74 research outputs found

    In Vitro Studies of Neuronal Networks and Synaptic Plasticity in Invertebrates and in Mammals Using Multielectrode Arrays

    Get PDF
    Brain functions are strictly dependent on neural connections formed during development and modified during life. The cellular and molecular mechanisms underlying synaptogenesis and plastic changes involved in learning and memory have been analyzed in detail in simple animals such as invertebrates and in circuits of mammalian brains mainly by intracellular recordings of neuronal activity. In the last decades, the evolution of techniques such as microelectrode arrays (MEAs) that allow simultaneous, long-lasting, noninvasive, extracellular recordings from a large number of neurons has proven very useful to study long-term processes in neuronal networks in vivo and in vitro. In this work, we start off by briefly reviewing the microelectrode array technology and the optimization of the coupling between neurons and microtransducers to detect subthreshold synaptic signals. Then, we report MEA studies of circuit formation and activity in invertebrate models such as Lymnaea, Aplysia, and Helix. In the following sections, we analyze plasticity and connectivity in cultures of mammalian dissociated neurons, focusing on spontaneous activity and electrical stimulation. We conclude by discussing plasticity in closed-loop experiments

    Characterizing Self-Developing Biological Neural Networks: A First Step Towards their Application To Computing Systems

    Get PDF
    Carbon nanotubes are often seen as the only alternative technology to silicon transistors. While they are the most likely short-term one, other longer-term alternatives should be studied as well. While contemplating biological neurons as an alternative component may seem preposterous at first sight, significant recent progress in CMOS-neuron interface suggests this direction may not be unrealistic; moreover, biological neurons are known to self-assemble into very large networks capable of complex information processing tasks, something that has yet to be achieved with other emerging technologies. The first step to designing computing systems on top of biological neurons is to build an abstract model of self-assembled biological neural networks, much like computer architects manipulate abstract models of transistors and circuits. In this article, we propose a first model of the structure of biological neural networks. We provide empirical evidence that this model matches the biological neural networks found in living organisms, and exhibits the small-world graph structure properties commonly found in many large and self-organized systems, including biological neural networks. More importantly, we extract the simple local rules and characteristics governing the growth of such networks, enabling the development of potentially large but realistic biological neural networks, as would be needed for complex information processing/computing tasks. Based on this model, future work will be targeted to understanding the evolution and learning properties of such networks, and how they can be used to build computing systems

    From Understanding Cellular Function to Novel Drug Discovery: The Role of Planar Patch-Clamp Array Chip Technology

    Get PDF
    All excitable cell functions rely upon ion channels that are embedded in their plasma membrane. Perturbations of ion channel structure or function result in pathologies ranging from cardiac dysfunction to neurodegenerative disorders. Consequently, to understand the functions of excitable cells and to remedy their pathophysiology, it is important to understand the ion channel functions under various experimental conditions – including exposure to novel drug targets. Glass pipette patch-clamp is the state of the art technique to monitor the intrinsic and synaptic properties of neurons. However, this technique is labor intensive and has low data throughput. Planar patch-clamp chips, integrated into automated systems, offer high throughputs but are limited to isolated cells from suspensions, thus limiting their use in modeling physiological function. These chips are therefore not most suitable for studies involving neuronal communication. Multielectrode arrays (MEAs), in contrast, have the ability to monitor network activity by measuring local field potentials from multiple extracellular sites, but specific ion channel activity is challenging to extract from these multiplexed signals. Here we describe a novel planar patch-clamp chip technology that enables the simultaneous high-resolution electrophysiological interrogation of individual neurons at multiple sites in synaptically connected neuronal networks, thereby combining the advantages of MEA and patch-clamp techniques. Each neuron can be probed through an aperture that connects to a dedicated subterranean microfluidic channel. Neurons growing in networks are aligned to the apertures by physisorbed or chemisorbed chemical cues. In this review, we describe the design and fabrication process of these chips, approaches to chemical patterning for cell placement, and present physiological data from cultured neuronal cells

    In Vitro

    Get PDF

    A cultured human neural network operates a robotic actuator

    Get PDF
    The development of bio-electronic prostheses, hybrid human-electronics devices and bionic robots has been the aim of many researchers. Although neurophysiologic processes have been widely investigated and bio-electronics has developed rapidly, the dynamics of a biological neuronal network that receive sensory inputs, store and control information is not yet understood. Toward this end, we have taken an interdisciplinary approach to study the learning and response of biological neural networks to complex stimulation patterns. This paper describes the design, execution, and results of several experiments performed in order to investigate the behavior of complex interconnected structures found in biological neural networks. The experimental design consisted of biological human neurons stimulated by parallel signal patterns intended to simulate complex perceptions. The response patterns were analyzed with an innovative artificial neural network (ANN), called ITSOM (Inductive Tracing Self Organizing Map). This system allowed us to decode the complex neural responses from a mixture of different stimulations and learned memory patterns inherent in the cell colonies. In the experiment described in this work, neurons derived from human neural stem cells were connected to a robotic actuator through the ANN analyzer to demonstrate our ability to produce useful control from simulated perceptions stimulating the cells. Preliminary results showed that in vitro human neuron colonies can learn to reply selectively to different stimulation patterns and that response signals can effectively be decoded to operate a minirobot. Lastly the fascinating performance of the hybrid system is evaluated quantitatively and potential future work is discussed

    Lymnaea stagnalis as model for translational neuroscience research: from pond to bench

    Get PDF
    The purpose of this review is to illustrate how a reductionistic, but sophisticated, approach based on the use of a simple model system such as the pond snail Lymnaea stagnalis (L. stagnalis), might be useful to address fundamental questions in learning and memory. L. stagnalis, as a model, provides an interesting platform to investigate the dialog between the synapse and the nucleus and vice versa during memory and learning. More importantly, the "molecular actors" of the memory dialogue are well-conserved both across phylogenetic groups and learning paradigms, involving single- or multi-trials, aversion or reward, operant or classical conditioning. At the same time, this model could help to study how, where and when the memory dialog is impaired in stressful conditions and during aging and neurodegeneration in humans and thus offers new insights and targets in order to develop innovative therapies and technology for the treatment of a range of neurological and neurodegenerative disorders

    Nanomaterials for Neural Interfaces

    Full text link
    This review focuses on the application of nanomaterials for neural interfacing. The junction between nanotechnology and neural tissues can be particularly worthy of scientific attention for several reasons: (i) Neural cells are electroactive, and the electronic properties of nanostructures can be tailored to match the charge transport requirements of electrical cellular interfacing. (ii) The unique mechanical and chemical properties of nanomaterials are critical for integration with neural tissue as long-term implants. (iii) Solutions to many critical problems in neural biology/medicine are limited by the availability of specialized materials. (iv) Neuronal stimulation is needed for a variety of common and severe health problems. This confluence of need, accumulated expertise, and potential impact on the well-being of people suggests the potential of nanomaterials to revolutionize the field of neural interfacing. In this review, we begin with foundational topics, such as the current status of neural electrode (NE) technology, the key challenges facing the practical utilization of NEs, and the potential advantages of nanostructures as components of chronic implants. After that the detailed account of toxicology and biocompatibility of nanomaterials in respect to neural tissues is given. Next, we cover a variety of specific applications of nanoengineered devices, including drug delivery, imaging, topographic patterning, electrode design, nanoscale transistors for high-resolution neural interfacing, and photoactivated interfaces. We also critically evaluate the specific properties of particular nanomaterials—including nanoparticles, nanowires, and carbon nanotubes—that can be taken advantage of in neuroprosthetic devices. The most promising future areas of research and practical device engineering are discussed as a conclusion to the review.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64336/1/3970_ftp.pd

    Extracellular stimulation window explained by a geometry-based model of the neuron-electrode contact

    Get PDF
    Extracellular stimulation of single cultured neurons which are completely sealing a microelectrode is usually performed using anodic or biphasic currents of at least 200 nA. However, recently obtained experimental data demonstrate the possibility to stimulate a neuron using cathodic current pulses with less amplitude. Also, a stimulation window is observed. These findings can be explained by a finite-element model which permits geometry-based electrical representation of the neuron-electrode interface and can be used to explore the required conditions for extracellular stimulation in detail. Modulation of the voltage sensitive channels in the sealing part of the membrane appears to be the key to successful cathodic stimulation. Furthermore, the upper limit of the stimulation window can be explained as a normal consequence of the neuronal membrane electrophysiology
    corecore