1,715 research outputs found

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Optimal k-means clustering using artificial bee colony algorithm with variable food sources length

    Get PDF
    Clustering is a robust machine learning task that involves dividing data points into a set of groups with similar traits. One of the widely used methods in this regard is the k-means clustering algorithm due to its simplicity and effectiveness. However, this algorithm suffers from the problem of predicting the number and coordinates of the initial clustering centers. In this paper, a method based on the first artificial bee colony algorithm with variable-length individuals is proposed to overcome the limitations of the k-means algorithm. Therefore, the proposed technique will automatically predict the clusters number (the value of k) and determine the most suitable coordinates for the initial centers of clustering instead of manually presetting them. The results were encouraging compared with the traditional k-means algorithm on three real-life clustering datasets. The proposed algorithm outperforms the traditional k-means algorithm for all tested real-life datasets

    Literature Review on Big Data Analytics Methods

    Get PDF
    Companies and industries are faced with a huge amount of raw data, which have information and knowledge in their hidden layer. Also, the format, size, variety, and velocity of generated data bring complexity for industries to apply them in an efficient and effective way. So, complexity in data analysis and interpretation incline organizations to deploy advanced tools and techniques to overcome the difficulties of managing raw data. Big data analytics is the advanced method that has the capability for managing data. It deploys machine learning techniques and deep learning methods to benefit from gathered data. In this research, the methods of both ML and DL have been discussed, and an ML/DL deployment model for IOT data has been proposed
    • …
    corecore