9,162 research outputs found

    Influence of Sequence Changes and Environment on Intrinsically Disordered Proteins

    Get PDF
    Many large-scale studies on intrinsically disordered proteins are implicitly based on the structural models deposited in the Protein Data Bank. Yet, the static nature of deposited models supplies little insight into variation of protein structure and function under diverse cellular and environmental conditions. While the computational predictability of disordered regions provides practical evidence that disorder is an intrinsic property of proteins, the robustness of disordered regions to changes in sequence or environmental conditions has not been systematically studied. We analyzed intrinsically disordered regions in the same or similar proteins crystallized independently and studied their sensitivity to changes in protein sequence and parameters of crystallographic experiments. The observed changes in the existence, position, and length of disordered regions indicate that their appearance in X-ray structures dramatically depends on changes in amino acid sequence and peculiarities of the crystallographic experiment. Our study also raises general questions regarding protein evolution and the regulation of protein structure, dynamics, and function via variations in cellular and environmental conditions

    Structural characterization of intrinsically disordered proteins by NMR spectroscopy.

    Get PDF
    Recent advances in NMR methodology and techniques allow the structural investigation of biomolecules of increasing size with atomic resolution. NMR spectroscopy is especially well-suited for the study of intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) which are in general highly flexible and do not have a well-defined secondary or tertiary structure under functional conditions. In the last decade, the important role of IDPs in many essential cellular processes has become more evident as the lack of a stable tertiary structure of many protagonists in signal transduction, transcription regulation and cell-cycle regulation has been discovered. The growing demand for structural data of IDPs required the development and adaption of methods such as 13C-direct detected experiments, paramagnetic relaxation enhancements (PREs) or residual dipolar couplings (RDCs) for the study of 'unstructured' molecules in vitro and in-cell. The information obtained by NMR can be processed with novel computational tools to generate conformational ensembles that visualize the conformations IDPs sample under functional conditions. Here, we address NMR experiments and strategies that enable the generation of detailed structural models of IDPs

    Allosteric Modulators of Steroid Hormone Receptors : Structural Dynamics and Gene Regulation

    Get PDF
    Peer reviewedPublisher PD

    Intrinsically disordered inhibitor of glutamine synthetase is a functional protein with random-coil-like pKa values

    Get PDF
    The sequential action of glutamine synthetase (GS) and glutamate synthase (GOGAT) in cyanobacteria allows the incorporation of ammonium into carbon skeletons. In the cyanobacterium Synechocystis sp. PCC 6803, the activity of GS is modulated by the interaction with proteins, which include a 65-residue-long intrinsically disordered protein (IDP), the inactivating factor IF7. This interaction is regulated by the presence of charged residues in both IF7 and GS. To understand how charged amino acids can affect the binding of an IDP with its target and to provide clues on electrostatic interactions in disordered states of proteins, we measured the pKa values of all IF7 acidic groups (Glu32, Glu36, Glu38, Asp40, Asp58, and Ser65, the backbone C-terminus) at 100 mM NaCl concentration, by using NMR spectroscopy. We also obtained solution structures of IF7 through molecular dynamics simulation, validated them on the basis of previous experiments, and used them to obtain theoretical estimates of the pKa values. Titration values for the two Asp and three Glu residues of IF7 were similar to those reported for random-coil models, suggesting the lack of electrostatic interactions around these residues. Furthermore, our results suggest the presence of helical structure at the N-terminus of the protein and of conformational changes at acidic pH values. The overall experimental and in silico findings suggest that local interactions and conformational equilibria do not play a role in determining the electrostatic features of the acidic residues of IF7.Ministerio de Economía y Competitividad CTQ 2015-64445-R, BFU2013- 41712-P, BIO2016-75634PJunta de Andalucía BIO-284Generalitat Valenciana Prometeo 018/201

    Folding factors and partners for the intrinsically disordered protein Micro-Exon Gene 14 (MEG-14)

    Get PDF
    The micro-exon genes (MEG) of Schistosoma mansoni, a parasite responsible for the second most widely spread tropical disease, code for small secreted proteins with sequences unique to the Schistosoma genera. Bioinformatics analyses suggest the soluble domain of the MEG-14 protein will be largely disordered, and using synchrotron radiation circular dichroism spectroscopy, its secondary structure was shown to be essentially completely unfolded in aqueous solution. It does, however, show a strong propensity to fold into more ordered structures under a wide range of conditions. Partial folding was produced by increasing temperature (in a reversible process), contrary to the behavior of most soluble proteins. Furthermore, significant folding was observed in the presence of negatively charged lipids and detergents, but not in zwitterionic or neutral lipids or detergents. Absorption onto a surface followed by dehydration stimulated it to fold into a helical structure, as it did when the aqueous solution was replaced by nonaqueous solvents. Hydration of the dehydrated folded protein was accompanied by complete unfolding. These results support the identification of MEG-14 as a classic intrinsically disordered protein, and open the possibility of its interaction/folding with different partners and factors being related to multifunctional roles and states within the host

    Disordered proteins and network disorder in network descriptions of protein structure, dynamics and function. Hypotheses and a comprehensive review

    Get PDF
    During the last decade, network approaches became a powerful tool to describe protein structure and dynamics. Here we review the links between disordered proteins and the associated networks, and describe the consequences of local, mesoscopic and global network disorder on changes in protein structure and dynamics. We introduce a new classification of protein networks into ‘cumulus-type’, i.e., those similar to puffy (white) clouds, and ‘stratus-type’, i.e., those similar to flat, dense (dark) low-lying clouds, and relate these network types to protein disorder dynamics and to differences in energy transmission processes. In the first class, there is limited overlap between the modules, which implies higher rigidity of the individual units; there the conformational changes can be described by an ‘energy transfer’ mechanism. In the second class, the topology presents a compact structure with significant overlap between the modules; there the conformational changes can be described by ‘multi-trajectories’; that is, multiple highly populated pathways. We further propose that disordered protein regions evolved to help other protein segments reach ‘rarely visited’ but functionally-related states. We also show the role of disorder in ‘spatial games’ of amino acids; highlight the effects of intrinsically disordered proteins (IDPs) on cellular networks and list some possible studies linking protein disorder and protein structure networks

    Abundance of intrinsic disorder in SV-IV, a multifunctional androgen-dependent protein secreted from rat seminal vesicle

    Get PDF
    The potent immunomodulatory, anti-inflammatory and procoagulant properties of the
protein no. 4 secreted from the rat seminal vesicle epithelium (SV-IV) have been
previously found to be modulated by a supramolecular monomer-trimer equilibrium.
More structural details that integrate experimental data into a predictive framework
have recently been reported. Unfortunately, homology modelling and fold-recognition
strategies were not successful in creating a theoretical model of the structural
organization of SV-IV. It was inferred that the global structure of SV-IV is not similar
to any protein of known three-dimensional structure. Reversing the classical approach
to the sequence-structure-function paradigm, in this paper we report on novel
information obtained by comparing physicochemical parameters of SV-IV with two
datasets made of intrinsically unfolded and ideally globular proteins. In addition, we
have analysed the SV-IV sequence by several publicly available disorder-oriented
predictors. Overall, disorder predictions and a re-examination of existing experimental
data strongly suggest that SV-IV needs large plasticity to efficiently interact with the
different targets that characterize its multifaceted biological function and should be
therefore better classified as an intrinsically disordered protein

    Trends in the design and use of elastin-like recombinamers as biomaterials

    Get PDF
    Producción CientíficaElastin-like recombinamers (ELRs), which derive from one of the repetitive domains found in natural elastin, have been intensively studied in the last few years from several points of view. In this mini review, we discuss all the recent works related to the investigation of ELRs, starting with those that define these polypeptides as model intrinsically disordered proteins or regions (IDPs or IDRs) and its relevance for some biomedical applications. Furthermore, we summarize the current knowledge on the development of drug, vaccine and gene delivery systems based on ELRs, while also emphasizing the use of ELR-based hydrogels in tissue engineering and regenerative medicine (TERM). Finally, we show different studies that explore applications in other fields, and several examples that describe biomaterial blends in which ELRs have a key role. This review aims to give an overview of the recent advances regarding ELRs and to encourage further investigation of their properties and applications.Comisión Europea (project NMP-2014-646075)Ministerio de Economía, Industria y Competitividad (projects PCIN-2015-010 / MAT2016-78903-R / BES-2014-069763)Junta de Castilla y León (project VA317P18
    corecore