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Highlights 

1) Lymnaea stagnalis, a reductionistic, yet sophisticated model to address fundamental questions in learning and 

memory 

2) Learning and memory in snails have been highly conserved 

3) The “molecular actors” memory are similar both across phylogenetic groups and learning paradigms 

4) Lymnaea stagnalis teach us the importance of context, 

5) Lymnaea stagnalis to understand in what conditions we memorize, we eat, we memorize, we age 

6) Lymnaea is a valid and reliable model to move research from pond to bench to bedside 

 

 
Abstract  

 
The purpose of this review is to illustrate how a reductionistic, but sophisticated, approach based on the use of a simple 

model system such as the pond snail Lymnaea stagnalis (L. stagnalis), might be useful to address fundamental questions in 

learning and memory. L. stagnalis, as a model, provides an interesting platform to investigate the dialog between the 

synapse and the nucleus and vice versa during memory and learning. More importantly, the “molecular actors” of the 

memory dialogue are well-conserved both across phylogenetic groups and learning paradigms, involving single- or multi-

trials, aversion or reward, operant or classical conditioning. At the same time, this model could help to study how, where 

and when the memory dialog is impaired in stressful conditions and during aging and neurodegeneration in humans and 

thus offers new insights and targets in order to develop innovative therapies and technology for the treatment of a range 

of neurological and neurodegenerative disorders.  
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1. Background 

Understanding the molecular and physiological mechanisms involved in brain disorders is one of the most important 

challenges in neuroscience today. In the last decades, the animal models of choice used in neuroscience research have 

been mostly small mammals (i.e. rats and mice). However, this approach may not be always the most appropriate, and has 

fuelled many protests and triggered many scientific, economic, ethical and social discussions (Alberts, 2010).  

During the evolutionary process that prompted the diversity among species, numerous molecular pathways have been 

almost entirely conserved across species (Ottaviani et al., 2007), which has led to the recognition of invertebrate models 

as a more flexible tool to study the basic and conserved mechanisms of central nervous system (CNS) physiology and 

pathology (Corning, Dyal and Willows, 1973; Kaang et al., 1993; Ottaviani et al., 2013; Tascedda et al., 2015), exceeding 

the practical and conceptual limitations of experimentation on mammals and cell cultures. Moreover, this approach, 

reduces the time and the costs of experimentation. On balance, using an interdisciplinary approach, that combines 

different methods and fields including evolution, genetics, molecular biology and behaviour, a model such as Lymnaea 

stagnalis will allow us to open new frontiers towards translational neuroscience research, starting from simple model 

systems, passing through more complex organisms, until arriving at Homo sapiens sapiens.  

 

2. Attributes of L. stagnalis as model for studies in the field of Neuroscience 

It is well-known that molluscan gastropods are good models to study the molecular and cellular mechanisms of neuronal 

function and dysfunction (Nestler et al., 2010; Burne et al., 2011; Tascedda et al., 2015; Stefano et al., 2015).   Among 

them, attention should be paid to the pond snail Lymnaea stagnalis (L. stagnalis, Linnaeus, 1758), a pulmonate gastropod, 

widely used as model system in basic and applied neuroscience research (Murakami et al., 2013a; Takigami et al., 2013). 

The CNS of L. stagnalis consists of approximatively 20,000 readily identifiable neurons, organized in a ring of 11 

interconnected ganglia, whose functional roles within specific networks can be defined and directly attributed to 

observable behaviours, such as reproduction (van Minnen et al., 1989; Ter Maat et al., 1992), respiration (Syed  et al., 

1990; Winlow  et al., 1992),  feeding (Yeoman et al., 1994; Straub et al., 2002) and locomotion (Syed  et al., 1991). Not 

only, many neurons are large in size (diameter up to ~100 μm), offering a large amount of biological material for 

molecular, morphological and functional analyses, which have led to the validation of the function of specific genes and 

the study of the molecules and metabolic pathways involved in neuronal regeneration (Hermann et al., 2000; Koert et al., 

2001), synapse formation (Syed et al., 1992; Feng et al., 1997; Gardzinki et al., 2007), synaptic plasticity  (Smit et al., 2001), 

neurodevelopment (Croll et al., 2000), aging (Wildering et al., 1991; Klaassen et al., 1998; Patel et al., 2006), adaptive 

responses to stress (Hermann et al., 1998; Fei et al., 2007) and, last, but not least, learning and memory formation 

(Benjamin et al., 2000; Lukowiak  et al., 2003).  

We centred this review around two key-questions:  

1) What changes in the brain during learning? 

2) Once something is learned, how is that information stored memorized in the brain? 

Jo
ur

na
l P

re
-p

ro
of



 

To answer these questions, we think it is necessary to start from the simplest examples of memory storage (Kandel, 2001) 

and the most experimentally manageable animal models.  

We recognize that most of the molecular studies in L. stagnalis are the result of studies of homology and we also realise 

that the use of a reductionist approach in the 21th-century is an arduous undertaking, but if elementary forms of learning 

are common to all animals with an evolved nervous system, conserved processes must exist in the molecular mechanisms 

of learning that can be studied more effectively in simple invertebrate animals (Kandel, 2001). Thus, our purpose is to 

illustrate how this reductionistic, but not simplistic, approach based on the use of a simple model system such as L. 

stagnalis, might be useful to address fundamental questions in learning and memory. The reconstruction of the extensive 

dialog between the synapse and the nucleus, and the nucleus and the synapse during memory and learning, could also 

help to study how, where and when this dialog is impaired in stressful conditions and during aging and neurodegeneration 

in humans. 

 

3. L. stagnalis as model for the integrative molecule-to behaviour study of memory and learning 

Learning about the predictive association between events and the consequences of specific behaviours is indispensable 

for animals to adapt and survive in complex and ever-changing environments. Remembering these associations, animals 

alter their behaviour appropriately and this alteration can be defined as learning (Dalesman and Lukowiak, 2012; Lapiedra 

et al., 2017).   While non-associative learning (i.e. habituation and sensitization) is the simplest and most primitive form of 

learning, associative learning is more complex and requires that stimuli occur in close temporal contiguity and in a fixed 

sequence (Byrne and Hawkins, 2015). Among the various categories of associative learning, classical and operant 

conditioning are the best known and well-studied. In particular, in classical conditioning a neutral conditioned stimulus 

(CS) paired with a forceful unconditioned stimulus (US) is hypothesized to evoke the unconditional response. On the other 

hand, operant conditioning is response-contingent and involves the presentation of a reinforcing stimulus when the 

animal performs a specific behaviour. If the reinforcing stimulus is negative, animals learn to avoid engaging in the 

behaviour, if the stimulus is positive, animals spontaneously perform the behaviour more often (Mackintosh, 1974). In this 

complex scenario, L. stagnalis has proven to be a useful model for the study of the molecular, cellular,  and neuronal 

networks related to memory, as well as the behavioural aspects of learning and its consolidation in long-term memory 

(LTM) (Ito et al., 1999; Lukowiak et al., 2000; Murakami et al, 2013b).  

Indeed, the knowledge of the architecture of the essential neural circuits of behaviours that can be conditioned (i.e. 

respiration and feeding), allowed the identification and the study of neurons exhibiting plasticity. Using intact vertebrate 

biological systems, these goals are more difficult to attain. Many studies in the last decades demonstrated that L. stagnalis 

can be both classically and operantly conditioned (Kojima et al., 1996; Sakakibara et al., 1998; Kobayashi et al., 1998; 

Spencer et al., 1999; Lukowiak et al., 2000).  In particular, in food reward classical conditioning (Kemenes and Benjamin, 

1989; Kemenes, et al., 2006), a neutral conditioned stimulus (CS – i.e. amyl acetate, gentle taps to the lips or visual cues) 

was paired with a strong unconditioned feeding stimulus (US – usually sucrose) and the temporal-contingent repeated 

presentation of these stimuli resulted in a sequence of rhythmic and stereotyped feeding movements when snails were 

exposed to the CS alone in the post-training phase.  
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This behavioural-conditioned response suggested that snails learned that the CS “means” food (Kemenes and Benjamin, 

2009).  Interestingly, when Lymnaea is moderately food-deprived, it is capable to acquisition and extensive retention (for 

at least 19 days) of an appetitively reinforced feeding response after only a single training trial, offering the possibility to 

perform detailed analyses of the neural mechanisms underlying plasticity (Alexander Jr. et al.1982, 1984; Fulton et al., 

2005; Ribeiro et al., 2005).  

L. stagnalis have been also trained using conditioned taste aversion (CTA) learned and subsequently formed memory 

to suppress the feeding response to an appetitive CS (usually sucrose) when paired with an aversive US (usually KCl or 

tactile stimulus) that ultimately inhibited feeding. Consequently, snails learned that the presentation of a CS signal was 

associated with the imminent arrival of the aversive stimulus (Kojima et al., 1997). Moreover, the aerial respiratory 

behaviour of snails, which is characterized by the spontaneous opening and closing of the pneumostome (the respiratory 

orifice) at the water surface (Boycott, 1936; Jones et al., 1961), can be operantly conditioned. When the animal attempted 

to open its pneumostome as a reaction to hypoxic water, it received a gentle tactile stimulus to the pneumostome area, 

evoking, as escape-withdrawal reflex, its closure. Prolonged tactile stimulation of the pneumostome every time the animal 

attempted to breathe resulted in significantly fewer attempts to open the pneumostome as training proceeded (Lukowiak 

et al., 1996). In a recent study, Lukowiak and co-workers demonstrated the capacity of snails to perform configural 

learning, that resulted in the ability to treat stimuli experienced together as different from the simple sum of their 

elements (Swinton et al., 2019).  These results are consistent with the hypothesis that stimulus–stimulus learning is an 

important adaptive learning mechanism that helps animals, from invertebrates to mammals, to decipher the meaning of 

important stimuli in their environment. The ability of snails to undergo configurational learning is an ulterior confirmation 

of its potentiality in neuroscience and behavioural research (Swinton et al., 2019). Depending on the training procedure 

used, either intermediate term-memory (ITM; persisting up to 3 h) or LTM (persisting for at least 24 h) occurred in L. 

stagnalis (Kojima et al., 1996; Benjamin et al., 2000; Sangha et al., 2003c; Ito et al., 2013; Otsuka et al., 2013; Takahashi et 

al., 2013; Lukowiak et al., 2014; Sunada et al., 2014). Because the inhibition of transcription or translation blocked the 

formation of LTM in a variety of model systems, but did not affect short-term memory (STM), it has been concluded that 

this phase, lasting only minutes, does not require neither de novo protein nor RNA synthesis (De Zazzo and Tully, 1995). In 

addition to the differences in the length of time that memory persisted, a difference between LTM and ITM in requiring 

altered gene activity was observed. In fact, while ITM required the translation of new proteins from pre-existing RNA and 

only depended on new protein synthesis, LTM depended on altered gene activity and required both the transcription of 

new RNA, and their translation into new proteins (Lukowiak et al., 1996; McGaugh, 2000; Inda et al., 2005; Sangha et al., 

2005). Thus, LTM is represented at the cellular level by activity-dependent modulation of both the function and the 

structure of specific synaptic connections that, in turn, depend on the activation of specific patterns of gene expression. In 

recent years much effort has gone into identifying the signalling cascades that ultimately lead to the production of new 

proteins for the process of memory formation, such as, proteins required for the maturation of particular synapses that 

store the remembered information. A variety of different molecular and biochemical tools have been used to measure 

changes in the expression or activation levels of specific molecules during LTM and ITM in L. stagnalis and enhanced 

expression or activation of these key factors has been observed in specific stages of memory formation and consolidation. 
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As would be expected with such vital processes, learning and memory are observable across a vast array of species. It is 

thus reasonable to hypothesize that such a fundamental conserved mechanism, may occur as the result of a well 

conserved set of underlying molecular mechanisms.  On balance, in this complex and dynamic scenario, Lymnaea could 

give an enormous contribution to understand the molecular mechanism by which organisms acquire, store, and eventually 

use their experiences.  

 

4. Toward a molecular pathway for memory and learning in L. stagnalis  

4.1 Lym-CREB in the synaptic enhancement of memory consolidation 

One transcription factor that plays a major role in LTM formation in Lymnaea is the homologous of cAMP response 

element-binding protein, LymCREB (Silva et al., 1998). The cDNA sequences for the activator type of CREB, LymCREB1, and 

the repressor type, LymCREB2, in L. stagnalis have successfully been cloned and analysed (Sadamoto et al, 2004). In 

particular, LymCREB homodimers were demonstrated at both the mRNA and protein level in cerebral giant cells (CGCs) 

(Ribeiro et al., 2003; Sadamoto et al., 2004) and in the right pedal dorsal 1 interneuron (RPeD1), which are necessary for 

CTA (Kojima et al. 1997; Nakamura et al. 1999; Scheibenstock et al., 2002) and operant conditioning of respiration (Taylor 

and Lukowiak, 1992; Scheibenstock et al., 2002; Sangha et al. 2003b), respectively.  In particular, memory training in these 

cells enhanced both the levels of phosphorylated LymCREB1 (Ribeiro et al., 2003) as well as LymCREB1 gene expression 

(Sadamoto et al. 2010), indicating that memory training increased both the gene expression of LymCREB transcriptional 

activator and the level of its activation by phosphorylation. After phosphorylation, LymCREB1, in turn, initiated a cascade 

of altered gene activity and new protein synthesis, necessary for synaptic enhancement in memory consolidation 

(Nakamura et al., 1999; Ribeiro et al., 2003; Sadamoto et al., 2004). In contrast, LymCREB2 inhibited the function of 

LymCREB1 (Nakamura et al., 1999) and the ratio of activator/repressor LymCREBs has been proposed to act as a 

“molecular switch” in determining whether LTM is formed (Sadamoto et al, 2004). Similar findings have been obtained in 

invertebrates, including D. melanogaster (Perazzona et al., 2004) and A. californica (Bartsch et al., 1995), and in mammals 

(Karpinski et al., 1992; Yin et al., 1994; Josselyn et al., 2001). Most of the upstream signalling cascade leading to the 

activation of CREB appears to be conserved through evolution, and many aspects of the role of CREB in synaptic plasticity 

described in invertebrates have also been observed in the mammalian CNS (Barco et al., 2003).  

Evidence from numerous model systems indicate that CREB-driven transcription results downstream of the activation of 

Cyclic Adenosine Monophosphate (cAMP), which mediates almost all of its actions through protein kinase A (PKA). 

Furthermore, in various model systems ranging from invertebrates to mammals, CREB1 works as a transcriptional 

activator only after its phosphorylation by either PKA, mitogen-associated protein kinase (MAPK) or calcium calmodulin-

dependent protein kinase II (CaMKII) (Montminy, 1997). Similar to mammals and Aplysia, LymCREB1 contains a kinase 

inducible domain which presents consensus sequences of several kinases (Pinna and Ruzzene, 1996), such as LymPKA, 

protein kinase C (LymPKC), LymCaMKII and protein kinase G (PKG) (Sadamoto et al., 2004). On the other hand, LymCREB2 

has two consensus sequences for the LymMAPK phosphorylation site and one PKC recognition site (Sadamoto et al., 

2004), suggesting that these kinases act as memory promoter genes that up-regulate the expression of LymCREB or down-

regulate the suppressor activity of LymCREB2.  
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The contribution to synaptic plasticity and memory of these kinases, together with highly conserved molecular targets, 

such as N-methyl-D-aspartate (NMDA) glutamate receptors (GRINs) and nitric oxide (NO), have been investigated in 

Lymnaea.  

 

4.2 Involvement of LymGRIN in associative plasticity processes 

NMDA receptors are required for memory formation across several types of memory and numerous species (Szapiro et al., 

2003; Xia et al., 2005; Zhang et al., 2005; Glanzman et al., 2008; Kano et al., 2008). The main characteristics of NMDA 

receptors, such as the permeability to calcium, the voltage dependent magnesium block, the slow kinetics, together with 

the numerous binding sites for cofactors, make them well suited for associative plasticity processes, that are specifically 

mediated by the entry of calcium, which, in turn, activates a variety of cell signalling cascades,  involving PKC and CaMKII 

pathways and NO synthase (NOs), which all contribute to memory formation (Ha et al., 2006; Wan et al., 2010; Rosengeer 

et al., 2010). Data obtained from L. stagnalis using agents that block the receptors suggest that the activation of the 

homologous of NMDA receptors, LymGRINs, are required in order to allow LTM formation following conditioning 

(Rosenegger and Lukowiak, 2010; Wan et al., 2010). Evidence of this, is the effect of ketamine, a NMDA blocker, which 

compromised the consolidation phase of memory, by acting on transcriptional events that are exclusive for early LTM but 

not for ITM (Browning and Lukowiak, 2008), or late LTM (Wan et al., 2010).These findings are consistent with the 

vertebrate and invertebrate literature on learning (Shimizu et al., 2000;  Silva et al., 2003;  Irvine et al., 2005; Bevilaqua et 

al., 2005), where the entry of calcium through NMDARs during robust synaptic stimulation triggered synapse-to-nucleus 

signalling cascades that resulted in the activation of CREB through PKA and MAPK-mediated phosphorylation (Montminy, 

1997). 

 

4.3 Lym-PKC in memory acquisition and maintenance  

The entrance of Ca2+ through NMDARs activates directly or indirectly numerous protein kinases, including PKC (Malinow et 

al., 1988). The role of the PKC family has been investigated in many learning paradigms and animal models, including 

numerous invertebrate models (Choi et al., 1991; Muzzio et al., 1997). For more than two decades, PKC activation has 

been implicated in the formation of associative memory in a variety of species, including the mollusc, Hermissenda 

crassicornis, rodents and rabbits (Bank et al., 1988, Olds et al., 1989; Nelson et al., 1990), providing a valid support for a 

mechanism that has been conserved across the evolution of species ranging from invertebrate molluscs to higher 

mammals (Takigami et al., 2014a). Interestingly, data from Lymnaea indicated that the administration of bryostatin, a PKC 

activator, before the conditioning training procedure enhanced both ITM and the length of LTM (Rosenegger et al., 2008; 

Takigami et al., 2014), whereas injection of a PKC inhibitor (GF109203X) blocked both ITM and LTM formation (Rosenegger 

et al., 2008). In this regard, Rosenegger, Parvez, and Lukowiak (2008) demonstrated that pre-treatment of Lymnaea with 

bryostatin before operant conditioning of aerial respiration not only makes it easier to produce LTM, but also makes the 

memory persist much longer (Rosenegger et al., 2008).  

 

Jo
ur

na
l P

re
-p

ro
of

http://www.jneurosci.org/content/30/1/56.long#ref-35
http://www.jneurosci.org/content/30/1/56.long#ref-37
http://www.jneurosci.org/content/30/1/56.long#ref-21
http://www.jneurosci.org/content/30/1/56.long#ref-4
http://www.jneurosci.org/content/30/1/56.long#ref-4


 

Moreover, Tagikami and colleagues (2014) demonstrated that the mechanism by which STM becomes consolidated in LTM 

involved the activation of PKC-mediated phosphorylation, following CTA (Tagikami et al., 2014a). In fact, when bryostatin 

was injected within the early time period following CTA trials, memory consolidation was progressively enhanced, 

suggesting that PKC initiated the synthesis of new proteins necessary for LTM formation and enhanced mRNA translation 

following DNA transcription (Takigami et al., 2014a). In turn, protein synthesis, seems to be critical for providing essential 

biochemical and structural components to the synaptic apparatus required for the implementation of the memory storage 

process. This hypothesis is fully supported by similar findings indicating that bryostatin-induced PKC phosphorylation 

extended memory duration in both Hermissenda and mammals following Pavlovian-conditioning (Alkon et al., 2005; 

Kuzirian et al., 2006; Hongpaisan and Alkon, 2007; Sun and Alkon, 2008). 

Because PKC dysfunctions are involved in several types of memory impairments in both humans and rodents (Pascale et 

al., 1998) and considering the highly-conserved involvement of this pathway in memory, L. stagnalis represents an 

attractive tool to elucidate the potentiality of PKC as pharmacological target for the treatment of memory decline and 

dementias. 

 

4.4 LymCaMKII in late consolidation of associative memory 

The involvement of CaMKII in memory acquisition has been well documented in several organisms (Cammarota et al., 

2002; Silva, 2003; Elgersma et al., 2004). CaMKII, like other CaM-kinases, is activated by the transient influx of Ca2+ (e.g., 

through NMDA receptors) and plays a role in subsequent transcriptional and translational processes that involved CREB 

(Silva et al., 1998; Abel and Lattal, 2001;  Hudmon and Schulman, 2002; Wang et al., 2006). Similarly, CaMKII is an highly 

suitable molecular substrate for LTM storage due to its unique ability to maintain an active auto-phosphorylated state 

even after the decay of external stimuli (i.e., when Ca2+ influx stops) (Hook and Means, 2001). The homologous of CaMKII 

has been cloned in Lymnaea (LymCaMKII) and shared important functional roles in learning and memory (Wan et al., 

2010) with its mammalian counterpart. Previous studies identified a critical time window (occurring approximatively at 24 

hours after training) during which the activation of LymCaMKII was required for the late consolidation of associative 

memory. In contrast, no evidence was found for a role of the activation of LymCaMKII (or other LymCaM-kinases) in early 

or intermediate consolidation, for up to 20 hours after training (Wan et al., 2010). Because LymGRINs are only involved in 

the acquisition of LTM, whereas LymCaMKII participates in the late consolidation phase, there is a dissociation of NMDA 

receptor function and CaMKII activation between these two different phases of memory formation. This is different from 

what has been described in NMDA receptor and CaMKII knock-out mice, where the activation of CaMKII resulted from the 

upstream activation of NMDA receptors (Wang et al., 2003). In this regard, it was hypothesised that the intrinsic activation 

of LymCaMKII leads to sustained high levels of auto-phosphorylated CaMKII, which the ensuing learning-induced delayed 

rise in Ca2+ from glutamatergic receptors.  

Additionally, using CaMKII and NMDA inhibitors it was found that, while memory consolidation depended on both NMDA 

receptors and CaMKII activation, CaMKII-dependent late memory consolidation did not require the activation of NMDA 

receptors (Wan et al., 2010). This suggested that the rise of Ca2+ was mediated by non-NMDA type voltage-gated calcium 

channels or intracellular calcium stores in the CGC axon terminals (Kemenes et al., 2006). Actually, it has yet to be 
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established whether this function has been conserved in other more complex organisms. While LymCaMKII was not 

involved in late consolidation, LymNO and LymPKA were required for early memory formation (Kemenes et al., 2002, 

2006). The complementary roles played by LymCaMKII, LymNO, and LymPKA suggest that the dynamic consolidation 

phase involves both parallel and sequential activation of different signalling cascades in the different phases of the 

consolidation of long-term memory.  

 

4.5 Lym-PKA activity induced distinct temporal patterns are correlated with different memory phases 

Studies in Aplysia first revealed the participation of the cAMP/PKA-signalling pathway in synaptic facilitation and 

sensitization (Brunelli et al., 1976). Moreover, in both invertebrates and vertebrates the dynamic network of molecular 

signalling cascades activated by learning, involved highly conserved PKA-mediated mechanisms (Selcher et al. 

2002; Roberts and Glanzman 2003;  Schwärzel et al. 2007). In L. stagnalis, an increase in PKA during the first 10 minutes 

after training was essential for an early phase of LTM (6 hours). On the other hand, prolonged activation of LymPKA in the 

late phase of LTM (24 hours) was involved in memory reconsolidation (Michel et al., 2008). Thus, very early PKA-mediated 

events that are necessary for 6-hour memory formation, are not sufficient for a 24 hours memory trace to form, which 

depends on more prolonged PKA activity. This finding implies a distinct temporal pattern induced by PKA activity that is 

related to the formation of different phases of memory, which has been observed in rodents as well (Tronson et al., 2006). 

Various protein phosphatases regulate the local activity of PKA acting as inhibitory constraints on memory formation.  In 

this regard, it has been suggested that in snails an equilibrium between both kinase and phosphatase activities exists and 

regulates both memory storage as well as retrieval (Sharma et al., 2003). 

 

4.6 Consequences of LymPACAP learning-induced activation of adenylate cyclase 

 Studies concerning the role of PKA in the consolidation of memory in Lymnaea indicate that, similar to other systems, 

activation of adenylate cyclase (AC) forms a key step in LTM formation. Interesting, in the L. stagnalis nervous system, the 

protein homologous to the vertebrate pituitary adenylate cyclase-activating polypeptide, LymPACAP, and its receptors 

were involved in learning-induced activation of AC (Pirger et al., 2010). In particular, activation of AC by PACAP was 

necessary for LTM to occur in a food-reward conditioning paradigm. Moreover, the application of PACAP at the beginning 

of multi-trial conditioning accelerated the formation of transcription-dependent memory. This memory-boosting effect of 

exogenously applied PACAP was blocked by the PACAP receptor antagonist PACAP6-38 in both single-trial chemical and 

multi-trial tactile conditioning, suggesting that LymPACAP is released in response to chemical and tactile conditioning 

(Pirger et al., 2010). 
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4.7 LymNO-dependent cascade and memory and learning 

The nitric oxide (NO)-cGMP signalling system, together with the cAMP system, plays a critical role in the protein synthesis-

dependent formation of LTM in many vertebrates and invertebrates (Moroz et al., 1994; Lu et al. 1999; Roberson et al. 

1999).  In Lymnaea, mRNA transcripts from the two related nNOS genes, Lym-nNOS1 and Lym-nNOS2, are expressed in 

CGCs (Korneev et al., 2005) and there is ample evidence that the consolidation of a memory trace following one-trial 

chemical conditioning depends on the LymNO-GMP signalling pathway. In fact, 6 hours after chemical conditioning, Lym-

nNOS1 was up-regulated and a critical period of sensitivity up to 5 hours after conditioning was observed when blocking 

this pathway thus preventing the formation of LTM (Kemenes et al., 2002). This is in line with studies in bees and mice, 

where the NO-cGMP-pathway, together with the PKA-cascade, is necessary in the early post-training phase of memory 

formation (Müller, 2000).  As previously shown in numerous model systems, it was assumed that in Lymnaea the LymNO-

cGMP cascade (Park et al., 1998; Sadamoto et al., 1998) activates different signalling pathways via LymCREB1 

phosphorylation (Lu et al., 1999). In fact, the LymNO-cGMP cascade involves the phosphokinase G (PKG), that, in turn, 

binds PKG kinase consensus sequences in the kinase inducible domain of LymCREB1, thereby activating LymCREB1 by 

phosphorylation (Sadamoto et al., 2004). Moreover, in Lymnaea NO modulated the strength of serotonergic 

neurotransmission between CGCs and motoneurons in the feeding system (Straub et al., 2007) which could be involved in 

conditioning.  

 

4.8 LymMAPK and its role in intermediate and long-term memory 

The complex molecular signalling cascades activated by behavioural training in L. stagnalis also results in the activation of 

the orthologous of mitogen-activated protein kinase (LymMAPK), as shown in numerous model system and training 

paradigms (Morris et al., 1986; Tsien et al., 1996; Silva et al. 1998; Müller 2000; Valjent et al., 2001; Sharma and Carew 

2004). In Aplysia, for example, the translocation of MAPK in the nucleus after stimuli presentation results in long-term 

facilitation at the sensory motor neuron synapse (Martin et al., 1999). In Lymnaea, classical food-reward conditioning 

training resulted in elevated levels of activated LymMAPK in protein extracts from the cerebral and buccal ganglia and lip 

tissue surrounding the mouth (Ribeiro et al. 2005), indicating that both the CNS and the peripheral nervous system are 

involved in memory formation. In addition, in rats, the inhibition of MAPK activity blocked the formation of both ITM and 

LTM (Rosengger et al., 2010), where fear conditioning was observed as a result of the activation of this cascade (Atkins et 

al., 1997). Based on these observations, it was hypothesized that in Lymnaea LymMAPK was active both during ITM, which 

only required translation, and during the formation of LTM, providing correlative evidence that for LTM to form, ITM must 

occur first (Parvez et al., 2006).  In light of this, in Lymnaea, as in other model systems, LymMAPK and LymPKC-mediated 

intracellular cascades and play a fundamental role in either signalling, initiating and maintaining processes that alter gene 

activity and induce new protein synthesis necessary for the formation of memories that persist longer than a few minutes. 

Remarkably, unlike other factors, after single-trial reward conditioning, LymMAPK was activated not only in response to 

contingent CS-US application, but also, when the stimuli were applied alone, suggesting that this kinase is necessary but 

not sufficient for the consolidation of associative LTM (Wan et al., 2010).  
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Not only, food-reward conditioning selectively increased LymCREB phosphorylation in the same ganglia that expressed 

LymMAPK to regulate feeding behaviours (Ribeiro et al. 2003), suggesting that phosphorylation of LymCREB in neurons 

could result in downstream activation of LymMAPK, as is observed in mammals (Thomas and Huganir 2004). 

L. stagnalis studies based on single-trial food-reward classical conditioning have yielded information on a variety of 

general and specific, molecular and cellular, mechanisms necessary for the consolidation of memory, that involve the 

regulation of gene expression by transcription factors, such as LymCREB and the activation of LymPKA, LymPKC, and MAPK 

signalling pathways, as well as LymGRIN receptors and LymCaMKII (Fig. 1). Mounting evidence suggests that these 

molecular pathways have been highly conserved in learning, both across phylogenetic groups and learning paradigms, 

involving single- or multi-trials, aversion or reward, operant or classical conditioning. Even if LymPKA, LymNMDA 

receptors, LymCaMKII, LymCREB, and LymNOS/NO are selectively activated or upregulated, it seems likely that these and 

other signalling molecules are part of a synergistic effort and together contribute to the memory consolidation process, 

with none of them alone being sufficient for LTM (Kemenes, 2013) (Fig. 2).   

 

4.9 LymC/EPB synaptic plasticity and memory consolidation 

In line with data from Aplysia, Helix and mammals, LymCREB seems to regulate the expression of the homologous of 

CCAAT/enhancer binding protein, LymC/EBP, (Alberini et al., 1994; Niehof et al., 1997), which is an immediate-early gene 

involved in synaptic plasticity necessary for memory consolidation after CTA (Hatakeyama et al., 2006).  

In particular, early consolidation of memory after CTA learning in L. stagnalis involved not only the rapid synthesis and 

phosphorylation of LymC/EBP, but also required the rapid breakdown of its mRNA, suggesting that a pool of LymC/EBP 

mRNA is rapidly translated and degraded after CTA learning. This fast turnover of newly transcribed mRNA was necessary 

for the prolonged de novo synthesis of LymC/EBP, fundamental for the consolidation phase of memory formation 

(Hatakeyama et al., 2004). These results led to the formation of a general rule stating that effective gene activation by a 

transcription factor involved in LTM consolidation requires an increase in the amount of the transcription factor itself 

(Hatakeyama et al., 2006). Although is not yet known which genes act downstream of LymC/EBP activation, based on data 

from Aplysia, Helix, and mammals (Alberini, 1994; Niehof et al., 1997; Hatakeyama et al., 2006), it is hypothesized that the 

expression of LymC/EBP is likely regulated by LymCREB.  The potential downstream targets of C/EBP likely are the 

LymnNOS genes. These targets are, in fact, co-localized in B2 motoneurons, and LymnNOS genes have three putative Lym-

C/EBP binding sites, which would provide the necessary structural conditions for the interaction of C/EBP with NOs genes 

in the Lymnaea feeding network. In addition, a link has been hypothesized between LymC/EBP and insulin-like growth 

factor 2 (IGF2), as previously demonstrated in mammals (Alberini et al., 2012). If confirmed, these data would contribute 

to a better understanding of the role of IGF genes in memory enhancements. 
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4.10  LymMIP involvement in long-term synaptic enhancement 

Another intriguing factor involved in memory formation is the molluscan insulin-related peptide II (MIP-II), that belongs to 

the insulin superfamily. LymMIP-II was first cloned in Lymnaea (Smit et al., 1991; Li et al., 1992) and is expressed in the 

growth-controlling neuroendocrine light green cells, which are located in the cerebral ganglia (Meester et al., 1992; Smit 

et al., 1992).  Because insulin receptors, including MIP receptors (Roovers et al., 1995), are homologous across phyla 

(Jonas et al., 1996), and ligand-binding sites are well-conserved, the use of an antibody against the extracellular domain of 

the mammal insulin receptor was assumed to act as an antagonist for MIP receptor (Murakami et al., 2013b).  Indeed, 

injection of the insulin receptor antibody into the snail abdomen before CTA training blocked the memory consolidation 

process (Murakami et al., 2013a).  On the contrary, when partially purified MIPs or bovine insulin were applied to the 

isolated nervous system of snails, long-term synaptic enhancement was observed at sites thought to play key roles in CTA 

learning and LTM formation (i.e. CGCs) (Hatakeyama et al., 2013; Murakami et al., 2013a).   

Thus, up-regulation of LymMIP-II stimulates neurite formation (Smit et al., 1988; Kits et al., 1990), confirming that one of 

the physical manifestations of LTM formation is change in the morphology of the synapse during memory formation 

(Geraerts, 1992), similar to what was observed in Aplysia (Bailey and Kandel, 1993), C. elegans (Kodama et al., 2002) and 

rodents (Dou et al., 2005; Ramsey et al., 2005). Because the expression levels of LymMIP-II do not change when LymCREB1 

is inhibited (Azami et al., 2006), the upstream transcription factors that regulate the expression of MIP-II do not directly 

involve LymCREB interaction. Insulin plays an important role in cognitive function across species and numerous human 

clinical studies suggest a link between type 2 diabetes mellitus, insulin resistance, and cognitive dysfunction (Biessels and 

Reagan, 2015; Heni et al., 2015; Kim and Feldman, 2015; Mainardi et al., 2015; Tramutola et al., 2018). Consequently, 

Lymnaea as a model system could help to elucidate the involvement of insulin dysregulation and memory impairment. 

 

4.11   The monoaminergic system of L. stagnalis and its role in memory-related changes 

Accumulating evidence suggest that when memory scores in CTA are better, the monoamine contents in the nervous 

system of Lymnaea are lower and when the insulin content in the CNS decreases, so do the monoamine contents 

correlated with higher memory scores. Thus, the ratio of synaptic monoamine concentration is important for memory 

formation and consolidation while at the same time memory-related changes may occur when the total monoamine 

contents in the CNS are low (Totani et al., 2019). In this regard, serotonin (5-hydroxytryptamine: 5-HT) plays a key role in 

the mediation of learning and memory in molluscs (Dyakonova and Sakharov, 2001). The best known example of this 

is dishabituation and sensitization of the gill withdrawal reflex in Aplysia that is mediated by the release of 5-HT 

from interneurons (Kandel, 2001).   

Moreover, 5-HT drives both feeding behaviour and food satiety in L. stagnalis (Kemenes et al., 1990; Croll et al., 

1999; Yamanaka et al., 2000; Kawai et al., 2011; Dyakonova et al., 2015). CGCs, that are serotoninergic, are sensitive to the 

concentration of glucose in the hemolymph (Dyakonova et al., 2015).  As to 5-HT and memory in Lymnaea, an injection 

with a 5-HT receptor antagonist after CTA induced reversible amnesia (Nikitin and Solntseva, 2013).  
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Also, 5-HT levels are required to be low for learning and LTM to occur. In fact, while a decrease in the ability to learn and 

remember was observed in snails immersed in 5-HT, an injection with insulin rescued the ability of snails to learn CTA and 

form LTM (Mita et al., 2014).  Finally, the amount of 5-HT released is controlled by a cAMP-PKA-CREB cascade in the CGC 

(Nakamura et al., 1999; Sadamoto et al., 2011). Together these data, underscore the suitability of L. stagnalis as a model 

to unravel the complexity of the serotonin signalling pathway (Benatti et al., 2017).  Furthermore, dopamine (DA) 

pathways play an essential role in reward systems in both vertebrates and invertebrates. In L. stagnalis, DA is involved in 

LTM consolidation of reward classical conditioning (Kemenes et al., 2011) and consolidation of appetitive conditioning (i.e. 

sucrose as the US) (Eliott et al., 2011).  Similar to dopamine, octopamine, a neurotransmitter first discovered by Erspamer 

in octopus (Erspamer, 1948), is also thought to be a reward related neurotransmitter and acts in a similar manner as 

dopamine, mediating feeding behaviour (Elliott and Vehovszky, 2000) and participating in the formation of LTM after 

aversive food conditioning (i.e. KCl as the US)  (Kemenes et al., 2011). Thus, appetitive and aversive food conditioning in 

Lymnaea are mediated by the dopaminergic and octopaminergic system (Kemenes et al., 2011). 

 

5. Memory extinction: when the memory for conditioning is masked by another form of learning 

Memory persistence depends in part on the training procedure used, as proven by numerous studies performed in both 

mammals (human and rodent) and invertebrates (i.e. Drosophila, Aplysia, Lymnaea, Apis) that demonstrated that while 

‘massed-training’ and ‘spaced training’ result in similar behavioural phenotypes, the latter results in a longer-lasting 

memory (Hovland, 1940; Carew et al., 1972; Hintzman, 1974; Bitterman et al., 1983; Frost et al., 1985; Lukowiak et al., 

1998; Sakakibara et al., 1998; Hermitte, 1999; Lukowiak et al., 2000; Commins et al., 2003; Takahashi et al., 2013; Takigami 

et al., 2014b).  In particular, studies using Lymnaea indicated that spaced training is more effective than massed training in 

both classical conditioning (Sakakibara, 2006; Sakakibara, 2008; Takahashi et al., 2013) and operant conditioning 

(Kobayashi et al., 1998). Moreover, the different behavioural outcome of these training produces reflects the dynamic 

molecular modifications underlying STM, ITM and LTM formation, respectively (Takigami et al., 2014b).  

On the contrary, because memory transience depends from events that interfere after the formation of memory 

(McGeoch, 1932; Minami and Dallenbach, 1946), manipulation of snails’ post-training environment in order to prevent the 

occurrence of ‘interfering events’, extends the persistence of memory (Shanga et al., 2003).  

The consolidation phase, in fact, requires time, and under some circumstances consolidation related processes appear to 

be susceptible to a variety of influences, both facilitating and impairing the stabilization of the memory trace (McGaugh, 

1966). Interference-based forgetting occurs when new information acquired either before or after a learning event 

attenuates memory expression (proactive and retroactive interference, respectively) (Dudai, 2004).  

Multiple learning events, in fact, often occur in rapid succession, leading to competition between consolidating memories. 

In this contest, Lymnaea offers the opportunity to study the effect of proactive or retroactive interference when the 

consolidating memory is either in a stable or labile stage. Recently Crossley and colleagues (2019) demonstrated that 

when new learning takes place during a stable stage, proactive interference only occurs if the two consolidating memories 

engage the same circuit mechanisms. On the other hand, if different circuits are used, both memories survive.  
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They also demonstrated that, even if there is some interaction between the memory systems during the acquisition phase 

of the new memory, the original memory is only vulnerable to interference when it is in a labile state (Crossley et al., 

2019).  Despite forgetting (Sangha et al., 2005), that is the loss of the learned behaviour (Schacter, 2001), extinction is the 

gradual loss of a learned behaviour when a reinforcing stimulus was no longer applied (Pavlov, 1927). Previous studies 

demonstrated that extinction does not result in the destruction of the earlier formed memory, but is thought to be an 

active process, where the original memory is temporarily occluded by a new memory (Lattal et al., 2006).  This process 

occurs across paradigms and species, passing from C. elegans to humans (Myers and Davis, 2002). Extinction in Lymnaea, 

as in other model systems, is not the unlearning of the ‘old’ memory, on the contrary,  it requires new protein synthesis, 

suggesting that during this process new learning occurs which suppresses, but does not abolish, the memory for previous 

conditioning (Sangha et al., 2003a). In particular, in L. stagnalis, extinction training enhanced the activity of LymGRIN 

receptors and LymMAPK, both involved in memory formation, implying that changes in the same molecular machinery 

serves a number of purposes (Rosenegger and Lukowiak, 2010). 

These results are consistent with previous studies from rodents, where treatments with NMDA agonists prior to extinction 

training severely inhibited its acquisition (Cammarota et al., 2005), whereas MAPK was involved in the extinction of 

conditioned fear (Szapiro et al., 2003) and inhibitory avoidance (Rossato et al., 2006).  In this context, L. stagnalis 

represents a good model to determine the differences between the types of memory (extinction and ‘original’) and more 

fully understand their mechanisms.  

 

6. Key-molecular factors involved in stress-induced memory block: beyond the Yerkes–

Dodson/Hebb law  

A large body of evidence from humans and rodents affirms that stress has complex influences on memory performance, 

with both negative and positive consequences depending on the nature and the “intensity” of the stressor (Baldi and 

Bucherelli, 2005; Lupien et al., 2007; Sandi and Pinelo-Nava, 2007).  According to the ‘Yerkes–Dodson Law’, too much or 

too little stress obstructs LTM formation, while ‘just the right amount’ enhances LTM (Yerkes and Dodson, 1908). 

Moreover, single-acute versus repetitive-chronic stressors influence memory in distinct ways (Sandi and Loscertales, 1999; 

Byrne et al., 2014).  Many studies provide evidence that opposing effects are induced by stress during the phases of 

consolidation (generally facilitating) and retrieval (generally impairing) of information (Roozendaal, 2002). That is, stress 

can be defined as a state that requires dynamic physiological, psychological or behavioral readjustment or modification in 

order to maintain allostatic load of the organism low, which would help the organism to sustain a ‘neuronal cost’ (in terms 

of gene activity and new protein synthesis) to form LTM to ‘relevant’ events (Lukowiak et al., 2014). It is also important to 

consider that stress only facilitates learning and memory when experienced in the same context and around the time of 

the event that needs to be remembered (Joëls et al., 2006).  The effects of stress on learning and memory could produce 

contradictory results: the same stimulus may be perceived as a stressor by one organism but not by another, or may be 

perceived as a stressor only at certain times in the same organism.  
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From the literature, disagreement emerges regarding the different effects of stress on memory function (including 

facilitating, impairing, or the lack of effects). In this regard, L. stagnalis represents a compelling integrative model to 

understand how stress affects memory formation (Benjamin et al., 2000; Otsuka et al., 2013; Takahashi et al., 2013; 

Lukowiak et al., 2014; Sunada et al., 2014).  

Using ecologically relevant stressors that snails are likely to encounter in their natural environment, it is possible to study 

how learning and memory formation are modified by stressors (Lukowiak et al., 2010). Lymnaea, in order to live long and 

prosper, require adequate quantity of food and a balanced source of calcium, necessary to grow the shell and to detect 

predators (Dalesman and Lukowiak, 2010). Consequently, restriction of food and/or calcium are considered to be 

environmental stressors. At the same time, because crowding increases competition for resources, it is considered a social 

stressor.  There is ample evidence that some stressors (e.g. predator detection) lead to enhanced memory formation (Orr 

and Lukowiak, 2008), whereas other stressors (e.g. crowding) lead to suppression of memory formation (de Caigny and 

Lukowiak, 2008). Not only, when stressors are experienced in combination, the outcome results in unpredictable 

consequences on snails' ability to learn and form memory and cannot be predicted based on the impact of the stressors 

on memory formation when the stressors are presented individually (Huges et al. 2017). 

 

6.1 Enhancement of LTM formation and the initiation of HSPs production in L. stagnalis 

The exposition of Lymnaea for a brief period to heat (1 h at 30°C) before operant conditioning training not only enhances 

the formation of LTM (Teskey et al., 2012), but also increases the synthesis of two heat shock proteins (HSPs): HSP40 and 

HSP70 (Foster et al., 2015). Studies from rodents indicated that the flavonoid quercetin blocks the effects on memory 

formation of those stressors that act via HSPs (Mohammadi et al., 2014) by altering the expression levels of CREB (Costa-

Mattioli et al., 2009). Future studies using Lymnaea could help to better comprehend the link between the enhancement 

of LTM formation and the start of HSPs production (Sunada et al., 2016). 

 

6.2 The cooling-induced modification on ITM and LTM  

Even if cooling can be considered a more naturally event, in particular circumstance, it can be used as stressful stimulus. 

Numerous studies established that brief periods of hypothermia after conditioning training interfere with memory 

consolidation in both Lymnaea and in other species because of a reduction in protein synthesis (Sekiguchi et al., 1994; Xia 

et al., 1998; Sangha et al., 2003d). In fact, it seems that cooling interferes with the metabolic processes necessary for 

memory formation (Fulton et al., 2008; Takahashi et al., 2014).  In this regard, Sangha and colleagues (2003) demonstrated 

that cooling the snails for 1 hour immediately after training blocked ITM or LTM, whereas delaying the same cold-block by 

10 or 15 minutes allowed for the formation of ITM and LTM, respectively (Sangha et al., 2003d). These data imply that 

cooling-sensitive processes required during the establishment of ITM and LTM operate through a brief time-window 

immediately following learning. Furthermore, it seems that the processes leading to stabilization of the learned behaviour, 

once started, are not broken down by cooling (Sangha et al., 2003d). Moreover, Takahashi and colleagues (2013) showed 

that prolonging the cold-block up to 180 minutes following training inhibited memory formation as well, suggesting that 

there are two critical periods for LTM formation. In fact, the application of the cold-block immediately after training 
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interferes with the macromolecular protein synthesis required for memory consolidation, whereas the cooling effect 

observed 180 minutes after training alters a second round of protein synthesis occurring following memory formation 

(Takahashi et al., 2013). Finally, exposure of snails to 4°C for 8 days once LTM is consolidated, resulted in disruption of the 

events downstream memory formation that are responsible for forgetting. In this way, LTM that normally persisted for 2 

days was extended for at least 8 days (Sangha et al., 2003d). These data are consistent with the hypothesis that forgetting 

is an active process due to the learning and remembering of interfering events. If confirmed, it should be possible to 

disrupt the process of forgetting (i.e., block the new consolidation process for ‘interfering events’) by using cooling. In this 

contest, L. stagnalis represents a good model to study the time-window required for ITM and LTM using reversibly cold-

block induced amnesia which, in turn, is a non-toxic and easily reversible procedure, that can be applied and removed for 

discrete amounts of time (Takahashi et al., 2013). Moreover, cooling can be utilized to study how loss of memory may be 

prevented. 

 

6.3 DNA methylation in memory persistence in relation to longer-term stressors or environmental changes  

Considering that the interval between stress experienced by snails and the enhancing effect of this stressor on the 

formation of LTM is in the order of days, epigenetic mechanisms have been hypothesized to play a key role. In this regard, 

epigenetic changes, such as DNA methylation, have emerged as common mechanisms involved in memory formation 

across species (Zovkic et al., 2013). In particular, DNA methylation was involved in olfactory LTM in honeybees (Biergans et 

al.,2012) as well as in long-term potentiation at sensory-motor synapses in Aplysia (Rajasethupathy et al., 2012). Studies 

from rodents suggest that DNA methylation represents a dynamic state, that can be strongly influenced by various 

environmental manipulations, including exposure to stress (Chertkow-Deutsher et al., 2010).  Stressful stimuli, in fact, 

alter DNA methylation state which, in turn, is the result of upstream events, including increased glutamate and 

neuropeptide transmission and enhanced activation of transcription factors (Stankiewicz et al., 2013).  In this context, the 

enhancement of LTM or the length of its persistence in stressed snails required DNA methylation (Lukowiak et al., 2014). 

In fact, treatment with a DNA methylation blocker (5-Aza-2’-deoxycytidine (5-AZA)) 1 hour before exposing snails to a 

memory-promoting stressor, altered the persistence of LTM (Lukowiak et al.,2014; Sunada et al., 2016). Interestingly, in 

the absence of stress-enhanced memory, 5-AZA was not active (Lukowiak et al.,2014). Because drugs of abuse, such as 

cocaine and methamphetamines, activate stress pathways (Moldow and Fischman, 1987), it has been hypothesised that 

intense memories characteristic of post-traumatic stress disorder (PTSD) and drug addiction, may be resistant to 

forgetting because memories appear to be stabilized by epigenetic changes (Carter et al., 2006; Kennedy et al., 2010; 

Debiec, 2012; Nestler, 2014; Schmidt et al., 2013). Therefore, Lymnaea represents a good model to study the involvement 

of DNA methylation in memory persistence related to longer-term stressors or environmental changes, while at the same 

time contributes to elucidate the role of epigenetic changes in memory impairments (Carter et al., 2006). 
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6.4 Neuro-modulatory role of the endocannabinoid system in how stress modifies LTM formation  

The mechanisms by which various stressors affect memory formation are not entirely clear.  In this contest, the 

endocannabinoid system and, in particular cannabinoid receptors (CBs), seems to play a key neuro-modulatory role in how 

stress modifies LTM formation (Campolongo et al., 2009; Atsak et al., 2012; Tan et al., 2014). In mammals, in fact, the 

activation of the endocannabinoid system not only enhanced the effects of a stressor on adaptive behaviours (Morena 

and Campolongo, 2014; Goodman and Packard, 2015), but it also suppressed the formation of working memory and LTM. 

On the contrary, both forms of memory were enhanced when the endocannabinoid system was inhibited. Because the 

endocannabinoid system is phylogenetically ancient (McPartland, 2004) and well conserved among species, Sunada and 

colleagues (2017) hypothesized that in Lymnaea putative cannabinoid receptors (LymCBrs) are involved in learning and 

memory formation in stressful conditions (Sunada et al., 2017). Indeed, L. stagnalis, expressed two G-protein-coupled 

neuronal receptor genes, which encoded proteins closely related to well characterized vertebrate CBrs (Sunada et al., 

2017). Injecting a mammalian CBr agonist (i.e. WIN 55) in snails, mimicked the traumatic event of exposure to severe 

stressor and rendered snails unable to learn and form memories for up to one week after the traumatic event. On the 

contrary, injection of a mammalian CBr antagonist (i.e. AM 251) before snails received the traumatic stimulus reduced the 

effect on learning and memory. Injection of the same antagonist into untrained and not traumatized snails enhanced their 

ability to form LTM (Sunada et al., 2017). Evidence from the literature also supports these data. Previous research in 

rodents, in fact, indicated that blocking of CBrs enhanced spatial and associative memory (Terranova et al., 

1996; Robinson et al., 2008). While the effects of WIN 55 was prolonged and maintained for at least 4 days, the effect of 

other stressors on LTM formation persisted for only a few hours (Orr and Lukowiak, 2008). Consequently, it was 

hypothesized that WIN 55 causes a state of extreme fear that is incompatible with learning and memory, as demonstrated 

in mammals, where the endocannabinoid system plays a key role in the neuronal regulation of anxiety and responses to 

fear (Ruehle et al., 2012). Future research could benefit from our simple model system and use it to better understand 

how the endocannabinoid system is involved in the acquisition of learning and memory. At the same time, gaining better 

comprehension as to how behaviorally relevant stressors may alter LTM formation and/or its persistence focusing on 

simple systems may lead us to understand how to treat ‘memory disorders’ such as phobias, PTSD and substance abuse 

more effectively (Dębiec,2012; Agren,2014).  
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7. Necessity knows no law: when the conditioned stimulus sucrose becomes a source of energy 

It is well-established that different stress states resulting from different durations of food deprivation alter the ability of 

snails to express LTM.  According to the Yerkes–Dodson/Hebb law, while some degree of a food-deprivation-induced 

stressed state must exist for the CTA to successfully occur, the length of food deprivation alters learning and LTM 

formation (Ito et al., 2015). In particular, food deprivation for 1 day resulted in optimal learning and memory, whereas 

food deprivation for 5 days before training resulted in little or no learning and memory (Sugai et al., 2007; Mita et al., 

2014). Because memory formation is energetically expensive (Barnard et al., 2006; Burns et al., 2011), if energy intake is 

too much restricted, LTM formation should be impaired in order to conserve energy. Thus, snails are hypothesized to learn 

and form LTM, but in an overly stressed state associated with prolonged food deprivation, their ability to express the LTM 

phenotype should be suppressed, suggesting that hunger triumphs over the memory not to respond to the CS. That is, 

starvation generates a conflict between memory formation versus the desire or necessity to eat (Ito et al., 2015). 

Moreover, the context-specificity of memory expression (Haney and Lukowiak, 2001) played an important role in the lack 

of LTM observed in 5-day severely food-deprived snails. In fact, LTM is only observed in 5-day deprived snails when tested 

for LTM following ad libitum access to food for additional 7 days while in a 1-day food-deprived state (day 13 snails). In 

contrast, snails did not express the memory phenotype if they had recovered from 5-days of food deprivation. These data 

support the fact that 1 day of starvation after refeeding reinstalls the optimal context in which snails memorize (Ito et al., 

2015). Based on the observation that during CTA training there was an up-regulation of LymMIP-II (Azami et al., 2006), it 

has been hypothesized that sucrose on the lips, which represents the CS, induced an insulin spike, that, in turn, modulated 

the neural circuit underlying CTA-LTM (Murakami et al., 2013b).  In addition, considering that an injection of insulin to 1-

day food-deprived snails improved learning and CTA memory (Mita et al., 2014), it is likely that the occurrence of an 

insulin spike correlates with the acquisition and retention of associative learning. Finally, previous studies indicated that 5 

days food-deprived snails trained in the presence of a food smell, no longer learned nor formed memory (Lukowiak et al., 

2014), which stresses the importance of the ‘state’ of the organism and how and when it perceives a stimulus as a 

stressor. Thus, the expression of memory is both context and state-dependent and may only be expressed following the 

resolution of the conflict between the homeostatic drive to eat versus having a memory of learning under what conditions 

not to eat (Mita et al., 2014). 
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8. L. stagnalis as a model for age-associated memory decline 

Evidence is accumulating affirming that aging affects memory. However, the role of molecular dysregulation in age-

associated memory deficits is not well understood. Learning and memory impairments are a common and evolutionarily 

conserved feature of the normal aging brain (Burke and Barnes, 2006; Luck et al., 2010).   

 

8.1  Age-associated memory decline and oxidative stress  

The (neuro)biological foundations of the natural decline in plasticity are not completely understood but appear to involve 

a progressive alteration of neuronal excitability resulting from an impaired activity in glutamate receptor subunits, such as 

glutamate ionotropic receptor AMPA type subunit 2 and NMDA type subunit 2B (Disterhoft and Oh, 2006, Hermann et al., 

2007; Kashiyae et al 2009), together with a shift in the mechanisms that regulate synaptic plasticity , including Ca2+ 

channel function and Ca2+-dependent processes (Fukaya et al., 2007).  Moreover, there is extensive evidence for a role of 

oxidative stress, and particularly lipidic peroxidation,  as a key factor in aging and age-associated neural impairment 

(Harman, 1956; Dröge and Schipper, 2007;  Sultana and Butterfield, 2010). Lipid peroxidation results in loss of membrane 

polyunsaturated fatty acids and oxidized phospholipids as polar species contributing to increased membrane rigidity 

(Farooqui and Horrocks, 1998). Alterations in the neural membrane phospholipid components, in turn, not only influence 

crucial intra- and inter-cellular signalling, but also alter many physical properties of the membrane, such as fluidity, phase 

permeability, bilayer thickness and lateral domains (Horrocks and Farooqui, 2004). Polyunsaturated fatty acids (PUFAs) are 

released from membrane phospholipids by a number of enzymic mechanisms involving the receptor-mediated stimulation 

of phospholipase A2 (PLA2) and phospholipase C/diacylglycerol lipase pathways (Farooqui and Horrocks, 1998; Niki, 1990). 

Thus, PLA2 represents a key factor in age-associated decline in neuronal excitability and the related impairment in activity-

dependent forms of learning and memory formation (Niki, 1990). Similar results, obtained in different model systems, 

suggest that a decline of electrical activity/excitability and synaptic functions, associated with lipid peroxidation, are 

conserved characteristic of neuronal aging (Arundell et al., 2006; Disterhoft and Oh, 2007; Hermann et al., 2007;  Spiteller, 

2010; Watson et al., 2012).  In this regards, Watson and colleagues (2012) demonstrated that PLA2-dependent free fatty 

acids (FFAs) release was significantly enhanced in CNS of old snails, and that experimental oxidative stress raised PLA2-

dependent FFAs release in CNS of younger snails to the level observed in older brains.  Moreover, both experimentally 

induced and naturally senescent phenotypes were fully reversed by blocking the activity of PLA2. This suggests a central 

role of lipid metabolism, particularly oxidative stress-induced activation of PLA2, in the process of neuronal aging and age-

associated learning and memory impairment in L. stagnalis (Watson et al., 2012).  Similarly, evidence regarding PLA2-

mediated excision of fatty acids and fatty acid metabolism in the genesis of age-related cognitive impairment has been 

observed in mammals including humans as well (Adibhatla and Hatcher, 2008; Darios et al., 2007; Sanchez-Mejia and 

Mucke, 2010). In this regard, numerous studies from mammals showed that PUFAs deficiency markedly affects 

neurotransmission, ion channel activities and synaptic plasticity (Yehuda et al., 2002).   
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On the other hand, prolonged PUFAs supplementation in the diet restored membrane fluidity and calcium homeostasis in 

the brain, improved electrophysiological parameters (i.e. hippocampal long-term potentiation) and learning ability in aged 

rats and, not least, enhanced cognitive function in humans with memory deficits (Kotani et al., 2003; Kotani et al., 2006; 

Fukaya et al., 2007;  Kashiyae et al., 2009).  Moreover, studies from senescent rats demonstrated that the dysregulation of 

calcium-dependent neuronal processes could be restored to the state observed in young rats with prolonged PUFA-

supplementation (Fukaya et al., 2007). These parallelisms between species that are phylogenetically distant lead to 

converging evidence which postulates that lipid peroxidation-dependent PLA2 activity is a fundamental, evolutionary 

conserved aspect of neuronal aging and a cause of age-associated changes in neuronal signalling and cognitive decline in 

the normal aging process of brain. 

 

8.2 The role of PKA/CREB1 and PACAP38 in age-associated memory decline  

As illustrated before, the conserved activation of adenylate cyclase by LymPACAP and the consequent activation of the 

LymPKA-LymCREB1 molecular cascade are fundamental during the formation of LTM (Sadamoto et al., 2004). 

Previous studies indicated that the exogenous application of PACAP before training rescued memory impairments in old 

snails, suggesting that the inactivation of this target represents an useful tool for the study of age-associated memory 

impairment, that, in turn, seems to be only suspended but not irreversibly extinguished (Watson et al., 2010). Along a 

similar vein, treatment with insulin-like growth factor-1 (IGF-1), which in vertebrates activates PACAP type I receptors 

(Delcourt et al., 2007), increased memory formation in aged snails (Pirger et al., 2014), suggesting that IGF-1 may exert a 

comparable memory-boosting effect on aged snails as PACAP. Based on these observations, the PKA-CREB1 pathway, 

together with PA2 and IGF-1, have been proposed as targets for therapeutic interventions for age-related memory loss 

(Pirger et al., 2014).In this contest, due to the evolutionarily conserved nature of these polypeptides and their established 

role in memory and synaptic plasticity in snails (Kemenes et al., 2013), Lymnaea should be a considered as an excellent 

model in which to conduct drug discovery studies.  
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9. Limitations of molecular analysis of the nervous system of L. stagnalis 

The purpose of this review was to reassume the data and illustrate that L. stagnalis relies on a set of core molecules 

required for learning and memory in a similar way as observed in a number of other species, ranging from invertebrates to 

mammals. Thanks to the simplicity and accessibility of neuronal circuits, Lymnaea has provided important insights into the 

fundamental cellular and synaptic elements required for establishing conserved cognitive functions, such as memory and 

learning.  However, a serious drawback in the molecular analysis of the nervous system of L. stagnalis is the lack of large-

scale genomic or neuronal transcriptome information. In fact, although its genome has been sequenced, gene 

characterization has not yet been performed. This turns out to be an important obstacle for the use of this model in 

comparative molecular studies (Feng et al., 2009).  The molecular information available has been obtained by cloning of 

partial cDNA sequences, together with in situ hybridization and immunohistochemistry. Thus, an important scientific 

puzzle to solve in the near future is the characterization of the gene networks that play central roles in the functioning of 

the CNS in L. stagnalis. A pre-requisite for such exploration is the knowledge of gene sequences, which can be used to 

monitor when, where, and how particular genes are expressed. Investment in such a research effort, will not only add a 

new experimental model to the limited number of invertebrate models already used in translational neuroscience 

research. 

 

10. New directions of neuroscience translational research using L. stagnalis 

Understanding how biological aging processes affect the brain and how they contribute to the onset and progress of age-

associated neurodegenerative diseases is a central research goal in neuroscience. In this context, Lymnaea provides a 

powerful model system to learn more about the cellular and molecular details of memory processes. Unlike D. 

melanogaster and C. elegans, the most common and best characterized invertebrate models (Yamaguchi and Yoshida, 

2018; Möller et al., 2018), Lymnaea has a relative long life span (lasting approximately 9–12 months) which offers a 

powerful new tool to study age-related modifications involving genetic, molecular, and cellular mechanisms, which usually 

take time to manifest their full effects (Nestler et al., 2010; Tascedda et al., 2015). This last factor is of particularly interest 

in studies on neuro-aging, chronic human pathologies, especially neurodegenerative diseases such as Alzheimer's, 

Parkinson's, and chronic psychiatric diseases such as major depression, schizophrenia or bipolar disorder. 

As previously illustrated, L. stagnalis embodies a useful tool for translation-oriented research aimed at developing new 

therapeutic approaches to age-associated memory dysfunction. In particular, PA2, PACAP38, and IGF-1 and their related 

biochemical cascades, represent fascinating “memory rejuvenating” agents and their (genetic) characterization could help 

to elucidate some of the mechanisms underlying cognitive decline in the aging human brain. 

At the same time, Lymnaea represents an excellent model for the comprehension of the causal mechanisms of 

memory extinction. Identifying the molecular substrates of extinction could promote the development of pharmacological 

treatments for psychiatric disorders, such as fear disorders, and substance addiction in humans.  
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However, because similar molecular processes contribute to the development and persistence of both memory 

consolidation and extinction, pharmacological interventions designed to facilitate extinction should be explored carefully.  

In addition, Lymnaea as model system provides an outstanding platform to investigate the crosstalk between 

neuronal metabolism (energy) and the formation of memory and how such mechanisms are altered during aging and 

neurodegenerative disorders. As explained, insulin and IGF-1 modulate aspects of plasticity in the CNS of Lymnaea  and 

enhance learning abilities in older learning-impaired snails (Murakami et al., 2013; Pirger et al., 2014).  

These findings echo very well with the growing evidence suggesting a the role of ILPs and insulin resistance in aging 

(Alcedo et al., 2013).  

The Lymnaea research platform we portrayed in this review will also be a great tool to investigate fundamental 

mechanisms of stress-mediated memory impairments. 

In this regard, stressors or bioactive agents that cause enhancement of LTM formation in Lymnaea have been 

hypothesized to act via putative CBrs. If confirmed, these studies will help to elucidate the role of the endocannabinoid 

system in learning and in memory in mammals including humans. 

Moreover, because epigenetic changes, such as DNA methylation, are emerging as a common mechanism in synaptic 

plasticity and memory formation across species (Zovkic et al., 2013) and are involved in the maintenance of memories in 

OTSD and drug addiction,  research using Lymnaea will add to this growing area of research and will further highlight the 

common mechanisms of memory formation in vertebrates and invertebrates species.  

Beside investigating molecular and cellular aspects of numerous human diseases, Lymneaea could also open 

interesting perspectives concerning both the validation of the mechanism of action of existing drugs and the preclinical 

studies of drugs discovery (Tascedda et al., 2015).  Given the high costs and the long time needed to identify and develop 

new drugs, a faster and less expensive system of drug discovery is both necessary and urgent. Therefore, Lymnaea, 

represents a versatile platform for the screening of new compound, the identification of innovative drug targets and for 

the deciphering of mechanisms underlying drug action. Snails, in fact, are aquatic invertebrates with an open circulatory 

system, allowing the use of membrane-permeant drugs that can be easily absorbed, to unravel the complexity of various 

signalling pathways and to provide new insights on how drugs and molecules can modulate different neuronal functions 

and behaviours (Benatti et al., 2017). At present, very few pharmacological studies using Lymnaea as model system are 

available up today. Benatti and colleagues (2017), for example, evaluated the transcriptional effects of a serotonergic 

stimulation on selected targets involved in 5-HT signalling and neurotransmission in the CNS of Lymnaea. They treated 

chronically (48 hours) or acutely (6 hours) snails with the immediate precursor of serotonin (5-hydroxy trypthophan - 

5HTP), with fluoxetine (FLX) or with a combination of the two compounds. They demonstrated that transcription of Lym-

CREB1 was strongly induced following chronic, but not acute, exposure to 5-HTP. This pivotal study suggested that 

Lymnaea could significantly contribute to finding novel functions of known drugs or molecular targets and for the 

identification of new drugs and their validation. 
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Not least, Lymnaea represents a valid model for neuro-engineering research. Counting on the fact that many neurons 

in the CNS of Lymnaea have large somata, the formation of high-quality neuron/semiconductor interfaces is facilitated 

(Birmingham et al., 2004). Thus, in the last years, considerable efforts have been made to develop techniques through 

which individual neurons can be noninvasively coupled to electronic microstructures of a semiconductor substrate, such 

as capacitors for stimulation and transistors for recording (Fromherz et al., 1991, 1995; Zeck and Fromherz, 2001; Bonifazi 

and Fromherz, 2002). Using this approach, Kaul and co-workers (2004) interfaced the pre- and postsynaptic neuron of an 

excitatory chemical synapse of Lymnaea by a silicon chip (Kaul et al., 2004).  In this way, stimulating the presynaptic cell 

with a chip capacitor and recording the activity of the postsynaptic cell with a transistor, they enhanced the strength of 

the soma-soma synapse by repetitive capacitor stimulation (Kaul et al., 2004).  

Moreover, Zeck and Fromherz (2001) demonstrated that isolated Lymnaea neurons can be anchored to a semiconductor 

chip and neurite growth cones can be guided along specified pathways (Zeck and Fromherz, 2001).  

Using this approach, it would be possible to reconstruct chemical synapses between specific neurons to form 

neuroelectronic circuits that exhibit various forms of synaptic plasticity and specific neuro-modulatory properties, adding 

different degree of flexibility to an already dynamic circuit (Birmingham et al., 2004). 

Thus, studies of Lymnaea neural networks on silicon chips not only are promoting our understanding of the long‐term 

dynamics and plasticity of relatively simple neural circuits, but are also providing the basis for reliable interfaces for new 

neuro-devices for humans (Birmingham et al., 2004).  

On the basis of these considerations, although animal models can never summarize the full phenotype of a human 

clinical disorder, in particular neurological ones, L. stagnalis offers a new important and innovative tool for neuroscientists 

(Tascedda et al., 2015), representing a remarkable model system in which to study the genetic and molecular basis of 

human CNS physiology and pathology (Benatti et al., 2017).  We think that this model allows for a better vantage point 

from which innovative therapies and technology can be developed in order to treat a range of neurological and 

neurodegenerative disorders, and that the ultimate success of neuroscientists engaged in translational research will 

depend on collecting and improving the quality and quantity of knowledge to “translate” (Alberts, 2010) obtained in 

invertebrates and in more complex organisms, until arriving at human beings.  Because research on invertebrate models 

represents the shortest and most efficient tool to study and treat human diseases, L. stagnalis offers a model to bridge the 

gap between traditional in vitro and preclinical animal assays, and to move from pond to the bench.  
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11. Conclusions 

In conclusion, what have we learn from L. stagnalis to date? 

7) A variety of general and specific, molecular and cellular, mechanisms necessary for the consolidation of memory in 

snails have been highly conserved in learning, both across phylogenetic groups and learning paradigms, involving 

single- or multi-trials, aversion or reward, operant or classical conditioning; 

8) similarly, the model contributes to define more clearly in what conditions we form memory in the most optimal way, 

“teaching” us the importance of context in which we eat, age, form memories and consolidate them; 

9) Lymnaea allows us to move beyond simple homology, representing a valid and reliable model in which to study the 

genetic and molecular basis of human CNS physiology and pathology 
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Figure Captions 
 

Fig. 1 – Schematic representation of the molecular mechanisms implicated in memory formation in Lymnaea. LymCREB-driven 
transcription results downstream of: 
- the activation of AMPc by LymPACAP, which, in turn, mediates almost all its actions through Lym-PKA and the subsequent 

activation of LymMAPK; 
- the entrance of Ca2+ through NMDARs, that activates directly or indirectly numerous protein kinases, including PKC and 

LymCaKMII, together with LymNOS. LymNOS, for its part, promotes the synthesis of LymNO, which regulates LymCREB activation, 
acting via LymPKG.  

After phosphorylation LymCREB1 initiated a cascade of altered gene activity and new protein synthesis, necessary for synaptic 
enhancement in memory consolidation, acting via LymC/EBP and IGF1. In contrast, LymCREB2 inhibited the function of LymCREB1 and 
the ratio of activator/repressor LymCREBs has been proposed to act as a “molecular switch” in determining whether LTM is formed. 
Even if LymPKA, LymNMDA receptors, LymCaMKII, LymCREB, and LymNOS/NO are selectively activated or upregulated, it seems likely 
that these and other signalling molecules are part of a synergistic effort and together contribute to the memory consolidation process, 
with none of them alone being sufficient for LTM 

Adapted from Kemenes, 2013 

 

Fig. 2 – Different time windows of the key molecular targets necessary for memory in snails, in the 0h to 6h 
(acquisition/early consolidation) and 24hr time window (late consolidation).   
During the acquisition phase of memory LymPACAP, LymPKA, LymNO, LymGRIN, LymCaMKII and LymMAPK are activated. During the 
first hours of memory formation and consolidation (defined as early and intermediate term consolidation phase) the activation of 
LymPKA, LymNO, LymCamKII, LymMAPK, LymPKA and LymCREB occurs, together with the transcription and the synthesis of new mRNA 
and proteins respectively. LymPKA is also activated during the intermediate consolidation phase (5-6 hr), when the synthesis of new 
proteins occurs. Finally, in the last phase of memory consolidation, LymCaMKII is expressed.  

Adapted from Kemenes, 2013 
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TABLE 1 Abbreviations of used Acronyms 

 
AC adenylate cyclase 

AMPc the homologous of Cyclic Adenosine Monophosphate 

LymPACAP the homologous of pituitary adenylate cyclase-activating polypeptide 

LymPKA the homologous of protein kinase A 

LymCaKMII the homologous of calcium calmodulin-dependent protein kinase II 

LymMAPK the homologous of mitogen-associated protein kinase 

LymGRIN the homologous of ionotropic glutamatergic NMDA receptors 

LymNOS the homologous of nitric oxide synthase 

LymNO the homologous of nitric oxide 

LymPKG the homologous of protein kinase G 

LymCREB the homologous of cAMP response element-binding protein 

LymC/EBP the homologous of CCAAT/enhancer binding protein 

Lym-IGF2 the homologous of insulin growth factor 2 

MIP II Molluscan insulin-related peptide 

5-HT 5-hydroxytryptamine - serotonin 

DA Dopamine  

HSPs Heat shock protein 

LymCBrs The homologous of cannabinoid receptors  

PLA2 Phospholipase A2 

FFAs Free fatty acids 

PUFAs Poly-unsaturated fatty acids 

CNS Central nervous system  

STM Short-term memory 

ITM Intermediate-term memory 

LTM Long-term memory 

CS Conditioned stimulus 

US Unconditioned stimulus 

CTA Conditioned taste aversion 

RPeD1 Right pedal dorsal 1 interneuron 

CGCs Cerebral giant cells 

PTSD  Post-traumatic stress disorder 
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FIGURE 1.TIF 
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