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Abstract The swarm cognitive behavior of bees readily translates to swarm
intelligence with “social cognition”, thus giving rise to the rapid promotion of
survival skills and resource allocation. This paper presents a novel cognitively-
inspired artificial bee colony clustering (ABCC) algorithm with a clustering
evaluation model to manage the energy consumption in cognitive wireless sen-
sor networks (CWSNs). The ABCC algorithm can optimally align with the
dynamics of the sensor nodes and cluster heads in CWSNs. These sensor
nodes and cluster heads adapt to topological changes in the network graph
over time. One of the major challenges with employing CWSNs is to max-
imize the lifetime of the networks. The ABCC algorithm is able to reduce
and balance the energy consumption of nodes across the networks. Artificial
Bee Colony (ABC) optimization is attractive for this application as the cog-
nitive behaviors of artificial bees match perfectly with the intrinsic dynamics
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in cognitive wireless sensor networks. Additionally, it employs fewer control
parameters compared to other heuristic algorithms, making identification of
optimal parameter settings easier. Simulation results illustrate that the ABCC
algorithm outperforms PSO (particle swarm optimisation), GSO (group search
optimisation), LEACH (low-energy adaptive clustering hierarchy), LEACH-C
(LEACH-centralized), and HEED (hybrid energy-efficient distributed cluster-
ing) for energy management in CWSNs. Our proposed algorithm is increas-
ingly superior to these other approaches as the number of nodes in the network
grows.

Keywords Cognitive Wireless Sensor Network (CWSN) · Clustering ·

Artificial Bee Colony (ABC) · Clustering evaluation model

1 Introduction

Human beings possess high-level social cognition. In fact, swarm behaviors
already widely exist in other social creatures with low-level cognition such
as bees and ants. It is straightforward to associate swarm intelligence with
“social cognition” that leads to the rapid promotion of survival skills and re-
source allocation. There have been major advances in swarm intelligence based
cognitively-inspired algorithms [8, 31]. He et al. [9] reported an group search
optimization (GSO) algorithm inspired by animal behaviors, especially ani-
mal searching behaviors. Bishop proposed a search algorithm with stochastic
diffusion characteristics [4,28], and Kennedy and Eberhart [17] proposed par-
ticle swarm optimization (PSO) algorithm mainly inspired by social behaviour
patterns of organisms that live and interact within large groups. In particular,
PSO incorporates swarming behaviours observed in flocks of birds, schools of
fish, or swarms of bees, and even human social behavior. al-Rifaie et al. [29]
introduced a novel hybrid algorithm mimicking the behavior of birds flocking
and ants foraging. Dubey et al. [7] proposed a cognitively-inspired modified
flower pollination algorithm. Their results illustrated that these algorithms had
some advantages in terms of cost and statistical performance. Ullah et al. [33]
proposed a cognitively-inspired soft switching approach to implement horizon-
tal cloud elasticity. It could reduce the likelihood of oscillation and increase
the stability of the underlying cloud computing system. Kim et al. [18] devel-
oped a discrete ABC algorithm for binary integer job scheduling problems in
grid computing. They illustrated that the performance of efficient binary ABC
was better than alternatives such as genetic algorithms, simulated annealing,
and particle swarm optimization. Ye and Chen [35] proposed an efficient and
competitive combinatorial ABC algorithm for solving the minimum attribute
reduction problem. The discrete version of ABC outperformed all competing
approaches in terms of solution quality. The ABC algorithm can also be used
in the emerging area of big data analytics. Ding et al. [6] have observed that
achieving cognition ability when clustering big data is a major challenge in
stream data mining, while Abdullah et al. [2], who introduce a special issue on
the topic, note the potential of cognitive computing systems that are trained
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using biologically inspired approaches and computational intelligence. In this
paper, we present a novel Artificial Bee Colony Clustering (ABCC) algorithm
with a clustering evaluation model to manage the energy consumption in cog-
nitive wireless sensor networks.

Cognitive wireless sensor networks (CWSNs) are an emerging technology
with the potential to address traditional wireless network problems such as
reliability. There are three main types of routing model employed in cognitive
wireless sensor networks, namely the direct transmission (one hop) model, the
multi-hop model, and the cluster-based hierarchical model, as shown in Figure
1 [13]. Due to the potential for infeasible solutions with the direct transmis-
sion (one hop) model and the latency associated with the multi-hop model, the
cluster-based hierarchical model is considered the most promising. A generic
CWSN architecture is illustrated in Figure 2. Sensor nodes are the core com-
ponents with clusters of nodes acting as organizational units. Each cluster has
a cluster head as its organizational leader. There are multiple cluster-based
hierarchical levels (CH-levels). The base station (Sink) is at the upper level
of the hierarchical CWSN. A major constraint is the energy requirements of
each node, which ultimately determine network lifetime.

Abbasi and Younis [1] surveyed clustering algorithms for cognitive wireless
sensor networks (CWSNs). Designing and operating large networks would re-
quire scalable architectural and management strategies. In addition, sensors in
such large scale deployments are generally energy constrained as their batteries
cannot be recharged. Since each wireless sensor node only has limited energy
storage, the efficient use of this energy is vital to extend network lifetime, and
hence the range of suitable applications for these networks. Appropriate clus-
tering of nodes can reduce the overall energy usage in a network. Minimizing
energy consumption is an important consideration when developing clustering
schemes [5].

(a) Direct transmission
(One hop model)

(b) Multi-hop model (c) Cluster-based hierarchical model

Fig. 1 Routing model
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Fig. 2 Cognitive Wireless Sensor Network Architecture

Clustering in CWSNs has proven to be an effective approach to organizing
a network into a connected hierarchy, so that it balances the load and prolongs
network lifetime. However, this involves grouping nodes into clusters and elect-
ing a cluster head, with the collection of cluster heads in the network forming
a connected dominating set. Since obtaining an optimal dominating set is an
NP-complete problem, the proposed algorithms are heuristic in nature [37].
Kulkarni [19] provided an extensive survey of computational intelligence ap-
plications to various problems in wireless sensor networks. They concluded
that swarm intelligence with cognitive behaviors [22,25] was most appropriate
for the design and deployment of sensor networks.

A cognitive wireless sensor network is an intelligent wireless communication
paradigm that is dynamically aware of its surrounding environment. It is also
able to respond to it in order to achieve reliable and efficient communication.
The dynamical cognition capability and environmental adaptability rely on or-
ganizing dynamical networks effectively. However, as already noted, optimally
clustering the cognitive wireless sensor networks is an NP-complete problem. In
this paper, we present an Artificial Bee Colony Clustering (ABCC) algorithm
for optimally configuring cognitive wireless sensor networks. Our basic idea is
to use the cognitive behavior of bees in our ABCC algorithm to mimic the dy-
namical cognition capability and environmental adaptability of CWSNs. One
of the main merits of the combination of ABC and clustering in such a heuristic
way is that it can determine dynamically the optimal number and assignment
of cluster heads in CWSNs, with each sensor node then connecting to its near-
est cluster head. Furthermore, it also optimally coincides with the dynamics of
the cluster heads and sensor nodes, which can adapt to topological changes to
any network graph over time. We further formulate the clustering evaluation
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model and use it as the basis for an objective function. It simultaneously mini-
mizes the average dissipated energy and the standard deviation of the residual
energy. To demonstrate the efficacy of ABCC, we compare its performance to
that of a number of competing approaches, specifically particle swarm opti-
misation (PSO), group search optimisation (GSO), the low-energy adaptive
clustering hierarchy (LEACH), LEACH-centralized (LEACH-C) [10, 11], and
the hybrid energy-efficient distributed clustering (HEED) [36] algorithms.

The major contributions of this paper are as follows:

– We formulate the clustering problem for CWSNs with the objective of
simultaneously minimizing the average dissipated energy and the standard
deviation of residual energy of nodes to prolong network lifetime.

– A cognitively-inspired Artificial Bee Colony Clustering (ABCC) algorithm
is presented, in which the cognitive behaviors of artificial bees match per-
fectly with the intrinsic dynamics in CWSNs.

– We develop an evaluation model as an objective function that considers the
dissipated energy to conserve and balance energy consumption of nodes in
CWSNs.

The remainder of the paper is organized as follows. Section 2 describes
related work. Section 3 discusses some theoretical formulations related to the
integer programming clustering model applied to the CWSN. In Section 4, we
present our ABCC for CWSNs in detail. Experimental results, comparisons
and discussions are provided in Section 5 and finally conclusions are presented
in Section 6.

2 Related Work

Heinnzelman et al. [10,11] proposed LEACH, a clustering-based protocol that
utilizes randomized rotation of cluster-heads to evenly distribute the energy
load among the sensors in the network. In their experiments, LEACH is shown
to reduce energy dissipation and increase network lifetime compared with con-
ventional routing protocols. Heinnzelman et al. [10] showed that LEACH can
achieve good performance in terms of system lifetime, latency, and application-
perceived quality. They also developed LEACH-C, a protocol that uses a cen-
tralized clustering algorithm and the same steady-state protocol as LEACH.
The base station (BS) computes the average node energy, and nodes that have
energy below this average are not allowed to be cluster heads. In LEACH,
every node has to be reachable in a single hop, and the load distribution is
uniform among all nodes [37]. LEACH assigns a fixed probability (5%) to
every node of electing itself as a cluster head. Salim et al. [30] proposed a
IBLEACH (clustering routing protocol called intra-balanced LEACH) algo-
rithm, which extends the LEACH protocol by balancing energy consumption
in the network. They elect the non-optimal cluster heads randomly from all
nodes during the setup phase in a similar fashion to LEACH. Aslam et al. [3]
presented energy efficient hierarchical routing protocols developed from the
conventional LEACH routing protocol to increase lifetime.
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Liu [23] presented a survey on clustering based routing protocols, outlin-
ing their advantages. They also highlighted that further research is needed to
determine how to handle the overhead of node mobility and topology changes.
Younis and Fahmy [36] proposed HEED that periodically selects cluster heads
according to a hybrid of the node residual energy and an overhead. It can
achieve fairly uniform cluster head distribution across networks. They demon-
strated that their proposed approach was effective in prolonging network life-
time and supporting scalable data aggregation. In the HEED protocol all nodes
are assumed to be equally important [37]. A node uses its residual energy as
the primary parameter to probabilistically elect itself to become a cluster head.
Thus, the LEACH and HEED clustering methods both have a limitation in
that they do not identify or use the optimal number of cluster heads at each
stage.

Okdem et al. [26] presented performance tests and complexity analysis of
cluster based wireless sensor network routing based on an artificial bee colony
(ABC) algorithm. Performance and analysis results showed that the ABC
algorithm presented promising solutions. Karaboga et al. [15] also considered
the ABC algorithm for cluster based wireless sensor network routing. They
[16] proposed an ICWAQ (Improved version of Cluster based Wireless sensor
network routings using Artificial bee colony algorithm considering Quality of
service) algorithm to optimize clustering of the nodes during the cluster-heads
selection process. These heuristic methods also have the limitation that the
objective function is mainly based on the distance between nodes as a metric
to encourage energy reduction.

3 Clustering Evaluation Model

The dense deployment and unattended nature of cognitive wireless sensor net-
works make it quite difficult to recharge node batteries. Therefore, energy ef-
ficiency is very important in these networks. Clustering can improve network
lifetime, a primary metric for evaluating the performance of a sensor network.
Periodic re-clustering is necessary in order to heal disconnected regions and to
distribute energy consumption across all nodes [37].

We assume that a network consists of N nodes, and that Et(n)dissipate, as
defined in Equ. (1), is the energy dissipated in the cluster head node (n ∈ CH)
or non-cluster head node (n ∈ non − CH) in the network during a single
round t. Here, l is the number of bits in each data message and dntoBS is the
distance from the cluster head node to the base station BS. Each cluster head
dissipates energy receiving signals from the nodes, aggregating the signals, and
transmitting the aggregate signal to the base station (BS), which is a Sink.
Since BS is far from the nodes, it is assumed that the energy dissipation follows
the multipath model (d4 power loss). Each non-cluster head node only needs
to transmit its data to the cluster head once during a round. The distance
from non-cluster head nodes to the cluster head is assumed to be small so
that the energy dissipation follows the Friss free-space model (d2 power loss).
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The distance from the node to the cluster head is denoted as dntoCH , and mn

is the actual number of sensor nodes that are connected to cluster head node
n. The communication energy parameters are the initial energy for the nodes
Ej , radio electronics dissipation for receiving and transmitting units Eelec,
amplifier energy parameters Emp and Efs, energy for data aggregation EDA,
and the number of bits in each data message l = 1024bits [10, 11].

We use Equ. (1) to get Et(n)dissipate for each cluster head node (n ∈ CH)
and each non-cluster head node (n ∈ non − CH). The sum of the dissipated
energy for round t is calculated using Equ. (2). This is a binary integer pro-
gramming model with binary decision variable xn=1 for each cluster head
and xn=0 for each sensor node n, as defined in Equ. (3). Each sensor node
member is connected to its closest cluster head once the cluster heads have
been identified. Our objective is to minimize: (1) the average dissipated energy,
AV G(Edissipate), as expressed in Equs. (2)-(4) to conserve energy, and; (2) the
standard deviation of the residual energy, STDEV (Eresidual), as defined in
Equs. (5)-(7) to balance the energy load across all nodes.

Et(n)dissipate =







(mn − 1)lEelec +mnlEDA

+lEelec + lEmpd
4
ntoBS n ∈ CH

lEelec + lEfsd
2
ntoCH n ∈ non− CH

(1)

The sum of the dissipated energy for round t is given by:

∑

n∈N

Et(n)dissipate =
∑

n∈CH

Et(n)dissipate +
∑

n∈non−CH

Et(n)dissipate

=
∑

n∈N

xn

[

(mn − 1)lEelec +mnlEDA + lEelec + lEmpd
4
ntoBS

]

+
∑

n∈N

(1− xn)
[

lEelec + lEfsd
2
ntoCH

]

(2)

where the decision variable xn for node n is defined as:

xn =

{

1 if node n is cluster head
0 otherwise.

(3)

The average dissipated energy for round t is then computed as:

AV G(Edissipate) =

(

∑

n∈N

Et(n)dissipate

)

/N (4)

Defining the residual energy for round (t+ 1) as:

Et+1(n)residual = Et(n)residual − Et(n)dissipate (5)
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the average residual energy for round t can be computed as:

AV G(Eresidual) =
∑

n∈N

Et(n)residual
N

(6)

and the standard deviation of the residual energy is expressed as:

STDEV (Eresidual) =

√

√

√

√

∑

n∈N

(AV G(Eresidual)− E(n)residual)
2

N
(7)

The objective function in Equ. (8) is used to evaluate the performance of
a cognitive wireless sensor network. This function is a weighted combination
of the average dissipated energy in Equ. (4) and the standard deviation of
residual energy in Equ. (7).

Minimize AV G(Edissipate) + α× STDEV (Eresidual) (8)

As an example, consider a network with 15 nodes (i.e. N = 15) with node
positions as shown in Table 1. The sink node is at position (0,0). The bi-
nary solution for the network is listed in Table 2. A clustering design model
with 6 selected cluster heads (nodes 1, 4, 5, 6, 7 and 13) is illustrated in
Figure 3. These cluster heads are connected to the sink node. Sensor nodes
2 and 3 are connected to their closest cluster head (node 4). In a similar
fashion, sensor nodes 8, 9, 10, 12 and 14 are connected to cluster head node
7, and sensor nodes 11 and 15 are connected to cluster head node 13. To
compare our simulation results with LEACH, LEACH-C, and HEED [10],
we use the following initial communication energy parameters: Ej = 0.5J ,
Eelec = 50nJ/bit, Emp = 0.0013pJ/bit/m4, Efs = 10pJ/bit/m2, EDA =
5nJ/bit/signal, and l = 1024bits. The weighting α of the standard devia-
tion of residual energy term in Equ. (8) is set to 1. The residual energy of
rounds 22 - 23 and dissipated energy of round 22 for this network are shown
in Table 3. Here, AV G(Edissipate) = 0.000106, AV G(Eresidual) = 0.497301,
STDEV (Eresidual) = 0.000158, and the objective value is 0.000264 for the
15-node network configuration in Figure 3.

Table 1 Position of the 15 nodes in the example network depicted in Figure 3.

Index Sink 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x 0 65 95 100 75 60 45 40 50 75 45 20 35 10 50 25
y 0 5 10 30 15 20 45 60 85 90 95 80 65 80 100 90
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Table 2 Binary solution: decision variable xn=0 for a sensor node and xn=1 for cluster
head node

Index node n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xn 1 0 0 1 1 1 1 0 0 0 0 0 1 0 0

0

0

20

20

40

40

60

60

80

80

100

100

1
⊗

2

3

4
⊗

5
⊗

6

⊗

7

⊗

8

9

10

11

12

13
⊗

14

15

Sink Node

Senser Node

Cluster Head Node

⊗

Fig. 3 Clustering design model for a 15-node network with sink node (0,0)

Table 3 Residual and dissipated energy of rounds 22-23 in the 15-node network

No. of node E22(n)residual E22(n)dissipate E23(n)residual

1 0.497465 0.000080 0.497385
2 0.497564 0.000055 0.497509
3 0.497496 0.000060 0.497436
4 0.497616 0.000214 0.497402
5 0.497552 0.000078 0.497474
6 0.497548 0.000078 0.497470
7 0.497430 0.000374 0.497056
8 0.497127 0.000058 0.497069
9 0.497501 0.000073 0.497428
10 0.497388 0.000064 0.497324
11 0.497266 0.000052 0.497214
12 0.497264 0.000051 0.497213
13 0.497251 0.000225 0.497026
14 0.497399 0.000069 0.497330
15 0.497242 0.000054 0.497188
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4 Methodology

We propose an Artificial Bee Colony Clustering (ABCC) algorithm that takes
advantage of the favourable dynamic properties of artificial bee colonies. It
requires fewer control parameters than alternative heuristic methods. In par-
ticular, the proposed ABCC algorithm is optimally designed to deal with the
dynamics of the topological changes to any network graph using the model
presented in Section 3, with the objective of conserving energy and balancing
the energy load across sensor nodes.

4.1 Artificial Bee Colony

The artificial bee colony (ABC) is a swarm intelligence algorithm motivated by
the cognitive behavior exhibited by honeybees when searching for foods [24,34].
The performance of ABC is better than or similar to other population-based
algorithms with the advantage of employing fewer control parameters [20,38].
The control parameter in ABC is Limit, the number of unsuccessful trials
before a food source is deemed to be abandoned, with the number of food
sources denoted as SN [18, 21, 27].

In ABC, the colony of artificial bees contains three groups of bees: employed
bees, onlooker bees and scout bees. For every food source there is only one
employed bee. A fitness function is used to assign a quality or ‘nectar’ value to
the food sources. Each employed bee searches for a new food source within its
own neighbourhood and moves to it if it has a higher nectar value. Employed
bees then share their food source information (location and nectar value) with
the onlooker bees waiting in the hive. Each onlooker bee then selects one of
the employed bee food sources probabilistically in a process similar to roulette
wheel selection. After selecting its food source, each onlooker bee seeks out
one new food source within its neighborhood and moves to this food source if
it has a higher nectar value. If the number of active food sources outnumbers
the maximum allowed, those with the lowest nectar values are abandoned. An
employed bee for a food source that has been abandoned becomes a scout bee
and starts to search for a new food source randomly. Thus, while onlooker bees
and employed bees are targeted at exploitation, scout bees provide a mecha-
nism for exploration [14]. The flowchart for the ABC algorithm is presented
in Figure 4.

4.2 Artificial Bee Colony Clustering in Cognitive Wireless Sensor Networks

The cognitive network (CN) is a new type of data network designed to solve
some of the issues faced by current networks. The system learns from past
experiences (situations, plans, decisions, actions) and uses this knowledge to
improve decision making in subsequent machine learning, knowledge repre-
sentation, computer network, and network management tasks [32]. Hunt et
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Setting parameters

Limit, SN

START

Initializing the population of food sources

Evaluating initial food sources using Equ. (8)

Neighborhood search of food source by Employed bee

Evaluating neighbors of food sources using Equ. (8)

New food source is
better ?

Update new food source
Trial = 0 for that food source

Trial = Trial + 1 for that food source

Global search of food source by Onlooker bee using Equ. (9)
Evaluating these food sources using Equ. (8)

New food source is
better ?

Update new food source
Trial = 0 for that food source

Trial = Trial + 1 for that food source

Diversified search of food source by Scout bee

if Trial is equal to and greater than Limit

Stopping
condition

END

No

No

No

Yes

Yes

Yes

Fig. 4 Flowchart of the ABC algorithm

al. [12] introduced a consensus-based grouping algorithm for multi-agent coop-
erative task allocation, in which the cognitive behaviors of social animals (bees
and ants) are available for cooperation and improved assignments. al-Rifaie et
al. [29] also proposed a hybrid-swarm algorithm (mimicking the behaviors of
ants and birds) and explored the possibility of it exhibiting computational
creativity. In this section, we present a novel artificial bee colony clustering
(ABCC) algorithm to obtain the optimal clustering design for cognitive wire-
less sensor networks. It takes advantage of the cognitive behaviors of artificial
bee cognitive systems. Our algorithm seeks to optimize the number and alloca-
tion of cluster heads and sensor nodes. The objective is to adaptively cluster



12 S. Kim, et al.

Time

Round t
Steady-state

Set-up by ABCC

Round t+ 1
Steady-state

Set-up by ABCC

Round t+ 2
Steady-state

Set-up by ABCC

Fig. 5 Time line of clustering design

the cognitive wireless sensor networks in order to conserve energy and bal-
ance the energy consumption of nodes in the current round by using active
nodes with residual energy. In our artificial bee colony clustering algorithm,
the colony of artificial bees also contains three groups of bees: employed bees,
onlooker bees and scout bees. For every food source there is only one em-
ployed bee, and each food source corresponds to a cluster head. We assign
the food sources of the employee bees to the onlooker bees. The onlooker bees
help to identify a better cluster head within each cluster (a cluster consists
of one cluster head and many sensor nodes), i.e. produce neighbors (new food
sources) by probabilistically changing from cluster head to sensor node. Such
a hierarchical search strategy matches perfectly with the intrinsic dynamics in
cognitive wireless sensor networks. Additionally, in order to avoid the search
system becoming rigescent, scout bees generate a new food source (solution)
randomly. The cognitive interactions between these three kinds of bee prompt
the whole colony to achieve a good solution.

In our artificial bee colony clustering algorithm, the optimal clustering
design is divided into rounds in a fashion similar to LEACH. Each round (i.e.
t, t + 1, t + 2, · · ·) is composed of set-up and steady-state phases as shown
in Figure 5. There is a set-up phase each time, where the clusters have to
be determined [10]. The cluster heads and clusters are organized using our
proposed ABCC algorithm in the set-up phase of each round. After the set-up
phase, network data is transferred from the nodes to the cluster head, and then
to the base station in the time line, and this is referred to as the steady-state
phase.

The steps of the Artificial Bee Colony Clustering (ABCC) algorithm, as
set out in Algorithm 1, are further explained as follows. The algorithm begins
by loading the position data of N nodes in the network and pre-computing the
distance between each node, dntoCH , and the distance between each node and
the sink node, dntoBS . The initial positions of the nodes are generated ran-
domly in this paper. The network communication energy parameters, namely,
the initial energy for the nodes Ej , the radio electronics energy dissipation for
the receiving and transmitting units Eelec, amplifier energy parameters Emp

and Efs, energy of data aggregation EDA, and the number of bits in each data
message l = 1024bits [10, 11], are also loaded.

The parameters Limit (maximum number of unsuccessful trials when search-
ing for an improved food source in the vicinity of an active food source) and
SN (number of active food sources, employed bees and onlooker bees) for the
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Algorithm 1 Artificial Bee Colony Clustering (ABCC)
1: Round← 1

Use an N-node network and node positions given with respect to the Sink node located
at (0, 0). Set the communication energy parameters, Ej , Eelec, Emp, Efs, EDA, and
l = 1024bits.

2: repeat

3: Set the parameters Limit and SN . Initialize the population of food sources (solutions)
Xk, k = 1, 2, · · · , SN , using the binary solution representation. Each sensor node is
connected to the closest cluster head. Assign an employed bee to each food source.

4: Evaluate the objective values of food sources in the population using Equ. (8).
5: cycle← 1
6: repeat

7: Produce neighbors (new food sources) by probabilistically changing from cluster
head to sensor node or vice versa for randomly selected nodes of the current food
source Xk associated with each employed bee and evaluate them using Equ. (8).

8: If the new food sources are better than the existing ones, replace old ones with the
new ones to update and set Trial← 0. Otherwise, Trial← Trial + 1.

9: Calculate the onlooker bee selection probability values for the employee bee solu-
tions by roulette wheel selection using Equ. (9).

10: Assign employee bee food sources to the onlooker bees based on their selection
probabilities.

11: Produce new onlooker food sources by probabilistically changing from cluster head
to sensor node or vice versa for randomly selected nodes in the solution represen-
tation Xk and evaluate them using Equ. (8).

12: If the new food sources are better than old ones, replace old ones with new ones
to update and set Trial← 0. Otherwise, Trial← Trial + 1.

13: Determine the food sources that are to be abandoned, i.e. where Trial >= Limit,
and reassign the corresponding employed bees as scout bees.

14: For each scout bee generate a new food source (solution) randomly.
15: Memorize the best food source achieved so far.
16: cycle← cycle+ 1.
17: until cycle = MCN

18: Use the final best food source to evaluate the best objective value using Equ. (8).
19: Round← Round+ 1

Use the positions of active nodes in the next Round.
20: until Round = ROUND

Get the best performance measures which are the average residual energy, number of
nodes alive and the number of received items.

proposed ABCC algorithm are also initialized as is the weighting factor α in
Equ. (8).

The population of SN food sources (solutions) are initialized randomly
using the binary solution representation, and each node is selected randomly
as either ‘1’ for cluster head or ‘0’ for sensor node. Each sensor node is then
assigned (connected) to its closest cluster head. For example, the network
discussed in Section 3 is a food source consisting of 6 cluster heads and 9
connected sensor nodes as shown in Table 2 and Figure 3.

The food sources of the initial population are evaluated using the proposed
evaluation function Equ. (8), which is a function of the energy dissipated in
the network during a single round t. The reciprocal of the evaluation value for
food source k (i.e. the output of Equ. (8)) is denoted as fk.
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A new neighborhood of each current food source is produced by probabilis-
tically converting a cluster head to a sensor node or vice versa for a randomly
selected node.

The new food source is evaluated using Equ. (8). A greedy selection process
is then applied for the employed bees, whereby the old food source is replaced
by the new one and the Trial count variable is set to ‘0’ if the new neigh-
borhood food source is better than the old one. Otherwise, the Trial count is
increased by 1.

The onlooker bees then select their food sources based on the evaluation
values of the food sources shared by the employed bees. An onlooker bee selects
a food source depending on its winning probability value, as defined in Equ.
(9), using a roulette wheel selection process.

pi = fi/

SN
∑

n=1

fn (9)

New food sources are then generated for the onlooker bees by probabilis-
tically changing cluster heads to sensor nodes or vice versa, for randomly
selected nodes, based on the winning probability of the food sources they have
selected. The new food sources are evaluated using the evaluation function
(i.e. Equ. (8)) and greedy selection employed by the onlooker bees.

Finally, if abandoned food source exists (i.e. if the Trial count variable
exceeds the Limit value), the corresponding employee bees are re-assigned as
scout bees and new food sources are also generated for them randomly.

The procedure is repeated until a predetermined maximum number of cy-
cles (MCN) is reached, with the best food source achieved during each cycle
memorized. The overall best food source identified by ABCC is selected as
the final clustering solution, defining the cluster heads and associated sensor
nodes to be employed in this round.

For the next round the network is defined as the positions of active nodes
and their associated communication energy parameters, that is to say, the
nodes which have expired (run out of energy) during the current round are
deleted from the network for subsequent rounds. Rounds continue until the
maximum round (ROUND) is reached, at which point the last node has died.

The current ‘state of health’ of the CWSN is monitored by tracking the
average residual energy, number of active (living) nodes and number of received
items at a given round, while the overall performance is captured by the first
node failure, the network lifetime and the total amount of transmitted data.

5 Experiments and Analysis

5.1 Experimental Settings

To illustrate the effectiveness and performance of the proposed ABCC al-
gorithm, we test and compare its performance with a number of compet-
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Fig. 6 Locations of 100, 200, and 400 nodes at Round 1

ing clustering design protocols, namely, particle swarm optimisation (PSO),
group search optimisation (GSO), low-energy adaptive clustering hierarchy
(LEACH), LEACH-centralized (LEACH-C), and the hybrid energy-efficient
distributed clustering (HEED) algorithms. The parameter values for these ap-
proaches are selected in accordance with the values specified in [9–11, 22, 36].
We randomly generate networks with N =100, 200, and 400 nodes for two
scenarios, one with the sink node located at (0,0) and the other with the sink
node located at the centre of the network. The positions of nodes are randomly
generated for each network on 100m×100m, 200m×200m, and 400m×400m
square grids, respectively, as shown in Figure 6. The initial values of the
communication energy parameters for the networks were set as Ej = 0.5J ,
Eelec = 50nJ/bit, Emp = 0.0013pJ/bit/m4, Efs = 10pJ/bit/m2, EDA =
5nJ/bit/signal, and l = 1024bits, as given in [10, 11]. The experiments were

run on an Intelr CoreTM2 Duo CPU (2.66GHz, 2G RAM). The best param-
eter values for the ABCC algorithm were determined experimentally to be
SN = 20 and Limit = 100.

5.2 Comparisons to related swarm intelligent algorithms

Since PSO and GSO are optimisation algorithms, we can use them as alterna-
tives to ABC with our clustering evaluation model (introduced in Section 3) to
solve the CWSN clustering problem. These implementations will be denoted
as ‘PSOC’ and ‘GSOC’, respectively.

The rate of convergence of the PSOC, GSOC and ABCC algorithms in
Round 1 for each configuration is illustrated in Figure 7. As expected, ABCC
consistently converges as the number of generations increases. It is able to find
a stable solution in under 1000 generations in all cases. The results of PSOC,
GSOC and ABCC algorithms at Round 1 are shown in Table 4. The minimum,
average, and standard deviation of the objective values (Equ. (8)) are also
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Table 4 Objective values of PSOC, GSOC and ABCC algorithms at Round 1

No. of nodes Clustering Objective value

(Sink node) methods
Minimum Average

Standard
deviation

100 (0,0)
PSOC 0.000241 0.000263 0.000012
GSOC 0.000241 0.000260 0.000009
ABCC 0.000241 0.000250 0.000005

100 (Center)
PSOC 0.000119 0.000208 0.000016
GSOC 0.000119 0.000208 0.000013
ABCC 0.000119 0.000208 0.000014

200 (0,0)
PSOC 0.000516 0.000653 0.000026
GSOC 0.000515 0.000604 0.000022
ABCC 0.000514 0.000586 0.000024

200 (Center)
PSOC 0.000264 0.000278 0.000011
GSOC 0.000260 0.000276 0.000004
ABCC 0.000258 0.000271 0.000004

400 (0,0)
PSOC 0.004236 0.005747 0.000532
GSOC 0.003993 0.005693 0.000410
ABCC 0.003872 0.005535 0.000610

400 (Center)
PSOC 0.000602 0.000681 0.000034
GSOC 0.000593 0.000680 0.000022
ABCC 0.000593 0.000680 0.000027

reported in this table. The objective values for the networks with the sink at
the center are better than those with the sink at (0,0). The experimental results
obtained by the three swarm intelligent algorithms, namely PSOC, GSOC and
ABCC, are illustrated in Tables 4 and 5. The performance of GSOC is better
than that of PSOC, while the ABCC algorithm achieved the best solutions for
all networks. This may be attributable to the cognitively-inspired hierarchical
search strategy in ABCC matching perfectly with the intrinsic dynamics in
the cognitive wireless sensor networks.

5.3 Comparisons to related clustering algorithms

We use the same performance measures to compare the clustering methods
for 100, 200, and 400-node networks as shown in Figures 8, 10 and 11. The
overall performance of ABCC is also compared to LEACH, LEACH-C, and
HEED in Tables 6, 7, and 8. The proposed ABCC algorithm provides the
best/optimal network configuration at each round in terms of both the number
and assignment of cluster heads. In contrast, LEACH and HEED only use a
non-optimal number of cluster heads, specifying it as a percentage of the total
number of nodes in each round. Heinzelman [10,11] validated the performance
of their methodology. LEACH-C is better than LEACH for all networks with
the exception of the 200-node network with the sink at (0,0). The performance
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Fig. 7 Rates of convergence using PSOC, GSOC and ABCC algorithms at Round 1

of the HEED algorithm is variable. HEED has good performance compared to
LEACH and LEACH-C for the 100 and 200-node networks with sinks at their
center, but achieves the worst results for the 200-node network with a sink at
(0, 0) and the 400-node network for both sink locations. The performance of
ABCC is consistently better than the other clustering methods.

With reference to Figure 8 and Table 6 it can be seen that the clustering
design solutions with center sink using HEED and ABCC are better than the
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Table 5 Comparisons of performance using PSOC, GSOC and ABCC algorithms

No. of nodes Clustering Round Round Total data
(Sink node) methods first node dies last node dies messages received

100 (0,0)
PSOC 4275 4348 428890
GSOC 4386 4431 436273
ABCC 4429 4443 439378

100 (Center)
PSOC 6607 6614 654632
GSOC 6612 6615 654860
ABCC 6612 6616 654979

200 (0,0)
PSOC 2188 3032 583947
GSOC 2463 3213 590219
ABCC 2904 3336 600930

200 (Center)
PSOC 4204 4285 812429
GSOC 4216 4302 843317
ABCC 4302 4310 857349

400 (0,0)
PSOC 406 5327 555692
GSOC 523 6029 556461
ABCC 560 6681 560474

400 (Center)
PSOC 1548 3180 1041952
GSOC 1912 3189 1089373
ABCC 2212 3204 1103129

Table 6 Comparisons of performance using clustering methods for 100-node networks

No. of nodes Clustering Round Round Total data
(Sink node) methods first node dies last node dies messages received

100 (0,0)

LEACH 3506 3900 383430
LEACH-C 4170 4271 414946
HEED 3689 4430 432562
ABCC 4429 4443 439378

100 (Center)

LEACH 3584 4180 404222
LEACH-C 4307 4332 428429
HEED 6612 6797 669816
ABCC 6612 6616 654979

other methods for the 100 node network. Figure 9 shows the differences in
active (living) nodes (black circles) and dead nodes (white circles) for each
clustering method at Rounds 4000 and 6620 for the 100 node center sink
network. The first dead node is at Round 3584. 24 nodes have expired by
Round 4000, and all nodes have died by Round 4180 using LEACH. The
first dead node was at Round 4307, and all nodes died by Round 4332 using
LEACH-C. Most of nodes remain active using HEED and ABCC with the first
dead nodes only occurring at Round 6612. There is only one dead node using
HEED and 3 dead nodes using ABCC, while all nodes are dead by Round
6620 using LEACH and LEACH-C.
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(a) 100 nodes with Sink (0, 0)
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(c) 100 nodes with Sink (0, 0)
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(d) 100 nodes with Sink (Center of nodes)
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(e) 100 nodes with Sink (0, 0)
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Fig. 8 Performance comparisons for 100-node networks

A comparison of the performance of the clustering methods for the different
sink locations considered is provided in Figure 10 and Table 7 for the 200
node network. The performance of the ABCC algorithm is generally better
than that of LEACH, LEACH-C, and HEED. The clustering design solution
obtained with ABCC when the sink is centrally located is the best for the 200
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Fig. 9 Alive node (black circle) and dead node (white circle) for the 100 nodes with Sink
(Center of nodes)
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(a) 200 nodes with Sink (0, 0)
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(b) 200 nodes with Sink (Center of nodes)
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(c) 200 nodes with Sink (0, 0)
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(f) 200 nodes with Sink (Center of nodes)

Fig. 10 Performance comparisons for 200-node networks

node network. The first node dies at Round 4,302, and the last node dies at
round 4,310. The total data messages received is 857,349. HEED is the worst
performing method when the sink is located at (0,0).

A similar pattern is observed for the 400 node networks with different sink
locations, as shown in Figure 11 and Table 8, with ABCC substantially better
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Table 7 Comparisons of performance using clustering methods for 200-node networks

No. of nodes Clustering Round Round Total data
(Sink node) methods first node dies last node dies messages received

200 (0,0)

LEACH 1030 3100 519376
LEACH-C 2119 4517 589751
HEED 855 2198 381256
ABCC 2904 3336 600930

200 (Center)

LEACH 3508 3700 734792
LEACH-C 3011 3632 718482
HEED 3285 4444 854271
ABCC 4302 4310 857349

Table 8 Comparisons of performance using clustering methods for 400-node networks

No. of nodes Clustering Round Round Total data
(Sink node) methods first node dies last node dies messages received

400 (0,0)

LEACH 46 2640 395594
LEACH-C 317 2858 554136
HEED 94 1407 302591
ABCC 560 6681 560474

400 (Center)

LEACH 888 3540 1041461
LEACH-C 1390 2763 1040614
HEED 843 2485 799151
ABCC 2212 3204 1103129

than LEACH, LEACH-C, and HEED. Again, the clustering design solution
with the Sink located at the center yields the best results.

6 Conclusions

The paper presented a novel cognitively-inspired algorithm, namely the arti-
ficial bee colony clustering (ABCC) algorithm, for the optimal configuration
of cognitive wireless sensor networks. Network configuration is specified via a
binary decision variable assigned to each node signifying it as either a clus-
ter head or sensor node. Once cluster heads are specified, sensor nodes are
assigned on a nearest cluster head basis.

We use an objective function in the ABCC algorithm to reach the mini-
mization of a weighted combination of the average dissipated energy and the
standard deviation of residual energy of the nodes in CWSNs, and seek to pro-
long network lifetime. Hence, the clustering solutions obtained using ABCC
are optimal in the sense of conserving and balancing energy consumption.
In contrast, the alternative CWSN clustering methods considered (LEACH,
LEACH-C and HEED), are sub-optimal in this regard as they randomly select
cluster heads from the available nodes. A further advantage of the ABCC al-
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(a) 400 nodes with Sink (0, 0)
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(b) 400 nodes with Sink (Center of nodes)
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(c) 400 nodes with Sink (0, 0)
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Fig. 11 Comparisons of performance measures for 400 node network

gorithm is that it has fewer tuning parameters than other heuristic algorithms
employed with CWSNs, leading to a more robust optimisation methodology.

The experimental results illustrated that the clustering designs with the
sink located at the centre of the network are better than those with the origin
as the sink. The proposed ABCC algorithm is generally better than LEACH,
LEACH-C, and HEED and is substantially better than these alternatives as
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the number of nodes in the CWSN increases. In effect the ABCC algorithm
optimally coincides with the dynamics of the cluster heads and sensor nodes
and can adapt to topological changes to any network graph over time.

As demonstrated in this paper, the cognitively-inspired ABCC algorithm
is an effective approach to optimally configuring cognitive wireless sensor net-
works. As future work, we will compare more systematically the ABCC algo-
rithm with closely related existing approaches, such as the stochastic diffusion
search algorithm, to further reveal the advantages and disadvantages of the
considered algorithms. It is also of interest to explore any subsequent theoret-
ical analysis of these cognitively-inspired algorithms.
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8. Fernández-Caballero, A., González, P., Navarro, E.: Cognitively-inspired computing for
gerontechnology. Cognitive Computation 8(2), 297–298 (2016)



Artificial Bee Colony Clustering for Cognitive Wireless Sensor Networks 25

9. He, S., Wu, Q., Saunders, J.: Group search optimizer: An optimization algorithm in-
spired by animal searching behavior. IEEE Transactions on Evolutionary Computation
13(5), 973–990 (2009)

10. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: An application-specific pro-
tocol architecture for wireless microsensor networks. IEEE Transactions on Wireless
Communications 1(4), 660–670 (2002)

11. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communica-
tion protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual
Hawaii International Conference on System Sciences, pp. 1–10. IEEE (2000)

12. Hunt, S., Meng, Q., Hinde, C., Huang, T.: A consensus-based grouping algorithm for
multi-agent cooperative task allocation with complex requirements. Cognitive Compu-
tation 6(3), 338–350 (2014)

13. Ibriq, J., Mahgoub, I.: Cluster-based routing in wireless sensor networks: issues and
challenges. In: Proceedings of 2004 Symposium on Performance Evaluation of Computer
Telecommunication Systems, pp. 759–766 (2004)

14. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm.
Applied Soft Computing 8(1), 687–697 (2008)

15. Karaboga, D., Okdem, S., Ozturk, C.: Cluster based wireless sensor network routings
using artificial bee colony algorithm. In: Proceedings of 2010 International Conference
on Autonomous and Intelligent Systems, pp. 1–5. IEEE (2010)

16. Karaboga, D., Okdem, S., Ozturk, C.: Cluster based wireless sensor network routing
using artificial bee colony algorithm. Wireless Networks 18(7), 847–860 (2012)

17. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of 1995 IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

18. Kim, S.S., Byeon, J.H., Liu, H., Abraham, A., McLoone, S.: Optimal job scheduling in
grid computing using efficient binary artificial bee colony optimization. Soft Computing
17(5), 867–882 (2013)

19. Kulkarni, R., Forster, A., Venayagamoorthy, G.: Computational intelligence in wireless
sensor networks: A survey. Communications Surveys & Tutorials, IEEE 13(1), 68–96
(2011)

20. Li, G., Niu, P., Xiao, X.: Development and investigation of efficient artificial bee colony
algorithm for numerical function optimization. Applied Soft Computing 12(1), 320–332
(2012)

21. Li, J., Pan, Q.: Solving the large-scale hybrid flow shop scheduling problem with limited
buffers by a hybrid artificial bee colony algorithm. Information Sciences 316, 487–502
(2015)

22. Liu, H., Abraham, A., Clerc, M.: Chaotic dynamic characteristics in swarm intelligence.
Applied Soft Computing 7(3), 1019–1026 (2007)

23. Liu, X.: A survey on clustering routing protocols in wireless sensor networks. Sensors
12(8), 11,113–11,153 (2012)

24. Loubière, P., Jourdan, A., Siarry, P., Chelouah, R.: A sensitivity analysis method for
driving the artificial bee colony algorithm’s search process. Applied Soft Computing
(2016)

25. Muth, F., Papaj, D.R., Leonard, A.S.: Bees remember flowers for more than one reason:
pollen mediates associative learning. Animal Behaviour 111, 93–100 (2016)

26. Okdem, S., Karaboga, D., Ozturk, C.: An application of wireless sensor network routing
based on artificial bee colony algorithm. In: Evolutionary Computation (CEC), 2011
IEEE Congress on, pp. 326–330. IEEE (2011)

27. Ozturk, C., Hancer, E., Karaboga, D.: Dynamic clustering with improved binary artifi-
cial bee colony algorithm. Applied Soft Computing 28, 69–80 (2015)

28. al Rifaie, M., Bishop, J.: Stochastic diffusion search review. Journal of Behavioural
Robotics 4(3), 155–173 (2013)

29. al Rifaie, M.M., Bishop, J.M., Caines, S.: Creativity and autonomy in swarm intelligence
systems. Cognitive Computation 4(3), 320–331 (2012)

30. Salim, A., Osamy, W., Khedr, A.M.: IBLEACH: Intra-Balanced LEACH protocol for
wireless sensor networks. Wireless Networks 20(6), 1515–1525 (2014)

31. Siddique, N., Adeli, H.: Nature inspired computing: An overview and some future di-
rections. Cognitive Computation 7(6), 706–714 (2015)



26 S. Kim, et al.

32. Song, L., Hatzinakos, D.: Cognitive networking of large scale wireless systems. Inter-
national Journal of Communication Networks and Distributed Systems 2(4), 452–475
(2009)

33. Ullah, A., Li, J., Hussain, A., Yang, E.: Towards a biologically inspired soft switching
approach for cloud resource provisioning. Cognitive Computation 8(5), 992–1005 (2016)

34. Yang, X.S., Cui, Z., Xiao, R., Gandomi, A.H., Karamanoglu, M.: Swarm Intelligence
and Bio-inspired Computation: Theory and Applications. Elsevier (2013)

35. Ye, D., Chen, Z.: A new approach to minimum attribute reduction based on discrete
artificial bee colony. Soft Computing 19(7), 1893–1903 (2015)

36. Younis, O., Fahmy, S.: Heed: a hybrid, energy-efficient, distributed clustering approach
for ad hoc sensor networks. IEEE Transactions on Mobile Computing 3(4), 366–379
(2004)

37. Younis, O., Krunz, M., Ramasubramanian, S.: Node clustering in wireless sensor net-
works: Recent developments and deployment challenges. Network, IEEE 20(3), 20–25
(2006)

38. Yurtkuran, A., Emel, E.: An adaptive artificial bee colony algorithm for global opti-
mization. Applied Mathematics and Computation 217, 1004–1023 (2015)


