1,499 research outputs found

    Hydrologic Data Assimilation

    Get PDF

    Hydrologic Remote Sensing and Land Surface Data Assimilation

    Get PDF
    Accurate, reliable and skillful forecasting of key environmental variables such as soil moisture and snow are of paramount importance due to their strong influence on many water resources applications including flood control, agricultural production and effective water resources management which collectively control the behavior of the climate system. Soil moisture is a key state variable in land surface?atmosphere interactions affecting surface energy fluxes, runoff and the radiation balance. Snow processes also have a large influence on land-atmosphere energy exchanges due to snow high albedo, low thermal conductivity and considerable spatial and temporal variability resulting in the dramatic change on surface and ground temperature. Measurement of these two variables is possible through variety of methods using ground-based and remote sensing procedures. Remote sensing, however, holds great promise for soil moisture and snow measurements which have considerable spatial and temporal variability. Merging these measurements with hydrologic model outputs in a systematic and effective way results in an improvement of land surface model prediction. Data Assimilation provides a mechanism to combine these two sources of estimation. Much success has been attained in recent years in using data from passive microwave sensors and assimilating them into the models. This paper provides an overview of the remote sensing measurement techniques for soil moisture and snow data and describes the advances in data assimilation techniques through the ensemble filtering, mainly Ensemble Kalman filter (EnKF) and Particle filter (PF), for improving the model prediction and reducing the uncertainties involved in prediction process. It is believed that PF provides a complete representation of the probability distribution of state variables of interests (according to sequential Bayes law) and could be a strong alternative to EnKF which is subject to some limitations including the linear updating rule and assumption of jointly normal distribution of errors in state variables and observation

    Integrating remote sensing information into a distributed hydrological model for improved water budget predictions in large - scale basins through data assimilation

    Get PDF
    This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems

    Land Surface Data Assimilation of Satellite Derived Surface Soil Moisture : Towards an Integrated Representation of the Arctic Hydrological Cycle

    Get PDF
    The ability to accurately determine soil water content (soil moisture) over large areas of the Earth’s surface has potential implications in meteorology, hydrology, water and natural hazards management. The advent of space-based microwave sensors, found to be sensitive to surface soil moisture, has allowed for long-term studies of soil moisture dynamics at the global scale. There are, however, areas where remote sensing of soil moisture is prone to errors because, e.g., complex topography, surface water, dense vegetation, frozen soil or snow cover affect the retrieval. This is particularly the case for the northern high latitudes, which is a region subject to more rapid warming than the global mean and also is identified as an important region for studying 21st century climate change. Land surface models can help to close these observation gaps and provide high spatiotemporal coverage of the variables of interest. Models are only approximations of the real world and they can experience errors in, for example, their initialization and/or parameterization. In the past 20 years the research field of land surface data assimilation has undergone rapid developments, and it has provided a potential solution to the aforementioned problems. Land surface data assimilation offers a compromise between model and observations, and by minimization of their total errors it creates an analysis state which is superior to the model and observation alone. This thesis focuses on the implementation of a land surface data assimilation system, its applications and how to improve the separate elements that goes into such a framework. My ultimate goal is to improve the representation of soil moisture over northern high latitudes using land surface data assimilation. In my three papers, I first show how soil moisture data assimilation can correct random errors in the precipitation fields used to drive the land surface model. A result which indicates that a land surface model, driven by uncorrected precipitation, can have the same skill as a land surface model driven by bias-corrected precipitation. I show that passive microwave remote sensing can be utilized to monitor drought over regions of the world where this was thought to be impractical. I do this by creating a novel drought index based on passive microwave observations, and I validate the new index by comparing it with output from a land surface data assimilation system. Finally, I address knowledge gaps in the modelling of microwave emissions over northern high latitudes. In particular, I study the impact of neglecting multiplescattering terms from vegetation in the radiative transfer models of microwave emission. My three papers show that: (i) land surface data assimilation can improve surface soil moisture estimates at regional scales, (ii) passive microwave observations carries more information about the land surface over northern high latitudes than explored in the retrieval processing chain and (iii) including multiple-scattering terms in microwave radiative transfer models has the potential to increase the sensitivity for surface soil moisture below dense vegetation, and decrease biases between modelled and observed brightness temperature. In sum, my three papers lay the foundation for a land data assimilation system applicable to monitor the hydrological cycle over northern high latitudes

    Kalman filters for assimilating near-surface observations into the Richards equation – Part 1: Retrieving state profiles with linear and nonlinear numerical schemes

    Get PDF
    Abstract. This paper examines the potential of different algorithms, based on the Kalman filtering approach, for assimilating near-surface observations into a one-dimensional Richards equation governing soil water flow in soil. Our specific objectives are: (i) to compare the efficiency of different Kalman filter algorithms in retrieving matric pressure head profiles when they are implemented with different numerical schemes of the Richards equation; (ii) to evaluate the performance of these algorithms when nonlinearities arise from the nonlinearity of the observation equation, i.e. when surface soil water content observations are assimilated to retrieve matric pressure head values. The study is based on a synthetic simulation of an evaporation process from a homogeneous soil column. Our first objective is achieved by implementing a Standard Kalman Filter (SKF) algorithm with both an explicit finite difference scheme (EX) and a Crank-Nicolson (CN) linear finite difference scheme of the Richards equation. The Unscented (UKF) and Ensemble Kalman Filters (EnKF) are applied to handle the nonlinearity of a backward Euler finite difference scheme. To accomplish the second objective, an analogous framework is applied, with the exception of replacing SKF with the Extended Kalman Filter (EKF) in combination with a CN numerical scheme, so as to handle the nonlinearity of the observation equation. While the EX scheme is computationally too inefficient to be implemented in an operational assimilation scheme, the retrieval algorithm implemented with a CN scheme is found to be computationally more feasible and accurate than those implemented with the backward Euler scheme, at least for the examined one-dimensional problem. The UKF appears to be as feasible as the EnKF when one has to handle nonlinear numerical schemes or additional nonlinearities arising from the observation equation, at least for systems of small dimensionality as the one examined in this study

    On the value of soil moisture measurements in vadose zone hydrology: A review

    Full text link

    On the Use of Adaptive Ensemble Kalman Filtering to Mitigate Error Misspecifications in GRACE Data Assimilation

    Get PDF
    The ensemble Kalman filter (EnKF) has been proved as a useful algorithm to mergecoarse-resolution Gravity Recovery and Climate Experiment (GRACE) data with hydrologic model results.However, in order for the EnKF to perform optimally, a correct forecast error covariance is needed. TheEnKF estimates this error covariance through an ensemble of model simulations with perturbed forcingdata. Consequently, a correct specification of perturbation magnitude is essential for the EnKF to workoptimally. To this end, an adaptive EnKF (AEnKF), a variant of the EnKF with an additional componentthat dynamically detects and corrects error misspecifications during the filtering process, has been applied.Due to the low spatial and temporal resolutions of GRACE data, the efficiency of this method could bedifferent than for other hydrologic applications. Therefore, instead of spatially or temporally averaging theinternal diagnostic (normalized innovations) to detect the misspecifications, spatiotemporal averaging wasused. First, sensitivity of the estimation accuracy to the degree of error in forcing perturbations wasinvestigated. Second, efficiency of the AEnKF for GRACE assimilation was explored using two syntheticand one real data experiment. Results show that there is considerable benefit in using this method toestimate the forcing error magnitude and that the AEnKF can efficiently estimate this magnitude.Ashkan Shokri acknowledges the support from Monash University in the form of a Monash Graduate Scholarship (MGS) and Monash International Postgraduate Research Scholarship (MIPRS). Valentijn Pauwels was supported through an ARC Future Fellowship Grant (FT130100545). The research is supported through an ARC Discovery Grant (DP140103679). This research is also supported in part by the Monash eResearch Centre and eSolutions-Research Support Services through the use of the Monash Campus HPC Cluster
    • …
    corecore