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Abstract: This paper focuses on a heterogeneous redundancy allocation problem (RAP) for multi-state series-parallel systems 

subject to probabilistic common-cause failure and proposes a novel discrete bat algorithm to solve it. Although abundant 

research studies have been published for solving multi-state RAPs, few of them have studied probabilistic common cause 

failure, which motivates this paper. Due to the insufficient data of components, an interval-valued universal generating 

function is utilized to evaluate the availability of components and the whole system. The challenge of solving this kind of 

RAPs lies in not only the reliability estimation, but also the solution method. This paper presents a novel discrete bat algorithm 

(BA) for effectively dealing with the proposed RAP and alleviating the premature convergence of BA. Two main features of 

the adaptation are Hamming distance-based bat movement (HDBM) and Q learning-based local search (QLLS). HDBM 

transfers the Hamming distance between the current bat and the best bat in the swarm to the movement rate. Then, QLLS 

utilizes Q-learning to adjust the local search strategies dynamically during the iterations. The computational results from 

extensive experiments demonstrate that the proposed algorithm is powerful, which is more efficient than other state-of-the-

arts on this sort of problems. 

Keywords: heterogeneous redundancy allocation problem; multi-state system; probabilistic common-cause failure; bat 

algorithm; Hamming distance; Q learning; local search 
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1. Introduction 

The redundancy allocation problem (RAP) as a combinatorial optimization problem has captured wide attention in the 

field of reliability engineering for different systems and under various assumptions [1]. According to the state of components 

and subsystems, RAPs can be further classified into two categories. The former is a binary-state RAP which only considers 

the perfectly functioning state and the completely failed state, whereas the latter, i.e., multi-state RAP, experiences more than 

two extreme states. It is obvious that the multi-state system (MSS) is more in accordance with the real situation than the 

binary-state system (BSS). Many systems can function even under states which are not functioning perfectly in many real 

world applications, i.e., communication networks, production, manufacturing, power generation, transportation of oil and gas, 

and so on [2, 3].  

Typically, the RAP is formulated for the optimal structure of multi-state series-parallel systems (MSPSs) with the goal 

of minimizing the whole cost of the system whereas maintaining its availability above a predetermined threshold [4]. The 

series-parallel system has been considered mainly because of its universality in the real world. Due to the limitation of 

computational complexity, many early efforts have been devoted into the solution of binary-state RAPs [5-7]. However, the 

research of multi-state RAPs and their solution methods have become a trend in recent years since they are more practical. 

For example, Du and Li investigated designed inter-subsystem local search strategies in memetic algorithm for solving multi-

state RAPs [4]. Zaretalab considered this sort of problems with reliable supplier selection [8]. Sun et al. took epistemic 

uncertainty into account [9]. Moreover, the solved problem is two-stage and multi-objective. Wang and Li combined particle 

swarm optimization and local search to solve it [10]. 

Although abundant research works have been presented for solving multi-state RAPs, very few of them have focused on 

common cause failure (CCF). Levitin firstly incorporated CCF into nonrepairable multi-state system analysis [11] by an 

implicit 2-stage approach. To be specific, the reliability function can be obtained numerically via this approach. CCFs are 

failures of multiple components due to a shared root cause or a common cause (CC) [12]. CCFs can be caused by external 

shocks or internal failures. Generally, it can be divided into two groups: deterministic CCF (DCCF) and probabilistic CCF 
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(PCCF). The main difference between them lies in the effect from a CCF on its common cause group (CCG). The former 

DCCF results in guaranteed failures of all components within the CCG while the latter PCCF results in failures of different 

components with different occurrence probability within the CCG [13]. A multi-state RAP considering DCCF was firstly 

introduced by Li et al. in [14] where the universal generating function (UGF) was used to evaluate the system availability and 

a genetic algorithm was utilized for optimizing the system structure. 

On the other hand, the RAP for MSSs subject to PCCF has not been studied to the best of our knowledge. Compared 

with DCCF, PCCF is more practical and challenging. For calculating the availability in BSSs considering PCCF, there are 

several well-known methods such as the binomial failure rate model [15], explicit method [12, 16], and implicit method [12]. 

In the field of MSSs subject to PCCF, Huang et al. firstly proposed a reliability calculation method with two characteristics: 

fatal and non-fatal [17]. In most cases, however, the component data are insufficient. Invoked by [17] and to alleviate this 

problem, a new availability evaluation method is presented in this paper for MSSs considering PCCF. 

Moreover, due to the huge and complex searching space, evolutionary algorithms (EAs) have captured much attention 

for solving this kind of problems. Bat algorithm (BA) which is a simple but efficient EA has been widely applied for solving 

many real-world optimization problems. It was firstly proposed by Yang inspired by the echolocation behavior of micro-bats 

[18]. In recent years, several published papers have verified the effectiveness of BAs for solving RAPs. Talafuse and Pohl 

firstly used a discrete BA to tackle the RAP[19]. Whereafter, Xu and Pi presented a discrete hybrid BA for the generalized 

RAP [20] where subsystems are connected with each other neither in series nor in parallel, but in some logical relationships 

[21]. Given by the wide application of BAs in RAPs, this paper proposes a novel version of BA for dealing with the new 

proposed RAP. According to decision values in RAPs, discretization is the most important concern among all improvements 

of the version. As reported in [22], premature convergence may occur under certain conditions. To solve this problem, the bat 

movement and local search should be modified for a better balance between exploration and exploitation. 

To further advance the state-of-the-art of solving RAPs, this paper presents a new RAP and a novel BA version to solve 

it. The availability of MSSs subject to PCCF is evaluated. Considering the unknown or interval-valued state performance 
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level, this paper makes use of the interval-valued UGF (IUGF) for the formulation of each component. In the solution method, 

Hamming distance-based bat movement and Q learning-based local search are proposed with the primary aim of discretization. 

To be specific, the first modification updates the movement equation with less parameters. The second one adjusts the local 

search strategies self-adaptively during each iteration. The proposed algorithm is tested on three typical systems under 

different predetermined thresholds with or without PCCF and compared with several well-known algorithms. Extensive 

experimental results indicate the new version outperforms the others on the created scenarios. 

Besides, this paper controls the discrete local search strategies in BA with Q learning (QL). In recent years, the research 

on incorporating QL into EAs to control the operation has become a hot spot gradually. Rakshit et al. introduced QL into a 

memetic algorithm for selecting scaling factors of any variants of DE [23]. Samma et al. embedded QL into particle swarm 

optimization algorithm to control five possible operations [24]. Subsequently, they proposed a novel simulated annealing 

algorithm with QL with the aim of choosing its parameters adaptively [25]. A QL-based particle swarm optimization algorithm 

was developed to adjust the neighborhood structures in [26]. The experimental results of the above literatures all verified the 

effectiveness of embedding QL into EAs to control executions. It should be highlighted each individual has its own Q-table 

in the above literatures. Maintaining all Q-tables is time-consuming and takes up much memory. To overcome this limitation, 

a shared Q-table is used for the swarm which makes the algorithm simpler and more convenient. 

The rest of the paper are arranged as follows. The related works are detailed in Section 2. Subsequently, the formulation 

of the RAP in MSPSs considering PCCF is shown in Section 3. In the following section, a novel discrete bat algorithm is 

proposed to solve the problem with Hamming distance-based bat movement and Q learning based-local search. Experimental 

results and analysis are supplied in Section 5. This paper is ended with conclusion and forecast in Section 6. 

2. Related works 

This section introduces the general formulation of RAP and how to calculate the system availability via IUGF. BA is as 

a solution method due to its successful application in RAPs. Since this paper makes use of QL to adjust the local search 

strategies, its description is also detailed in this section. 
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2.1 Formulation of the RAP 

The structure of a typical multi-state series-parallel system with heterogeneous redundancy considering probabilistic 

common cause is shown in Fig. 1. For the system consists of Ns subsystems, assume there are Vi component levels available 

on the market for subsystem i, where i = 1, 2, …, Ns. Generally, two different cases of the series parallel allocation problem can 

be considered [27]. In the first case, the components are binary-state but different kinds of components have different performance 

levels and probabilities. Thus, the system will have a range of different performance states and corresponding state probabilities 

depending on those of consisted components. In the second one, the components and the system are all multi-state, which makes 

the problem more challenging. In this study, the first case is considered for simplicity. The component of version j in subsystem 

i has two possible states: perfect function and complete failure, where j = 1, 2, …, Vi. Each component is characterized by 

cost Cij, performance level {0, gij} and its corresponding state probability {1- rij, rij}.  

For subsystem i, its structure is denoted by the number of components of each version, that is, Xi = [Xi1, Xi2, …, XiVi]; and 

the structure of the entire system can be represented as X = [X1, X2, …, XNS]. The cost of the entire system can be denoted as: 

 
1 1

iVNs

ij ij
i j

Cs X C
= =

= ∑∑                                        (1) 

In this study, the heterogeneous RAP for MSPSs with PCCF, RAP*MSPS*PCCF for short, is considered. Formulation 

of this problem which aims at minimizing the system cost subject to several constraints can be stated as the following pure 

integer nonlinear programming problem (INLP). 

   
0. .

Min Cs
s t As A≥

                                       (2) 

where As is the total availability of the system and A0 represents the required availability of the whole system. 
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Fig. 1. Structure of a typical MSPS with heterogeneous redundancy considering PCCF 

2.2 Calculating system availability by IUGF 

Due to the insufficient data, the IUGF method is implemented in this paper to calculate the system availability. It was 

originally proposed by Li et al. for the cases where either the membership function of fuzzy values is unknown or the interval-

valued state performance level and its corresponding probability are known [28, 29].  

This method is briefly introduced as follows. Consider a variable Y that takes on a finite number S of possible values. 

Assume the interval-valued state performance level and its corresponding probability be [y] and [p] respectively, where [y] = 

([y1], [y2], …, [yS]), [p] = ([p1], [p2], …, [pS]). Then, the u-function can be defined as: 

 ( ) [ ] [ ]

1

s
S

y
s

s
U z p z

=

= ∑                       (3) 

Similar with the operator of UGF, a general operator of IUGF can be expressed as:  

 ( ) ( )( ) ( )1 2
1 2

1 1

1 2

[ ],[ ]
1 2

1 1
, [ ] [ ] s s

S S
f y y

s s
s s

U z U z p p z
= =

Ω = ⋅∑∑                      (4) 

Assume the x  and x  are lower and upper bound of x, respectively. More details about operators in interval form can 

be referred to [30]. When the system performance level is equal to the sum of that of components, the π  operator is denoted 

as: 

 ( ) ( )( )
1 2

1 2 1 2

1 2 1 2

1 2

,

1 2
1 1

, , s s s s
S S y y y y

s s s s
s s

U z U z p p p p zπ
 + +  

= =

 = ⋅ ⋅ ∑∑                        (5) 

When the system performance level is equal to the minimum of that of components, the σ  operator is denoted as: 
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 ( ) ( )( ) ( ) ( )1 2
1 2 1 2

1 2 1 2

1 2

min , ,min ,

1 2
1 1

, , s s s s
S S y y y y

s s s s
s s

U z U z p p p p zσ
 
  

= =

 = ⋅ ⋅ ∑∑                        (6) 

For the MSPS, the total capacity is the sum of the capacities of components in the parallel structure, while in the series 

structure, the performance is the minimum of that. Assume the specific demand level ,w w w =   , the interval-valued 

availability of the system is given by: 

 [ ]
[ ] ( )
( )1

max ,0

max ,

S
s s

s s s s

p y w
A

y y w w y w=

⋅ −
=

− + − −
∑                                 (7) 

2.3 Bat algorithm 

Bat algorithm was developed to use the key idea of frequency tuning based on the echolocation of microbats [18]. In the 

standard bat algorithm, the echolocation characteristics of microbats can be idealized as the following three rules: 

(1) All bats use echolocation to sense distance, and they also ‘know’ the difference between food/prey and background 

barriers in some magical way. 

(2) Bat i flies randomly with velocity Vi at position Xi with a fixed frequency fmin, varying wavelength λ and loudness 

L0 to search for prey. They can automatically adjust the wavelength (or frequency) of their emitted pulses and adjust 

the rate of pulse emission rp ∈[0,1], depending on the proximity of their target. 

(3) Although the loudness can vary in many ways, we assume that the loudness varies from a large (positive) L0 to a 

minimum constant value Lmin. 

For each bat (say i), the new position Xi (t), velocity Vi (t), frequency fi (t) at iteration t can be updated as follows. 

 min max min( )if f f f rand= + − ⋅                            (8) 

 [ ]*( ) ( ) ( )i i i iV t V t X t X f+ = + − ⋅1                            (9) 

 ( ) ( ) ( )i i iX t X t V t+ = + +1 1                            (10) 

where rand∈[0,1] is a random vector drawn from a uniform distribution, two parameters fmin and fmax are the frequency 

domain, *X  is the current best solution. In order to improve the local search capability, a new solution for each bat is 

generated locally using a random walk: 

7 
 



 ( )new oldX X L tε= + ⋅                                        (11) 

where Xold is a high quality solution, ε ∈[-1,1] is a scaling factor which is a random number, while L(t) = < Li (t)> is the 

average loudness of all the bats at time t. Bats tend to decrease the loudness and increase the rate of emitted ultrasonic sound 

when they chase prey. The pulse rate rpi (t) and loudness Li (t) are updated as follows. 

 ( ) ( )i iL t L tα+ = ⋅1                               (12) 

 [ ]( ) ( ) exp( )i irp t rp tγ+ = ⋅ − − ⋅1 0 1                      (13) 

where α and γ are constants, 0<α<1, γ>0. In fact, α is similar to the cooling factor of a cooling schedule in the simulated 

annealing. Eventually, Li will equal zero, while the final value of rpi is rpi(0). The pseudo-code of the BA is given in Algorithm 

1: 

Algorithm 1: BA 

1. Objective function F(X), X=(X1, …, XD)T 

2. Initialize the bat population Xi and Vi (i = 1, 2, …, N), and related parameters 

3. Evaluate fitness of the bat population 

4. while (t < Max number of iterations) 

5.  Update frequency, velocity, and position using (8)-(10), respectively 

6.  if rand > rpi 

7.   Select a solution among the best solutions 

8.   Generate a local solution around the selected best solution using (11) 

9.  end if 

10.  Generate a new solution by flying randomly 

11.  if (rand < Li & F(Xi(t+1)) < F( *X )) 

12.   Accept the new solution 

13.   Reduce loudness and pulse emission using (12) and (13), respectively 

14.  end if 

15. Rank the bats and find the current best *X  

16. end while 

17. Postprocess results and visualization 
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2.4 Q learning 

Q learning is a model-free reinforcement learning algorithm for agents to learn how to act optimally in controlled 

Markovian domains [31]. In QL, agent usually performs an action through state transition in the environment and receives a 

reward or penalty by executing the action to reach the goal state [32], as illustrated in Fig. 2. 

State s
Reward r
State s

Reward r

Agent Environment

Action a

 

Fig. 2. Reinforcement learning 

As detailed in Fig. 2, QL includes five basic components, i.e., agent, environment, action, state, and reward. Considering 

that S is a set of possible states of the learning agent in a given environment, and A is a set of possible actions that agent can 

choose and execute, these components of agent i at time t can be represented as (14). 

 , , .i i i
t t ts S a A r S A∈ ∈ ∈ × →                           (14) 

Hence, the total cumulative reward, referred to as Q-value, can be updated as (15). 

 1 1 1( , ) (1 ) ( , ) max ( , ) ,t t t t t t t tlr
Q s a lr Q s a lr r df Q s a+ + +

 = − + +                     (15) 

where lr and df are learning rate and discount factor, respectively, and both within [0,1]. As can be seen from (15), the learning 

rate is a balance between exploration and exploitation. That is, a low value of the learning rate makes the algorithm learn 

more about the existing information, while the larger the learning rate lr, the less the retention of the previous Q-value. Hence, 

lr normally is set to a high value at the beginning of the search process, and is decreased during the iterations [23, 24].  

 ( ) 1 0.9 ,
max

tlr t
iter

 
= − × 

 
                       (16) 

where itermax is the maximum number of iterations. Besides, the discount factor is a tradeoff between previous experience and 

immediate reward. The greater the value of df, the algorithm attaches more importance to previous information; the smaller, 

the algorithm is more concerned about the reward. Usually, it is set to 0.8, as also suggested in [23, 24]. According to the 

above definitions, the pseudo code of QL is described in Algorithm 2. 
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Algorithm 2. The pseudo code of QL 

1. Initialize Q(s, a) = zero in Q-table; 

2. Randomly select an initial state s; 

3. Repeat 

4. Select the best action at for st from the Q-table; 

Execute action at and get a new solution; 

Get the maximum Q value for the next state st+1; 

Obtain the immediate reward rt; 

Update Q-table entry using (15); 

st = st+1; 
 

5. 

6. 

7. 

8. 

9. 

10. Until the Max_FEs is met. 

3 Problem formulation 

3.1 IUGF of the component considering PCCF 

In previous studies, independent failure or common cause failure was mostly assumed for the reliability analysis of multi-

state systems. Huang et al. firstly proposed a multi-state availability calculation method considering PCCFs with two 

characteristics: fatal and non-fatal [17]. If a component failure event is caused by a fatal PCCF, then the component completely 

fails with an occurrence probability; if it is caused by a non-fatal PCCF, then the component partially fails with an occurrence 

probability. In their assumption, the performance level of the component caused by a non-fatal PCCF is a precise value. In 

most cases, however, the component data are insufficient. To deal with this issue, an interval value is utilized to represent the 

performance level caused by a non-fatal PCCF and a novel availability calculation method is detailed in this paper.  

In the PCCF analysis [33], suppose a system is subjected to PCCF from Nc external and s-independent CCs. The 

occurrence probability of CCc is denoted as pc, where c = 1, 2, …, Nc. Each CCc causes a component affected by it, for 

example, component A fails with probability qcA, where qcA = Pr(Component A fails | CCc occurs).  

The IUGF of each component is presented as: 

 
( ) ( ) ( ) ( )

( ) ( )

0, 0

0, 0

1 1 1

1 1

ijij ij

ijij

gg g
ij c ij c cij ij c cij ij ij

gg
c cij ij c cij ij ij

U z p r z p q r z p q r z r z

p q r z p q r z r z

  

  

= − ⋅ + ⋅ − ⋅ + ⋅ ⋅ + −

= − ⋅ + ⋅ ⋅ + −
                (17) 
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In (17), the first term is the case that the CC does not occur or the component is not affected even though the CC occurs. 

In this case, the component runs perfectly. The second term means a non-fatal PCCF occurs and the component partially fails 

with the performance level x. Two boundary situations are considered: If x = 0, the component completely fails caused by a 

fatal PCCF; if x = gij, the component fails independently without considering CCF. This study utilizes an interval-valued 

performance level [0, gij] because the failure part is unknown. In the third one, the component fails locally and the performance 

level is zero. 

3.2 An illustrative example 

Fig. 3 illustrates a series-parallel system consisting of two subsystems subjected to two external and s-independent CCs: 

CC1 and CC2. The occurrence of CC1 affects component A and B, the occurrence of CC2 affects component C and E. Thus, 

component A and B form a probabilistic common-cause group PCCG1, component C and E form another group PCCG2, 

component D fails independently.  

 

Fig. 3. Structure of a series-parallel system subjected to CC1 and CC2 

The following parameter values are recommended in the subsequent analysis, which were also used in [33]. 

 The component is binary-state: perfect function with performance level 100% and complete failure with performance 

level 0%. For simplicity, all component local failure probability is set as 0.1, i.e., rA = rB = rC = rD = rE = 0.9.  

 The occurrence probability of common causes is set as: p1=0.01, p2=0.02. 

 Given that the common cause occurs, the conditional probability that each component fails is shown as: q1A = 0.3, q1B = 

0.6, q2C = 0.6, q2E = 1. 
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According to (17), the IUGF of each component can be calculated as: 

1 [0,1] 0
A

1 [0,1] 0
B

1 [0,1] 0
C

1 0
D

1 [0,1] 0
E

( )=0.8973 0.0027 0.1000 ;
( )=0.8946 0.0054 0.1000 ;
( )=0.8892 0.0108 0.1000 ;

( )=0.9000 0.1000 ;
( )=0.8820 0.0180 0.1000 ;

U z z z z
U z z z z
U z z z z

U z z z
U z z z z

+ +

+ +

+ +

+

+ +

                             (18) 

Then, the IUGF of each subsystem using π  operator is shown as: 

 
( )

( )

3 [2,3] [1,3] 2
1 A

[1,2] 1 [0,1] 0

2 [1,2] 1 [0 1]
2 D

( )= , , 0.7138 0.0151 0.0001 0.2396

                                     0.0034 0.0268 0.0002 0.0010 ;
( )= , 0.7938 0.0162 0.1782 0.0018 0.

B C

E

U z U U U z z z z

z z z z
U z U U z z z z

π

π

= + + +

+ + + +

= + + + +， 00100 ;z

              (19) 

Subsequently, the IUGF of the entire MSPS using σ  operator is computed as: 

( ) 2 [1,2] 1 [0,1] 0
1 2( )= , 0.7688 0.0185 0.1997 0.0020 0.0110 ;SU z U U z z z z zσ = + + + +               (20) 

Depending on the availability calculation equation (7) in IUGF analysis, the system availability As = 0.9872 is equal to 

for a given demand level 90%. 

4 Solution method 

Before getting into the details of the solution method, it should be highlighted that the original BA was developed 

essentially for addressing continuous optimization problems. Thus, some modifications are needed to enable it for addressing 

a discrete problem as our proposed RAP*MSPS*PCCF. 

4.1 Hamming distance-based bat movement (HDBM) 

First of all, analyzing the movement functions (8)-(10), it can be deduced that the position of a bat i at iteration t relies 

on its position Xi in the previous iteration and velocity Vi in the current iteration. As can be easily found, the update of velocity 

cannot be directly used for solving the presented discrete problem. Besides that, the factor fi is randomly generated within the 

specified range for continuous optimization problems. Hence, both (8) for frequency and (9) for velocity have not been taken 

into account in the proposed algorithm.  

Instead, Hamming distance which is the number of different elements in the sequence [34] is utilized to describe the 
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distance between bat i and the best bat *X  in the swarm according to (21). 

*HammingDistance( ,  )iHD X X=                                   (21) 

It is similar to the concept of the original BA but is a discrete number. Then, a transfer function [35] is introduced to map 

the Hamming distance into a probability value in [0, 1]. The results of our previous study [20] indicated that BA achieves the 

best performance via (22) compared with other 7 transfer functions.  

2 2( ) arctan( )T HD HD
π π

=                                    (22) 

The greater the Hamming distance, the greater the transfer probability. In the early stage of the algorithm, if the current 

bat is far away from the best bat, it should be adjusted to the direction of *X  to advance the convergence ability of the 

algorithm. As the iterations progress, diversity is more important for the algorithm to explore new search spaces. Hence, the 

current bat should be adjusted to improve the diversity capability when it is close to *X . In this paper, differential operator 

is the way to adjust the current bat at different stages of the algorithm in the following way. 

1 2

max

*

                                                                      // At the early stage of the algorithm
( ) ( ( ) ( )) ( )

       ( 1) // Improve
( ) otherwise
j r j r j

ij
ij

tif rand t
X t X t X t rand T HD

X t
X t

>

+ − ≤+ = 


1 2

 the convergence rate

                                                                                        // At the later stage of the algorithm
( ) ( ( ) ( )) > (

       ( 1) ij r j r j
ij

else
X t X t X t rand T HD

X t
+ −

+ =
)
 // Maintain the population diversity

( ) otherwiseijX t
end





          (23) 

where rand is a random value from a uniform distribution, 
1r

X  and 
2r

X  are solutions randomly selected from the whole 

population, r1≠r2. The whole discrete procedure is illustrated in Fig. 4. In this example, the Hamming distance is 5 according 

to (21), and the transfer probability is calculated 0.92 according to (22). The differential operator is used to adjust the position 

of bat i with a great transfer probability. The aim of HDBM at this stage is to adjust the position when the bat is far away from 

the best bat in the swarm to accelerate the population convergence. After this procedure, the Hamming distance is improved 

to 4. 
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iX  3 0 2 5 4 4 4 
*X  4 0 1 0 0 5 4 
1 2r rX X−  -1 +0 -1 -4 -1 +1 +3 

rand 0.25 0.89 0.93 0.34 0.66 0.82 0.97 
    

 

   
    t = t+1 
       

iX  2 0 2 1 3 5 4 
 

 

Fig. 4. The whole discrete procedure 

4.2 Q learning based-local search (QLLS) 

In this paper, LS is integrated with QL to select the optimal local search strategy self-adaptively according to the reward 

or penalty from the search region. Let the swarm act as an agent, and the environment be the search space. One thing to notice: 

there is only one Q-table and all bats share it. It is different from existing studies [26, 36-38] embedding QL into optimization 

algorithm, where each individual has its own Q-table independently. By contrast, our proposed method is simpler and more 

convenient with less memory and time consumption. 

4.2.1 State 

Before describing the state in QLLS, the following concepts are introduced. Evolution progress is divided into three 

states in this paper: evolution, struggle, and stagnation. The definitions are given below for minimization problems.  

 Evolution: The best solution is improved, i.e., F( *X (t+1)) < F( *X (t)). The algorithm converges in this state.  

 Struggle: The best solution is not improved within a certain number of iterations i.e., F( *X (t+1)) = F( *X (t)) for 

count iterations (count ≤ tr×tmax), where count is the number of iterations that the best solution has not been changed 

and tr represents the probability of the threshold in the whole iterations. In the struggle progress, the algorithm has 

more chance to improve the solution. 

 Stagnation: The best solution is not improved after a certain number of iterations, i.e., F( *X (t+1)) = F( *X (t)) for 

count iterations (count ≥ tr×tmax). In the stagnation progress, the algorithm is trapped in the local optimum with a 

high probability. 
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Due to the ability of describing the progress of the current iteration, evolution, struggle, and stagnation are regarded as 

the states of the swarm. 

4.2.2 Action 

Three main issues should be concerned for the action: what is the action in QLLS, who is been performed action, and 

how to perform action. 

The classic BA itself contains a local search mechanism to prevent the swarm from being trapped into local optima. 

However, the original LS mechanism in BA cannot be directly applied for the discrete optimization problems. For this reason, 

searching neighborhoods around the best solution and the current solution is performed with the aim of preparing it for facing 

the designed RAP*MSPS*PCCF. Reducing the search into a properly-designed neighborhood space efficiently explores the 

multimodal landscape with less computational consumption [4]. In [10], five LS neighborhood strategies were proposed by 

Wang and Li, including "+1" strategy, "-1" strategy, "-1, +1" strategy, "-1, +β" strategy, and "-all, +β" strategy. From a pre-

experiment analysis, it can be known that different strategies and their combinations have different impacts on the performance 

of search for different problems. In other words, it is uncertain which strategy of combination is the best to be selected for 

different problems. To tackle this problem, performing five different LS strategies forms the set of action. 

In the original LS mechanism, the high quality solution Xold in (11) is ambiguity in definition. For representing it, the 

literature [39] adopted the best solution *X  in the swarm while in [22], the bat i in the current iteration Xi(t) was used to 

update the local movement. According to some preliminary experiments, we found that (1) local search around the best 

solution accelerates the population convergence but it is easy to get the algorithm into local optimization; (2) local search 

around the current bat enhances the population diversity and improves the global searching capability of the algorithm. 

Therefore, the best solution *X  and the current solution Xi are all objects of local search in this paper. 

Besides, it should be noted that the proposed algorithm performs local search on the best solution or the current solution 

depending on different states. In the first two states (evolution and struggle), the algorithm should perform local search on the 

best solution to explore the global search region with the goal of accelerating the convergence and improving the global search 
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ability. When the best solution gets into local optimum corresponding to the third state, local search around the best solution 

does not help the swarm out of dilemma. In this case (stagnation), local search around the current solution explores more 

unknown solutions, which can enhance the diversity and improve the capability of local search. 

4.2.3 Reward/penalty and epsilon-greedy method 

Reward or penalty relies on whether the best solution is improved, as (24). 

* *1 if ( ( 1)) ( ( ))
( 1)

-1 otherwise
F X t F X t

r t
+ + <

+ = 


                                (24) 

Besides introducing the five basic components in QL, an epsilon-greedy method is also used to choose the action from 

the shared Q-table for the balance between exploitation and exploration. 

=0.7-0.05tε                                         (25) 

max ( ,:) if 1

select randomly from five LS strategies otherwise
ta

t

Q s rand
a

ε≤ −= 


                      (26) 

Assume the current swarm is in the stagnation state, a simple example is presented to clarify QLLS, as follows.  

Step 1. Obtain the state for the swarm: st = Stagnation. 

Step 2. Select the optimal action for the current state from the shared Q-table such as at = +1. 

Step 3. According to the current state, obtain the object of local search: Xi(t). 

Step 4. Perform the selected local search strategy around the object: adding one component into the current bat Xi(t). 

This added component can be any of the versions available for the subsystem. 

Step 5. Get the reward/penalty from the whole swarm, for example, rt = +1.  

Step 6. Obtain the next state for the swarm such as st+1 = Evolution.  

Step 7. Update Q-table entry Q(Stagnation, at).  

Step 8. Update the current state: st = st+1.  

4.3 Complete framework of the proposed algorithm  

A novel discrete bat algorithm, NDBA for short, is proposed incorporating with Hamming distance-based bat movement 
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(HDBM) and Q learning-based local search (QLLS) in this paper. Completed procedure of NDBA is described in Algorithm 

3. Discretization is the main concern for both the modification of bat movement and that of local search. In HDBM (line 7-9 

in Algorithm 3), the transfer probability is based on the Hamming distance between the best solution and the current solution. 

With the high transfer probability, the differential operator is embedded directly into the movement function. In QLLS (line 

11 to line 20 and line 25 to line 28), the optimal local search strategies is performed on different objects according to the state 

of the swarm. Specially, a duplicate checking strategy is used in line 14, where ismember() is a function whether the current 

bat exists in the previous generation. 

Algorithm 3: NDBA 

1. Initialize the bat population and related parameters 

2. Initialize the shared Q-table as a zero matrix with three rows and five columns 

3. Define the fitness function F according to the penalty function [40] 

4. Evaluate fitness of the bat population 

5. while (t ≤ Max number of iterations tmax) 

6.  // HDBM 

7.  Calculate the Hamming distance between bat i and the best solution according to (21) 

8.  Compute the transfer probability according to (22) 

9.  Generate the solution according to (23) 

10.  // QLLS 

11.  Update the iteration number that the best solution has not been improved 

12.  Obtain the state st for the swarm 

13.  Select the optimal action at for st from Q-table using the epsilon-greedy method (26) 

14.  if (rand > rpi || ismember(Xi(t), X(t-1)) 

15.   if st == Stagnation 

16.    Perform the selected local search strategy around the current bat Xi 

17.   else 

18.    Perform the selected local search strategy around the best solution *X  

19.   end 

20.  end 
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21.  if (rand < Li & F(Xi(t+1)) < F( *X )) 

22.   Accept the new solution 

23.   Reduce loudness and pulse emission according to (27) and (28), respectively 

24.  end 

25.  Get the reward/penalty from the whole swarm according to (24) 

26.  Obtain the next state st+1 for the swarm 

27.  Update Q-table entry according to (15) 

28.  Update the current state st = st+1 

29.  t=t+1 

30. end while 

31. Post-process results and visualization 

As illustrated in [20], the computational complexity of the standard BA is O(tmax × N × F), where tmax is the maximum 

number of iterations, N is the population size, and O(F) is the computational complexity of its fitness evaluation. In this paper, 

the proposed algorithm does not increase extra loop operations, compared with the standard BA. Hence, both of them have 

the same computational complexity. 

5 Experimental study 

5.1 Description of benchmark problems 

Three well-known benchmark problems are used to validate the effectiveness of our proposed NDBA method in solving 

RAPs for MSPSs considering PCCF. The information of the test problems found in previous publications is collected and 

presented in Table 1. For each subsystem, [40-42] describe several functionally equivalent components of various versions in 

detail. For all test cases, we randomly set the upper limit of each version MAXij = [5, 5, 3].  

Table 1 Tested benchmark problems. 

Pro. Ns V A0 

P1 [41] 4 [5, 4, 6, 5] 0.900 0.960 0.990 

P2 [42] 5 [7, 5, 4, 9, 4] 0.975 0.980 0.990 

P3 [43] 4 [11, 7, 9, 7] 0.940 0.960 0.990 
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For simplicity, assume that all systems are subjected to two external and s-independent CCs (CC1 and CC2) with the 

occurrence probability 0.01 and 0.02. More details about the test problems considering PCCF are recorded in Table 2, which 

are randomly generated. Taking P1 as an example, subsystems 1 and 2 form a PCCG, denoted PCCG1, subsystems 3 and 4 

form another group PCCG2. Given that CC1 occurs, the subsystem 1 fails with rate 0.6.  

Table 2 Tested benchmark problems considering PCCF. 

Pro. 
PCCGc Pr(Component i fails | CCc occurs) 

1 2 i qci 

P1 {1, 2} {3, 4} 1 0.6 

   2 0.1 

   3 0.3 

   4 0.4 

P2 {1, 4} {2, 3, 5} 1 0.3 

   2 0.8 

   3 0.9 

   4 0.1 

   5 0.9 

P3 {1, 3} {2, 4} 1 0.9 

   2 0.6 

   3 0.2 

   4 0.5 

5.2 Calibration of parameters 

To calibrate the parameters of NDBA, the Design of Experiments (DOE) methodology [44] is employed in this section. 

The proposed NDBA has the following key controlled factors: loudness L, pulse rate pr, and threshold rate tr. The loudness 

represents the acceptance or rejection of a new solution, the pulse rate decides the probability of local search, and the threshold 

rate controls the state of the best solution in the swarm. According to some preliminary experiments and related literatures, 

the potential values (levels) chosen for these parameters are listed in Table 3, which results in a total of 3×3×4=36 

configurations. Each parameter configuration is executed 5 times on all instances. In summary, there are a total of 
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36×9×5=1620 independent runs needed for tuning parameters of NDBA.  

Table 3 The levels for tuning parameters. 

Level L Level pr Level tr 
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First of all, a statistical procedure Shapiro-Wilk's (SW) test [46] is performed for normality on the normalized results 

obtained by different parameter configurations. The result shows that the p-value is less than 0.05, so the null hypothesis is 

rejected: the sample does not follow a normal distribution. Furthermore, a histogram is illustrated to graphically demonstrate 

distribution of the normalized results, as shown in Fig. 5. From this picture, it can be observed that a majority of results are 

near zero and few results are concentrated between 0.9 and 1. A possible reason is that the algorithm achieves satisfactory 

solutions under most parameter configurations. 

 

Fig. 5. The histogram of the normalized results obtained by different parameter configurations. 

Since the results are not normally distributed, Friedman test [47] is carried out to display the average ranking of all 

configurations, listed in Table 4 (The besting ranking is in bold and the worst is in italics). The lower the mean rank, the better 
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the algorithm. From this table, the 7th configuration (27)-(29) obtains the best ranking, which is suggested in the following 

experiments. 

( ) [ ]( ) ( ), , , .i ii LL t L tα α+ == ⋅ =0 1 2 01 9                               (27) 

( )- = ,( ) ( ) , .- =.t
i iirp e pt r rp γ γ× + = ×  1 0 1 0 850 0 9                            (28) 

 0.15tr =                                          (29) 

Table 4 The results of Friedman test for parameter configurations 

No. 
level 

ranking No. 
level 

ranking 
L pr tr L pr tr 

1 1 1 1 19.21  19 2 2 3 21.82  

2 1 1 2 19.27  20 2 2 4 22.53  

3 1 1 3 17.30  21 2 3 1 16.58  

4 1 1 4 18.21  22 2 3 2 19.42  

5 1 2 1 18.24  23 2 3 3 20.17  

6 1 2 2 17.28  24 2 3 4 20.24  

7 1 2 3 14.94  25 3 1 1 19.51  

8 1 2 4 21.80  26 3 1 2 18.63  

9 1 3 1 18.49  27 3 1 3 17.61  

10 1 3 2 17.71  28 3 1 4 18.57  

11 1 3 3 17.97  29 3 2 1 16.61  

12 1 3 4 17.02  30 3 2 2 18.20  

13 2 1 1 16.59  31 3 2 3 17.80  

14 2 1 2 20.14  32 3 2 4 18.81  

15 2 1 3 19.21  33 3 3 1 19.14  

16 2 1 4 19.61  34 3 3 2 16.16  

17 2 2 1 18.57  35 3 3 3 18.31  

18 2 2 2 18.57  36 3 3 4 15.74  

For a pairwise comparison, Nemenyi test [48] is further performed to report any significant differences between 

parameter configurations. The critical value q0.05 is 3.84, based on the Studentized range statistic divided by √2. According 
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to (30), the corresponding critical difference CD is 8.52, where k is the number of configurations, NR is the number of 

independent runs of each configuration. 

( )1 6CD q k k NRα= +                                       (30) 

As shown in Table 4, the 7th configuration obtains the best ranking 14.94, and the 20th gets the worst ranking 22.53. 

Since even the difference between the best and the worst is less than 8.52, it can be concluded that there is no significant 

difference among all parameter configurations and the proposed algorithm is actually quite insensitive to parameters. 

5.3 Performance analysis of improvement structures of NDBA 

In this section, the performance of two improvement structures (HDBM and QLLS) is investigated to demonstrate their 

contributions. To achieve this goal, the following experiments are carried out 5 times independently for each instance. Firstly, 

HDBM is compared with HDBM1 and HDBM2 to verify which is the better approach for discretization. In the latter two 

methods, the movement of bat is not changed as iterations progress. HDBM1 only focuses on improving the convergence rate 

while HDBM2 only considers maintaining the population diversity. Then, QLLS is compared with five different local search 

strategies.  

Table 5 illustrates the statistical comparisons between all improvement structures, including the mean values and the 

mean rankings (The best results are in bold and the worst are in italics). These improvement structures are carried out on 9 

cases under the same number of fitness evaluation. From this table, HDBM achieves the best ranking among all improvements 

for the bat movement. It verifies improving convergence capability at the early stage and maintaining diversity at the latter 

stage are more effective than considering only one of them. Moreover, HDBM2 performs better than HDBM1 on P1 while 

worse on P3. From this result, it can be implied that maintaining diversity is more important than improving convergence on 

relatively simple questions. Among all local search strategies, LS1 yields the worst ranking. A possible reason is that LS1 

adding one component increases time on the fitness calculation. Although it improves the system reliability, it increases the 

system cost at the same time. In addition, QLLS outperforms compared with other local search strategies, which demonstrates 

adjusting the local search strategies dynamically are the most effective. From the above, HDBM and QLLS are meaningful 
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for the proposed NDBA. Furthermore, Nemenyi test is also carried out to report any significant differences between these 

improvement structures. The critical value q0.05 is 3.10 and the corresponding critical difference CD is 1.79 according to (30). 

As the ranking listed in Table 5, the differences between the best and the others are all more than 1.79. That is to say, the 

interval which is combined by HDBM and QLLS does not overlap with any other improvements which indicates the 

combination of HDBM and QLLS is significantly different from the others. 

Table 5 The comparisons between improvement structures of NDBA 

Algorithm 
P1   P2   P3   

Ranking 
0.900 0.960 0.990 0.975 0.980 0.990 0.940 0.960 0.990 

HDBM 9.519 10.675 12.062 19.238 19.309 19.970 31.848 32.451 36.603 5.40 

HDBM1 10.410 11.471 12.682 20.155 20.249 21.263 32.849 34.560 38.701 6.62 

HDBM2 10.005 11.272 12.159 20.155 20.218 21.263 33.002 34.749 38.844 6.31 

HDBM_LS1 13.718 15.523 15.577 26.651 26.879 34.969 56.130 47.392 51.137 8.53 

HDBM_LS2 8.226 9.364 11.305 17.853 17.441 18.555 27.270 29.512 33.411 3.96 

HDBM_LS3 7.892 8.413 10.401 19.430 18.767 20.823 25.709 27.546 32.759 3.42 

HDBM_LS4 7.819 9.055 10.628 21.354 18.902 24.056 23.632 26.489 31.237 3.51 

HDBM_LS5 13.159 14.049 16.522 21.048 21.494 31.890 27.695 33.779 34.430 6.11 

HDBM_QLLS 6.977 8.105 9.409 16.004 16.036 16.577 22.349 23.642 28.516 1.13 

5.4 Comparison with other state-of-the-arts 

To further verify the performance of NDBA, it has been compared with several state-of-the-art variants of BA. These 

well-known algorithms are as follows: the origin BA proposed in 2010 [18], a novel BA with habitat selection and Doppler 

effect (NBA) in 2015 [49], a directional BA (DBA) in 2017 [22], a discrete hybrid BA with constriction coefficient and 

estimation of distribution algorithm (DCBA-dEDA) in 2019 [20], a BA with double mutation operators (TMBA) in 2020 [45]. 

The compared algorithms are strictly re-implemented with the same programming in the same environment and follow the 

parameters suggested in their literature. For a fair comparison, each algorithm is run 20 times for each instance. The common 

parameters of these algorithms are the same, i.e., the population size N is set to 20 and the max number of iterations tmax is set 

to 200.  
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The results are analyzed from two aspects: accuracy and convergence. Table 6 shows the statistical comparisons between 

all BA versions, including the mean values and the mean rankings (The best results are in bold and the worst are in italics). 

These versions are carried out on 9 cases under the same number of fitness evaluation. Most of the improved versions 

outperforms the standard BA which means the improvements are meaningful. As is obvious, the mean ranking of NDBA is 

lower than that of all compared algorithms. It can be concluded that NDBA owes the better search ability. Besides, Nemenyi 

test is also carried out. The critical value q0.05 is 2.85 and the corresponding critical difference CD is 0.56 according to (30). 

As the ranking listed in Table 6, the differences between the best and the others are all more than 0.56. It implies the proposed 

algorithm is significantly better than other BA versions. 

Table 6 The comparisons between BA versions 

Algorithm 
P1   P2   P3   

Ranking 
0.900 0.960 0.990 0.975 0.980 0.990 0.940 0.960 0.990 

BA [18] 9.274  10.821  11.932  21.044  20.821  21.578  34.831  35.204  39.607  5.51 

NBA [49] 8.199  9.564  10.717  17.546  17.536  17.999  26.088  27.153  31.739  3.31 

DBA [22] 7.555  9.909  11.359  19.585  18.960  20.329  35.552  34.517  40.128  4.98 

DCBA-dEDA [20] 7.555  8.568  9.778  16.787  16.841  17.328  24.629  25.858  29.980  2.24 

TMBA [45] 8.305  9.859  11.045  18.348  18.573  19.239  25.858  26.540  30.843  3.78 

NDBA 7.105 8.102 9.305 16.007 16.040 16.584 22.520 23.964 28.520 1.18 

In addition to measuring the performance by statistical results, the convergence rate cr which is depended on the number 

of function evaluations is also utilized for comparing the proposed NDBA with other state-of-the-arts. This paper strictly 

follows a general scheme [50] proposed by Gandomi to evaluate the convergence rate. Besides, curve plots are also given in 

Fig. 7 for better illustrating the convergence process.  

As detailed in Fig. 6, all modified versions are superior to the standard BA regarding the convergence, especially NBA. 

A main reason for the best convergence performance of NBA is the habitat selection from quantum behavior and mechanical 

behavior. Indeed, it is an effective mechanism which can accelerate the convergence significantly. However, NBA yields the 

third average ranking as statistical results listed in Table 6. From these results, it can be concluded that NBA does not 
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effectively eliminate the prematurity of BA. In contrast to NBA, the proposed NDBA achieves a good balance between 

exploration and exploitation by HDBM and QLLS. In the former one, the algorithm speeds up the convergence and owes a 

good global ability at the early stage. As iterations go on, the algorithm focuses on the diversity to avoid local optimum. The 

latter one selects the optimal local search strategies via Q-learning to improve its performance. 

 

 

Fig. 6. The convergence rate of all BA versions. 

This section also compares the proposed NDBA on standard RAP benchmarks ( P1[41], P2[42], and P3[43] ) without 

considering PCCF to check whether NDBA is comparable to the results that have been reported in existing literatures, e.g. 

GA [41-43], TS [51], SP/TG [52], PSO/LS [10], and MQEA [4]. These algorithms are performed on 9 cases with the same  

required system availabilities and available component versions, as shown in Section 5.1. However, they have different 

numbers of fitness evaluation NFE, given in Table 7. In this paper, the upper limit of each version MAXij is set to 8, suggested 

by [10]. The population size N is set to 50 and the max number of iterations tmax is set to 200. Due to no extra loop operations 

in NDBA, the number of fitness evaluation NFE is 1.0e4. Table 7 also lists the statistical comparisons between these powerful 

algorithms, including the best values C (The best results are in bold and the worst are in italics). From Table 7, SP/TG, PSO/LS, 

MQEA, and NDBA obtain better results than GA and TS. It implies the proposed NDBA is competitive compared with the 

state-of-the-arts. Moreover, NDBA spends the least NFEs among all algorithms. That is to say, NDBA captures the satisfactory 

solutions with fewer numbers of fitness evaluation, which also clearly highlights the efficiency of NDBA. 
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Fig. 7. The convergence plot of all BA versions. 

Table 7 The comparisons between the state-of-the-arts without considering PCCF 

Algorithm 
 P1   P2   P3   

 0.900 0.960 0.990 0.975 0.980 0.990 0.940 0.960 0.990 

GA [41-43] C 5.846 6.924 8.175 16.450 16.520 17.050 15.315 17.900 24.304 

 NFEs ≈5.0e4 ≈5.0e4 ≈5.0e4 ≈1.0e5 ≈1.0e5 ≈1.0e5 -- -- -- 

TS [51] C 5.986 7.303 8.328 16.450 16.520 17.050 17.805 21.155 24.305 
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 NFEs -- -- -- -- -- -- -- -- -- 

SP/TG [52] C 5.423 7.009 8.180 12.855 14.770 15.870 17.419 20.570 23.779 

 NFEs ≈1.2e6 ≈1.2e6 ≈1.0e6 ≈3.0e6 ≈2.5e6 ≈3.0e6 ≈5.0e6 ≈5.0e6 ≈5.0e6 

PSO/LS [10] C 5.423 7.009 8.180 12.855 14.770 15.870 17.419 20.570 23.779 

 NFEs >1.0e5 >1.0e5 >1.0e5 >2.0e5 >2.0e5 >2.0e5 >2.0e5 >2.0e5 >2.0e5 

MQEA [4] C 5.423 7.009 8.180 12.855 14.770 15.870 17.419 20.570 23.779 

 NFEs 1.2e4 1.2e4 1.2e4 1.2e4 1.2e4 1.2e4 1.5e4 1.5e4 1.5e4 

NDBA C 5.423 7.009 8.180 12.855 14.770 15.870 17.419 20.570 23.779 

 NFEs 1.0e4 1.0e4 1.0e4 1.0e4 1.0e4 1.0e4 1.0e4 1.0e4 1.0e4 

"--" means the value is not available (The algorithm TS is terminated by the running time 2000s) 

6 Conclusions 

This paper aims to determine the optimal structure of multi-state series-parallel systems considering PCCF via 

availability evaluation and solution method. IUGF is utilized for the insufficient data caused by a non-fatal PCCF. To solve 

this problem, a novel discrete bat algorithm NDBA is proposed in this paper with two effective modifications: HDBM and 

QLLS. The former modification relies on the Hamming distance between the current bat and the best bat in the swarm to 

adjust its position dynamically, owing the following benefits: (1) enabling BA for addressing discrete problems; (2) enhancing 

the convergence ability at the early stage of algorithm; (3) maintaining the population diversity as the iterations progress; (4) 

having less parameters by decreasing f. The superiority of the latter one mainly owes to the following aspects: (1) enabling 

BA for addressing discrete problems too; (2) problem-independent by adjusting the local search strategies self-adaptively; (3) 

making a good balance between exploitation and exploration through local search around different objects. (4) tackling the 

shortcomings such as time-consuming and taking up much memory via the shared Q-table. To be specific, problem-

independence means that NDBA has an excellent and stable performance no matter of the problem landscape. Besides, a 

comprehensive statistical analysis including the Friedman test and Nemenyi post-hoc test has been implemented in this paper. 

Experiment results exhibit that the proposed NDBA achieves significantly better performance compared with other state-of-

the-art algorithms in solving the RAP*MSPS*PCCF. 
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The future work with both practical and theoretical benefits can be summarized as follows: multiple objectives, 

reliability-redundancy allocation, fuzzy valued data, and running time of evaluating the fitness function. 
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