Science and

Fuzzy Theory: Midpoints and Running Time of

Computing

J. Casasnovas and O. Valero∗

Dept. of Math. and Computer Science,
University of the Balearic Islands,
07122 Palma de Mallorca (Spain)

jaume.casasnovas@uib.es, o.valero@uib.es

Abstract

Following the mathematical formalism introduced by M. Schellekens [Elec-
tronic Notes in Theoret. Comput. Sci. 1 (1995), 211-232] in order to give
a common foundation for Denotational Semantics and Complexity Analysis,
we obtain an application of the theory of midpoints for asymmetric distances
defined between fuzzy sets to the complexity analysis of algorithms and pro-
grams. In particular we show that the average running time for the algorithm
known as Largetwo is exactly a midpoint between the best and the worst case
running time of computing.

Keywords: Fuzzy set, asymmetric distance, midpoint, complexity anal-
ysis, running time of computing.

1 Introduction and preliminaries

Throughout this paper we shall use the letters R, R+, ω and N to denote the set of
real numbers, the set of nonnegative real numbers, the set of nonnegative integer
numbers and the set of positive integers numbers, respectively.

In order to fix the terminology let us recall a few concepts about asymmetric
distances.

In our context by an asymmetric distance (quasi-metric in [14]) on a (nonempty)
set X we mean a nonnegative real-valued function d on X × X such that for all
x, y, z ∈ X :

(i) d(x, y) = d(y, x) = 0 if and only if x = y.
(ii) d(x, z) ≤ d(x, y) + d(y, z).

∗The second author thanks the support of the Spanish Ministry of Education and Science, and
FEDER, grant MTM2006-14925-C02-01

251

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41790160?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

252 J. Casasnovas & O. Valero

Note that a distance (metric) on a set X is an asymmetric distance d on X
satisfying in addition the following two conditions for all x, y ∈ X :

(i’) d(x, y) = 0 if and only if x = y.
(iii) d(x, y) = d(y, x).

Our main references for asymmetric distances are [5] and [14].
An asymmetric distance space (quasi-metric space in [14]) is a pair (X, d) such

that X is a (nonempty) set and d is an asymmetric distance on X.
If d is an asymmetric distance on X, then the nonnegative real valued function

d−1 defined on X×X by d−1(x, y) = d(y, x) is again an asymmetric distance, called
the conjugate of d. Thus the conjugate of an asymmetric distance space (X, d) is
the pair (X, d−1). Note that each asymmetric distance d induces, in a natural way,
a distance (metric) D on X as follows: D = d+ d−1, i.e.

D(x, y) = d(x, y) + d(y, x)

for all x, y ∈ X.
A well-known and useful example of asymmetric distance space, which will

play a crucial role in our work, it is the so-called upper quasi-metric space, which
consists of the pair (R, u), where u(x, y) = (y − x) ∨ 0 for all x, y ∈ R (see [5] or
[14]). Then u−1(x, y) = (x − y) ∨ 0 is the conjugate of the upper quasi-metric on
R. Furthermore, the distance induced by u is exactly the Euclidean metric | · | on
R, i.e.

|y − x| = u(x, y) + u−1(x, y)

for all x, y ∈ R. In the sequel the restriction of the asymmetric distance u to [0, 1]
will be also denoted by u.

Let us fix a finite set
X = {x1, ..., xn},

and let FP(X) denote the set of its [0, 1]-valued fuzzy subsets. To simplify the
notations, given a fuzzy subset of X, we shall write µi instead of µ(xi).

In [13] B. Kosko introduced a fuzzy subset µ ∈ FP(X) as a vector (µ1, ..., µn) ∈
[0, 1]n. This is possible because the mapping sending every µ ∈ FP(X) to the vector
(µ1, ..., µn) ∈ [0, 1]n is a bijection and, thus, we can identify, in a one-to-one way,
every fuzzy subset of X with a point of Kosko’s n-dimensional hypercube [0, 1]n.
For a deeper treatment of the hypercubical calculus we refer the reader to [28].
Kosko’s hypercube has a wide number of applications to engineering, artificial
intelligence, medicine and biology. Some of these applications are based on the
notions of segment joining two given fuzzy subsets and set of midpoints between
two fuzzy subsets. Such ideas were introduced by J.J. Nieto and A. Torres in [17].
They studied the properties and the relations between the mentioned concepts and
gave several applications of the obtained results to study real medical data. In
particular given a distance d on FP(X) and µ, ν ∈ FP(X) the segment and the
midset between the fuzzy subsets µ and ν are exactly the sets

segd(µ, ν) = {ζ ∈ FP(X) : d(µ, ν) = d(µ, ζ) + d(ζ, ν)}

midd(µ, ν) = {ζ ∈ FP(X) :
d(µ, ν)

2
= d(µ, ζ) = d(ζ, ν)}. (1)

A Connection Between Computer Science and Fuzzy Theory... 253

It is clear that, given µ, ν ∈ FP(X), we can denote by µ+ν
2 the fuzzy subset of

X defined by (
µ+ ν

2

)
i

=
µi + νi

2

for every i = 1, ..., n. Moreover, if we consider the Euclidean distance d2 on FP(X)
defined by

d2(µ, ν) =

√√√√ n∑
i=1

(νi − µi)2,

then it is a simpler matter to see, from the classical Euclidean geometry, that the
unique midpoint between µ and ν it is the fuzzy subset µ+ν

2 . Contrary to the
Euclidean case J. Nieto and A. Torres showed that, for the Hamming distance, in
general there is not a unique midpoint between two fuzzy sets ([17]).

Let us recall that the Hamming distance on FP(X) is defined, for every µ, ν ∈
FP(X), by

dH(µ, ν) =
n∑
i=1

|µi − νi|.

In most cases for the Hamming distance the set of midpoints is an infinite set.
From an applied knowledge point of view, the existence of many midpoints is in
agreement with the nature of many real problems where the solution can be repre-
sented as a midpoint between two given “positions” which are identified with two
fuzzy subsets, and where the solution fails to be the canonical middle between the
mentioned positions. In fact the solution of the practical problem can be associ-
ated with a range of “middle ways”between the given positions. So, from practical
point of view, to consider the Euclidean distance to compute midpoints is not two
much useful. Since the set of midpoints depends on the chosen distance, to solve
this type of practical problems consists of establishing the departure positions and
what is the suitable distance to find the right midway as the working representation
position (i.e. as the solution).

Recently, motivated by the applications to bioinformatics, J. Casasnovas and
F. Roselló have generalized the previous work of Nieto and Torres. In fact they
have computed segments and midpoints for several distances between fuzzy sets.
In particular they gave a concise description of the midpoints between fuzzy sets
for, among others, the weighted Hamming distance and obtained applications of
their results to medicine and to comparison of biological sequences (see [1] and [2]).

Let us recall that given w = (w1, ..., wn) ∈ (R+)n (any vector of positive
weights) the w-weighted Hamming distance on FP(X) is defined, for every µ, ν ∈
FP(X), by

dH,w(µ, ν) =
n∑
i=1

wi|µi − νi|.

Most recently, the notion of segment and midpoint between fuzzy sets has been
generalized by Casasnovas and O. Valero to the context of asymmetric distances

254 J. Casasnovas & O. Valero

in [3]. This generalization consists of replacing in definitions (1) the distance by
an asymmetric one. Moreover, in the same reference they defined the so-called
w-weighted upper Hamming distance on FP(X) by

uH,w(µ, ν) =
n∑
i=1

wiu(µi, νi) =
n∑
i=1

wi[(νi − µi) ∨ 0].

Again, a precise description of segments and midsets was obtained for the above
distance (see Lemma 5, Theorem 6, Corollary 7 and 8 in [3] for more details). The
motivation for the study of midpoints between fuzzy subsets for an asymmetric
distance is given by the following facts:

On the one hand, the w-weighted Hamming distance can be retrieved from the
w-weighted upper Hamming distance because

dH,w(µ, ν) = uH,w(µ, ν) + u−1
H,w(µ, ν)

for every µ, ν ∈ FP(X). So it seems natural to investigate the relationship between
segments and midpoints for the symmetric and asymmetric weighted Hamming
distance. In this case, one can find surprising results as the following one for the
segments:

segdH,w
(µ, ν) = seguH,w

(µ, ν) = segu−1
H,w

(µ, ν)

for all µ, ν ∈ FP(X).
On the other hand, A. Stojmirović has proved a natural correspondence between

similarity measures on biological (nucleotide or protein) sequences and asymmetric
distances, giving practice applications to search in DNA and protein datasets (see
[26] and [27]). The obtained deep connection between asymmetric distances and
similarity measures on biological sequences has motivated new directions of research
in the realm of life sciences and, as a consequence, the importance of the asymmetric
distances and its presence have been increased in bioinformatics.

In addition to the mentioned motivations it is important to recall that asym-
metric distances play a crucial role in Theoretical Computer Science. In the last
years metric tools based on asymmetric distances have been introduced and devel-
oped in order to provide an efficient framework to model processes, for instance,
in complexity analysis of algorithms and programs ([25], [22], [6], [7], [8], [20], [21],
[19]), logic programming ([23], [24], [11]), approximate reasoning ([9], [10], [11],
[12]), and in program verification and denotational semantics ([15], [16], [18]).

In this paper, taking advantage of all theory carried out so far in the field of
formal methods in complexity analysis of algorithms we give in Section 2 an appli-
cation of the theory of midpoints for asymmetric distances to Computer Science. In
particular we prove that, for the Largetwo algorithm, the average running time is a
midpoint between the running time of computing of the best and the worst case by
means of several connections between the w-weighted upper Hamming distance and
the complexity measure introduced by M. Schellekens in [25]. As a consequence, a
whole range of potential applications from midpoint theory of fuzzy sets to many
fields in Computer Science and Artificial Intelligence is open.

A Connection Between Computer Science and Fuzzy Theory... 255

2 The average running time of computing of
Largetwo as a midpoint

In 1995, M. Schellekens introduced the theory of complexity (asymmetric distance)
spaces as a part of the development of a topological foundation for the complexity
analysis of programs and algorithms ([25]). In the same reference he applied the
theory to the complexity analysis of algorithms giving an alternative proof of the
well-known fact that the mergesort program based on a linear average time merge
algorithm has optimal asymptotic average running time.

Let us recall that the complexity space is the pair (C, dC), where

C = {f : ω → (0,+∞] :
+∞∑
n=0

2−n
1

f(n)
< +∞},

and dC is the quasi-metric on C defined by

dC(f, g) =
+∞∑
n=0

2−n[(
1

g(n)
− 1
f(n)

) ∨ 0].

Obviously it is adopted the convention that 1
+∞ = 0. The elements of C are

called complexity functions.
According to [25], from a complexity analysis point of view, it is possible to

associate each algorithm with a function of C in such a way that its computational
cost, as a function of the size of the input data, is represented by any function f
in C. On the other hand, given two functions f, g ∈ C the numerical value dC(f, g)
(the complexity distance from f to g) can be interpreted as the relative progress
made in lowering the complexity by replacing any program P with complexity
function f by any program Q with complexity function g. Therefore, if f 6= g,
the condition dC(f, g) = 0 can be assumed as f is “more efficient” than g on
all inputs (i.e. f(n) ≤ g(n) for all n ∈ ω) or equivalently f is more efficient
than g asymptoticly. Note that this is consistent with the idea that when we
replace the program P by the program Q, being the program Q less efficient on
all inputs, we obtain that there is an increase in complexity. Furthermore, the
asymmetry of the complexity distance plays a crucial role in this analysis because
of a symmetric distance provides information about the increase of complexity but
it can not indicate which program is more efficient. So this fact, among others, is
a motivation for the use of asymmetric distances in formal methods for computing
in general, and in complexity analysis of algorithms in particular.

Later on, S. Romaguera and M. Schellekens ([22]) introduced the so-called dual
complexity space with the aim of studying several quasi-metric properties of the
complexity space, which are interesting from a computational point of view, via
the analysis of this new complexity (asymmetric distance) space.

The dual complexity space is the pair (C∗, dC∗), where

C∗ = {f : ω → R+ :
+∞∑
n=0

2−nf(n) < +∞},

256 J. Casasnovas & O. Valero

and dC∗ is the quasi-metric on C∗ defined by

dC∗(f, g) =
+∞∑
n=0

2−n[(g(n)− f(n)) ∨ 0].

This new complexity structure also allows to carry out the complexity analysis
of algorithms when the complexity measure is the running time of computing.

Now, in the dual context the value dC∗(f, g) can be interpreted as a numerical
measure of the efficiency gained when the algorithm Q, whose running time of
computing is represented by g, is substituted by the algorithm P whose running
time of computing is represented by f . Hence, if f 6= g, dC∗(f, g) = 0 provides that
g is more “efficient” than f on all inputs.

Notice that the above structures provide mathematical tools to decide when a
given program is better (from a complexity point of view) than another one in a
uniform way (asymptotic way), i. e. the efficiency of both algorithms is calculated
for all possible input sizes. However, in many practice situations it is interesting
to measure relative progress made in lowering of complexity when an algorithm is
replaced by another one, and both are evaluated on input data of size under a fixed
upper bound. Motivated, in part, for this reason L.M. Garćıa-Raffi, Romaguera
and E.A. Sánchez-Pérez have introduced in [6] a new criteria (a finite criteria or
non-asymptotic criteria) for computing the gained efficiency when the evaluated
programs run for a fixed finite subset of input sizes. In particular, if we compare
two algorithms, with associated complexity funtions f and g in C∗, for inputs whose
size is lower than (or equal to) a bound, say m ∈ N, then the relative progress made
in lowering of complexity is given by the numerical value

dC∗m(f, g) =
m∑
n=0

2−n[(g(n)− f(n)) ∨ 0].

It is clear that the equality dC∗m(f, g) = 0 can be interpreted, if f 6= g, as g is
more “efficient” than f on all considered inputs of size m at most.

Obviously there are a lot of programs which can not be identified with a function
in C∗, since when one consider their running time of computing as a function of
the size of the input data f then such a function does not belong to C∗. Of course
an example of such programs is given by the World Series odds problem (when
this is solved by a recursive algorithm), where the running time of computing is
in the class O(2n

√
n

) (i.e. the running time is given by the function f : ω → R+

defined by f(0) = 0 and f(n) = 2n
√
n

for all n ∈ N). Consequently the analysis of
the progress made in lowering the running time of computing when the problem
is solved applaying the dynamic programming approach, instead of the recursive
one, can not be made in the context of the dual complexity space (C∗, dC∗). This
handicap was avoided elegantly by Garćıa-Raffi, Romaguera and Sánchez-Pérez
constructing several extensions of the dual complexity structure (see [8] and [7] for
more details). From this point of view the old complexity space (C, dC) presents
an advantage with respect the dual one, because of exponential time algorithms,
as the World Series odds problem algorithm, has associated complexity function

A Connection Between Computer Science and Fuzzy Theory... 257

inside the set C. So we can perform the complexity analysis of such algorithms
using the original complexity space without the need of any added extension. For
this reason we adapt the non-asymptotic criteria to the context of the original
complexity space. To this end, fixed a input size bound m ∈ N, we compute the
relative progress made in lowering the complexity by replacing any program P with
complexity function f by any program Q with complexity function g through the
numerical value

dCm(f, g) =
m∑
n=0

2−n[(
1

g(n)
− 1
f(n)

) ∨ 0].

Obviously, and similarly to the dual case, the equality dCm(f, g) = 0 can be
interpreted as f is more “efficient” than g on all considered inputs of size m at
most, when f 6= g. Thus there is not progress, from a complexity point of view,
when the program with complexity function f is replaced by the other one with
complexity function g.

In the remainder of this section we are interesting in applying the fuzzy midpoint
theory to the complexity analysis of algorithms. With this aim let us recall some
basic aspects of the complexity analysis of a well-known algorithm which is called
Largetwo.

The Largetwo algorithm finds the two largest entries in one-dimensional ar-
ray and assigns these values to the variables FIRST and SEC. The pseudocode
description of the algorithms is the following:

PROCEDURE Largetwo(C)

FIRST:=C[1]

SEC:=C[2]

FOR I=2 TO n DO

IF C[I] > FIRST

THEN SEC:=FIRST; FIRST:=C[I]

ELSE IF C[I] > SEC

THEN SEC:=C[I]

Obviously the algorithm assumes that the arrray has at least two components
(i.e. n ≥ 2). We structure the analysis of the running time of this algorithm in
three cases:

The best case: The data is arranged in order of increasing coordinates, i.e.
C[1]<C[2]<· · · <C[n]. Then the algorithm performs exactly n − 1 comparisons,
and thus the best case running time is given by the complexity function fB defined
by

fB(n) =
{

+∞ n = 0, 1
n− 1 n ≥ 2 .

The worst case: The data is given in such a way that C[1] is the largest entry.
Then the algorithm makes 2(n− 1) comparisons, and thus the worst case running

258 J. Casasnovas & O. Valero

time of computing is given by the complexity function fW defined by

fW (n) =
{

+∞ n = 0, 1
2(n− 1) n ≥ 2 .

The average case: The running time is calculated as the average of the running
time of Largetwo over all inputs of the same size. For simplicity it is assumed that,
fixed a size, each input is equally likely to occur. Then the number of comparisons
used on average by the algorithm is given by the complexity function fA defined
by

fA(n) =
{

+∞ n = 0, 1
2(n− 1)−

∑n
i=2

1
i n ≥ 2 .

For a detailed discussion of the running time of the Largetwo algorithm we refer
the reader to [4]. In the same reference it is noticed that the average case running
time fA is more close to the worst case running time than to the best case running
time, and thus the average case running time is not the numerical average of the
worst case and the best case running time (i.e. the average running time does not
match up with the midpoint for the Euclidean distance). Note that the average
of the worst and the best case running time coincides with the function fW +fB

2
defined by

fW + fB
2

(n) =
{

+∞ n = 0, 1
3
2 (n− 1) n ≥ 2 ,

which is, in fact, more close to the best case from a complexity point of view.
Next we connect the theory of midpoints between fuzzy sets showing that the

average case running time is a midpoint between the best and the worst case
running time for the asymmetric complexity distance dC (i.e. asymptoticly) using
as a tool the weighted upper Hamming distance (i.e. employing the non-asymptotic
criteria). To this end we proceed as follows:

Fix m ∈ ω (m ≥ 2) and let X = {0, 1, ...,m}.
Take the vector of weights w = (w0, w1, ..., wm) ∈ (R+)m+1 such that wn = 2−n

for all n = 0, ...,m.
It is evident that 1

fW (n) ,
1

fB(n) ,
1

fA(n) ∈ [0, 1] for all n = 0, ...,m. Recall that we
adopt the convention that 1

+∞ = 0.
From now on we will denote by (1

fW
)m, (1

fB
)m, (1

fA
)m the fuzzy sets correspond-

ing to the points

(0, 0,
1

fW (2)
, . . . ,

1
fW (m)

), (0, 0,
1

fB(2)
, ...,

1
fB(m)

) and (0, 0,
1

fA(2)
, ...,

1
fA(m)

)

of the Kosko hypercube [0, 1]m+1, respectively. It follows that (1
fW

)m, (1
fB

)m, (1
fA

)m ∈
FP(X).

Under these conditions we can obtain the next results.

Proposition 1. (1
fA

)m ∈ miduH,w
((1
fB

)m, (1
fW

)m).

A Connection Between Computer Science and Fuzzy Theory... 259

Proof. It is clear that

dCm,(fB , fW) =
m∑
n=2

2−n
(

(
1

fW (n)
− 1
fB(n)

) ∨ 0
)

= uH,w((
1
fB

)m, (
1
fW

)m).

On the other hand

uH,w((
1
fB

)m, (
1
fW

)m) =
m∑
n=2

2−n
(

(
1

2(n− 1)
− 1
n− 1

) ∨ 0
)

= 0,

since 1
2(n−1) ≤

1
n−1 for all n = 2, ...,m.

Moreover,

dCm,
(fB , fA) =

m∑
n=2

2−n
(

(
1

fA(n)
− 1
fB(n)

) ∨ 0
)

= uH,w((
1
fB

)m, (
1
fA

)m)

=
m∑
n=2

2−n
(

(
1

2(n− 1)−
∑n
i=2

1
i

− 1
(n− 1)

) ∨ 0
)

= 0,

since 1
2(n−1)−

∑n
i=2

1
i

≤ 1
(n−1) for all n = 2, ...,m.

Furthermore,

dCm,(fA, fW) =
m∑
n=2

2−n
(

(
1

fW (n)
− 1
fA(n)

) ∨ 0
)

= uH,w((
1
fA

)m, (
1
fW

)m)

=
m∑
n=2

2−n
(

(
1

2(n− 1)
− 1

2(n− 1)−
∑n
i=2

1
i

) ∨ 0
)

= 0,

since 1
2(n−1) ≤

1
2(n−1)−

∑n
i=2

1
i

for all n = 2, ...,m.

Therefore

uH,w((1
fB

)m, (1
fW

)m)

2
= uH,w((

1
fB

)m, (
1
fA

)m) = uH,w((
1
fA

)m, (
1
fW

)m). (2)

Whence we conclude that (1
fA

)m ∈ miduH,w
((1
fB

)m, (1
fW

)m). �

Corollary 2. fA ∈ middC (fB , fW).

Proof. Since the equality (2) is satisfied for all m ∈ ω, we obtain that

dC(fB , fW)
2

= dC(fB , fA) = dC(fA, fW).

Therefore
fA ∈ middC (fB , fW),

as we claim. �

260 J. Casasnovas & O. Valero

References

[1] J. Casasnovas, F. Roselló, Averaging fuzzy biopolymers, Fuzzy Sets and Sys-
tems 152 (2005), 139-158.

[2] J. Casasnovas, F. Roselló, Midpoints as average representations of pairs of
descriptions by means of fuzzy subsets, in Proc. Information Processing and
Management of Uncertainty in Knowledge-based Systems international Con-
ference (2005), 2157-2164..

[3] J. Casasnovas, O. Valero, On midpoints for the weighted upper Hamming dis-
tance betwen fuzzy sets, in Proc. Information Processing and Management
of Uncertainty in Knowledge-based Systems international Conference (2006),
114-120.

[4] P. Cull, M. Flahive, R. Robson, Difference equations: from rabbits to chaos,
Springer, 2005 .

[5] P. Fletcher, W.F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, 1982.

[6] LM Garćıa-Raffi, S. Romaguera, E.A. Sánchez-Pérez, Weak topologies on
asymmetric normed linear spaces and non-asymptotic criteria in the theory
of complexity analysis of algorithms, Journal of Analysis and Applications 3
(2004), 125-138.

[7] L.M Garćıa-Raffi, S. Romaguera, E.A. Sánchez-Pérez, The supremum asym-
metric norm on sequence algebras: a general framework to measure complexity
spaces, Electronic Notes in Theoret. Comput. Sci. 74 (2003), 12 pages.

[8] L.M Garćıa-Raffi, S. Romaguera, E.A. Sánchez-Pérez, Sequence spaces and
asymmetric norms in the theory of computational complexity, Math. Comput.
Model. 36 (2002), 1-11.

[9] G. Gerla, Representation theorems for fuzzy orders and quasi-metrics, Soft
Computing 8 (2004), 571-580.

[10] G. Gerla, C. Crisconio, Fuzzy orders in approximate reasoning, unpublished
paper.

[11] G. Gerla, C. Crisconio, Similarities and fuzzy orders in approximate reasoning,
in New Logics for the New economy, G. Zollo (ed.), Ed. Scientifiche Italiane,
165-168, 2001.

[12] G. Gerla, Fuzzy submonoids, fuzzy preorders and quasi-metrics, Fuzzy Sets
Syst. 157 (2006), 2356-2370.

[13] B. Kosko, Neural networks and fuzzy systems, Prentice-Hall, 1992.

[14] H.P.A. Künzi, Nonsymmetric distances and their associated topologies: About
the origins of basic ideas in the area of asymmetric topology, in Handbook of
the History of General Topology, C.E. Aull and R. Lowen (eds), Kluwer Acad.
Publ. vol. 3, 853-968, 2001.

A Connection Between Computer Science and Fuzzy Theory... 261

[15] S.G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on
General Topology and Applications, Ann. New York Acad. Sci. 728 (1994),
183-197.

[16] S.G. Matthews, An extensional treatment of lazy data flow deadlok, Theoret.
Comput. Sci., 151 (1995), 195-205.

[17] J. Nieto, A. Torres, Midpoints for fuzzy sets and their application in medicine,
Artif. Intell. Med. 27 (2003), 81-101.

[18] J. Rodŕıguez-López, S. Romaguera, O. Valero, Denotational semantics for pro-
gramming languages, balanced quai-metrics and fixed points, Int. J. Comput.
Math, to appear.

[19] J. Rodŕıguez-López, S. Romaguera, O. Valero, Asymptotic complexity of algo-
rithms via the nonsymmetric Hausdorff distance, Computing Letters 2 (2006),
155-161.

[20] S. Romaguera, E. A. Sánchez-Pérez, O. Valero, Computing complexity dis-
tances between algorithms, Kybernetika, 39 (2003), 569-582.

[21] S. Romaguera, E. A. Sánchez-Pérez, O. Valero, The complexity space of a
valued linearly ordered set, Electronic Notes in Theoret. Comput. Sci., 74
(2003), 14 pages.

[22] S. Romaguera, M. Schellekens, Quasi-metric properties of complexity spaces,
Topology. Appl., 98 (1999), 311-322.

[23] A. K. Seda, Quasi-metrics and the semantics of logic programs, Fundamenta
Informaticae, 29 (1997), 97-117.

[24] A. K. Seda, Some Issues Concerning Fixed Points in Computational Logic:
Quasi-Metrics, Multivalued Mappings and the Knaster-Tarski Theorem, in
Proc. 14th Summer Conference on Topology and its Applications, Topology
Proc. 24 (1999), 223-250.

[25] M. Schellekens, The Smyth completion: a common foundation for denonational
semantics and complexity analysis, in Proc. MFPS 11, Electronic Notes in
Theoret. Comput. Sci. 1 (1995), 211-232.

[26] A. Stojmirović, Quasi-metric spaces with measure, Topology Proc. 28 (2004),
655-671.

[27] A. Stojmirović, Quasi-metrics, similarities and searches: aspects of geometry
of protein datasets, Ph. D. Th., Victoria University of Wellington, Wellington
(2005).

[28] M. Zaus, Crisp and soft computing with hypercubical calculus, Physica-Verlag,
1999.

