4 research outputs found

    Recent advances in solid-state organic lasers

    Full text link
    Organic solid-state lasers are reviewed, with a special emphasis on works published during the last decade. Referring originally to dyes in solid-state polymeric matrices, organic lasers also include the rich family of organic semiconductors, paced by the rapid development of organic light emitting diodes. Organic lasers are broadly tunable coherent sources are potentially compact, convenient and manufactured at low-costs. In this review, we describe the basic photophysics of the materials used as gain media in organic lasers with a specific look at the distinctive feature of dyes and semiconductors. We also outline the laser architectures used in state-of-the-art organic lasers and the performances of these devices with regard to output power, lifetime, and beam quality. A survey of the recent trends in the field is given, highlighting the latest developments in terms of wavelength coverage, wavelength agility, efficiency and compactness, or towards integrated low-cost sources, with a special focus on the great challenges remaining for achieving direct electrical pumping. Finally, we discuss the very recent demonstration of new kinds of organic lasers based on polaritons or surface plasmons, which open new and very promising routes in the field of organic nanophotonics

    Heterogeneous Integrated Photonic Transceiver on Silicon

    Get PDF
    The demand for high-speed and low-cost short-distance data links, eventually for chip-level optical communication, has led to large efforts to develop high density photonics integrated circuits (PICs) to decrease the power consumption and unit price. Particularly, silicon based photonic integration promise future high-speed and cost-effective optical interconnects to enable exascale performance computers and datacenters. High-level integration of all photonics components on chip, including high speed modulators and photodetectors, and especially lasers, is required for scalable and energy efficient system topology designs. This is enabled by silicon-based heterogeneous integration approach, which transfers different material systems to the silicon substrate with a complementary metal–oxide–semiconductor (CMOS) compatible process. In this thesis, our work focuses on the development of silicon photonic integrated circuit in the applications of high speed chip level optical interconnects. A full library of functional devices is demonstrated on silicon, including low threshold distributed feedback (DFB) lasers as a low power laser source; high extinction ratio and high speed electroabsorption modulators (EAM) and ultra-linear Mach-Zehnder interferometer (MZI) modulators for signal modulation in the data transmitter; high speed photodetectors for the data receiver; and low loss silicon components, such as arrayed waveguide grating (AWG) routers and broadband MZI based switches. The design and characterization of those devices are discussed in this thesis. A highly integrated photonic circuit can be achieved with co-design and co-process of all types of functional photonic devices. Selective die bonding method is performed to integrate multiple III-V dies with different band-gap onto a single photonic die. A reconfigurable network-on-chip circuit was proposed and demonstrated, with state-of-the-art high-speed silicon transceiver chip. With over 400 active and passive components heterogeneously integrated on silicon, photonic circuit with multiple- wavelength-division multiplexing (WDM) transceiver nodes achieved a total capacity up to 8×8×40 Gbps. This high capacity and dense integrated heterogenous circuit shows its potential as a solution for future ultra-high speed inter- and intra-chip interconnects

    Optical Gas Sensing: Media, Mechanisms and Applications

    Get PDF
    Optical gas sensing is one of the fastest developing research areas in laser spectroscopy. Continuous development of new coherent light sources operating especially in the Mid-IR spectral band (QCL—Quantum Cascade Lasers, ICL—Interband Cascade Lasers, OPO—Optical Parametric Oscillator, DFG—Difference Frequency Generation, optical frequency combs, etc.) stimulates new, sophisticated methods and technological solutions in this area. The development of clever techniques in gas detection based on new mechanisms of sensing (photoacoustic, photothermal, dispersion, etc.) supported by advanced applied electronics and huge progress in signal processing allows us to introduce more sensitive, broader-band and miniaturized optical sensors. Additionally, the substantial development of fast and sensitive photodetectors in MIR and FIR is of great support to progress in gas sensing. Recent material and technological progress in the development of hollow-core optical fibers allowing low-loss transmission of light in both Near- and Mid-IR has opened a new route for obtaining the low-volume, long optical paths that are so strongly required in laser-based gas sensors, leading to the development of a novel branch of laser-based gas detectors. This Special Issue summarizes the most recent progress in the development of optical sensors utilizing novel materials and laser-based gas sensing techniques
    corecore