454 research outputs found

    Algorithms for CAD Tools VLSI Design

    Get PDF

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Bacterial Memetic Algorithm Trained Fuzzy System-Based Model of Single Weld Bead Geometry

    Get PDF
    This article presents a fuzzy system-based modeling approach to estimate the weld bead geometry (WBG) from the welding process variables (WPVs) and to achieve a specific weld bead shape. The bacterial memetic algorithm (BMA) is applied to solve these problems in two different roles, as a supervised trainer, and as an optimizer. As a supervised trainer, the BMA is applied to tune two different WBG models. The bead geometry properties (BGP) model follows a traditional approach providing the WBG properties as outputs. The direct profile measurement (DPM) model describes the bead profiles points by a non-linear function realized in the form of fuzzy rules. As an optimizer, the BMA utilizes the developed fuzzy systems to find the solution sets of WPVs to acquire the desired WBG. The best performance is achieved by applying six rules in the BGP model and eleven rules in the DPM model. The results indicate that the normalized root means square error for the validation data set lies in the range of 0:40 - 1:56% for the BGP model and 4:49 - 7:52% for the DPM model. The comparative analysis suggests that the BGP model estimates the BWG in a superior manner when several WPVs are altered. The developed fuzzy systems provide a tool for interpreting the effects of the WPVs. The developed optimizer provides multiple valid set of WPVs to produce the desired WBG, thus supporting the selection of those process variables in applications

    Problem Decomposition and Adaptation in Cooperative Neuro-Evolution

    No full text
    One way to train neural networks is to use evolutionary algorithms such as cooperative coevolution - a method that decomposes the network's learnable parameters into subsets, called subcomponents. Cooperative coevolution gains advantage over other methods by evolving particular subcomponents independently from the rest of the network. Its success depends strongly on how the problem decomposition is carried out. This thesis suggests new forms of problem decomposition, based on a novel and intuitive choice of modularity, and examines in detail at what stage and to what extent the different decomposition methods should be used. The new methods are evaluated by training feedforward networks to solve pattern classification tasks, and by training recurrent networks to solve grammatical inference problems. Efficient problem decomposition methods group interacting variables into the same subcomponents. We examine the methods from the literature and provide an analysis of the nature of the neural network optimization problem in terms of interacting variables. We then present a novel problem decomposition method that groups interacting variables and that can be generalized to neural networks with more than a single hidden layer. We then incorporate local search into cooperative neuro-evolution. We present a memetic cooperative coevolution method that takes into account the cost of employing local search across several sub-populations. The optimisation process changes during evolution in terms of diversity and interacting variables. To address this, we examine the adaptation of the problem decomposition method during the evolutionary process. The results in this thesis show that the proposed methods improve performance in terms of optimization time, scalability and robustness. As a further test, we apply the problem decomposition and adaptive cooperative coevolution methods for training recurrent neural networks on chaotic time series problems. The proposed methods show better performance in terms of accuracy and robustness
    • …
    corecore