698 research outputs found

    CFA optimizer: A new and powerful algorithm inspired by Franklin's and Coulomb's laws theory for solving the economic load dispatch problems

    Full text link
    Copyright © 2018 John Wiley & Sons, Ltd. This paper presents a new efficient algorithm inspired by Franklin's and Coulomb's laws theory that is referred to as CFA algorithm, for finding the global solutions of optimal economic load dispatch problems in power systems. CFA is based on the impact of electrically charged particles on each other due to electrical attraction and repulsion forces. The effectiveness of the CFA in different terms is tested on basic benchmark problems. Then, the quality of the CFA to achieve accurate results in different aspects is examined and proven on economic load dispatch problems including 4 different size cases, 6, 10, 15, and 110-unit test systems. Finally, the results are compared with other inspired algorithms as well as results reported in the literature. The simulation results provide evidence for the well-organized and efficient performance of the CFA algorithm in solving great diversity of nonlinear optimization problems

    A hybrid Jaya algorithm for reliability–redundancy allocation problems

    Full text link
    © 2017 Informa UK Limited, trading as Taylor & Francis Group. This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching–learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability–redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series–parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30–100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results

    Genetic Algorithm and Simulated Annealing for Redundancy Allocation Problem with Cold-standby Strategy

    Get PDF
    This paper presents a new mathematical model for a redundancyallocation problem (RAP) withcold-standby redundancy strategy and multiple component choices.The applications of the proposed model arecommon in electrical power, transformation,telecommunication systems,etc.Manystudies have concentrated onone type of time-to-failure, butin thispaper, two components of time-to-failures which follow hypo-exponential and exponential distributionare investigated. The goal of the RAP is to select available components and redundancy level for each subsystem for maximizing system reliability under cost and weight constraints.Sincethe proposed model belongs to NP-hard class, we proposed two metaheuristic algorithms; namely, simulated annealing and genetic algorithm to solve it. In addition, a numerical example is presented to demonstrate the application of the proposed solution methodology.</p

    Optimizing the selection of architecture for component-based system

    Get PDF
    Redundant components are commonly used for solving Redundancy Allocation Problems (RAP) and improving the reliability of complex systems. However, the use of such a strategy to minimize development costs while maintaining high quality attributes for building software architecture is a research challenge. The selection for an optimal architecture to meet this challenge is an inherently complex task due to the high volume of possible architectural candidates and the fundamental conflict between quality attributes. Current software evaluation methods focus on predicting the quality attributes and selecting Commercial-Off-the Shelf (COTS) components for COTS-Based applications rather than utilizing additional architectural evaluation methods that could increase the opportunity for obtaining a cost-effective solution for RAP. In this thesis, an architecture-based approach called Cost-Discount and Build-or-Buy for RAP (CD/BoB-RAP) is introduced to support the decision making for selecting the architecture with optimal components and level of redundancy that satisfies the technical and financial preferences. This approach consists of an optimization model that includes two architectural evaluation methods (CD-RAP and BoB-RAP) and applies three variants of Particle Swarm Optimization (PSO) algorithms. Statistical results showed a 74% reduction on the development cost using CD-RAP on an embedded system case study. Moreover, the application of a maximum possible improvement on the algorithms showed that Penalty Guided PSO (PG-PSO) had enhanced the quality of obtained solutions by 70% to 84% in comparison to other algorithms. The results of the CD-RAP and BoB-RAP were superior when compared to the results obtained from similar approaches. The overall results of this research have proven the potential benefits of the CD/BoB-RAP approach for software architecture evaluation, particularly, in selecting software architecture for minimizing the development cost maintaining a highly reliable system

    A novel discrete bat algorithm for heterogeneous redundancy allocation of multi-state systems subject to probabilistic common-cause failure

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.This paper focuses on a heterogeneous redundancy allocation problem (RAP) for multi-state series-parallel systems subject to probabilistic common-cause failure and proposes a novel discrete bat algorithm to solve it. Although abundant research studies have been published for solving multi-state RAPs, few of them have studied probabilistic common cause failure, which motivates this paper. Due to the insufficient data of components, an interval-valued universal generating function is utilized to evaluate the availability of components and the whole system. The challenge of solving this kind of RAPs lies in not only the reliability estimation, but also the solution method. This paper presents a novel discrete bat algorithm (BA) for effectively dealing with the proposed RAP and alleviating the premature convergence of BA. Two main features of the adaptation are Hamming distance-based bat movement (HDBM) and Q learning-based local search (QLLS). HDBM transfers the Hamming distance between the current bat and the best bat in the swarm to the movement rate. Then, QLLS utilizes Q-learning to adjust the local search strategies dynamically during the iterations. The computational results from extensive experiments demonstrate that the proposed algorithm is powerful, which is more efficient than other state-of-the-arts on this sort of problems

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    A Requirements-Based Partition Testing Framework Using Particle Swarm Optimization Technique

    Get PDF
    Modern society is increasingly dependent on the quality of software systems. Software failure can cause severe consequences, including loss of human life. There are various ways of fault prevention and detection that can be deployed in different stages of software development. Testing is the most widely used approach for ensuring software quality. Requirements-Based Testing and Partition Testing are two of the widely used approaches for testing software systems. Although both of these techniques are mature and are addressed widely in the literature and despite the general agreement on both of these key techniques of functional testing, a combination of them lacks a systematic approach. In this thesis, we propose a framework along with a procedural process for testing a system using Requirements-Based Partition Testing (RBPT). This framework helps testers to start from the requirements documents and follow a straightforward step by step process to generate the required test cases without loosing any required data. Although many steps of the process are manual, the framework can be used as a foundation for automating the whole test case generation process. Another issue in testing a software product is the test case selection problem. Choosing appropriate test cases is an essential part of software testing that can lead to significant improvements in efficiency, as well as reduced costs of combinatorial testing. Unfortunately, the problem of finding minimum size test sets is NP-complete in general. Therefore, artificial intelligence-based search algorithms have been widely used for generating near-optimal solutions. In this thesis, we also propose a novel technique for test case generation using Particle Swarm Optimization (PSO), an effective optimization tool which has emerged in the last decade. Empirical studies show that in some domains particle swarm optimization is equally well-suited or even better than some other techniques. At the same time, a particle swarm algorithm is much simpler, easier to implement, and has just a few parameters that the user needs to adjust. These properties make PSO an ideal technique for test case generation. In order to have a fair comparison of our newly proposed algorithm against existing techniques, we have designed and implemented a framework for automatic evaluation of these methods. Through experiments using our evaluation framework, we illustrate how this new test case generation technique can outperform other existing methodologies

    Automated system design optimisation

    Get PDF
    The focus of this thesis is to develop a generic approach for solving reliability design optimisation problems which could be applicable to a diverse range of real engineering systems. The basic problem in optimal reliability design of a system is to explore the means of improving the system reliability within the bounds of available resources. Improving the reliability reduces the likelihood of system failure. The consequences of system failure can vary from minor inconvenience and cost to significant economic loss and personal injury. However any improvements made to the system are subject to the availability of resources, which are very often limited. The objective of the design optimisation problem analysed in this thesis is to minimise system unavailability (or unreliability if an unrepairable system is analysed) through the manipulation and assessment of all possible design alterations available, which are subject to constraints on resources and/or system performance requirements. This thesis describes a genetic algorithm-based technique developed to solve the optimisation problem. Since an explicit mathematical form can not be formulated to evaluate the objective function, the system unavailability (unreliability) is assessed using the fault tree method. Central to the optimisation algorithm are newly developed fault tree modification patterns (FTMPs). They are employed here to construct one fault tree representing all possible designs investigated, from the initial system design specified along with the design choices. This is then altered to represent the individual designs in question during the optimisation process. Failure probabilities for specified design cases are quantified by employing Binary Decision Diagrams (BDDs). A computer programme has been developed to automate the application of the optimisation approach to standard engineering safety systems. Its practicality is demonstrated through the consideration of two systems of increasing complexity; first a High Integrity Protection System (HIPS) followed by a Fire Water Deluge System (FWDS). The technique is then further-developed and applied to solve problems of multi-phased mission systems. Two systems are considered; first an unmanned aerial vehicle (UAV) and secondly a military vessel. The final part of this thesis focuses on continuing the development process by adapting the method to solve design optimisation problems for multiple multi-phased mission systems. Its application is demonstrated by considering an advanced UAV system involving multiple multi-phased flight missions. The applications discussed prove that the technique progressively developed in this thesis enables design optimisation problems to be solved for systems with different levels of complexity. A key contribution of this thesis is the development of a novel generic optimisation technique, embedding newly developed FTMPs, which is capable of optimising the reliability design for potentially any engineering system. Another key and novel contribution of this work is the capability to analyse and provide optimal design solutions for multiple multi-phase mission systems. Keywords: optimisation, system design, multi-phased mission system, reliability, genetic algorithm, fault tree, binary decision diagra
    corecore