5,001 research outputs found

    Intrusion Detection Systems Using Adaptive Regression Splines

    Full text link
    Past few years have witnessed a growing recognition of intelligent techniques for the construction of efficient and reliable intrusion detection systems. Due to increasing incidents of cyber attacks, building effective intrusion detection systems (IDS) are essential for protecting information systems security, and yet it remains an elusive goal and a great challenge. In this paper, we report a performance analysis between Multivariate Adaptive Regression Splines (MARS), neural networks and support vector machines. The MARS procedure builds flexible regression models by fitting separate splines to distinct intervals of the predictor variables. A brief comparison of different neural network learning algorithms is also given

    Data Mining Applications to Fault Diagnosis in Power Electronic Systems: A Systematic Review

    Get PDF

    Optimized Forecasting Air Pollution Model Based On Multi-Objective Staked Feature Selection Approach Using Deep Featured Neural Classifier

    Get PDF
    In recent days air pollution has been an essential issue affecting the environment nature leads to various natural causes. Especially the Covid-19 pandemic period has a variation environment changes due to vehicle controls and industrial facts at regular intervals. So air pollution has different scaling factors before and after the pandemic, period produces non-scaled data features. Many methodologies provide the differential solution to analyze the air quality measurements under various conditions to make warnings to avoid air pollution. By the impact of exiting forecasting, ML approaches do not provide the accuracy in precision levels because feature dependencies are non-relevant in high dimension nature. To create the best Air quality index, we need to improve the feature analysis and classification objectives to produce higher prediction performance. This paper proposes a new forecasting model based on the Multi-objective Staked Feature Selection Approach (MoSFS) using the Deep Featured Neural Classifier (DFNC) model to predict air pollution. Initially, the Successive Feature Defect Scaling Rate (SFDSR) was carried out Auto Regressive Integrated Moving Average (ARIMA) rate for finding variation dependencies. The multi-objective relational successive feature index was scaled using the Spider Herding Algorithm (SHA) to select the features based on these variations in feature limits. Then the chosen features get activated to logical activation function with Long Short Term Memory (LSTM) and trained with a Fuzzified Convolution Neural Network (F-CNN) to predict the class by variance. This resultant factor proves the performance of RMSE values attaining the best level to forecast the features and in precision rate produce higher performance in classification accuracy compared to the other system

    Connectionist Inference Models

    Get PDF
    The performance of symbolic inference tasks has long been a challenge to connectionists. In this paper, we present an extended survey of this area. Existing connectionist inference systems are reviewed, with particular reference to how they perform variable binding and rule-based reasoning, and whether they involve distributed or localist representations. The benefits and disadvantages of different representations and systems are outlined, and conclusions drawn regarding the capabilities of connectionist inference systems when compared with symbolic inference systems or when used for cognitive modeling

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Survey on the Family of the Recursive-Rule Extraction Algorithm

    Get PDF
    In this paper, we first review the theoretical and historical backgrounds on rule extraction from neural network ensembles. Because the structures of previous neural network ensembles were quite complicated, research on an efficient rule extraction algorithm from neural network ensembles has been sparse, even though a practical need exists for rule extraction in Big Data datasets. We describe the Recursive-Rule extraction (Re-RX) algorithm, which is an important step toward handling large datasets. Then we survey the family of the Recursive-Rule extraction algorithm, i.e. the Multiple-MLP Ensemble Re-RX algorithm, and present concrete applications in financial and medical domains that require extremely high accuracy for classification rules. Finally, we mention two promising ideas to considerably enhance the accuracy of the Multiple-MLP Ensemble Re-RX algorithm. We also discuss developments in the near future that will make the Multiple-MLP Ensemble Re-RX algorithm much more accurate, concise, and comprehensible rule extraction from mixed datasets

    Reinforcement Learning: A Survey

    Full text link
    This paper surveys the field of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but differs considerably in the details and in the use of the word ``reinforcement.'' The paper discusses central issues of reinforcement learning, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.Comment: See http://www.jair.org/ for any accompanying file

    A review of model designs

    Get PDF
    The PAEQANN project aims to review current ecological theories which can help identify suited models that predict community structure in aquatic ecosystems, to select and discuss appropriate models, depending on the type of target community (i.e. empirical vs. simulation models) and to examine how results add to ecological water management objectives. To reach these goals a number of classical statistical models, artificial neural networks and dynamic models are presented. An even higher number of techniques within these groups will tested lateron in the project. This report introduces all of them. The techniques are shortly introduced, their algorithms explained, and the advantages and disadvantages discussed

    Power System Stability Analysis using Neural Network

    Full text link
    This work focuses on the design of modern power system controllers for automatic voltage regulators (AVR) and the applications of machine learning (ML) algorithms to correctly classify the stability of the IEEE 14 bus system. The LQG controller performs the best time domain characteristics compared to PID and LQG, while the sensor and amplifier gain is changed in a dynamic passion. After that, the IEEE 14 bus system is modeled, and contingency scenarios are simulated in the System Modelica Dymola environment. Application of the Monte Carlo principle with modified Poissons probability distribution principle is reviewed from the literature that reduces the total contingency from 1000k to 20k. The damping ratio of the contingency is then extracted, pre-processed, and fed to ML algorithms, such as logistic regression, support vector machine, decision trees, random forests, Naive Bayes, and k-nearest neighbor. A neural network (NN) of one, two, three, five, seven, and ten hidden layers with 25%, 50%, 75%, and 100% data size is considered to observe and compare the prediction time, accuracy, precision, and recall value. At lower data size, 25%, in the neural network with two-hidden layers and a single hidden layer, the accuracy becomes 95.70% and 97.38%, respectively. Increasing the hidden layer of NN beyond a second does not increase the overall score and takes a much longer prediction time; thus could be discarded for similar analysis. Moreover, when five, seven, and ten hidden layers are used, the F1 score reduces. However, in practical scenarios, where the data set contains more features and a variety of classes, higher data size is required for NN for proper training. This research will provide more insight into the damping ratio-based system stability prediction with traditional ML algorithms and neural networks.Comment: Masters Thesis Dissertatio
    • …
    corecore