1,548 research outputs found

    Hybrid spiral-dynamic bacteria-chemotaxis algorithm with application to control two-wheeled machines

    Get PDF
    This paper presents the implementation of the hybrid spiral-dynamic bacteria-chemotaxis (HSDBC) approach to control two different configurations of a two-wheeled vehicle. The HSDBC is a combination of bacterial chemotaxis used in bacterial forging algorithm (BFA) and the spiral-dynamic algorithm (SDA). BFA provides a good exploration strategy due to the chemotaxis approach. However, it endures an oscillation problem near the end of the search process when using a large step size. Conversely; for a small step size, it affords better exploitation and accuracy with slower convergence. SDA provides better stability when approaching an optimum point and has faster convergence speed. This may cause the search agents to get trapped into local optima which results in low accurate solution. HSDBC exploits the chemotactic strategy of BFA and fitness accuracy and convergence speed of SDA so as to overcome the problems associated with both the SDA and BFA algorithms alone. The HSDBC thus developed is evaluated in optimizing the performance and energy consumption of two highly nonlinear platforms, namely single and double inverted pendulum-like vehicles with an extended rod. Comparative results with BFA and SDA show that the proposed algorithm is able to result in better performance of the highly nonlinear systems

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Non Linear Blind Source Separation Using Different Optimization Techniques

    Get PDF
    The Independent Component Analysis technique has been used in Blind Source separation of non linear mixtures. The project involves the blind source separation of a non linear mixture of signals based on their mutual independence as the evaluation criteria. The linear mixer is modeled by the Fast ICA algorithm while the Non linear mixer is modeled by an odd polynomial function whose parameters are updated by four separate optimization techniques which are Particle Swarm Optimization, Real coded Genetic Algorithm, Binary Genetic Algorithm and Bacterial Foraging Optimization. The separated mixture outputs of each case was studied and the mean square error in each case was compared giving an idea of the effectiveness of each optimization technique

    Impact of initialization of a modified particle swarm optimization on cooperative source searching

    Get PDF
    Swarm robotic is well known for its flexibility, scalability and robustness that make it suitable for solving many real-world problems. Source searching which is characterized by complex operation due to the spatial characteristic of the source intensity distribution, uncertain searching environments and rigid searching constraints is an example of application where swarm robotics can be applied. Particle swarm optimization (PSO) is one of the famous algorithms have been used for source searching where its effectiveness depends on several factors. Improper parameter selection may lead to a premature convergence and thus robots will fail (i.e., low success rate) to locate the source within the given searching constraints. Additionally, target overshooting and improper initialization strategies may lead to a nonoptimal (i.e., take longer time to converge) target searching. In this study, a modified PSO and three different initializations strategies (i.e., random, equidistant and centralized) were proposed. The findings shown that the proposed PSO model successfully reduce the target overshooting by choosing optimal PSO parameters and has better convergence rate and success rate compared to the benchmark algorithms. Additionally, the findings also indicate that the random initialization give better searching success compared to equidistant and centralize initialization

    A Nature inspired guidance system for unmanned autonomous vehicles employed in a search role.

    Get PDF
    Since the very earliest days of the human race, people have been studying animal behaviours. In those early times, being able to predict animal behaviour gave hunters the advantages required for success. Then, as societies began to develop this gave way, to an extent, to agriculture and early studies, much of it trial and error, enabled farmers to successfully breed and raise livestock to feed an ever growing population. Following the advent of scientific endeavour, more rigorous academic research has taken human understanding of the natural world to much greater depth. In recent years, some of this understanding has been applied to the field of computing, creating the more specialised field of natural computing. In this arena, a considerable amount of research has been undertaken to exploit the analogy between, say, searching a given problem space for an optimal solution and the natural process of foraging for food. Such analogies have led to useful solutions in areas such as numerical optimisation and communication network management, prominent examples being ant colony systems and particle swarm optimisation; however, these solutions often rely on well-defined fitness landscapes that may not always be available. One practical application of natural computing may be to create behaviours for the control of autonomous vehicles that would utilise the findings of ethological research, identifying the natural world behaviours that have evolved over millennia to surmount many of the problems that autonomous vehicles find difficult; for example, long range underwater navigation or obstacle avoidance in fast moving environments. This thesis provides an exploratory investigation into the use of natural search strategies for improving the performance of autonomous vehicles operating in a search role. It begins with a survey of related work, including recent developments in autonomous vehicles and a ground breaking study of behaviours observed within the natural world that highlights general cooperative group behaviours, search strategies and communication methods that might be useful within a wider computing context beyond optimisation, where the information may be sparse but new paradigms could be developed that capitalise on research into biological systems that have developed over millennia within the natural world. Following this, using a 2-dimensional model, novel research is reported that explores whether autonomous vehicle search can be enhanced by applying natural search behaviours for a variety of search targets. Having identified useful search behaviours for detecting targets, it then considers scenarios where detection is lost and whether natural strategies for re-detection can improve overall systemic performance in search applications. Analysis of empirical results indicate that search strategies exploiting behaviours found in nature can improve performance over random search and commonly applied systematic searches, such as grids and spirals, across a variety of relative target speeds, from static targets to twice the speed of the searching vehicles, and against various target movement types such as deterministic movement, random walks and other nature inspired movement. It was found that strategies were most successful under similar target-vehicle relationships as were identified in nature. Experiments with target occlusion also reveal that natural reacquisition strategies could improve the probability oftarget redetection
    corecore