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Review of some artificial intelligence tools for use in Assembly Automation and some examples 

of recent applications 

 

Abstract 

 

Purpose (limit 100 words):  Seven artificial intelligence tools are reviewed that are useful in Assembly 

Automation: knowledge-based systems, fuzzy logic, automatic knowledge acquisition, neural networks, 

genetic algorithms, case-based reasoning and ambient-intelligence. 

 

Design/methodology/approach (limit 100 words):  Each artificial intelligence tool is outlined, together 

with some examples of their use in Assembly Automation.   

 

Findings (limit 100 words):  Artificial intelligence has produced a number of useful and powerful tools. 

This paper reviews some of those tools.  Applications of these tools in Assembly Automation have 

become more widespread due to the power and affordability of present-day computers.   

 

Research limitations/implications (limit 100 words):  Many new Assembly Automation applications 

may emerge and greater use may be made of hybrid tools that combine the strengths of two or more of 

the tools reviewed in the paper.  The tools and methods reviewed in this paper have minimal 

computation complexity and can be implemented on small assembly lines, single robots or systems with 

low-capability microcontrollers. 

 

Practical implications (limit 100 words):  It may take another decade for engineers to recognize the 

benefits given the current lack of familiarity and the technical barriers associated with using these tools 

and it may take a long time for direct digital manufacturing to be considered commonplace… but it is 

expanding.  The appropriate deployment of the new AI tools will contribute to the creation of more 

competitive Assembly Automation systems. 

 

Social Implications (limit 100 words):  Other technological developments in AI that will impact on 

Assembly Automation include data mining, multi-agent systems and distributed self-organising systems.   

 

Originality/value (limit 100 words):  The novel approaches proposed use Ambient Intelligence and the 

mixing of different AI tools in an effort to use the best of each technology.  The concepts are generically 

applicable across all industrial assembly processes and this research is intended to prove that the 

concepts work in manufacturing. 
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1. Introduction 

Assembly is often of interest as it is one of the last processes within a manufacturing operation.  It has 

traditionally been labour-intensive [1] and can be improved using artificial intelligence (AI).  AI emerged 

as a computer science discipline in the mid 1950s [2,3] and it has produced a number of powerful tools 

that are useful in Assembly Automation for automatically solving problems that would normally require 

human intelligence.   Seven of these tools are reviewed in this paper: knowledge-based systems, fuzzy 

logic, inductive learning, neural networks, genetic algorithms, case-based reasoning and ambient-

intelligence.   

AI systems have been improving [4] and new advances in machine intelligence are creating seamless 

interactions between people and digital systems.  Although the introduction of AI into assembly and 

manufacturing has been slow, it promises to bring improvements in flexibility, reconfigurability and 

reliability.  New machines are exceeding human performance in increasing numbers of tasks.  As they 

merge with us more intimately and we combine our brain power with computer capacity to deliberate, 

analyse, deduce, communicate and invent, then we may be on the threshold of a new manufacturing age 

[5]. 

AI (or machine intelligence) combines a wide variety of advanced technologies to give machines an 

ability to learn, adapt, make decisions and display new behaviours [6].  This is achieved using 

technologies such as neural networks [7], expert systems [8,9], self-organizing maps [10], fuzzy logic [11] 

and genetic algorithms [12] and that machine intelligence technology has been developed through its 

application to many areas, for example: 

• Basic Assembly [13,14]. 

• Building modelling [15]. 

• Computer vision [16, 17]. 

• Environmental engineering [18]. 

• Human – computer interaction[19, 20]. 

• Internet use [21, 22]. 

• Powered assistance [23, 24]. 

• Maintenance and inspection [25, 26]. 

• Robotic manipulation [27, 28]. 

• Robotic programming [29, 30]. 

• Sensing [31, 32]. 

• Teleoperation [33, 34] 

These developments in machine intelligence are being introduced into ever more complex assembly 

automation and manufacturing systems.  At the click of a mouse or the flick of a switch or the thought of 

a brain… you might have almost anything made and assembled to order. 

Some recent examples of this research work are in this general review paper, which also presents some 

ongoing work at the University of Portsmouth. 
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2. Knowledge-based systems 

Knowledge-based (or expert) systems are computer programs embodying knowledge about a domain for 

solving problems related to that domain [2].  An expert system usually has two main elements, a 

knowledge base and an inference mechanism. The knowledge base contains domain knowledge which 

may be expressed as a combination of ‘IF–THEN' rules, factual statements, frames, objects, procedures 

and cases. An inference mechanism manipulates stored knowledge to produce solutions to problems.  

Knowledge manipulation methods include using inheritance and constraints (in a frame-based or object-

oriented expert system), retrieval and adaptation of case examples (in case-based systems) and the 

application of inference rules (in rule-based systems), according to some control procedure (forward or 

backward chaining) and search strategy (depth or breadth first). 

A Rule-Based System describes knowledge of a system in terms of IF…THEN..ELSE.  Specific 

knowledge can be used in order to make decisions.  These systems are good at representing knowledge 

and decisions in a way that is understandable to humans.  Due to the rigid rule-base structure they are 

less good at handling uncertainty and are poor at handling imprecision. A typical rule-based system has 

four basic components:  a list of rules or rule base, which is a specific type of knowledge base; an 

inference engine [35, 36] or semantic reasoner, which infers information or takes action based on the 

interaction of input and the rule base; temporary working memory; and a user interface or other 

connection to the outside world through which input and output signals are received and sent.  

The concept in Case-Based Reasoning is to adapt solutions from previous problems to current problems.  

These solutions are stored within a database and can represent the experience of human specialists.  

When a problem occurs that a system has not experienced, it compares with previous cases and selects 

one that is closest to the current problem.  It then acts upon the solution given and updates the database 

depending upon the success or failure of the action [37].  Case-Based Reasoning systems are often 

considered to be an extension of Rule-Based Systems.  They are good at representing knowledge in a 

way that is clear to humans, but they also have the ability to learn from past examples by generating 

additional new cases. Case-based reasoning has been formalized for purposes of computer reasoning 

as a four-step process:  1. Retrieve: Given a target problem, retrieve cases from memory that are 

relevant to solving it. A case consists of a problem, its solution, and, typically, annotations about how the 

solution was derived.  2. Reuse: Map the solution from the previous case to the target problem. This may 

involve adapting the solution as needed to fit the new situation.  3. Revise: Having mapped the previous 

solution to the target situation, test the new solution in the real world (or a simulation) and, if necessary, 

revise.  4. Retain: After the solution has been successfully adapted to the target problem, store the 

resulting experience as a new case in memory. Critics argue that it is an approach that accepts 

anecdotal evidence as its main operating principle. Without statistically relevant data for backing and 

implicit generalization, there is no guarantee that the generalization is correct.  However, all inductive 

reasoning where data is too scarce for statistical relevance is inherently based on anecdotal evidence. 

The concept in Case-Based Reasoning (CBR) is to adapt solutions from previous problems to current 

problems.  These solutions are stored within a database and represent the experience of human 
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specialists.  When a problem occurs that a system has not experienced, it compares with previous cases 

and selects one that is closest to the current problem.  It then acts upon the solution given and updates 

the database depending upon the success or failure of the action.  CBR systems are often considered to 

be an extension of Rule-Based Systems.  As with Rule-Based Systems, CBR systems are good at 

representing knowledge in a way that is clear to humans, however, CBR systems also have the ability to 

learn from past examples by generating additional new cases.  Figure 1 shows a CBR System. 

 

Many expert systems are developed using programs known as ‘shells'; ready-made expert systems 

complete with inferencing and knowledge storage facilities but without the domain knowledge. Some 

sophisticated expert systems are constructed with the help of ‘development environments'. The latter are 

more flexible than shells in that they also provide means for users to implement their own inferencing and 

knowledge representation methods.  Some details about expert systems shells and development 

environments are in Ref [38-40]. 

Among the six tools considered in this paper, expert systems are probably the most mature, with many 

commercial shells and development tools available to facilitate their construction. Consequently, once 

the domain knowledge to be incorporated in an expert system has been extracted, the process of 

building the system is relatively simple. The ease with which expert systems can be developed has led to 

a large number of applications of the tool.  In Assembly Automation, applications can be found for a 

variety of tasks including selection of machine elements, tools, equipment and processes, signal 

interpreting, condition monitoring, fault diagnosis, machine and process control, machine design, process 

planning, production scheduling and system configuring.  Some examples of specific tasks undertaken 

by expert systems are: 

• Automatic programming in robotic assembly [41]. 

• Assembly sequence planning [42, 43]. 

• Assembly part design [44]. 

• Selecting cutting tools and machining strategies [45]. 

• Identifying and planning inspection schedules [46]. 

• Configuring paper feeding mechanisms [47]. 

• Automatic remeshing during a finite-elements analysis [48]. 

 

More information on the technology of expert systems is in [3, 49]. 

Input Output 

Inference Engine 

Case 
 Database 

Figure 1 – A Case Based Reasoning System 
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3. Fuzzy logic 

A disadvantage of ordinary rule-based expert systems is that they cannot handle new situations not 

covered explicitly in their knowledge bases (that is, situations not fitting exactly those described in the ‘IF' 

parts of the rules). These rule-based systems are unable to produce conclusions when such situations 

are encountered. They are therefore regarded as shallow systems which fail in a ‘brittle' manner, rather 

than exhibit a gradual reduction in performance when faced with increasingly unfamiliar problems, as 

human experts would. 

The use of fuzzy logic [50] which reflects the qualitative and inexact nature of human reasoning can 

enable expert systems to be more resilient. With fuzzy logic, the precise value of a variable is replaced 

by a linguistic description, the meaning of which is represented by a fuzzy set, and inferencing is carried 

out based on this representation.  For example, a production rate of 20 widgets per minute can be 

replaced by ‘normal' as the linguistic description of the variable ‘production rate'. A fuzzy set defining the 

term ‘normal production rate ' might be: 

normal production rate = 
0.0

/below 10 widgets per minute +
0.5

/10−15 widgets per minute +
1.0

/15−25 widgets per minute +
0.5

/25−30 

widgets per minute +
0.0

/above 30 widgets per minute. 

 

The values 0.0, 0.5 and 1.0 are the degrees or grades of membership of the production ranges below 10 

widgets per minute (above  30 widgets per minute.), 10−15 widgets per minute (25−30 widgets per 

minute), and  15−25 widgets per minute to the given fuzzy set. A grade of membership equal to 1 

indicates full membership and a null grade of membership corresponds to total non-membership. 

Knowledge in an expert system employing fuzzy logic can be expressed as qualitative statements, (or 

fuzzy rules), such as ‘If the room temperature is normal, then set the heat input to normal'. A reasoning 

procedure known as the compositional rule of inference, which is the equivalent of the modus-ponens 

rule in rule-based expert systems, enables conclusions to be drawn by generalisation (extrapolation or 

interpolation) from the qualitative information stored in the knowledge base.  For instance, when the 

production rate is detected to be ‘slightly below normal', a controlling fuzzy expert system might deduce 

that the inputs should be set to ‘slightly above normal'.  Noting that this conclusion might not have been 

contained in any of the fuzzy rules stored in the system. 

Fuzzy Expert Systems (FES) use fuzzy logic to handle the uncertainties generated by incomplete or 

partially corrupt data.  The technique uses the mathematical theory of fuzzy sets to simulate human 

reasoning.  Humans can easily deal with ambiguity (areas of grey) in terms of decision making, yet 

machines find it difficult [51]. 
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Figure 2 – A Fuzzy Logic Controller 

 

Figure 2 shows an architecture for a fuzzy logic based controller.   

Fuzzy logic has many applications in Assembly Automation where the domain knowledge can be 

imprecise.   Fuzzy Logic is well suited where imprecision is inherent due to imprecise limits between 

structures or objects, limited resolution, numerical reconstruction methods and image filtering.  For 

example, applications in structural object recognition and scene interpretation have been developed 

using Fuzzy Sets within expert systems.  Fuzzy expert systems are suitable for applications that require 

an ability to handle uncertain and imprecise situations.  They do not have the ability to learn as the 

values within the system are preset and cannot be changed.  Further information on fuzzy logic and 

fuzzy sets can be found in Ref. [52, 53, 54]. 

Notable successes have been achieved in the area of process and machine control: 

• Monitoring and controlling welding processes [28, 55]. 

• Robotic folding of fabrics [56]. 

• Prediction of sensory properties [57]. 

• Robot control [58]. 

• Supply chain management [59]. 

Further information on fuzzy logic and fuzzy sets in manufacturing can be found in Ref. [60]. 

 

4. Automatic knowledge acquisition 

Getting domain knowledge to build into a knowledge base can be complicated and time consuming.  It 

can be a bottleneck in constructing an expert system.  Automatic knowledge acquisition techniques were 

developed to address this, for example in the form of IF–THEN rules (or an equivalent decision tree).  

This sort of learning program usually requires a set of examples as a learning input.  Each example is 

characterised by the values of a number of attributes and the class to which it belongs.  

One approach for example is through a process of ‘dividing-and-conquering', where attributes are 

selected according to some strategy (for example, to maximise the information gain) to divide the original 

example set into subsets, the inductive learning program builds a decision tree that correctly classifies 

the given example set. The tree represents the knowledge generalised from the specific examples in the 

set. This can subsequently be used to handle situations not explicitly covered by the example set. 

Fuzzify 

Inputs 
Apply 

Rules 

Aggregate 

Outputs 
Defuzzify 

Input

Output 

Page 6 of 23Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

In another approach known as the ‘covering approach', the inductive learning program attempts to find 

groups of attributes uniquely shared by examples in given classes and forms rules with the IF part as 

conjunctions of those attributes and the THEN part as the classes. The program removes correctly 

classified examples from consideration and stops when rules have been formed to classify all examples 

in the given set [2]. 

Another approach is to use logic programming instead of propositional logic to describe examples and 

represent new concepts.  That approach employs the more powerful predicate logic to represent training 

examples and background knowledge and to express new concepts.  Predicate logic permits the use of 

different forms of training examples and background knowledge.  It enables the results of the induction 

process, that is the induced concepts, to be described as general first-order clauses with variables and 

not just as zero-order propositional clauses made up of attribute-value pairs.  There are two main types 

of these systems, the first, based on the top-down generalisation/specialisation method, and the second, 

on the principle of inverse resolution [36]. 

A number of learning programs have been developed, for example: ID3 [61], which is a divide-and-

conquer program, the AQ program [35], which follows the covering approach, the FOIL program [36], 

which is an ILP system adopting the generalisation/specialisation method, and the GOLEM program [36], 

which is an ILP system based on inverse resolution. Although most programs only generate crisp 

decision rules, algorithms have also been developed to produce fuzzy rules [62]. 

Due to its requirement for a set of examples in a rigid format (with known attributes and of known 

classes), automatic learning has been tricky to use in Assembly Automation, as not many assembly 

automation problems can be described easily in terms of such a set of examples.  This sort of learning is 

generally more suitable for problems where attributes have discrete or symbolic values rather than those 

with continuous-valued attributes as in many assembly automation problems.  More information is in [63, 

64, 65]. 

Some examples of applications of inductive learning are: 

• Controlling a laser cutting robot [66]; 

• Classifying complex and noisy patterns [67]; 

• Analysing constructability [68]. 

 

5. Neural networks 

Neural networks can also capture domain knowledge from examples.  However, they do not archive the 

acquired knowledge in an explicit form such as rules or decision trees and they can readily handle both 

continuous and discrete data.  They also have a good generalisation capability as with fuzzy expert 

systems. 

A neural network is a computational model of the brain.  Neural network models usually assume that 

computation is distributed over several simple units called neurons, which are interconnected and 
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operate in parallel (hence, neural networks are also called parallel-distributed-processing systems or 

connectionist systems). 

The most popular neural network is the multi-layer perceptron, which is a feedforward network: all signals 

flow in a single direction from the input to the output of the network. Feedforward networks can perform 

static mapping between an input space and an output space: the output at a given instant is a function 

only of the input at that instant.  Recurrent networks, where the outputs of some neurons are fed back to 

the same neurons or to neurons in layers before them, are said to have a dynamic memory: the output of 

such networks at a given instant reflects the current input as well as previous inputs and outputs. 

Implicit ‘knowledge' is built into a neural network by training it. Some neural networks can be trained by 

being presented with typical input patterns and the corresponding expected output patterns. The error 

between the actual and expected outputs is used to modify the strengths, or weights, of the connections 

between the neurons. This method of training is known as supervised training. In a multi-layer 

perceptron, the back-propagation algorithm for supervised training is often adopted to propagate the 

error from the output neurons and compute the weight modifications for the neurons in the hidden layers. 

Some neural networks are trained in an unsupervised mode, where only the input patterns are provided 

during training and the networks learn automatically to cluster them in groups with similar features.  For 

more information on neural networks, see Ref. [69, 70, 71 ]. 

Artificial Neural Networks typically have inputs and outputs, with processing within hidden layers in 

between.  Inputs are independent variables and outputs are dependent.  ANNs are flexible mathematical 

functions with configurable internal parameters.  To accurately represent complicated relationships, 

these parameters are adjusted through a learning algorithm.  In ‘supervised’ learning, examples of inputs 

and corresponding desired outputs are simultaneously presented to networks, which iteratively self-

adjust to accurately represent as many examples as possible.  Once trained then ANNs can accept new 

inputs and attempt to predict accurate outputs.  To produce an output, the network simply performs 

function evaluation.  The only assumption is that there exists some continuous functional relationship 

between input and output data.  Neural networks can be employed as mapping devices, pattern 

classifiers or pattern completers (auto-associative content addressable memories and pattern 

associators). Like expert systems, they have found a wide spectrum of applications in almost all areas of 

Assembly Automation, addressing problems ranging from modelling, prediction, control, classification 

and pattern recognition, to data association, clustering, signal processing and optimisation. Some recent 

examples of such applications are: 

• Estimating printed circuit board assembly times [72]. 

• Compensating for nonlinearities [73]. 

• Inspection of Soldering Joints [74]. 

• Automated failure classification for assembly with self-tapping threaded fastenings [75]. 

• Tele-operation [76]. 

• Optimizing spot welding parameters in a sheet metal assembly [77]. 

• Controlling a flexible assembly operation [30]. 
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• Analysing vibration spectra [78]. 

 

6. Genetic algorithms 

A genetic algorithm is a stochastic optimisation procedure inspired by natural evolution [2]. A genetic 

algorithm can yield the global optimum solution in a complex multi-modal search space without requiring 

specific knowledge about the problem to be solved.  However, for a genetic algorithm to be applicable, 

potential solutions to a given problem must be representable as strings of numbers (usually binary) 

known as chromosomes and there must be a means of determining the goodness, or fitness, of each 

chromosome. A genetic algorithm operates on a group or population of chromosomes at a time, 

iteratively applying genetically based operators such as cross-over and mutation to produce fitter 

populations containing better solution chromosomes. The algorithm normally starts by creating an initial 

population of chromosomes using a random number generator. It then evaluates each chromosome. The 

fitness values of the chromosomes are used in the selection of chromosomes for subsequent operations. 

After the cross-over and mutation operations, a new population is obtained and the cycle is repeated with 

the evaluation of that population. For further information on genetic algorithms, see Refs. [79, 80, 81]. 

Genetic algorithms have found applications in Assembly Automation problems involving complex 

combinatorial or multi-parameter optimisation. Some recent examples of those applications are: 

• Efficiency in batch selective assembly [82]. 

• Car assembly line fault diagnosis [83]. 

• Job-shop scheduling [84]. 

• Assembly line balancing [85]. 

• Robot Path Planning [86]. 

 

7.  Ambient-intelligence. 

Ambient Intelligence has been promoted for the last decade as a vision of people working easily in 

digitally controlled assembly environments in which the electronics can anticipate their behaviour and 

respond to their presence.  The concept of Ambient Intelligence is for seamless interaction between 

people and digital systems to meet actual and anticipated needs.  

Use in industry has been limited but new more intelligent and more  interactive systems are at the 

research stage.  From the perspective of assembly automation, a less human and more system-centred 

definition of Ambient Intelligence needs to be considered.  Modern manufacturing concepts tend to be 

human-centred approaches so that the application of Ambient Intelligence technologies in a combination 

with Knowledge Management may be a promising approach.  Many research issues still have to be 

resolved in order to bring the Ambient Intelligence technology to industrial sectors, such as robust, 

reliable (wireless) sensors and context-sensitivity, intelligent user interfaces, safety, security and so forth. 

Ambient Intelligence information and knowledge gathered within a manufacturing environment 

represents an untapped resource for optimisation of energy use of industrial installations and processes 
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and for possibilities to provide energy efficiency services for manufacturing.  The introduction of Ambient 

Intelligence technologies is still in an initial phase.  However, it  is promising to bring advantages in 

flexibility, reconfigurability and reliability.  At the same time, prices of sensors and tags are reducing. 

Development and implementation of new manufacturing concepts based on Ambient Intelligence 

systems in the mid and long-term are likely.  A large number of industrial companies will probably 

introduce different Ambient Intelligence technologies onto the shop-floor. 

On the other hand, manufacturing technology vendors will need to equip their machines, robots, tools 

with additional Ambient Intelligence features and utilise the advantages of Ambient Intelligence 

integrated within the shop-floor environment to provide new functionalities (for example: self-

configuration, context-sensitivity etc.) and improve performances of their products. 

More information is in [87, 88]. 

 

 

8.  Some artificial intelligence applications at the University of Portsmouth 

This section briefly reviews some applications of the aforementioned artificial intelligence tools at the 

University of Portsmouth that are assisting industry in the adoption of artificial intelligence in assembly 

and manufacturing. 

 

8.1 Control of assembly robots.  Simple rules have been investigated that modify pre-planned paths 

and improve gross robot motions associated with pick & place assembly tasks [89] and rules to predict 

terrain contours are being developed using a feed-forward neural network [90].  Robots at Ford Motor 

Company what were used to demonstrate the systems are shown in figure 3.  Case-based reasoning to 

reuse robot programs (or parts of programs) to automatically program assembly tasks.  The combined 

work is already showing that robot teaching time can be reduced and automatic programming and re-

programming may help to introduce robots into smaller and medium enterprises.  Other projects are 

using simple expert systems are being used to improve tele-operation [91, 92, 93]. 
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Figure 3: Robots at Ford Motor Company what were used to demonstrate the systems 

 

8.2. Process control.  An  expert system is being developed to assist in process control and to enhance 

the implementation of statistical process control.  A bespoke expert system uses a hybrid rule-based and 

pseudo object-oriented method of representing standard statistical process control knowledge and 

process-specific diagnostic knowledge.  The amount of knowledge involved can be large, which justifies 

the use of a knowledge-based systems approach.  The system is being enhanced by integrating a neural 

network module with the expert system modules to detect any abnormal patterns. 

 

8.3. Automatic product design for assembly.  Two major projects have investigated automatic design-

for-assembly.  The systems provide designers with suggestions for improvement.  A first multi-expert 

system analyses a design and provides designers with ideas for changes to designs at an early stage in 

order to improve assembly later in the manufacturing process.  A second system improves the design of 

High Recirculation Airlift Reactors. 

- The first system consists of four expert systems: Computer Aided Design (CAD) Expert, Automated 

Assembly Expert, Manual Assembly Expert and Design Analysis Expert.  The Design Analysis Expert 

includes a sub-system to collate the information from the Assembly Experts and to provide costs and 

advice [94].  The approach and the systems can reduce manufacturing costs and lead times.  A 
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knowledge-based reckoning approach to design-for-assembly automation has been used.  The system 

can estimate assembly-time and cost for manual or automatic assembly and select suitable assembly 

techniques. 

- A second system has been created that could replace a main ICI design program called aprpc which 

has been the industrial standard program for large scale High Recirculation Airlift Reactors (a process to 

produce clean water) [8, 18, 95].  When a new reactor is designed, calculations are performed using 

input data that specify the design criteria in terms of process performance, geometry, kinetic factors and 

dynamic performance factors.  From this specification, the new design program calculates the construct 

of the product.   A high recirculation airlift reactor is shown in figure 4. 

 

 

 

Figure 4: A high recirculation airlift reactor. 
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8.4. Fuzzy control.  A robotic welding system is being created that uses image processing techniques 

and a CAD model to provide information to a multi-intelligent decision module [96].  The system uses a 

combination of techniques to suggest weld requirements.  These suggestions are evaluated, decisions 

are made and then weld parameters are sent to a program generator.  The status of welding process is 

difficult to monitor because of the intense disturbance during the process.  Other work is using multiple 

sensors to obtain information about the process.  Fuzzy measurement and fuzzy integral methods are 

being investigated to fuse extracted signal features in order to predict the penetration status of the 

welding process.  

 

8.5. Neural-network-based product inspection.  Two projects are using neural networks for product 

inspection, one is recognizing shipbuilding parts and a second is using cameras to detect and classify 

defects.  Neural networks are useful for these types of application because of the common difficulty in 

precisely describing various types of defects and differences.  The neural networks are able to learn the 

classification task automatically from examples. 

- The first system is managing to recognise shipbuilding parts using artificial neural networks and Fourier 

descriptors [17].     Improvements have been made to a pattern recognition system for recognising 

shipbuilding parts [26].  This has been achieved by using a new simple and accurate corner-finder.  The 

new system initially finds corners in an edge detected image of a part and uses that new information to 

extract Fourier descriptors to feed into a neural network to make decisions about shapes.  Using an all-

or-nothing accuracy measure, the new systems have achieved an improvement over other systems. 

- A second intelligent inspection system has been built that consists of cameras connected to a computer 

that implements neural-network-based algorithms for detecting and classifying defects.  Outputs from the 

network indicate the type of defect.  Initial investigation suggests that the accuracy of defect classification 

is good (in excess of 85%) and faster than manual inspection.  The system is also used to detect 

defective parts with a high accuracy (almost 100%). 

 

8.6. Genetic Algorithms to create an ergonomic workplace layout.  A Genetic Algorithm for deciding 

where to place equipment in a work cell is being developed.  The layout produced by the programme will 

be such that the most frequently needed equipment is most easily reached.  A Genetic Algorithm is 

suitable for this optimisation problem because it can readily accommodate multiple constraints 

expressing the principles of good ergonomic layout. 

 

8.7  Ambient Intelligence to improve energy efficiency.  Ambient Intelligence and Knowledge 

Management technologies are being used to optimise the energy efficiency of manufacturing units [88].  

This benefits both the company and the environment as the carbon footprint is reduced.  Different 

measuring systems are being applied to monitor energy use [97].  Ambient data provide the opportunity 
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to have detailed information on the performance of a manufacturing unit [98].  Knowledge Management 

facilitates process this information and advise on actions to minimise energy usage but maintain 

production.  Existing energy consumption data from standard measurements is being complemented by 

Ambient Intelligence related measurements (from interactions of human operators and 

machines/processes and smart tags) as well as process related measurements (manufacturing line 

temperatures, line pressure, production rate) and knowledge gathered within the manufacturing 

assembly unit.  This is fed to a Service Oriented Architecture system. Figure 5 shows an experimental 

system that is being developed to put the methodology to the test.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Experimental system to use ambient intelligence to improve energy efficiency 

 

 

9.  Combining different systems  

The purpose of a hybrid system is to combine the desirable elements of different AI techniques into one 

system.  The many different methods of implementing AI each have their own strengths and 

weaknesses.  Some effort has been made in combining different methods to produce hybrid techniques 

with more strengths and less weaknesses. An example is the Neuro-Fuzzy system which seeks to 

combine the uncertainty handling of Fuzzy Systems with the learning strength of Artificial Neural 

Networks. 

A solution to the problems associated with weld programming is being addressed in this way [96].  An 

existing system is shown in Figure 6.  The system consists of two software systems working in series to 

construct viable robot programs.  The first system, the CAD model interpreter, accepts a CAD model and 

determines the welds required.  This data is fed to the Program Generator which re-orientates the weld 

requirements in line with the actual real-world orientation of the panel.  The program generator then 
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sends any programs sequentially to the robot (normally one program per weld line).  Additional software 

systems could be incorporated into the existing system at the point where the robot programs are sent to 

the Robot System.  This is because the transmission protocol at this point is standard TCP/IP and any 

programs to be sent can be viewed as text files. 

 

 

Figure 6 – Existing RinasWeld / Motoman  System 

 

 

A new proposed system (shown in Figure 7) will gather that data from an image.  The visual data and 

CAD model data will be used in conjunction to determine an object list, that object list will be passed to a 

weld identifier module that will use AI techniques to determine weld requirement. 

The proposed system uses a combination of AI techniques working in parallel to suggest weld 

requirements.  These suggestions are then evaluated and decisions made regarding the weld required.  

These parameters are then sent to a new program generator, which produces a custom robot program 

for use on the shop floor.  Image capture methods are being combined with a decision making system 

that uses multiple AI techniques to decide on weld requirements for a job. 

The system will combine Real-world visual data with data provided by the CAD model.  It will then use 

this combined data to present differing AI systems with the same information.  These systems will then 

make weld requirement suggestions to a Weld Identifier module (figure 8).  This module will evaluate the 

suggestions and determine the optimum weld path.  The suggestions will then be passed to the existing 

robot program generator. 

 

CAD Model 

Generation 
CAD Model 
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Figure 7 – Proposed System Flow Diagram 

 

 

 

 

 

 

 

 

 

Figure 8 – Weld Identifier Module 

 

The current state of this research is that the robot program generation systems have been created and 

tested and used to produce consistent straight line welds.   A simple edge detection system has been 

created.  Work surrounding the AI systems is in the early stages and will be taken further over the next 

six months.  During this time the multi-intelligent decision module framework will be further developed 

and combinations of AI techniques tested.  The AI techniques to be tested will include Rule-based, Case-

based and Fuzzy systems.  Any created system needs to be able to handle the uncertainty of 
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unidentified objects within the image; however, when all objects are positively identified there should be 

little doubt as to the weld path. 

 

Another example of combining different artificial intelligence tools is the Fuzzy Network [97].  The nodes 

of this type of network are fuzzy rule bases and the connections between the nodes are interactions in 

the form of outputs from nodes that are fed as inputs to the same or other nodes.   The fuzzy network is 

a hybrid tool combining fuzzy systems and neural networks due to its underlying grid structure with 

horizontal levels and vertical layers. This tool is quite suitable for modelling the assembly automation 

process because the separate assembly stages can be described as modular fuzzy rule bases 

interacting in sequential/parallel fashion and feed forward/ feedback context. The main advantages from 

the application of this hybrid modelling tool are better accuracy due to the single fuzzification-inference-

defuzzification and higher transparency due to the modular approach used. These advantages are quite 

crucial bearing in mind the uncertainties in the data and the interconnected structure of the assembly 

automation process. 

 

10.  Discussion 

This all brings us to a point in history when our human biology appears too frail, slow and over-

complicated in many industrial situations [6].  To overcome this, we are beginning to mix sensor systems 

[98] and some powerful new technologies to overcome those weaknesses, and the longer we use that 

technology, the more we are getting out of it [5].  We use less energy, space, and time, but get more and 

more assembly output for less cost.  The time may be coming when a human being will be able to think 

of an object and then watch it appear before their eyes [5, 99].  For example, rapid-prototyping is already 

automatically constructing physical objects using solid freeform fabrication and proving to have 

advantages over high speed machining for manufacturing prototypes.  In the Regional Centre for 

Manufacturing Industry at Portsmouth University, machines read in data from drawings and lay-down 

successive layers to build up a model from a series of cross sections.  This additive fabrication is able to 

create almost any shape by manufacturing solid objects through the sequential delivery of energy and 

material to specified points in space to produce a part.  Rapid-prototyping is slowly including rapid-

manufacturing and assembly and rapid-prototyping techniques are already being used for manufacture, 

albeit in small numbers.  The new machines are exceeding human performance in increasing numbers of 

tasks.  As they merge with us more intimately and we combine our brain power with computer capacity to 

deliberate, analyse, deduce, communicate and invent, then we may be on the threshold of a new 

manufacturing and assembly age.  Developments in machine intelligence are being introduced into rapid-

prototyping, rapid manufacture and rapid assembly as globalization and out-sourcing change the 

structure of manufacturing, design and assembly processes.  They are becoming distributed, both 

organizationally and geographically.  Competition is increasing and companies are faced with high rates 

of technological change, shrinking product life cycles, and intense competition in global, dynamic, and 
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fragmented markets.  AI is becoming important in reducing costs and time.  Designs can be evaluated 

using a prototype made and assembled in hours or days instead of weeks.  Design flaws can be 

detected and corrected more quickly and new products can be tested and retested much faster. 

AI in assembly can increase effective communication, reduce mistakes, minimize engineering changes 

and extend product lifetime by adding necessary features and eliminating redundant features early.  

Development time therefore reduces.  By allowing engineering, manufacturing, marketing, and 

purchasing to examine a product early in the design process, mistakes can be corrected and changes 

made while they are easy and inexpensive. 
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10. Conclusion 

Over the past 40 years, artificial intelligence has produced a number of powerful tools. This paper has 

reviewed some of those tools: knowledge-based systems, fuzzy logic, automatic learning, neural 

networks, ambient intelligence and genetic algorithms.  Applications of these tools in Assembly 

Automation have become more widespread due to the power and affordability of present-day computers. 

Many new Assembly Automation applications may emerge and greater use may be made of hybrid tools 

that combine the strengths of two or more of the tools reviewed here.  Other technological developments 

in AI that will impact on Assembly Automation include data mining, multi-agent systems and distributed 

self-organising systems.  The appropriate deployment of the new AI tools will contribute to the creation of 

more competitive Assembly Automation systems. 

It may take another decade for engineers to recognize the benefits given the current lack of familiarity 

and the technical barriers associated with using these tools and it may take a long time for direct digital 

manufacturing to be considered commonplace… but it is expanding. 

The tools and methods reviewed in this paper have minimal computation complexity and can be 

implemented on small assembly lines, single robots or systems with low-capability microcontrollers.  

The novel approaches proposed use Ambient Intelligence and the mixing of different AI tools in an effort 

to use the best of each technology.  The concepts are generically applicable across all industrial 

assembly processes and this research is intended to prove that the concepts work in manufacturing. 
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