

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Automated System Design Optimisation

by

Dovile Astapenko

A Doctoral Thesis

submitted in partial fulfilment of the requirements for the award of

Degree of Doctor of Philosophy of Loughborough University

©by Dovile Astapenko 2010

ABSTRACT

The focus of this thesis is to develop a generic approach for solving reliability design

optimisation problems which could be applicable to a diverse range of real engineering

systems. The basic problem in optimal reliability design of a system is to explore the means

of improving the system reliability within the bounds of available resources. Improving the

reliability reduces the likelihood of system failure. The consequences of system failure can

vary from minor inconvenience and cost to significant economic loss and personal injury.

However any improvements made to the system are subject to the availability of resources,

which are very often limited.

The objective of the design optimisation problem analysed in this thesis is to minimise system

unavailability (or unreliability if an unrepairable system is analysed) through the manipulation

and assessment of all possible design alterations available, which are subject to constraints on

resources and/or system performance requirements. This thesis describes a genetic algorithm-

based technique developed to solve the optimisation problem. Since an explicit mathematical

form can not be formulated to evaluate the objective function, the system unavailability

(unreliability) is assessed using the fault tree method. Central to the optimisation algorithm

are newly developed fault tree modification patterns (FTMPs). They are employed here to

construct one fault tree representing all possible designs investigated, from the initial system

design specified along with the design choices. This is then altered to represent the individual

designs in question during the optimisation process. Failure probabilities for specified design

cases are quantified by employing Binary Decision Diagrams (BDDs).

A computer programme has been developed to automate the application of the optimisation

approach to standard engineering safety systems. Its practicality is demonstrated through the

consideration of two systems of increasing complexity; first a High Integrity Protection

System (HIPS) followed by a Fire Water Deluge System (FWDS). The technique is then

further-developed and applied to solve problems of multi-phased mission systems. Two

systems are considered; first an unmanned aerial vehicle (UAV) and secondly a military

vessel. The final part of this thesis focuses on continuing the development process by

adapting the method to solve design optimisation problems for multiple multi-phased mission

systems. Its application is demonstrated by considering an advanced UAV system involving

multiple multi-phased flight missions.

Abstract ii

The applications discussed prove that the technique progressively developed in this thesis

enables design optimisation problems to be solved for systems with different levels of

complexity. A key contribution of this thesis is the development of a novel generic

optimisation technique, embedding newly developed FTMPs, which is capable of optimising

the reliability design for potentially any engineering system. Another key and novel

contribution of this work is the capability to analyse and provide optimal design solutions for

multiple multi-phase mission systems.

Keywords: optimisation, system design, multi-phased mission system, reliability, genetic

algorithm, fault tree, binary decision diagram

ACKNOWLEDGMENTS

First and foremost, I wish to express my gratefulness to Dr Lisa Jackson for all of her

support throughout the research. I wish to thank her for her invaluable time,

supervision and advice with her exceptional insights into Risk and Reliability, for her

kind moral support and for nurturing my skills as a researcher.

I also owe my gratitude to Prof. John Andrews for the opportunity to carry out the

research presented here, for his time and for his constructive guidance throughout.

Thanks are also paid to the lectures in the Faculty of Fundamental Sciences at the

Kaunas University of Technology for sharing their knowledge and helping me to

develop lifelong foundations for my future career. I am particularly grateful to

Dr Gediminas Dosinas and Dr Vytautas Janilionis for encouraging me to pursue my

aspirations to do further research and broaden my horizons.

I wish to extend my warmest thanks to my fellow researchers at Loughborough

University for their friendship and for the warm lifelong memories.

I am grateful for my sister Laura, her husband Darius and their daughter Ugnė Kaupai

for believing in me and being there for our parents.

Specially to my husband, Pratap, I wish to express my gratitude for his love,

dedication and confidence in me, and for reading the last drafts of this thesis.

I am particularly grateful to and humbled by my parents Larisa and Piotras Astapenko

who brought me into this world, raised me and love me. Their sacrifices allowed me

to pursue my aspiration to walk new paths. To them I dedicate this thesis.

iii

ABBREVIATIONS

AFFF Aqueous Film-Forming Foam

AR
2
TS Advances in Risk and Reliability Technology Symposium

BDD Binary Decision Diagram

CPU Central processing Unit

CW Circulating Water

ESD Emergency Shutdown

ESDV Emergency Shutdown Valve

ESREL The European Safety and Reliability Conference

FWDS Firewater Deluge System

FTMP Fault Tree Modification Pattern

GA Genetic Algorithms

GSDOA General System Design Optimisation Algorithm

GSDOP General System Design Optimisation Programme

HIPS High Integrity Protection System

IP integer programming

ite If-Then-Else

LP Linear Programming

MDT Maintence Down Time

MFGP Main Fire and Gas Panel
MG Motor Generator

MILP Mixed Integer Linear Programming

MINLP Mixed Integer Nonlinear Programming

MOGA Multi Objective Genetic Algorithm

MPMSDOA Multiple Phased Missions System Design Optimisation Algorithm

MPMSDOP Multiple Phased Missions System Design Optimisation Programme

NLP Nonlinear Programming

NPGA Niched Pareto Genetic Algorithm

NSGA Non-Dominated Sorting Genetic Algorithm

PAES Pareto-Archieved Evolution Strategy

PMSDOA Phased Mission System Design Optimisation Algorithm

PMPSDOP Phased Mission System Design Optimisation Programme

PSO Particle Swarm Optimisation

PT Pressure Transmitter

RAM Random Accessible Memmory

RDGA Rank-Density Based Genetic Algorithm

RS Random Search

RWGA Random Weighted Genetic algorithm

SA Simulated Annealing

SOGA Single Objective Genetic Algorithm

SPEA Strength Pareto Evolutionary Algorithm

TS Tabu Search

UAV Unmanned Aerial Vehicle

VEGA Vector Evaluated Genetic Algorithm

VFR Voltage Frequency Regulator

NOMENCLATURE

A(t) availability

C(i) offspring population in generation i

CI initial design cost

CS storage cost

CostD total system design cost

CostM cost assigned for system maintenance

CostSys total system cost

c_pi cost of a single preventive maintence activity for component i

c_ri cost of a single repair for component i

c_ti cost of a single maintenance test for component i

idcost _ design cost of a component i

itcost _ cost of maintenance testing for component i.

ipcost _ preventive maintenance cost of the component i.

iccost _ corrective maintenance cost of the component i.

 ,

21 PPC
function (measure) C

id minimum value of the sum of the absolute differences in the values of

objective functions between the i-th solution and any other solution in
the P*

()Bdi ,x magnitude of violation of a given constraint i for solution x

d mean value of the distances id

[]ixE probability that event i has occurred

i
F , Fi,

objective function value of the individual i

allF the best unpenalised value of the objective function yet found

feasF the best feasible value of the objective function yet found

i
fitness

F fitness value of the individual i

Fj the logical expression for the top event of the fault tree to occur in phase

j
i
pF penalty value for an infeasible individual i

F(x) objective function

F(t) unreliability function
fi objective function value of the individual i

f1, f2 Boolean functions
f(x) function of a variable x, structure function

Gi gate number

GD General Distance metric

g(x) function of a variable x (inequality constraint)

HT number of hours of manual work required to test the component

h(x) function of a variable x (equality constraint)

ICH(i) value of the ith digit in a binary string

m total number of components representing the system design case

mk maximum number of redundant components required for successful

operation, i.e. mk≤mn

Nomenclature v

mn maximum possible number of redundant components

mt tmaximum number of possible different component types
nb number of bits in a binary string

nc total number of constraints set for the problem
N number of chromosomes in a population

NC total number of minimal cuts set

NS Total number of spare stored

θ
N number of different maintenance test intervals

ic
N number of system components which are tested at the same time interval

iNFT near-feasibility threshold that corresponds to a given constraint i

PT true Pareto optimal set of the problem.

Phj mission failure in phase j
P(Ci) probability that a minimal cut set i exists

P(i) parent populations in the generation i
P(PFCi) probability of phase failure combinations for phase i

P* non-dominated set of solutions, Pareto-optimal set of solutions

ip cost of a single preventive maintenance for the component i

sysQ system unavailability

Q(t) unavailability function

AVQ (t) average unavailability

iq unavailability value of component i.

R(t) Reliability function
rj a non-negative random number

S Spacing metric

jT test time for each system component.

t time

TU total number of time units per examined time period,

vi volume parameter calculated for component i

iW , number of expected failures of component i.

wi weight of component i

wi a constant weight for function ()xif

X vector of the decision variables

()jik ttx , variable indicating component k failure in time interval ()ji tt ,

iβ Weibull distribution parameter

iη Weibull distribution parameter

θ time between inspections/maintenance activities

iκ user-specified severity parameter

λ constant conditional failure rate
τ mean time to repair
ν repair rate

CONTENT

1. INTRODUCTION 1

1.1. Introduction to Reliability and Risk Analysis 1

1.2. System Reliability Modeling 2

1.3. System Design and reliability 3

1.4. The Optimal Reliability Design Problem 4

1.5. Objectives of the Research 4

2. FAULT TREE AND BINARY DECISION DIAGRAM ANALYSIS 7

2.1. Introduction 7

2.2. Fault Tree Analysis 8

2.2.1. Fault Tree Construction 8

2.2.2. Qualitative Analysis 10

2.2.3. Minimal Cut Set Algorithms 11

2.2.4. Quantitative Analysis 13

2.2.4.1. Parameters of Component Performance 13

2.2.4.2. Maintenance Policies 14

2.2.5. Assessment of System Performance 15

2.3. Binary Decision Diagrams 16

2.3.1. BDD Architecture 16

2.3.2. BDD Construction 17

2.3.3. Reduction 20

2.3.4. Quantitative BDD Analysis 21

2.4. Summary 23

3. TECHNIQUES FOR DESIGN OPTIMISATION IN RELIABILITY

ENGINEERING 25

3.1. Introduction 25

3.2. Linear Programming 26

3.3. Nonlinear Programming 27

3.4. Discrete Optimisation 28

3.5. Meta-heuristic Methods 30

Content vii

3.5.1. Simulated Annealing 31

3.5.2. Tabu Search 32

3.5.3. Particle Swarm Optimization 33

3.5.4. Genetic Algorithms 34

3.5.4.1. Advantages and Disadvantages of a GA 37

3.5.4.2. Fundamentals of the GA 37

3.6. Summary 44

4. GENERAL SYSTEM DESIGN OPTIMISATION ALGORITHM 46

4.1. Introduction 46

4.2. Fault Tree Modification Methodology 47

4.2.1. Design Alteration Options 48

4.2.2. Fault Tree Modification Patterns 49

4.2.2.1. Overview 49

4.2.2.2. Parallel Redundant Elements (Pattern 1) 51

4.2.2.3. k-out-of-n Redundancy (Pattern 2) 53

4.2.2.4. A Different Component Type Selection (Pattern 3) 55

4.2.2.5. Selection Option of a Component Type for New Redundant

Components (Pattern4 and Pattern5) 56

4.2.2.6. Fault Tree Alteration at Gate Level 59

4.2.3. Quantitative Fault Tree Analysis 61

4.3. Quantitative Fault Tree Analysis

4.4. Optimisation Algorithm 61

4.4.1. Mathematical Problem Concept 61

4.4.2. Evaluation of Design Requirements 63

4.4.3. Genetic Algorithm Characterisation 66

4.4.3.1. Chromosome Encoding 66

4.4.3.2. Population Manipulation 68

4.4.3.3. Replacement 69

4.4.4. Optimisation Algorithm Structure 70

4.4.4.1. Preparative Part 70

4.4.4.2. Optimisation Part 71

4.4.5. Computer Implementation of the GSDOA - GSDOP 73

4.4.5.1. Initialisation Stage 73

4.4.5.2. Construction of the Fault Tree for all Possible Design

Alternatives 74

Content viii

4.4.5.3. Optimisation Part 76

4.5. Summary 80

5. HIGH INTEGRITY PROTECTION SYSTEM DESIGN OPTIMISATION

USING GSDOA 82

5.1. Introduction 82

5.2. High Integrity Protection System Description 82

5.3. Options for HIPS Design Alterations 85

5.4. HIPS Design Optimisation Problem 87

5.4.1. Data Initialisation 87

5.4.2. Fault Tree Construction 92

5.4.3. Chromosome Structure 96

5.5. Analysis of GSDOP Performance Solving the HIPS Design Optimisation

Problem 98

5.5.1. Selection of the Values of the GA Parameters 98

5.5.2. Testing 104

5.6. Summary 108

6. FIREWATER DELUGE SYSTEM DESIGN OPTIMISATION USING

IMPROVED GSDOA 110

6.1. Introduction 110

6.2. Description of FireWater Deluge System 110

6.2.1. Performance Principles 110

6.2.2. Firewater Deluge System Failure 113

6.3. Design Alteration Options 118

6.4. Data Arrangement for the Optimisation 120

6.5. Modification of the GSDOA 124

6.5.1. Penalty Function Method and New Replacement Procedure 125

6.5.2. Fitness Scaling 128

6.5.3. Structure of the Improved SOGA 131

6.6. Analysis of the Improved GSDOP Performance Solving the FWDS Design

Optimisation Problem 132

6.6.1. Analysis of GA Parameters Influence on Algorithm Performance 132

6.6.2. Testing 135

6.7. Summary 138

Content ix

7. MULTI-PHASED MISSION SYSTEM DESIGN OPTIMISATION 141

7.1. Introduction 141

7.2. Methods for Reliability Analysis of Phased Mission Systems 142

7.2.1. Overview 142

7.2.2. Non-Repairable Phased Missions 143

7.3. Phased Mission System Design Optimisation Algorithm (PMSDOA) 150

7.3.1. Introduction 150

7.3.2. Fault Trees for all Possible Design Alternatives 152

7.3.3. Evaluation of Phased Mission System Failure Probability 153

7.3.4. Mathematical Representation of the Problem (Overall Mission

Constraints) 154

7.3.5. Development of Phased Mission System Design Optimisation

Programme (PMSDOP) 156

7.3.5.1. Data Processing 157

7.3.5.2. Preparation for Quantitative Analysis 158

7.3.5.3. Optimisation Algorithm 158

7.4. UAV Design Optimisation Using the Phased Mission Design Optimisation

Algorithm 159

7.4.1. Introduction to a Phased Mission of an UAV 159

7.4.2. UAV Design Alternatives 163

7.4.3. Analysis of Optimisation Results 164

7.4.4. Summary of the Analysis 167

7.5. Military Vessel Design Optimisation Using PMSDOP (Case 1) 167

7.5.1. Initial Military Vessel Design 168

7.5.2. Military Vessel Design Alternatives 172

7.5.3. Analysis of Optimisation Results 174

7.5.4. Summary of the Analysis 176

7.6. System Design Limitations for Individual Phases 177

7.7. Military Vessel Design Optimisation Problem with Constraints Added at Each

Phase (Case 2) 180

7.7.1. Analysis of Optimisation Results 182

7.7.2. Summary of the Analysis 182

7.8. Summary 183

8. DESIGN OPTIMISATION OF MULTI-PHASED MISSION SYSTEM

CONSIDERING MULTIPLE MISSIONS 185

Content x

8.1. Introduction 185

8.2. Multi-Objective Optimisation 185

8.3. Multi-Objective Optimisation Techniques 188

8.3.1. Handling of Constraints 190

8.3.2. Performance Metrics 190

8.3.3. Proposed Multi-Objective Optimisation Technique 192

8.4. Multiple Phased Missions System Design Optimisation Algorithm

(MPMSDOA) 195

8.4.1. Mathematical Representation of the Problem 195

8.4.2. Algorithm Particulars 196

8.5. UAV Design Optimisation Using the MPMSDOA 198

8.5.1. Problem Overview 198

8.5.2. Analysis of Optimisation Results 200

8.5.3. Summary of the Optimisation Analysis 203

8.6. Summary 203

9. CONCLUSIONS AND FUTURE WORK 205

9.1. Summary 205

9.2. Conclusions 208

9.3. Future Work 209

BIBLIOGRAPHY 211

PUBLICATIONS 218

APPENDIX 1 219

APPENDIX 2 228

APPENDIX 3 234

APPENDIX 4 249

1. INTRODUCTION

1.1. INTRODUCTION TO RELIABILITY AND RISK ANALYSIS

Risk and reliability analysis of systems and their components is an integral part of modern

equipment design. Furthermore every engineering project, contract and piece of equipment

requires this discipline by law. Reliability and risk analysis has a potentially wide range of

application areas. The developed methods have been adopted for safety cases in the nuclear,

chemical and offshore industries. They are applied to assess the safety and reduce the hazards

of systems in defence, marine and automotive industry areas. Risk and reliability techniques

also find applications in production and maintenance studies during the design phase of new

plants to improve their availability and profitability.

Risk and reliability is a relatively new field. Its conception has been developed primarily due

to the complexity, sophistication, and automation inherent in modern technology. Reliability

engineering emerged in the late 1940s and early 1950s when the problems of maintenance,

repair, and field failures became severe for military equipment used. Much of the early work

was confined to the analysis of performance aspects of systems in transportation and

communication. In the early 1970s methods were developed for identifying hazards and for

quantifying the consequences of failures. Over recent years major accidents such as

Flixborough, Seveso, Piper Alpha and the Clapham rail incident increased the concern about

risk associated with operating large plants. It prompted the focus in the use of the risk and

reliability methods in the field of hazard assessment. Thus, engineers are working to

maximise the benefits of modern processing technology ensuring its availability while

reducing the safety risks to acceptable levels.

Reliability has two connotations. One is probabilistic in nature; the other is deterministic. The

most widely accepted definition of reliability is the ability of an item to operate under

specified operating conditions for an assigned period of time. Considering the probabilistic

approach the ability of an item can be designated through a probability. Thus, reliability

theory is concerned with predicting the probability of survival of a component or system

performing its prescribed function during a given lifetime.

Risk can be formally defined as the potential of loss or injury resulting from exposure to a

hazard. Quantitative risk analysis involves estimation of the degree of loss or the probability

Chapter 1. Introduction

2

that a component or system will fail to perform its function which results in a hazard

occurring. Thus, reliability and risk are related to one another.

1.2. SYSTEM RELIABILITY MODELING

The main concern in reliability engineering is to identify potential failures of systems and

prevent these failures from occurring. A system comprises a number of subsystems and

components which are interconnected. It is important to model the reliability of individual

items as well as the relationship between various items to determine the reliability of the

system. One of the most important aspects of reliability analysis is the assessment of system

reliability through the analysis of its constituent elements.

Various probabilistic methods are employed in system reliability modelling. Available

methods can be broadly classified into inductive and deductive techniques. Using inductive

techniques failure modes are identified at the component level first. Next, the effect of each

component on the overall system is established. In the deductive techniques, the analysis

starts with the identification of the potential system failure mode and works down through the

system to identify possible causes of the hazard. In this research project two methodologies

have been used for system reliability analysis: fault tree analysis (FTA) and binary decision

diagram (BDD) method.

The FTA is a deductive technique. An undesirable event, called the top event, is postulated

and the possible means for this event to occur are systematically deduced using a logic

diagram, a fault tree. The deduction process is performed so that the fault tree embodies all

component failures that contribute to the occurrence of the top event. It is also possible to

include environmental conditions, human errors as well as specific component failures during

the system operation.

A FTA may be qualitative, quantitative, or both. The analysis may provide a listing of the

possible combinations of environmental factors, human errors and component failures that

may result in the critical system condition. The probability that the critical event will occur

during a specified time interval can also be determined.

Over recent years attention has been given to the development and use of the BDD method in

system reliability analysis. A BDD is a directed acyclic graph, where all path through the

BDD start at the root vertex and terminate in one of two states – a 1-state (system failure), or

a 0-state (system success). BDDs provide an alternative approach to fault trees to represent

Chapter 1. Introduction

3

the failure logic of a system. The main benefit is that the method improves the efficiency and

accuracy of the fault tree analysis procedure.

1.3. SYSTEM DESIGN AND RELIABILITY

During the design phase reliability engineering can have the greatest effect for enhancing the

system’s safety and reliability. The typical design is an iterative process and several trial

systems are analysed in sequence before an acceptable design is obtained. The process begins

with the identification of a need and the definition of a specification for the system. The

conceptual design stage is the best time to incorporate reliability and also maintainability

considerations. The second step of the process is to define a preliminary design of the system.

The third step is to carry out a detailed design and analysis for all subsystems. System testing

and evaluation follows next. However, it may not be the last step in the design process,

because during testing and evaluation it may be revealed that the system performance criteria

has not been met, or the reliability level may not be satisfactory, or that constraints are not

satisfied. In fact, re-examination may be necessary at any step of the design process.

One of the goals of reliability engineering is to build high reliability into the system through

careful design and analysis within the limits of constraints imposed on resources, which can

be economic and physical. Some of the means through which system reliability can be

enhanced are:

• reducing the system complexity;

• increasing the reliability of constituent components in the system;

• use of structural redundancy;

• putting in practice repair/preventive maintenance;

• decreasing the downtime of the system;

Implementation of the listed means requires resource consumption. Therefore during the

design process the balance between reliability and resource consumption is essential. As

modern systems are becoming more and more complicated it is highly unlikely that the trade-

offs within the available resources, such that the optimal system reliability is achieved, can be

made manually. For this reason an optimisation algorithm integrated within the design

process is greatly needed.

Chapter 1. Introduction

4

1.4. THE OPTIMAL RELIABILITY DESIGN PROBLEM

System reliability is important in any system design. An optimal reliability design is such

where the reliability of the system has been enhanced through all possible means available

with minimum cost and under other constraints imposed on the development of a system.

A reliability design problem can be formulated as an optimisation problem where the

objective may be the maximisation of system reliability/availability, minimisation of system

unreliability/unavailability, minimisation of downtime or the number of failures, or

minimisation of the overall cost associated with the system. In the literature, reliability

optimisation problems are classified according to the types of their decision variables as

redundancy allocation problems, reliability allocation problems, reliability-redundancy

allocation problems and component assignment problems. The type of reliability optimisation

problem determines the nature of decision variables, objective function and constraints

considered. Thus design parameters, i.e. decision variables, may include the number of

redundancies, component reliability value or arrangement of unknown components. The

constraints may include budget restrictions, reliability requirements or design considerations

such as volume and weight. One more of these criteria may be included in the objective

function, while the others may be treated as constraints. Optimal system reliability design

involves identifying objective functions as well as decision variables and constraints.

A wide range of mathematical optimisation methods exist, such as linear programming,

nonlinear programming and evolutionary algorithms. However, the features offered by some

of the methods make them inappropriate for real world system design optimisation problems.

The majority of engineering system optimisation problems involve objective functions and

constraints that are too complicated to manipulate with standard approaches (for example,

linear programming optimization techniques). A genetic algorithm (GA), one of the most

popular evolutionary algorithms, has been chosen for finding the optimal solutions for the

reliability design optimisation problems considered in this research. The algorithm has the

capability to solve complex and large scale optimisation problems with any kind of non-linear

objective functions and constraints defined in discrete, continuous or mixed search spaces.

1.5. OBJECTIVES OF THE RESEARCH

One part of the reliability design optimisation process is the evaluation of design proposals,

i.e. the objective function. The second part is the generation of new, and hopefully, better

Chapter 1. Introduction

5

designs. One of the challenges when solving an optimal reliability design problem is

computing the objective function. Obtaining a closed-form mathematical expression for the

objective function may be particularly difficult. In such cases the optimisation methods

employed should not depend on the form of the objective function, which limits the number

of optimisation techniques capable to solve reliability design optimisation problems.

The majority of the methods used for reliability design optimisation problems consider simple

or well-structured systems. However, real world systems are usually very complex and

analysing its simplified structure in order to apply such methods may compromise the

accuracy of the results. Other techniques combine additional means for performance

evaluation of design proposals, such as fault tree analysis, with an optimisation technique.

However these techniques were developed for specific examples and have not been applied

for a general case system.

This thesis is concerned with the development of a generic optimisation approach that can

solve complex engineering system design optimisation problems and can be applicable to a

diverse range of systems. The new approach developed will combine system reliability

modelling techniques for the introduction and evaluation of design proposals and the

optimisation technique for analysis and generation of solutions.

The first type of systems to be considered is general engineering systems. The second type of

systems analysed is phased mission systems. A large number of systems which can employ

different technologies such as electronic, nuclear and chemical can be analysed as phased

mission systems. However, there is no demonstrated evidence in the literature for research

that focuses on such phased mission system design optimisation problems. The third group of

systems considered are systems designed for multiple phased missions. For these systems

equipment can be designed for varying conditions (military tanks) or for varying operations

(warfare).

The objectives of the research are to:

1. Review existing risk and reliability assessment methods, which can be used to asses the

performance of different system designs. Identify optimisation techniques used to solve

reliability design optimisation problems and provide an appropriate critical review with

regards to their application to solve such problems. Following the review the main risk and

reliability assessment methods and the optimisation technique which would be employed

in the developed approach will be identified.

Chapter 1. Introduction

6

2. Develop a problem-independent genetic algorithm based optimisation technique and its

computer code. The technique will be used to construct an optimal system design case with

the aim of minimising its unavailability and at the same time ensuring optimal usage of

available resources. The developed code will automate the optimisation process.

3. Demonstrate a systematic approach to system design by applying the technique developed

in (2) to a number of safety systems. The application examples will demonstrate scalability

and the potential of the technique to be applicable to a range of different systems. Critical

appraisal of the application results will highlight the algorithm deficiencies that may result

in modifications of the initial approach.

4. Develop a general genetic algorithm based optimisation technique and its computer code

for multi-phased missions analysis. The optimisation technique will define the optimal

phased mission system design with the aim to minimise the overall mission failure

probability and to spend available resources for the best use.

5. Utilise the technique derived in (4) to demonstrate its potential applicability to different

systems and scalability to problems with a diverse degree of complexity.

6. Develop and apply the general genetic algorithm based optimisation approach and its code

to solve the design optimisation problems of phased mission systems involved in multiple

missions. The approach will be used to construct an optimal design for the phased mission

systems considering their performance and optimal usage of available resources throughout

multiple missions.

2. FAULT TREE AND BINARY DECISION

DIAGRAM ANALYSIS

2.1. INTRODUCTION

FTA is one of the engineering approaches used for systems safety and operational analysis

[1]. It is a deductive methodology that specifies a system failure mode through logic

statements of possible causes of system failure. FTA provides a schematic description of the

possible combinations of system conditions that could lead to its failure. It can be both a

design tool that identifies probable accidents in a system design and a diagnostic tool for

prediction of hazardous causes of system failure. FTA involves two major steps: construction

of the fault tree and its evaluation [2]. In the current research project FTA is used to represent

system designs through the analysis of its causes of failure.

Fault trees are not, however, an ideal form for mathematical analysis. Quantitative fault tree

analysis for complex systems can be computationally very extensive. As an alternative,

BDDs, which represent the logic of system failure, are easier to manipulate than the fault tree

for an exact quantitative assessment. BDDs were first introduced by Lee [3] for the

representation of switching circuits. Later Akers [4] derived the basic BDD methodology

aiming to define a diagram for a digital function which determines the output values of the

function by examining the values of the inputs. Bryant [5] extended the BDD application to

Boolean functions with further restrictions on the ordering of variables in the diagrams. The

method for reliability analysis based on the BDD was introduced by Rauzy [6]. The proposed

method improved the efficiency of analysis for the introduced industrial systems. In the

current research project the BDD technique is used for the quantitative analysis of fault trees

representing system designs.

In this chapter FTA is discussed in Section 2.2. Fault tree construction is described in Section

2.2.1. Qualitative and quantitative FTA is detailed in Sections 2.2.2 and 2.2.3 respectively.

Section 2.3 discusses the BDD methodology. First, the BDD architecture is described in

Section 2.3.1. BDD construction and reduction procedures are detailed in Sections 2.3.2 and

2.3.3 respectively. Finally, qualitative and quantitative BDD analysis is discussed in Sections

2.3.4 and 2.3.5 respectively.

Chapter 2. Fault Tree and Binary Decision Diagram Analysis

8

2.2. FAULT TREE ANALYSIS

2.2.1. Fault Tree Construction

Construction of a system fault tree is based on the knowledge of its design and operation [2].

It is a process of developing a tree of logical relationships among possible events that result in

a specific system failure that is called a top event. The term event defines a dynamic change of

state of a system element. In addition such factors as human actions or environmental

characteristics can also be identified as events. Logical relationships among events are defined

using gates.

Thus a fault tree is a hierarchical diagram consisting of events and gates. The symbols

representing different types of fault tree events are shown in Table 2.1. The rectangle defines

the top event or an intermediate event that is the output of a logic gate. The circle represents a

basic failure of a system element and is an input to a logic gate. The house event is an event

that is expected either to occur or does not occur, i.e. it can be in a TRUE or FALSE state.

Table 2.1. Event Symbols

Event

Symbol
Meaning of Symbol

Top event/

intermediate event

Basic event

House event

The fundamental logic gates used in fault tree construction include the AND and the OR gate.

An output event of the AND gate occurs if and only if all input events are present

simultaneously. The OR gate describes the existence of an output event when at least one of

input events exist. Other frequently used gates are the NOT gate and the k/n vote. The NOT

gate describes the logic of occurrence of an output event when none of the input events occur.

Finally, the k/n vote gate provides an output event if at least k out of n inputs occur. The k/n

vote gate can be transformed to a branch of a fault tree using OR and AND gates. The symbols

for the gates are presented in Table 2.2.

Chapter 2. Fault Tree and Binary Decision Diagram Analysis

9

Table 2.2. Gate Symbols

Gate Symbol Gate Name Causal Relation

AND
Output event results if all input

event occur simultaneously

OR
Output event results if one or

more input events occur

NOT
Output event result if the input

event does not occur

n inputs

k

k/n vote
Output event results if at least k

out of n input event occur.

A house event is a special type of event employed for specific use within a fault tree analysis.

It can be turned on or off to specify the conditions present under a specific scenario. When a

house event is turned on (TRUE state) the event is presumed to have occurred and the

probability of that event is set to 1. When a house event is turned off (FALSE state) it is

presumed that the event has not occurred, and the probability is set to 0. If a house event is

turned on the gate that the house event inputs to is calculated normally. By turning a house

event off, the gate that the house event inputs to can be removed from the tree.

In current research house events are utilised to make parts of a fault tree functional or non-

functional when considering different system design options. For example, consider a water

deluge system that can fail if either its pump fails or the nozzle is blocked. The system can

have a pump fitted that can be chosen out of two samples – type 1 or type 2. Both scenarios

can be represented in one fault tree using two house events as shown in Figure 2.1a. By

turning one house event off the resulting fault tree will represent the failure causes of the

deluge system with the specified pump sample. Figure 2.1 b) shows the case when house

event PT1 has been turned off (a Type 1 pump has not been fitted) and house event PT2 set to

TRUE (Type 2 is fitted).

Chapter 2. Fault Tree and Binary Decision Diagram Analysis

10

Water Deluge
System Fails

Nozzle is

Blocked
Pump
Fails

NB

Type 1 Pump
is Fitted

PT1

Type 1 Pump
is Fitted

PT1

Type 1 Pump is

Fitted & Fails

Type 1
Pump Fails

PF

Type 1
Pump Fails

PF

Type 2 Pump is

Fitted & Fails

Type 2 Pump

is Fitted

PT2

Type 2 Pump

is Fitted

PT2

Type 2

Pump Fails

PFT2

Water Deluge

System Fails

Nozzle is
Blocked

Pump
Fails

NB
Type 2 Pump is
Fitted & Fails

Type 2 Pump
is Fitted

PT2

Type 2 Pump
is Fitted

PT2

Type 2
Pump Fails

PFT2

a) b)

Figure 2.1. Fault Trees with House Event(s)

A constructed fault tree provides a convenient format of the possible causes of a specific

system failure. Evaluation of the fault tree can be performed qualitatively and quantitatively

[2].

2.2.2. Qualitative Analysis

Qualitative fault tree analysis involves the identification of the causes of a specific system

failure which can occur due to failure of an individual system element or a combination of

failures of system elements. A set of basic events whose existence cause the top event to

occur is called a cut set. For example, a fault tree contains four basic events A, B, C and D.

Failure of components A and B or C and D can lead to the top event as shown in Figure 2.2.

As a result seven cut sets can be identified for this case: {A, B}, {C, D}, {A, B, C}, {A, B,

D}, {A, C, D}, {B, C, D}{A, B, C, D}.

A B D

TOP

G1

C

G2

A B D

TOPTOP

G1G1

C

G2G2

Figure 2.2. Example Fault Tree

Chapter 2. Fault Tree and Binary Decision Diagram Analysis

11

For larger systems the number of cut sets can dramatically increase. Therefore in order to

simplify the analysis consideration is usually given only to those cut sets that include the

smallest combination of basic events. From the given example it would be cut sets {A, B} and

{C, D}. The cut set {A, B, C} would not be considered. The cut set includes event C and its

state is irrelevant to system failure since the system fails due to the occurrence of A and B. A

cut set that can not be reduced and still ensures the existence of the top event is called a

minimal cut set.

The aim of qualitative analysis is to produce a list of minimal cut sets for a given top event.

Since each minimal cut set consists of a combination of component failures relevant to the

given top event, the list of minimal cut sets is unique to this top event. A number of basic

events in a minimal cut set defines its order. A one-component minimal cut set is called a

first-order minimal cut set, a two-component set defines second-order minimal cut set and etc.

In general, lower order minimal cut sets identify major contributors to system failure.

The top event can be represented in terms of a Boolean equation where fault tree events are

logic variables and the final result is a sum of products (s-o-p). This transformation provides

the list of all minimal cut sets relevant to the top event. One way of obtaining the s-o-p is

using the top-down approach. However in some cases the resulting s-o-p may not be minimal

and so the minimal cut sets cannot be obtained directly. Boolean reduction rules [7] need to

be applied to allow the extraction of the minimal cut sets.

2.2.3. Minimal Cut Set Algorithms

The top-down approach mentioned earlier for obtaining minimal cut sets is based on logic

Boolean operations together with substitution, expansion and reduction methods. Here each

AND gate implements the logical AND function or intersection and is represented by the

product (.). The OR gate is the logical OR function or union and is denoted by a sum sign (+).

Correspondingly the NOT gate is the logical NOT function or inverter which is denoted by a

horizontal bar over the variable to be inverted. Input events of each gate are variables of the

corresponding logic function.

The top-down approach is started by deriving a logic expression for the top event. The listed

Boolean events in the expression are then expanded by substituting in the logic expressions

appearing one level lower in the tree. To simplify the expansion process Boolean reduction

rules can be applied where necessary. The process is continued until the expression remaining

Chapter 2. Fault Tree and Binary Decision Diagram Analysis

12

has only basic events. If the resulting s-o-p expression is not minimal then Boolean Laws of

Algebra are applied. The obtained products are the minimal cut sets for the fault tree.

As an example consider the fault tree in Figure 2.3.

Figure 2.3. Example Fault Tree

The logical function for the top event TOP comprises of two Boolean events:

TOP = G1.G2

As G1 and G2 are gates they can be expanded into the following logic expressions:

G1 = G3 +G4, G2 = G5.A

Similarly expressions are substituted for G3 and G4 that results in the full expansion of gate

G1:

G1 = A.B + B +C.

The obtained expression is simplified and the number of terms in the equation is reduced. The

Absorption Law is used:

G1 = B + C

After the second Boolean event of the top logic function (G2) is fully expanded and Boolean

reductions rules are applied the TOP equation is reduced:

TOP = A.B.D + A.C

TOP

A B C

G1

G3 G4

G2

G5

B C D

A

TOP

A B C

G1G1

G3G3 G4G4

G2G2

G5G5

B C D

A

Chapter 2. Fault Tree and Binary Decision Diagram Analysis

13

This is the minimal form of the s-o-p. Each term is a minimal cut set. Thus for the given

example fault tree two minimal cut sets exist. One cut set is of order two, i.e. contains two

elements, {A, C} and the other one is of order three {A, B, D}.

Although the presented algorithm is not complex, the task to obtain the minimal cut sets for

larger systems can become computationally intensive. There are a number of alternative

techniques introduced to obtain minimal cut sets in a more efficient manner. For example,

computation time and the memory required for minimal cut set generation can be reduced by

employing BDDs [6], [8] since they provide a faster means of analysing fault trees. The

BDDs will be discussed in detail in Section 2.3.

2.2.4. Quantitative Analysis

The aim of the quantitative analysis of the fault tree is to quantify a number of parameters in

order to assess the system performance. It is used to calculate the probability and frequency of

occurrence for the top event. It may also provide importance measures which indicate the

contribution of specific basic events and their groups to the top event.

To quantify performance measures for a system, it is necessary to have the corresponding

information for its components. The means for quantification of component performance are

discussed in the following Sub-section 2.2.4.1

2.2.4.1. Parameters of Component Performance

A number of characteristics can be employed to describe component and system performance.

The most useful ones include a measure of time to first failure, i.e. reliability, and a measure

of expected up-time, i.e. availability.

For components that can be repaired, and so for which failure can be tolerated, a relevant

measure of performance is availability. Availability, A(t), is defined as the probability that a

component is functioning at a given point in time. It is the fraction of the total time that a

component is able to perform the required function. The complement of availability is

unavailability, Q(t) (Equation 2.1). It is the probability that a component is failed at time t.

() ()tAtQ −= 1 (2.1)

Reliability, R(t), is a relevant measure for components where failure cannot be tolerated, and

so the successful operation of the component over a stated period of time is an important

performance measure. It is the probability that a component will operate without failure for a

Chapter 2. Fault Tree and Binary Decision Diagram Analysis

14

stated period of time under specified conditions. The probability that a component fails to

work continuously over a stated time interval under specified conditions is known as its

unreliability, F(t), where:

() ()tRtF −= 1 (2.2)

2.2.4.2. Maintenance Policies

Unavailability of a component is also influenced by the way it is maintained. There are three

basic types of maintenance repair policies [7]:

 1. No repair.

 2. Unscheduled maintenance; repair is initiated when failure is revealed.

 3. Scheduled maintenance; repair is initiated when failure is discovered.

If a component is unrepairable, for example an aircraft part whilst in flight, then its

unavailability is equal to its unreliability. If it is considered that a components failure rate is

constant then the unavailability is:

() () tetFtQ λ−−== 1 , (2.3)

where λ is a constant conditional failure rate, a measure of the rate at which failures occur.

If a component undergoes unscheduled maintenance its repair is carried out when a failure is

revealed. Since the failure is immediately known the time to fix the failure includes repair

time only and no detection time is included. For constant failure and repair rates it can be

shown that the unavailability of the component is given by:

() ()()t
etQ

νλ

νλ

λ +−−
+

= 1 (2.4)

Here ν is a repair rate which is assumed to be constant.

The third type, i.e. scheduled maintenance is common for systems which are not continuously

operating, for example, protection systems. In this case a component failure will be revealed

if a system is maintained or it is in operation. The time that a component is in the failed state

will include the time it takes to identify the occurrence of a failure and the time needed to

repair the component. If again it is considered that the failure rate is constant, θ is the time

Chapter 2. Fault Tree and Binary Decision Diagram Analysis

15

between inspections and it is assumed that between inspections the component is effectively

non-repairable then the average component unavailability is:

()λθ

θ
λθ

λ

λθλθθ

−
−

− −−=

+=−= ∫ e

e
tdteQ

t
t

AV 1
1

1
1

1
1

00

 (2.5)

The average unavailability for components that undergo scheduled maintenance can be

approximated as follows:

+= τ

θ
λ

2
AVQ , (2.6)

where τ is the mean time to repair.

2.2.5. Assessment of System Performance

The fault tree is drawn for a particular failure mode of the system. Therefore the probability of

occurrence of the top event is the probability of that failure. The general method which gives

the exact probability of the top event existence is based on minimal cut sets and the Inclusion-

exclusion principle. Thus the top event probability (system failure probability) is given by:

=

=

U
c

N

i

isys CPtQ
1

)((2.7)

where P(Ci) is the probability that a minimal cut set i exists, NC is the total number of minimal

cuts set in the fault tree that can not be smaller than one, i.e. at least one minimal cut set has to

exist.

Expanding Equation 2.7 gives the Inclusion-exclusion formula:

() () () ()
cN

cN
cN

i

i

j

ji

cN

i

isys CCCPCCPCPtQ ∩∩−++∩−=
−

=

−

==

∑∑∑ ...1...)(21

1

2

1

11

I (2.8)

For example, consider the example fault tree presented in Figure 2.3. The fault tree has two

minimal cut set C1 = {A, C} and C2 = {A, B, D}. The expression for the calculation of the top

event probability when using the inclusion-exclusion principle is obtained as follows:

() () () () () () () ()

() () () () () () () () ()DPBPCPAPDPBPAPCPAP

DBACAPDBAPCAPCPCPCPCPtQsys

⋅⋅⋅−⋅⋅+⋅=

=−+=⋅−+=2121

Chapter 2. Fault Tree and Binary Decision Diagram Analysis

16

The increasing fault tree complexity results in more and more intensive computation in order

to evaluate the top event probability when using the inclusion-exclusion principle. For

exceedingly large problems a solution for the intensive computation problem could be the use

of approximations. Upper and Lower Bounds for system unavailability and the Minimal Cut

Set Upper Bound are the most commonly used approximation methods.

2.3. BINARY DECISION DIAGRAMS

2.3.1. BDD Architecture

With the BDD method the fault tree is first transformed into a BDD which encodes Shannon’s

decomposition [9] and represents the Boolean equation for the top event. It allows the

minimal cut sets to be obtained directly and the exact failure probability to be determined in

an efficient way.

A BDD is composed of a root vertex, non-terminal (internal) vertices and terminal vertices

which are connected by branches. Sometimes vertices are also called nodes and branches are

named edges. Terminal vertices end with the value 1 or 0 that corresponds to the system state,

while non-terminal vertices represent the corresponding basic events of the fault tree. Every

vertex has two branches with the assigned value 1 or 0. The branch with value 1 represents

failure of a basic event or vertex occurrence and the 0 branch indicates functioning of the

basic event or vertex non-occurrence. All the left branches leaving a vertex are the 1 branches,

where the right branches are assigned the value 0. Figure 2.4 represents an example of a

BDD.

Chapter 2. Fault Tree and Binary Decision Diagram Analysis

17

B

A

C

D1 0

1 0

0

Root Vertex

Non-terminal

Vertex

1 0

1 1

1

0 0

0

Terminal

0 Vertex

Terminal

1 Vertex

0 Branch1 Branch

B

A

C

D1 0

1 0

0

Root Vertex

Non-terminal

Vertex

1 0

1 1

1

0 0

0

Terminal

0 Vertex

Terminal

1 Vertex

0 Branch1 Branch

Figure 2.4. BDD Example

Fault tree cut sets can be directly found from its BDD. Every path through the diagram starts

at the root vertex and proceeds to a terminal vertex. All the paths terminating in a 1 state

yields the cut sets of the fault tree. A minimal cut set is formed by the vertices that lie on 1

branches on the way to a terminal 1 vertex. For example, there are 2 paths that terminate in a

1 state in the BDD presented in Figure 2.4: { BA, } and { DCA ,, }. Since vertex A lies on the

0 branch in the second path it is not included in the minimal cut set. Thus the given BDD has

two minimal cut sets: { BA, } and { DC, }.

2.3.2. BDD Construction

Two methods are commonly used to convert a fault tree to the appropriate BDD. The first

method is based on the top event logic function, while the second is derived using

If-Then-Else (ite) technique. The logic function method requires a considerable amount of

simplification by applying Boolean reduction laws after each function evaluation. These

problems can be alleviated when using the second method.

The ite structure for the BDD construction was first introduced by Rauzy [6]. The method

derives from Shannon’s formula which is applied at each gate of the fault tree. To illustrate

the formula consider a Boolean structure function for the top event f(X). Pivoting about any

variable xi, the Shannon formula can be written as

() 21 fxfxf ii +=X (2.9)

where f1 and f2 are Boolean functions with xi = 1 and 0 respectively. The ite structure that

corresponds to Equation 2.9 is ite(xi, f1, f2). It means if the Boolean variable xi fails then

Chapter 2. Fault Tree and Binary Decision Diagram Analysis

18

consider logic function f1 else consider logic function f2. Since the 1 branch in the BDD

represents failure, f1 lies on the 1 branch and f2 appears on the 0 branch. The diagrammatic

representation of the ite structure is in Figure 2.5.

xi

f1 f2

1 0

xi

f1 f2

1 0

Figure 2.5. Representation of ite(xi, f1, f2)

Consider

()2,1, ffxJ ite= and ()2,1, ggyH ite=

The following operation procedures can be defined for the ite structures:

()
() y x if2op2,1op1,op

y x ifop2,op1,op

==

<=

gfgfxHJ

HfHfxHJ

ite

ite
 (2.10)

Here op represents the Boolean operations such as AND (·) and OR (+). The introduced

procedures can be simplified using the following identities:

() ()
()

()
() ().2,1,2,1,0

,12,1,1

,02,1,0

,2,1,2,1,1

ffxffx

ffx

ffx

ffxffx

iteite

ite

ite

iteite

=+

=+

=⋅

=⋅

 (2.11)

Construction of the BDD from a fault tree is implemented according to the following

conversion procedure:

Basic events are given an ordering, such as x < y or A < B (example from Figure 2.4).

Usually a top-down ordering procedure is employed. According to the scheme the basic

events placed higher up the tree are listed first and are “less than” those basic events

appearing further down the tree. There are other ordering schemes such as top-down left-right,

top-down left-right repeated, depth-first or priority depth first. The chosen ordering scheme

may influence the size of the resulting BDD.

Assign each basic event xi in the fault tree the ite structure ite(xi, f1, f2).

Chapter 2. Fault Tree and Binary Decision Diagram Analysis

19

Consider each gate in the fault tree in a bottom-up approach.

Derive the ite structure for the top event and simplify the expression.

To draw the BDD successively break down each ite structure in the top event into its 1 and 0

branches.

As an example of the BDD construction method the fault tree in Figure 2.6 is considered.

TOP

B C D

G1

G2 G3

B

A

TOP

B C D

G1G1

G2G2 G3

B

A

Figure 2.6. Example Fault Tree

To order the basic events a top-down, left-right ordering is used resulting in A < B < C < D.

Each event is assigned an ite structure. Working from the bottom of the tree to the top

operation procedures (2.10 and 2.11) are applied:

() ()
()()0,0,1,,

0,1,0,1,2

CB

CBG

iteite

iteite

=

⋅=

() ()
()()0,0,1,,

0,1,0,1,3

DB

BBG

iteite

iteite

=

⋅=

()() ()()

() ()()
()()()0,0,1,,1,,

0,0,1,0,1,,

0,0,1,,0,0,1,,

321

DCB

DCB

DBCB

GGG

iteiteite

iteiteite

iteiteiteite

=

+=

+=

+=

Finally the top event is expressed:

() ()()()
()()()()0,0,0,1,,1,,,

0,0,1,,1,,0,1,

1.TOP

DCBA

DCBA

GA

iteiteiteite

iteiteiteite

=

⋅=

=

Chapter 2. Fault Tree and Binary Decision Diagram Analysis

20

Once the ite structure for the top event is given the BDD is constructed by successively

dividing each ite structure into the corresponding 1 and 0 branches. According to the given

ordering event A is considered first and it becomes the root vertex. The structure

()()()0,0,1,,1,, DCB iteiteite lies below its left branch and its right branch is the terminal 0

vertex. According to the ordering next variable B follows, which is encoded in the vertex

beneath the 1 branch of the A vertex. Thus the structure ()()()0,0,1,,1,, DCB iteiteite is

analysed. Then ()()0,1,,1, DC iteite will lie below the left branch of B and the right branch will

terminate in the terminal 0 vertex. Following event C is considered and its branches are

determined by breaking down the structure ()()0,1,,1, DC iteite . Its left branch terminates in the

terminal vertex 1 and the right branch terminates in the last non-terminal vertex representing

event D. The D vertex is finally broken down into terminal vertices 1 and 0. When all basic

events have been considered and all branches end with terminal vertices the construction

process is terminated. The resulting BDD is presented in Figure 2.7.

B

A

C

D
1

0

1 0

1 0

1

1

1

0

0

0

0 B

A

C

D
1

0

1 0

1 0

1

1

1

0

0

0

0

Figure 2.7. BDD for the Fault Tree in Figure 2.6

2.3.3. Reduction

The size of the fault tree influences the size of the BDD. However different basic event

orderings applied to the same fault tree will result in different sized BDDs. Therefore a poor

ordering can result in an inefficient BDD. One way of producing a more efficient diagram can

be the application of reduction procedures for repeated nodes.

Two reduction operations can be performed in order to remove the irrelevant repeated events.

For example, if a node X has two equivalent nodes lying below its left and right branches,

then node X can be deleted and all of its incoming edges need to be directed to a node

attached to its left branch. Figure 2.8 illustrates the procedure. Another reduction operation is

Chapter 2. Fault Tree and Binary Decision Diagram Analysis

21

applicable when two nodes are equivalent and their incoming edges are directed to different

nodes where one of them lies beneath another as it is shown in Figure 2.9 a). In this case one

of the repeated nodes is deleted and its incoming edge is directed to the remaining node. The

diagram resulting from this reduction is shown in Figure 2.9 b).

W

V

X

1

1 0

1

1

0

0

0

X

1 0

1 0

0

V

X

1

1

1

0

0

0

0

W

V

X

1

1 0

1

1

0

0

0

X

1 0

1 0

0

W

V

X

1

1 0

1

1

0

0

0

X

1 0

1 0

0

V

X

1

1

1

0

0

0

0

V

X

1

1

1

0

0

0

0

a) b)
Figure 2.8. BDD Reduction Operation 1

V

X

1

1

1

0

0
W

0

1 0

0
X

1 0

0 1

V

X

1

1

1

0

0

0

W

1 0

0

V

X

1

1

1

0

0
W

0

1 0

0
X

1 0

0 1

V

X

1

1

1

0

0
W

0

1 0

0
X

1 0

0 1

V

X

1

1

1

0

0

0

W

1 0

0

V

X

1

1

1

0

0

0

W

1 0

0

a) b)
Figure 2.9. BDD Reduction Operation 2

2.3.4. Quantitative BDD Analysis

On the contrary to the fault tree approach, the BDD method used for the exact solution of the

top event avoids the need to use approximations. The probability of the top event is obtained

directly from the diagram which makes this method computationally efficient. If employing

the BDD method system performance measures, such as the earlier mentioned system failure

probability (the top event probability), unconditional system failure intensity or importance

measures, can be found [10]. In this section the BDD methodology to evaluate the system

failure probability is discussed.

Chapter 2. Fault Tree and Binary Decision Diagram Analysis

22

As discussed, the BDD is constructed employing the ite structure which is derived from

Shannon’s formula. Given a structure function f(X) for the top event, the probability is

obtained by taking the expectation of each term of Equation 2.9:

()[] [] () []211 fEqfEqXfE ii ⋅−+⋅= (2.12)

where []ii xEq = is the probability that event i has occurred.

Iteratively expanding the terms in Equation 2.12, i.e. calculating expectations for each node,

results in a sum of disjoint products. In the resulting expression each product corresponds to a

particular path through the BDD to a terminal 1 vertex. Therefore the probability of

occurrence of the top event, sysQ , is obtained by calculating the sum of the probabilities of the

disjoint paths through the BDD. The disjoint paths are found by traversing all paths from the

root vertex to terminal 1 vertices and including all events which lie on the 1 and 0 branches

for each of the basic events.

Consider the BDD presented in Figure 2.10. In order to find the top probability, Equation

2.12 is applied to each node in the BDD in a bottom-up approach. Thus the nodes which have

both terminal vertices are considered first:

() [] () DDD qqqFEDF =⋅−+⋅=⇒= 01160,1,6 ite ,

() [] () EEE qqqFEEF =⋅−+⋅=⇒= 01130,1,3 ite ,

Then node F5 is considered. Its ite structure is:

()0,6,5 FCF ite= .

Applying Equation 2.12 and substituting in the probability of node F6, the probability of node

F5 is found:

[] [] () DCCC qqqFEqFE ⋅=⋅−+⋅= 0165 .

In the same manner the probabilities for nodes F4 and F2 are evaluated:

() [] () () DCEEDCEE qqqqqqqqFEFEF ⋅⋅−+=⋅⋅−+⋅=⇒= 11145,1,4 ite .

() [] ()() ()

() .1

1123,4,2

EDCEB

EBDCEEB

qqqqq

qqqqqqqFEFFBF

+⋅⋅−⋅=

⋅−+⋅⋅−+⋅=⇒= ite

Chapter 2. Fault Tree and Binary Decision Diagram Analysis

23

Finally the probability of occurrence of the top event, i.e. the sum of the probabilities of the

disjoint paths through the BDD is found:

() [] ()() () ()()

() () () .111

1111;2,4,1

EDCEBADCEA

EDCEBADCEEA

qqqqqqqqqq

qqqqqqqqqqqFEFFBF

+⋅⋅−⋅⋅−+⋅⋅−⋅=

+⋅⋅−⋅⋅−+⋅⋅−+⋅== ite

A

E

1 0

B
1 0

01

E

1

1 0

0
C

1 0

0

1

D

1 0

0

1

F1

F2

F4 F3

F5

F6

A

E

1 0

B
1 0

01

E

1

1 0

0
C

1 0

0

1

D

1 0

0

1

F1

F2

F4 F3

F5

F6

Figure 2.10. Example BDD

2.4. SUMMARY

The operation of a system can be considered from two standpoints: enumeration of various

ways for system success, or enumeration of various ways leading to system failure. A primary

goal of system reliability and safety analysis is to identify the causal relationships between

events resulting in system failure and to find ways to reduce their numbers and impact by

system redesigns and upgrades. In this chapter two methods have been introduced which are

widely used in the field of reliability engineering.

The fault tree provides the diagrammatic failure logic of the system. Hence it can be used to

identify problematic areas in the system design. Fault trees can be used for both qualitative

analysis (to find system minimal cut sets) and quantitative system analysis (to evaluate system

performance parameters), for example, system unavailability. However fault tree analysis for

complex systems can be computationally very intensive. In order to reduce calculations

approximations may be introduced, which however leads to the loss of accuracy. BDDs were

introduced as a more efficient method for quantitative fault tree analysis.

Chapter 2. Fault Tree and Binary Decision Diagram Analysis

24

The BDD method converts a fault tree to the BDD which encodes a Boolean equation for the

top event. By using the BDD both the qualitative and the quantitative analysis can be

achieved. The BDD method enables the exact system unavailability to be determined without

explicitly using minimal cut sets which makes the method computationally very efficient.

However the size of the BDD depends on the given ordering of the basic events used to built

the BDD. Badly chosen ordering may result in a computationally-intensive BDD structure

which reduces the efficiency of the analysis.

Both the fault tree analysis and the BDD technique are employed in this research. Since a

fault tree provides a diagrammatic description of the failure logic it is used as a design tool for

system design representation. BDD methods are computationally efficient mechanisms for

quantitative fault tree analysis, therefore the analysed system unavailability value for an

individual design is found using the BDD methodology. The application of these techniques is

discussed in Chapters 4 and 7.

3. TECHNIQUES FOR DESIGN

OPTIMISATION IN RELIABILITY

ENGINEERING

3.1. INTRODUCTION

Optimisation Theory is widely used to solve engineering problems where the emphasis is on

the maximisation or minimisation of a certain goal. From an engineering point of view one

part of optimisation is the evaluation of design proposals. The second part is the generation of

new improved designs. The goal of optimisation is to find the optimal solution given the

properties of the system being designed and the behaviour of the system model [11].

A general mathematical form of the optimisation problem can be written as follows:

()Xfmax(min) , (3.1)

subject to inequality and equality constraints:

() ;,...,1,0 Iigi =≥X (3.2)

() .,...,1,0 Jjh j ==X (3.3)

The vector X (),...,,(21 nxxx=X) is referred to as vector of design variables. The objective

function, ()Xf , given by Equation 3.1 measures the quality of the solution. The objective

function as well as the constraint functions defined by Equations 3.2 and 3.3 may be linear or

nonlinear functions of the design variables X. These functions may be explicit or implicit in X

and may be evaluated using analytical or numerical techniques [12].

The optimisation of a system design is a classical optimisation problem in the area of system

reliability engineering [13]. In general, the objective of such problems is to optimise a

function-of-merit of the system design (reliability, cost, mean time to failure, etc) subject to

known constraints on resources (cost, weight, volume, etc) and/or system performance

requirements (reliability, availability, mean time to failure, etc.) [14]. A design is considered

to be optimal if all the possible means available have been explored to enhance the reliability

of the system under certain objectives, operational requirements and allocated resources.

Chapter 3. Techniques for Design Optimisation in Reliability Engineering

26

The diversity of system structures, resource constraints and options for reliability

improvement lead to the construction and application of several optimisation techniques [13].

The most common optimisation techniques which have been applied in the optimisation of

system reliability, and have had some success in solving particular optimisation problems, are

these: linear programming, nonlinear programming, discrete optimisation, dynamic

programming, modern heuristsics (metaheuristics) and multi-objective optimisation

techniques. In some cases to find an optimal solution a group of optimisation techniques can

be employed. Conversely, it is almost unrealistic to solve all reliability optimisation problems

using one method.

In this chapter the basic concepts behind the listed optimisation techniques are considered.

Examples of the applications of the techniques in reliability optimisation are also provided.

Moreover, where appropriate a critical review, with regards to their application to reliability

optimisation problems, is expressed. Section 3.2 covers linear programming. Nonlinear

programming methods are discussed in Section 3.3. In Section 3.4 concepts and application

examples of discrete optimisation methods are provided. Section 3.5 discussed meta-

heuristics. The genetic algorithm method, an optimisation technique employed in this

research, is discussed in more detail in Section 3.5.4.

3.2. LINEAR PROGRAMMING

Linear programming (LP) is the fundamental mathematical optimisation method. A number of

optimisation problems can be expressed as linear programming problems. For example,

nonlinear problems can be solved through a series of linear programming problems.

LP deals with problems where f(X) is a linear function of n variables and the constraints are

also linear. There are two main classes of algorithms to solve LP problems. The first class

contains simplex-type algorithms, the second is the class of interior-point methods [15]. The

simplex methods move from one extreme point on the boundary (vertex) of the feasible

region to another along the edges of the boundary iteratively. This involves identifying the

constraints (lines) on which the solution will lie [16]. An interior-point algorithm, in contrast

to the classical Simplex algorithm, searches for a feasible solution point through the interior

of the feasible region [17].

LP in reliability optimization is used for solving an optimisation problem with a linear form

of non-negative variables subject to a system of linear inequalities or a nonlinear optimisation

Chapter 3. Techniques for Design Optimisation in Reliability Engineering

27

problem having been transformed into a linear form. Kolesar [18] considered an optimal

assignment of redundant components in systems which are subject to random failure. In

general, the objective of the problems solved was to maximise the system reliability through

assignment of redundant components subject to constraints on the total weight, cost, and so

forth of the system. The constraint functions were of the linear form. The problems analysed

included systems subject to a single type of failure and systems subject to both the possibility

of premature operation and the possibility of failure to operate on command. In each case the

problem was expressed as a linear programme.

Hsieh in [19] investigated reliability problems subject to multiple separable linear constraints

of series–parallel redundant systems, where each subsystem had multiple component choices.

A simple linear programming approach was proposed that approximates the integer nonlinear

programming problem. The numerical results presented demonstrated the efficiency of the

proposed approach, however it could not be guaranteed that the approach derived the global

optimums. The main limitation of the approach was with regards to the requirements defined

for constraints; they had to be linear and separable.

Most of the reliability optimisation problems have a nonlinear objective function and/or

nonlinear constraints. Therefore the greatest disadvantage of the LP technique with regards to

its application in reliability optimisation problems is the supposed linearity of the objective

and constraint functions. Another disadvantage of LP techniques is that they are very time-

consuming when solving large scale optimisation problems.

3.3. NONLINEAR PROGRAMMING

Nonlinear programming (NLP) involves problems where either the objective function, the

constraints, or both are nonlinear. There are three main approaches for solving a NLP

problem. The first approach involves methods with an iterative feasible direction search. This

approach is useful for problems involving linear constraints. Methods from the second

approach are based on Lagrange multipliers and can be easily implemented when the system

involves single equality constraints. Using the third approach the solution of a constraint

optimisation problem is obtained by solving a sequence of unconstrained optimisation

problems, whose objective functions are penalised for violating the constraints. In this case

solutions to the unconstrained problems approach an optimal solution of the original

constrained problem [13].

Chapter 3. Techniques for Design Optimisation in Reliability Engineering

28

Most of the reliability optimisation problems are discrete, mixed integer and nonlinear

optimisation problems. Such problems can be solved by using NLP methods if appropriate

rounding off procedures for integer variables are utilised. Everett III in [20] used the Lagrange

multiplier method to optimise the redundancy of an m-stage system, each stage of which

consisted of a number ni of parallel (redundant) components. The formulated objective was to

choose the stage redundancies (ni 's) in such a manner as to minimise the cost of achieving

some stated system reliability (or alternately, to maximise the system reliability subject to

constrained total cost). Hwang et al. [21] proposed an augmented Lagrangian method and a

reduced gradient method for system reliability optimisation. Li and Haimes in [22] proposed a

3-level decomposition approach for the optimal allocation of available resources to

subsystems in order to maximise the reliability of a large system with a general network

structure. The developed methodology greatly reduces the complexity of the large problem by

solving several smaller-dimensional sub-problems iteratively. The sub-problems can be

solved by any existing nonlinear programming method.

Both the generalised reduced gradient and Lagrangian methods are promising in solving

reliability optimisation problems [23]. The Lagrangian method is not limited to differentiable

functions and can be applied in situations involving the maximisation of any type of function

over any set of strategies, discrete or continuous, numerical or non-numerical, with

constraints that can be represented as bounds on real valued functions over the same strategy

set [20]. However most of these techniques are problem-orientated. Therefore since they are

designed for solving certain problems, it is difficult to adopt them for solving other problems

[24]. Moreover, it is not always possible to solve larger scale problems using these

approaches.

3.4. DISCRETE OPTIMISATION

Discrete optimisation problems involve discrete (integer) decision variables. It includes

integer programming (IP), mixed integer linear programming (MILP) and mixed integer

nonlinear programming (MINLP) problems [25]. In IP problems decision variables are scalar

and integer. In MILP optimisation problems the linear objective function and linear

constraints are analysed, and integer as well as continuous decision variables are involved.

MINLP optimisation problems are similar to NP problems, however MINLP involves integer

and continuous decision variables.

Chapter 3. Techniques for Design Optimisation in Reliability Engineering

29

The majority of reliability optimisation problems are nonlinear integer programming

problems. Since their solutions need to be integer they are more difficult to solve than general

nonlinear programming problems. Discrete optimization approaches, such as dynamic

programming, branch-and-bound techniques and integer programming methods are the most

widely used exact optimisation approaches for solving such problems.

Yalaoui et al. [26] proposed a new dynamic programming method for the reliability

redundancy allocation problem for series-parallel systems, where components and their

reliability belong to a finite set. The solved problem is decomposed into as many sub-

problems as subsystems. The global problem consists of determining the reliability target of

the subsystems. In the obtained method sub-problems and the global problem are solved by a

dynamic programming technique and result in convergence towards an optimal solution. Ng

and Sancho used a hybrid ‘dynamic programming/depth-first search’ algorithm to solve

redundancy allocation problems for series-parallel systems [27]. It computes a global optimal

solution to the optimisation problem and provides an alternative to the traditional lagrangian

approaches which often fail to identify an optimal solution of integer optimisation problems.

The most efficient branch-and-bound method for redundancy allocation problems at present is

the method developed by Nakagawa et al. [28]. Sung and Cho in their paper [29] considered a

reliability optimization problem for a series system with multiple-choice constraints

incorporated for each subsystem to maximize the system reliability subject to the system

budget. In the approach some solution properties were characterized, such as lower and upper

bounds of the system reliability, to reduce the solution space in advance. A branch-and-bound

solution algorithm was then derived based on the reduced solution space to search for the

optimal solution. The authors stated that the proposed algorithm can be applied to various

practical-size field systems. Ha and Kuo in [30] presented an efficient branch-and-bound

approach to solve the redundancy allocation problem with the objective of system reliability

optimisation. The main advantage of the proposed method is flexibility. It does not rely on

any assumptions of linearity, a single constraint or separability, which make the method

adaptable to various applications. Here a problem is considered to be separable if the system

reliability is equal to the sum of reliability of the subsystems and the total amount of resources

is equal to the sum of the consumption of resources at each subsystem. The authors

demonstrated that the method is superior to the existing exact algorithms for redundancy

allocation problems in terms of computation time.

Chapter 3. Techniques for Design Optimisation in Reliability Engineering

30

Misra introduced an efficient technique for a variety of reliability optimization problems,

which involve integer programming formulation [31]. The algorithm is based on functional

evaluations and a limited search close to the boundary of resources. This procedure has the

following advantages over the other existing techniques: it requires only functional

evaluations and it does not require the conversion of the original decision variables into

binary variables, there are no assumptions on the separability, differentiability and

convexity/concavity of the objective functions and/or constraints.

The advantage of the discrete methods is that they give an exact optimal solution. Integer

programming methods also yield integer solutions. However the transformation of nonlinear

objective functions and constraints into linear forms so that integer programming can be

employed can be a difficult task. Moreover the various integer programming techniques do

not guarantee to find optimal solutions in a reasonable time [13]. In general, computational

complexity of the discrete methods is very high. Branch-and-bound methods do not exploit

separability to reduce the computation. Moreover the effectiveness of the methodology

depends on the problem specifics. Most branch-and-bound algorithms are confined to linear

constraints with an objective function that need not be linear. The implementation of DP is

limited by the number of constraints and the system structures it can be applied to. It is not

applicable to non-separable objective or constraint functions which arise in reliability

optimization problems where complex structures are considered. It also has dimensional

difficulties. For a system which has more than two constraints, the computational complexity

of dynamic programming increases exponentially. Thus development of a good discrete

method for reliability optimisation problems remains a challenge.

3.5. META-HEURISTIC METHODS

The major focus of recent work in reliability optimisation is in the development of modern

heuristic algorithms [32]. Often these algorithm are referred to as metaheuristics or general

heuristics [33]. As described in [34] “a heuristic is a technique which seeks good (i.e. near-

optimal) solutions at a reasonable computational cost without being able to guarantee either

feasibility or optimality, or even in many cases to state how close to optimality a particular

solution is”. These methods facilitated solution of optimisation problems that were previously

difficult or impossible to solve. The most popular of these tools are genetic algorithms (GA),

random search (RS), simulated annealing (SA), tabu search (TS) and particle swarm

optimisation (PSO). They consist of general search principles organized in a general search

strategy.

Chapter 3. Techniques for Design Optimisation in Reliability Engineering

31

Heuristics compute approximate or locally optimal solutions of an optimisation problem.

Despite this fact they have some advantages over exact methods. They are more flexible than

exact algorithms and are usually used to solve more complicated and larger sized problems.

3.5.1. Simulated Annealing

The idea of the SA originates from thermodynamics and metallurgy which was originally

proposed as a simulation of the cooling of materials in a heat bath, the process known as

annealing. It is an approach to search for the global optimal solution that attempts to avoid

entrapment in poor local optima by allowing an occasional uphill move to inferior solutions.

The method involves probabilistic transitions among the solutions of the problem. During the

iteration process a random solution x is drawn in the neighbourhood of the current solution xn.

If the objective function value of the solution is not worse than the one of the current solution

(f(x)≤ f(xn) in the minimisation case), x becomes the next current solution. Otherwise, either x

becomes the current solution with probability p(n) or xn remains the current solution with the

complementary probability 1-p(n). Typically, p(n) decreases with time and with the size of

deterioration of the objective function [33].

To obtain the optimal schedule of testing and maintenance of safety equipment in nuclear

power plants Cepin proposed an optimisation method based on the SA algorithm [35]. The

algorithm for minimisation of risk by finding the optimal test placement times was used to

evaluate several examples. One of them was the high – pressure injection system that consists

of seven valves and three pumps, which provides water to two injection paths [36]. The

results have shown that it is possible to reduce risk by employing the developed algorithm.

The most important result of the method possibly is the prevention of schedules of equipment

outages, which result in high risk.

Recently, Kim et al. in [37] applied the SA to search for the optimal solution of reliability-

redundancy allocation problems. The objective of the problem solved was to maximize the

system reliability subject to three nonlinear resource constraints. Three types of systems were

analysed: the series system, the series-parallel system and the complex (bridge) system. It was

assumed that the system had identical components in the subsystem and one failure mode.

The results of the conducted numerical experiments suggest that the best solution for the SA

algorithm are better then most of the solutions considered in the comparative analyses.

SA is effective when a problem is highly complex without having any special structure.

Although the SA gives satisfactory solutions for complicated combinatorial optimisation

Chapter 3. Techniques for Design Optimisation in Reliability Engineering

32

problems, it has a major disadvantage. The SA involves a lot of computation effort with a

large number of function evaluations and tests for solution feasibility.

3.5.2. Tabu Search

Tabu search (TS) can be described as an alternative to SA and a form of neighbourhood

search. However the neighbourhoods in TS are assumed to be symmetric, i.e. 1x is a

neighbour of 0x if and only if 0x is a neighbour of 1x [34]. The main idea of this method is to

explore and analyse various regions of the search space. Using this method in the searching

process at any stage memory (information about solutions visited up to that stage) rather than

probability plays the important role [15]. The main parameters of the TS algorithm are the

history record H (definition and usage), determination of the candidate neighbourhood set and

the evaluation function f(H, x). These parameters are usually changed and fitted to the

problem that is to be solved. As with SA techniques the TS technique can be improved by

combining it with other methods. Reference [38] details such combined algorithms.

Kulturel-Konak et al. in [39] have used the TS to solve redundancy optimisation problems.

The series system of s independent k-out-of-n:G subsystems have been analysed. The

algorithm was applied for two types of problems. The first problem maximised the system

reliability given overall restrictions on the system cost and weight. Problem two minimised

the system cost given overall restrictions on the maximum system weight and the minimum

system reliability. It was also assumed that system weight and cost were linear combinations

of component weight and cost. Moreover the TS was designed with the use of a penalty

function which allowed search in the infeasible region. The application of the algorithm

demonstrated encouraging results. When compared to GAs, the algorithm resulted in a

superior performance in terms of best solutions found and reduced variability and greater

efficiency.

Ouzineb et al. in [40] also developed an efficient TS based algorithm to solve redundancy

allocation problems. The algorithm was applied to determine the minimal system cost

configuration under availability constraints for multi-state series–parallel systems. The system

analysed could have a range of performance levels from perfect functioning to complete

failure. The elements of the system were characterized by their cost, performance and

availability which belonged to a finite set. The algorithm proceeded by dividing the search

space into a set of disjoint subsets, and then by applying TS to each subset. Comparison of

Chapter 3. Techniques for Design Optimisation in Reliability Engineering

33

numerical results for the test problems from previous research showed that the proposed TS

out-performed GA solutions, in terms of both the solution quality and the execution time.

TS is very useful for solving large complex optimisation problems that are very difficult to

solve by exact methods. However it is rather difficult to define effective memory structures

and memory-based strategies which are problem dependant. Thus development of an effective

TS method requires thorough understanding of the problem and some numerical

experimentation.

3.5.3. Particle Swarm Optimisation

Particle swarm optimisation (PSO) is a stochastic global optimization technique inspired by

social behaviour of bird flocking or fish schooling. It was first introduced by Kennedy and

Eberhart in [41]. PSO is initialised with a population of random solutions within a feasible

range, called particles or individuals. In the algorithm during the learning procedure each

individual particle keeps track of its coordinates in the search hyperspace which are associated

with two factors: the best solution ever found (personal best) and the overall best fitness value

and its location (global best). During the optimisation process at each time step, the velocity

each particle moves toward its personal best and global best is changed. The velocity is

dynamically adjusted by a random term, with separate random numbers being generated for

acceleration toward personal best and global best.

Coelho [42] presented an efficient PSO algorithm to solve the reliability–redundancy

optimisation problem. Two examples of reliability–redundancy design problems were

considered: a complex bridge system and a specific system, and an overspeed protection

system for a gas turbine. The latter was formulated as a mixed-integer nonlinear programming

problem. Simulation results demonstrated that the proposed PSO performed well for the two

examples of mixed-integer programming in reliability–redundancy applications. The solutions

obtained by the PSO were better than the previously best-known solutions available in the

literature.

The algorithm has very few parameters. It is very simple and easy to implement. Moreover it

has a very efficient global search procedure. However, the main disadvantage of the algorithm

is its poor local search ability. It has slow convergence in the refined search stage and

prematurity. The PSO may fail to find the required optima in cases when the problem to be

solved is too complicated and complex [43].

Chapter 3. Techniques for Design Optimisation in Reliability Engineering

34

3.5.4. Genetic Algorithms

The GA was developed by J. Holland and his associates at the University of Michigan in the

1960s and 1970s. In 1975 Adaptation in Natural and Artificial Systems - the primary

monograph about GAs by J. Holland was published [44]. GAs belong to the group of

evolutionary algorithms simulating the natural evolutionary process of living beings and they

are perhaps the most widely known type of these algorithms. GAs differ from conventional

optimisation techniques in a number of fundamental ways. They work with a coding of the

solution set, not solutions themselves. They also deal with populations of solutions rather than

with single solutions. GAs use fitness function and probabilistic transition rules in the search

process.

GAs are stochastic global search methods based on the mechanics of natural genetic variation

and natural selection. Thus terminology used in GAs is analogous to biological systems. For

example, strings that are used in the optimisation algorithm are analogues to chromosomes in

biological systems. Genes form chromosomes and are located at particular locus (positions)

on the chromosome. Analogically in a GA variables correspond to genes and a total package

of strings forms a structure. Describing biological genetics the term alleles is used, which

means that genes can have some values, thus in a GA alleles are the possible values of

variables. To describe the collection of chromosomes that form the structure of the organism

biologists use the term genotype and phenotype as a physical expression of the structure. In

terms of the GA a genotype is a coded string and phenotype represents the decoded set of

parameters [25], [45]. The GA and corresponding optimisation terms are summarised in

Table 3.1.

Table 3.1. Explanation of GA Terms

Genetic Algorithm Term Optimisation Term

Chromosome Solution (string, individual)

Genes (bits) Part of solution, a member of solution vector

Locus Position of gene

Alleles Values of gene

Phenotype Decoded solution

Genotype Encoded solution

The GA is a meta-heuristic method and it does not guarantee to find the global solution, but it

has been theoretically and empirically proven that the method provides accurate and reliable

optimisation results. Recently, GAs have received considerable attention and have been

proven to be a powerful tool for solving a large number of complex optimisation problems.

The algorithms are applied in such areas of reliability engineering as 1) redundancy allocation

Chapter 3. Techniques for Design Optimisation in Reliability Engineering

35

and structure optimisation, 2) optimal network design, 3) maintenance and surveillance

optimisation [24].

Coit D.W. and Smith A.E. used a GA to optimise series-parallel system design configurations

when there are multiple component choices available for each of several k-out-of-n:G

subsystems [46]. The problem considered was to select the optimal combination of parts and

levels of redundancy to minimise system cost subject to reliability and weight constraints, or

alternatively, to maximise reliability subject to cost and weight constraints. Tavakkoli-

Moghaddam et al. [47] also solved the series-parallel systems reliability optimisation problem

using a GA. The objective was to select the best redundancy strategy, component, and

redundancy level for each subsystem in order to maximise the system reliability under

system-level constraints.

Yun and Kim in [48] considered redundancy allocation problems in series systems. The

authors adopted a GA approach to solve a problem in which redundancy can be available at

all levels in the system. The objective of the problem presented was to maximise system

reliability given the constraints of available resources such as cost, weight and volume. The

results obtained from the illustrative example showed that considering modular redundancy

could be better than using only component redundancy.

Hsieh et al. presented GAs for reliability design problems where both the component

reliabilities and redundancy allocations were considered. The systems analysed included

series, series-parallel and complex (bridge) systems [49]. The objective of the problems

solved was to maximise the system reliability, while maintaining feasibility with respect to

nonlinear constraints. The constraints considered included cost, weight and constraints on the

products of volume and weight. The authors reported that the solutions of the numerical

examples performed were better than previously best-known solutions.

Some other authors employed GAs to analyse redundancy optimisation problems for multi-

state systems [50], [51]. Levitin et al. in [50] considered multi-state systems that have a range

of performance levels and represented a general redundancy optimisation problem for such

systems. In solving the optimisation problem three system component characteristics were

used: nominal performance level, cost and availability. The objective of the optimisation was

to minimise total cost subject to the required reliability or availability. Levitin [52] also

discussed a redundancy optimisation problem for a multi-state system of 2 subsystems. The

objective of the work was to choose elements from a list of available equipment in order to

Chapter 3. Techniques for Design Optimisation in Reliability Engineering

36

optimise system design subject to availability constraints. The optimisation problem was

formulated as an investment cost minimisation problem which was solved using a GA.

A GA based optimisation approach has also been applied to optimise surveillance and

maintenance of components in order to improve system reliability [53], [54], [55], [56].

Munõz et al. in [53] presented a new approach aimed at the global and constrained

optimisation of surveillance and maintenance of components based on risk and cost criteria.

Lapa et al. in [54, 55] proposed a method for preventive maintenance scheduling optimisation

of standby systems where a GA was employed as an optimisation technique. The goal of the

approach was to improve the average availability of the system when optimising the

preventive maintenance strategy. The proposed method was applied to a nuclear system.

Marseguerra and Zio in [57] examined the approach of the optimal maintenance and repair

strategies of an industrial plant considering some reliability and economic constraints. The

GA was employed to search for an optimum combination of plant safety and economic

performance that was evaluated for each possible maintenance and repair strategy.

There are many other GA applications in engineering reliability optimisation problems. For

instance, Monga and Zuo in [58] introduced a reliability based design model for a series-

parallel system with deteriorating components in order to optimise the life cycle cost of the

system. To model the economic effects of the system life cycle acquisition costs, preventive

maintenance costs, minimal repair costs and system’s salvage value at the time of disposal

were incorporated into the model. The objective of the problem was formulated as the

minimisation of system cost subject to both active and non-active constraints. Dengiz et al.

[59] developed a GA approach with specialised encoding, initialisation and local search

operators to optimise the design of communication network topologies. The objective of the

analysed problem was to minimise network cost given a minimal reliability requirement.

Ren and Dugan in [60] adopted a GA in a fault tree method to determine the optimal design

configuration of a reliable system. The presented methodology could be employed to analyse

optimal system design from two different design-viewpoints: to maximise system reliability

given cost, weight and/or physical size constraints and to minimise system cost subject to

reliability constraints. Andrews and Bartlett [61] also combined GA and fault tree approaches

to optimise the design of a Firewater Deluge System. The objective of the problem was to

minimise the system unavailability subject to cost and spurious system shutdown constraints.

Chapter 3. Techniques for Design Optimisation in Reliability Engineering

37

3.5.4.1. Advantages and Disadvantages of a GA

GAs are one of the most widely used metaheuristics. They have become popular techniques to

solve various optimisation problems. GAs can be used to solve complex discrete optimisation

problems with any kind of non-linear objective functions and constraints defined in discrete,

continues or mixed search spaces. They do not require much mathematical information about

the optimization problem [62]. Only a few assumptions on the objective as well as the

constraint functions are involved. GAs use only the objective function itself to measure the

fitness score of each solution. Therefore they can be very effective when the objective

function is not available in a closed mathematical form.

In order to find a global optimum trade-off between the exploration and exploitation needs to

be found. GAs combine elements of direct and stochastic search which can make a

remarkable balance between exploration and exploitation of the search space [45], [63].

Therefore they can be are very effective at performing global search and obtaining global

optima [53], [62]. GA parameters, such as population size, maximum generation, crossover

and mutation rates affect a balance between exploitation and exploration in the search space.

However it takes much time to tune the unknown parameters [64].

GAs produce a variety of good quality solutions simultaneously, which is important in the

decision-making process. They are also successful in locating potentially optimal regions.

However they provide heuristic solutions since they are not designed for precisely locating

the optimal solution. Moreover, they involve a lot of computational effort [13]. In order to

reduce the effects of GAs drawbacks, algorithms can be hybridized with other domain-

dependent heuristics when solving specific optimisation problems.

3.5.4.2. Fundamentals of the GA

A GA has been chosen as an optimisation technique for this research project. The choice of

the GA can be attributed to a number of factors. GAs use a fitness function itself and do not

require derivative or other auxiliary quantities. They can be very effective when the objective

function is not available in a closed form. This factor is very important since the objective

function represents the probability of system failure and is evaluated using FTA in the

optimisation algorithm proposed in this research. Moreover, GAs are not problem orientated

and can be easy implemented and adapted to solve different reliability optimisation problems

for a range of systems considering both constrained and unconstrained optimisation cases.

This trait allows GAs to be applied to a range of safety systems.

Chapter 3. Techniques for Design Optimisation in Reliability Engineering

38

General Structure of a Genetic Algorithm

GA - differently from conventional search techniques - starts with an initial set of random

solutions, i.e. chromosomes, called the population. The chromosomes evolve through

iterations, called generations. At each iteration, the chromosomes are evaluated using some

measure of fitness. New chromosomes of an auxiliary population, i.e. offspring chromosomes,

are formed by merging two chromosomes from the current generation using a crossover

operator and/or modifying a chromosome using a mutation operator. A new generation of

chromosomes is formed by selecting some of the parents and offspring on the basis of their

fitness values and rejecting others so as to keep the population size constant. After several

generations, the algorithm converges to the best chromosome, which represents the optimum

or suboptimal solution of the problem.

Let P(i) and C(i) be parent and offspring populations in the current generation i. The general

form of a GA can be described through the following steps [62]:

Step 1: Make initial population P(i), i = 0;

Step 2: Evaluate each chromosome in population P(i), i = 0;

Step 3: Choose parents from population P(i) to yield C(i);

Step 4: Evaluate each chromosome in population C(i);

Step 5: Select P(i +1) from P(i) and C(i)

Step 6: If the maximum number of generations is reached, stop and return the best

chromosome; if not, go to Step 3.

Initialisation

A GA starts with an initial population of say N encoded representations of solutions, i.e.

chromosomes. Decision variables of each solution are coded using a coding technique;

Holland suggested using binary (0 and 1) coding, but other coding techniques can be

implemented, for example, integer or real-valued coding [34], [65]. The binary coding of

decision variables has been used in the GA for this research. Using this technique every

variable is converted into a binary string of corresponding length (number of digits). The

number of bits (denoted with nb) required to code each variable is calculated using the

following formula:

12)(2 1 −≤−<− nbnb
ab , (3.4)

where [a, b] is the range of the decision variable.

Chapter 3. Techniques for Design Optimisation in Reliability Engineering

39

A nb-digit binary string has
nb2 possible 0-1 combinations, i.e. it can represent

nb2 different

discrete values. There are some rules that give equivalence between integer and binary

numbers, for example, a discrete variable having V allowable discrete values can be

transformed to a binary string using the formula:

∑
=

− +=
n

i

iiICHj

1

1 12)(. (3.5)

Here ICH(i) is the value of the ith digit in the binary string, and n is the smallest integer

satisfying V
n >2 [66].

These binary strings, one for each decision variable, are concatenated to form one

chromosome that represents one solution. As an example, suppose variables]15,1[1 ∈x and

]18,1[2 ∈x are used in the problem. To calculate the number of bits in a chromosome

Formula (3.4) is used where:

 (15 - 1) = 14

 2
2
 < 14 < 2

4
 – 1 → n1 = 4

 (18 - 1) = 17
 24 < 17 < 25 – 1 → n2 = 5

 n = n1 + n2 = 9

The length of the chromosome is calculated as 9 bits which can be represented as follows:

The corresponding values of variables 1x and 2x are calculated using Formula (3.5):

Binary Number Decimal number

 00011 =x 9

 010102 =x 11

N chromosomes form the population of solutions with which the GA operates. The values of

the initial solutions are usually generated randomly but several other methods can be used

9 bits

 0 0 0 1 0 1 0 1 0

4 bits 5 bits

Chapter 3. Techniques for Design Optimisation in Reliability Engineering

40

[66]. For example, only solutions satisfying constraints can enter the initial population. The

number of solutions in the initial population may vary. There are no strict rules as to the

required population size for a problem, but it is known that this influences the algorithm

performance. Some theoretical work has been done on this. Goldberg [45] showed that the

optimal size for the population of binary strings depends on the length of the strings and the

dependence is exponential, i.e. the optimal size of the population grows exponentially with

the length of the string [34].

Reproduction

Once the initial population is determined reproduction is performed. Sometimes this process

is also called selection. Both these terms can be used as it is the process which determines the

number of times a particular individual is chosen for reproduction and, therefore, the number

of offspring that an individual will produce. During this process selection and reproduction

are performed. Selection is made according to the fitness values of each string (or individual).

The fitness function is used to evaluate the fitness values of the strings. This function

transforms the objective function value into a measure of relative fitness. A general form of

the fitness function is

))(()(xfgxF = , (3.6)

where f is the objective function, g is the transformation function that changes the value of the

objective function f to a non-negative number and F is the resulting relative fitness. In

applications of the GA several forms of transformation can be used, such as linear

transformation or power law scaling [67]. A commonly used transformation is that of

proportional fitness assignment, which is sometimes interpreted as a probability of the string

to be selected for the next generation. The transformation can be written as

∑
=

=
N

i

i

i

i

f

f
F

1

, (3.7)

where N is the population size, fi is the objective function value of the individual i and Fi is

the fitness value.

The rules that determine how individuals are selected for reproduction depend on the

selection method. The most popular and easiest are roulette wheel selection methods. The

methods are based on the link between the fitness value of each string in the population and

the size of the particular segment of the determined interval which is usually interpreted as a

Chapter 3. Techniques for Design Optimisation in Reliability Engineering

41

roulette wheel slot. The interval is determined as the sum of the individuals’ (strings’)

selection probabilities or the sum of fitness values over all the individuals in the population.

The current range [0, sum] is divided into segments and the size of each segment corresponds

to the fitness value of the associated individual. To select a string, a random number is

generated from the interval [0, sum] and an individual, that is associated with the segment

spanning the random number, is selected.

There are two types of roulette wheel selection method. Both are described as stochastic

sampling, but one type of method uses simple replacement of individuals and the other partial

replacement. Employing stochastic sampling with replacement uses the same segment size

and selection probability throughout the selection phase. Any individual string from the

population is selected as described in the procedure previously outlined. In stochastic

sampling with partial replacement each time an individual is selected for reproduction the

segment associated with it is resized, i.e. the size of the segment is reduced by 1. This resizing

process is continued until the segment size becomes equal to zero.

Crossover

Crossover is the main genetic operator, sometimes called recombination. The operator enables

the creation of new strings at each generation. The strings that are created by crossover differ

from that which are generated during initialisation. During initialisation new strings are

generated randomly and new ones that are obtained during crossover have some identical

parts of strings from which they are created. Thus, the crossover operates on two strings at a

time, selected during the reproduction stage, (wv ss ,). The next step that follows depends on

the form of crossover that is used. For example, using a single-point recombination operator

an integer position, k, is selected uniformly at random from the range [1, l-1]. Here l is the

length of the strings in the population. Strings xs and ys are crossed over at that kth position

and the resulting two offspring are created. If genes of the string vs are),...,,(21 lvvv and

),...,,(21 lwww are genes of the string ws (}1 ,0{ , ∈ji wv) then the new offspring are:

),..,,,..,(11 lii wwvv + and),..,,,..,(11 lii vvww + [69]. For example, consider two parent binary

strings:

.01001011

11101100

2

1

=

=

P

P

Let the randomly elected crossover point be i = 2 and the two offspring would be:

Chapter 3. Techniques for Design Optimisation in Reliability Engineering

42

11101111

.01001000

2

1

=

=

O

O

It is the simplest form of recombination. There are a number of more complicated variations

of this GA operator, such as multipoint crossover or uniform crossover. For multipoint

crossover, n non duplicate crossover positions are chosen, i.e. crossover points are chosen

randomly and sorted into ascending order. Then, parts of the strings between successive

crossover points are swapped between the two parents and two new strings are produced.

Between parents the sections of the strings between the first and the second, the third and the

forth, i.e. between j and j+1 crossover points, are changed. Here j is an odd number of a sorted

sequence of crossover points and it is less than the length of the string, i.e. j < l . For instance,

let the crossover points be 2, 4 and 6. Then multipoint crossover produces two new offspring:

P1=00¦11¦10¦11

P2=11¦01¦00¦10,

O1=00¦01¦10¦10

O2=11¦11¦00¦11.

The crossover rate, pc, used in the GAs controls the expected number of chromosomes that

undergo the crossover operation. pc is equal to the ratio between the number of offspring

produced in each generation and the total number of chromosomes N in the population. Thus

in total pc × N chromosomes will undergo the crossover at each generation. If a crossover rate

is high more of the solution space can be explored and settling for a false optimum can be

avoided. However if the rate is too high computation time might be wasted in exploring

unpromising regions of the solution space [62].

Mutation

Mutation is one more genetic operator used in the process of creating offspring chromosomes.

It is utilised to recover good genetic material which can be lost during selection or crossover

operations [67] and therefore prevents convergence to local optima. For mutation operation, a

single chromosome is selected and at some mutation point chosen (at random) the element of

the chromosome is modified. If the string is coded in binary then at mutation point the bit

changes its state: 0→1 or 1→0. For example, mutating the third bit in string P1=00111011

leads to the new offspring O1=00011011.

Chapter 3. Techniques for Design Optimisation in Reliability Engineering

43

The mutation operator when one element of the chromosome is changed at a time is called

uniform mutation. More variations of the mutation operator are used in the GA. Multiple

uniform mutation is described as uniform mutation of n randomly selected elements of the

string. This number n is also selected at random and is from interval [1, 2, …, l], where l is

the length of the string. Employing Gaussian mutation all elements of the chromosome are

changed. The rule that is used to change them can be written as:

k
P
k

O
k

fss += , (3.8)

where O

ks is the kth element of the mutated offspring, P

ks is the kth element of the parent

chromosome and kf is a random number drawn from a Gaussian distribution [68].

In general, mutation in the algorithm is randomly applied with a probability, i.e. mutation

rate, pm, to the population of new offspring that were created during the crossover operation.

Colin in [34] surveyed some different opinions regarding the application of mutation operator

in GAs. For example, it was suggested that either crossover or mutation should be applied at

each iteration. Another suggestion was to use crossover at the beginning iterations and as

chromosomes begin to converge to start using just mutation. Mutation rate usually varies from

0.001 to 0.01 [67].

Replacement

Replacement operator, sometimes called reinsertion, is employed to form a population which

becomes a parent population for the next generation of offspring chromosomes. Once the

population is formed the sequence of genetic operators is repeated resulting in the new set of

offspring solutions. Usually, the number of chromosomes in a parent population is kept fixed

throughout the generation process.

A number of strategies exist on how to form a new generation of parent solutions. The basic

approach as given in [45] is to utilise the nth generation of offspring solutions as a parent

population for the (n+1)th generation of solutions. In this case all chromosomes in the current

parent population are replaced with the current offspring chromosomes.

Another replacement strategy is to substitute only certain chromosomes of the current parent

population with the offspring solutions. For example, the least fit members of the parent

population can be replaced with their offspring [67]. Similarly, the fittest two out of four

parents involved in the crossover operation and the fittest two offspring individuals are

selected for the new population. The replacement of the parent solutions can also be random.

Chapter 3. Techniques for Design Optimisation in Reliability Engineering

44

In this case two children replace two individuals randomly chosen from the entire population

[69].

In the steady-state GA [70] individuals from both current parent and offspring populations are

first combined into one population. Consider N is the defined size of a population and No is

the size of an offspring population. Then each individual in the combined population is

ranked based on the fitness value. The No worst individuals in the ranking are removed and

the best N individuals remain in the new parent population for the next generation.

3.6. SUMMARY

The primary goal of the optimisation of a system design in reliability engineering is to find

the best way to increase system reliability. A number of accepted principles can be

implemented to improve system reliability. However, at the same time, the steps taken will

normally consume resources. Thus it is essential to find a balance between system reliability

and resources consumption.

Numerical methods for optimisation have been developed extensively having a range of

applications in diverse fields. In this chapter the approaches most commonly used in

reliability engineering were introduced followed by examples of application. The review

suggests that the use of each method has its practical advantages and disadvantages. Some

methods are more efficient and accurate than the others. However, none of the methods have

proven to be sufficiently superior to the others and the choice of the algorithm needs to be

made according to the problem solved.

Most of the reliability optimisation problems are discrete, mixed integer and nonlinear

optimisation problems. Due to their complexity, practical application of various approaches

can be limited. To summarise:

Application of the linear programming techniques requires the objective and constraint

functions to be linear. A problem formulated as nonlinear programming problem can be

transformed into a linear problem. However, such transformation results in an increased

number of variables and constraints to be treated therefore becomes more difficult in the sense

of the computation time and memory space needed.

Most of the nonlinear and discrete techniques are problem orientated. Therefore, since they

are designed for solving specific problems, it is difficult to adopt them for solving a wide

Chapter 3. Techniques for Design Optimisation in Reliability Engineering

45

range of problems. Moreover, only a few nonlinear algorithms have proven effective when

applied to large-scale problems.

The discrete methods require much computational effort to determine an exact optimal

solution. Computational complexity of the methods is very high. In addition, the various

integer programming techniques do not guarantee that optimal solutions can be obtained in a

reasonable time.

Meta-heuristics, which can be used to solve complex discrete optimisation problems, also

exhibit some drawbacks. SA involves a lot of computation effort with a large number of

function evaluations and tests for solution feasibility. In TB memory structures and memory-

based strategies are problem dependant. PSO may fail to find an optimum if the problem to be

solved is too complicated and complex. Using GA requires tuning the unknown parameters.

Owing to numerous reports of its successful application, GAs have attracted more attention

recently than other heuristic methods in reliability optimization problems. GA has also been

chosen as an optimisation technique for this research. The choice was made considering

development of the algorithm with its application to solve design optimisation problems for a

range of systems, including safety and phased mission systems. GAs are not problem

orientated and can be easily adopted to solve different reliability optimisation problems for a

range of systems. Furthermore, the objective function of the optimisation problems solved

cannot be defined in a closed mathematical form. GAs use an objective function itself and do

not require its derivative or other auxiliary quantities. Only values of an objective function are

required to represent the search space, which means that the algorithms can incorporate other

methods for the evolution of objective function values. The objective of the problem solved

was to define the system design that contributes to the minimisation of system failure within

the context of pre-defined design constraints and resources. GAs can solve complex and large

scale optimisation problems with any kind of non-linear objective functions and constraints

defined in discrete, continues or mixed search spaces. The GAs are capable to perform global

search and determine global optima. These properties suggest the GAs have a strong potential

to determine solutions required in engineering system reliability problems for the work

presented here.

4. GENERAL SYSTEM DESIGN OPTIMISATION

ALGORITHM

4.1. INTRODUCTION

Safety systems usually installed in safety–critical control systems, such as nuclear power

plants, oil platforms or chemical processes, prevent the occurrence of catastrophic

consequences caused by a system failure. They have a specific functioning principle, i.e. such

systems work on demand. A high likelihood of functioning on demand for a safety system can

be ensured by altering its design. For this purpose redundancy techniques can be introduced

or certain components may be replaced with ones with better reliability characteristics [71].

However, design alterations and therefore the level of system reliability improvement are

usually subject to a number of limiting factors, such as cost or weight. Thus, the problem is to

construct a system design that would improve its availability within the constraints imposed

on its design.

In this chapter a General System Design Optimisation Algorithm (GSDOA) is introduced that

determines an optimal design configuration for a safety system. The objective of the approach

is to identify an optimal system design that contributes to the improvement of system

availability within the context of pre-defined design constraints and resources. The introduced

GSDOA is designed to be applicable to a range of safety systems. The approach combines an

optimisation technique with both qualitative and quantitative system analysis methods, such

as fault tree analysis (FTA) and binary decision diagrams (BDDs).

Fault trees provide a schematic description of the possible combinations of system conditions

involving system components that could lead to system failure [72]. Therefore FTA has been

employed as a means to represent system design cases and evaluate their failure probabilities

by analysing the failure logic of the system. Fault tree modification patterns (FTMPs) have

been developed to provide standardised elements to build a single fault tree representing all

possible design cases under consideration which is then modified to identify specific design

configurations. A BDD is a directed acyclic graph representing a Boolean Function. The

quantitative analysis of fault trees can be performed by transformation into BDDs [6]. The

BDD based approach is considered to be a computationally more efficient method. Thus in

the design optimisation algorithm the BDD method has been implemented to quantify system

failure.

Chapter 4. General System Design Optimisation Algorithm 47

The objective function of the problem solved cannot be defined in the closed mathematical

form (see Section 4.3.1) and therefore the Genetic Algorithm (GA), a meta-heuristic

optimisation technique, has been chosen as the optimisation technique to perform the

optimisation part of the approach. GAs are stochastic global search methods which are based

on the mechanics of natural genetic variation and natural selection [45]. The principles of the

GA allow easy implementation and adaptation of the algorithm according to a solved

problem. GAs use a fitness function itself and do not require derivative or other auxiliary

quantities. Moreover, only values of an objective function are required to represent the search

space which means that the algorithms can incorporate other methods for evolution of

objective function values. Finally, GAs easily handle constrained optimisation problems [24].

The chapter is organised as follows. Section 4.2 details rules on how to transform the fault

tree and incorporate causes of failure for all given design alternatives of the analysed system

in a single fault tree. The quantification process of the resulting fault tree is also discussed. In

Section 4.3. the developed algorithm and the programme code are detailed. At the end of the

chapter a summary of the developments is provided.

4.2. FAULT TREE MODIFICATION METHODOLOGY

A fault tree provides a schematic description of the possible causes of a specific system

failure mode. Each event of the fault tree defines a dynamic change of state of a system

element. Thus, if a system design is altered and new components are introduced the resulting

fault tree for the new design system will also include new events representing failures of the

new system components.

When considering a number of different design cases it is time-consuming to construct and

then analyse a fault tree for each individual design. The problem can be resolved by using a

fault tree representing all possible design alterations. This idea was first suggested by

Andrews and Pattison [73]. A fault tree representing all possible design variations includes

house events. The house events are employed to switch on or off different branches of the

fault tree to model the causes of system failure for each design alternative. Thus the use of the

house events overcomes the need to construct an individual fault tree for every possible

design alternative.

In this research the problem of constructing a fault tree comprising all possible designs is

extended. General rules which define changes in a fault tree according to the design options

Chapter 4. General System Design Optimisation Algorithm 48

specified for the optimisation problem have been developed. These rules are not adapted to

one particular system and they have the potential to be employed to represent all considered

possible design variations in one fault tree for any analysed system.

4.2.1. Design Alteration Options

A number of alterations regarding the structure and operation of a safety system influence its

performance capabilities. System operation can be influenced by the time taken to maintain

the system and how often maintenance actions are taken. Design alterations that can affect

system availability are redundancies introduced at component or subsystem levels and also

different component-type selections.

By introducing parallel redundancy, system components are duplicated. As a result, the

failure of the system occurs if and only if all redundant components fail. It is also possible to

introduce so called k-out-of-n redundancy. Here n defines the number of redundant

components and k is the number of working components that are needed for successful system

operation. In this case a system will be subject to failure if n-k+1 ≤ n components fail. If k is

equal to 1 then it is equivalent to the simple redundancy case. Both redundancy types can be

implemented at component or sub-system level. Considering system design optimisation the

problem is to determine the redundancy level necessary subject to the available resources.

It is also possible to improve system availability by replacing a component with another

component selected from a group of possible alternatives. Each possible candidate can have

different characteristics such as failure rate, cost, weight or time taken for maintenance. The

problem in making a decision about candidate suitability appears when the choice between

different characteristics of the components needs to be made. For example, a choice needs to

be made between a more reliable component which is expensive and a less reliable

component which is considerably cheaper.

When considering a system design, an initial design will be specified. Along with this will be

the options for alterations. These options are defined as structural design variables for

quantification purposes since they define changes being introduced to the initial system

design. In this research three parameters associated with structural design changes are utilised,

defined as n, k and t and referred to as design variables.

n corresponds to redundancy allocation. For example, consider the possibility to install up to 4

pumps instead of one. The maximum value of n for the structural design variable associated

Chapter 4. General System Design Optimisation Algorithm 49

with the replacement of the pump would be equal to 4. Hence the design consideration is the

number of redundant components, n, which can vary from 1 to 4.

As it was mentioned earlier, another option to change the system is to use k-out-of-n

redundancy. If k as a design variable parameter is not defined its default value is equal to 1.

Otherwise, it is assumed that it can be equal to any whole number in the interval (1, n). It

provides the choices of different k-out-of-n redundancy requirements.

The final design change considered in this study is where a different component type selection

is implemented. The parameter t is used to identify a possible component type from a number

of possible options. It is also possible to introduce a selection option of a component type for

new redundant components.

4.2.2. Fault Tree Modification Patterns

4.2.2.1. Overview

The fault tree comprising all design alternatives is constructed using modification rules which

are implemented in the fault tree of the initial system design. The initial system design fault

tree, as well as the resulting one comprising all design alternatives, are considered to be

coherent fault trees and to have two types of gates, AND and OR.

The rules for building a fault tree with all design alternatives implemented are defined as

FTMPs. A FTMP defines a fault tree part representing all possible design variations

introduced for the replacement of one chosen component. When solving a system design

optimisation problem, a number of system components can be chosen to be replaced and

therefore several FTMPs will be applied.

The fault tree part introduced with the FTMP incorporates groups of new basic events linked

together by house event(s). Groups of house events corresponding to different FTMPs are

independent from each other. Having general numbering rules for gates, basic events and

house events introduced in the resulting fault tree structures enables the implementation of

FTMPs in the fault tree of any system. Specific numbering rules exist for each FTMP.

During the analysis phase the fault tree that has been built using FTMPs is modified to

represent particular designs. Values of house events introduced with the FTMP are set to alter

the corresponding fault tree part by switching certain branches on and off so that only one

possible design alternative is modelled. This is repeated for each FTMP implemented.

Chapter 4. General System Design Optimisation Algorithm 50

Each modification pattern can represent either one or two or three structural design variables

and is defined by the following three parameters. mn is the maximum possible number of

redundant components, i.e. the largest value of a design variable n (n=1,2,…,mn). mt is the

maximum number of possible different component types or the largest value of a structural

design variable t. Parameter mk defines a redundancy type and corresponds to design variable

k. There are five FTMPs defining all possible component replacement cases. Each

replacement is possible at both component and subsystem level. A FTMP is identified

according to the values of three parameters mn, mt and mk:

Pattern 1:mn > 1, mt = 1, mk = 1; (parallel redundancy);

Pattern 2: mn > 1, mt = 1, mk = mn; (k-out-of-n redundancy);

Pattern 3: mn = 1, mt > 1, mk = 1; (type change);

Pattern 4: mn > 1, mt > 1, mk = 1; (parallel redundancy and type change);

Pattern 5: mn > 1, mt > 1, mk = mn; (k-out-of-n redundancy and type change);

Here the value of the parameter mk is either equal to mn, representing a k-out-of-n redundancy

of components where k ≤ n, or it is equal to 1 and represents a parallel redundancy.

Application of each pattern is discussed in more detail in the following sections (Sections

4.2.2.1 –4.2.2.5). The fault tree for the simplified fire protection system (Figure 4.1) is used

as an example. The pump has been chosen as a replaceable component. Therefore, the

corresponding basic event ‘Pump Fails’ is replaced with a new fault tree structure for every

pattern introduced. When making fault tree alterations at event level one common rule applies

to all patterns, that is an OR gate replaces the chosen basic event. The gate is numbered as

Gmax+1, where Gmax defines the maximum gate number in the initial fault tree. Note that in

all discussions the numbers in the gate symbols in the fault trees are used as gate reference

numbers.

Fire Protection

System Fails

Fire Detector

Fails

Water Deluge

System Fails

Nozzles

Blocked

Pump

Fails

NBPF

FD

1

2

Fire Protection

System Fails

Fire Detector

Fails

Water Deluge

System Fails

Nozzles

Blocked

Pump

Fails

NBPF

FD

11

22

Figure 4.1. Fire Protection System Fault Tree

Chapter 4. General System Design Optimisation Algorithm 51

4.2.2.2. Parallel Redundant Elements (Pattern 1)

Pattern 1 defines the fault tree structure comprising possible design alternatives representing

different numbers of redundant elements. For example, a chosen component can be replaced

with up to mn redundant elements. In the resulting new part of the fault tree mn house events

will be incorporated. Every house event is coupled with the corresponding fault tree structure

providing the possible combinations of the causes of failure for i redundant components

leading to the system failure. In other words, each house event indicates a design case where i

(i=1, 2, …, mn) redundant elements are fitted in the system. It is also acceptable that the basic

event chosen to be replaced remains incorporated in the new fault tree structure. It specifies

failure of the component which can be referred to as component number 1 in the group of

redundant components. The flowchart of the algorithm for implementation of Pattern 1 is

shown in Figure 4.2.

Figure 4.2. Flowchart for the algorithm of Pattern 1

The links between the house events introduced in the resulting new structure of the fault tree

are explained through the analysis of the application of Pattern1 for the simplified fire

Chapter 4. General System Design Optimisation Algorithm 52

protection system. In this illustration it is considered that the existing pump can be replaced

with either 2 or 3 redundant pumps. The option to keep only one pump is also possible. Thus

in order to construct the fault tree for the system with 3 design alternatives Pattern 1 is

employed where mn = 3. The obtained fault tree is shown in Figure 4.3.

As seen in Figure 4.3, a new OR gate replaces the chosen basic event. The original basic

event remains in the fault tree. Thus, employing Pattern1 mn-1 new basic events are

introduced. ‘Pump 2 fails’ and ‘Pump 3 fails’ are the two new events for the case analysed.

Correspondingly three house events are also introduced. The state of each house event is to be

defined so that only one possible design alternative is represented. The following rule is used

for the Pattern1:

if iHE = TRUE; (i = 1,2,…,mn)

then jHE = FALSE; (j = 1,2,…i-1,i+1,…,mn).

Here iHE and jHE defines the ith and jth house events respectively. For instance, if in the

given example the house event 2PF is set to TRUE then the house events 1PF and 3PF are in

the FALSE state, which means the resulting fault tree defines the causes of failure for a fire

protection system which has two redundant pumps fitted.

Fire Protection
System Fails

Fire Detector
Fails

Water Deluge
System Fails

Nozzles
Blocked

Pump(s)
Fail(s)

NB

FD

1

2

3

6

3 Pumps are
Fitted & Fail

3 Pumps are
Fitted

3PF

1 Pump is

Fitted

1PF

4

1 Pump is
Fitted & Fails

Pump 1

Fails

PF

Pump 1

Fails

PF

8

3 Pumps
Fail

Pump 2
Fails

PF2

Pump 3

Fails

PF3

5

2 Pumps are
Fitted & Fail

2 Pumps are
Fitted

2PF

Pump 1
Fails

PF

7

2 Pumps
Fail

Pump 2

Fails

PF2

Fire Protection
System Fails

Fire Detector
Fails

Water Deluge
System Fails

Nozzles
Blocked

Pump(s)
Fail(s)

NB

FD

11

22

33

6

3 Pumps are
Fitted & Fail

6

3 Pumps are
Fitted & Fail

3 Pumps are
Fitted

3PF

1 Pump is

Fitted

1PF

1 Pump is

Fitted

1PF

4

1 Pump is
Fitted & Fails

4

1 Pump is
Fitted & Fails

Pump 1

Fails

PF

Pump 1

Fails

PF

Pump 1

Fails

PF

8

3 Pumps
Fail

Pump 2
Fails

PF2

Pump 3

Fails

PF3

Pump 1

Fails

PF

Pump 1

Fails

PF

8

3 Pumps
Fail

8

3 Pumps
Fail

Pump 2
Fails

PF2

Pump 2
Fails

PF2

Pump 3

Fails

PF3

Pump 3

Fails

PF3

5

2 Pumps are
Fitted & Fail

2 Pumps are
Fitted

2PF

Pump 1
Fails

PF

7

2 Pumps
Fail

Pump 2

Fails

PF2

5

2 Pumps are
Fitted & Fail

5

2 Pumps are
Fitted & Fail

2 Pumps are
Fitted

2PF

2 Pumps are
Fitted

2PF

Pump 1
Fails

PF

Pump 1
Fails

PF

7

2 Pumps
Fail

7

2 Pumps
Fail

Pump 2

Fails

PF2

Altered Fault Tree StructureAltered Fault Tree Structure

1HE 2HE 3HE

Figure 4.3. Pattern 1 Application Example for Fire Protection System

Chapter 4. General System Design Optimisation Algorithm 53

4.2.2.3. k-out-of-n Redundancy (Pattern 2)

Pattern 2 is similar to Pattern 1 in the way that it is employed to alter the initial fault tree in

replacing one system element with a number of redundant elements. However, in this case k-

out-of-n redundancy is used where k and n are both design variables, i.e. not defined a priori.

It means the resulting fault tree represents all design alternatives for all possible combinations

of n and k values. The flowchart of the algorithm for Pattern 2 is shown in Figure 4.4.

In this case two groups of linked house events are introduced. Assuming that up to mn

redundant components are introduced, each house event from the first group indicates a

design case where i (i = 1,2, …, mn) elements are fitted in the system. The second group of

house events is used to define the minimum number of possible failures of the redundant

elements causing the system failure (j), i.e. j= mn –mk+1, mk = 1,2,…, mn. The new fault tree

structure also has mn -1 new basic events plus the initial replaceable basic event.

Figure 4.4. Flowchart for the algorithm of Pattern 2

To illustrate the case, the Fire Protection System example is considered where up to two

redundant pumps can be introduced and k-out-of-2 redundancy can be implemented. The fault

Chapter 4. General System Design Optimisation Algorithm 54

tree representing the causes of failure for all possible design alternatives is given in Figure

4.5. The house event 1PF (1HE) set to TRUE defines the case when only one pump is used.

Accordingly the house event 2PF (2HE) in a state TRUE is associated with branches of the

fault tree modelling the causes of the system failure when two pumps are fitted. The house

event PR (2_1HE) from the second group is introduced to represent the case when j = 2, i.e.

when 1-out-of-2 or parallel redundancy is used. Accordingly, the house event k2R (2_2HE)

identifies the design case where 2 pumps are required to function for successful operation of

the system, i.e. where j = 1 and failure of either pump causes the Fire Protection System

failure.

Fire Protection
System Fails

Fire Detector
Fails

Water Deluge
System Fails

Nozzles

Blocked

Pump(s)

Fail(s)

NB

FD

11

22

33

1 Pump is
Fitted

1PF

4

1 Pump is
Fitted & Fails

4

1 Pump is
Fitted & Fails

Pump 1
Fails

PF

Pump 1
Fails

PF

5

2 Pumps are
Fitted & Fail

5

2 Pumps are
Fitted & Fail

2 Pumps are
Fitted

2PF

Altered Fault Tree StructureAltered Fault Tree Structure

Failure when 2
Pumps Fitted

6

Parallel Redundant

Pumps are fitted

PR

7

Parallel Redundant
Pumps are Fitted & Fails

8

k-out-of-2 Redundant
Pumps are Fitted & Fails

k-out-of-2 Redundant
Pumps are Fitted

k2R

2 Pumps
Fail

9

2 Pumps
Fail

Pump 1
Fails

PF

Pump 2
Fails

PF2

1010

Pump 1

Fails

PF

Pump 2
Fails

PF2

1HE 2HE

2_1HE 2_2HE

Figure 4.5. Pattern 2 Application Example for Fire Protection System

The rule defining links between house events in the first group is the same as the one used for

the Pattern1. The rule defining the states of the house events in the second group is as

follows:

 if i_kHE = TRUE, (i_k = 1,2,…,i)

 then i_lHE = FALSE, (i_l = 1,2,….,i_k–1, i_k+1,…i) and

Chapter 4. General System Design Optimisation Algorithm 55

 j_lHE = FALSE, (j_l = 1,2,…,j; j = 1,2,…i-1,i+1,…, mn)

Here i_kHE and i_lHE define the corresponding kth and lth house events from the second

group which are linked with the ith house event from the first group. Similarly, j_lHE is the

lth house event from the second group which is linked with the jth house event (set to state

FALSE) from the first group of house events. According to these rules only two house events

can be in a TRUE state while the rest of them are set to FALSE.

4.2.2.4. A Different Component Type Selection (Pattern 3)

Pattern3 is used to construct a fault tree structure where a different component type selection

is implemented. A variable mt associated with this pattern identifies the number of possible

component types. Each of the mt incorporated house events is coupled with a basic event. The

basic event indicates failure of the component with specific characteristics indicating the type

of the component. There are also mt-1 new basic events in the fault tree, since the basic event

chosen to be replaced is incorporated in the new fault tree structure and defines failure for the

component of type 1. The flowchart of the algorithm for implementing the choice for a

different type component is shown in Figure 4.6.

Do i = 1 to

mt

Terminate

type: AND gate

number of input gates: 0

number of input events: 2

Input Event No. 1

Input Event No. 2

Gate TG + i:

name: RE_1_i

type: basic event

name: MH + i

type: house event

state: FALSE

Do i = 1
to mt

name: TG + i

Input Gate No. i

type: OR gate

number of input gates: mt

number of input events: 0

Top Gate TG:

names of input gates

Figure 4.6. Flowchart for the algorithm of Pattern 3

Chapter 4. General System Design Optimisation Algorithm 56

The pattern with mt=3 applied for the replacement of the pump in the example Fire Protection

System introduces the fault tree where failure causes for three design cases are incorporated

(Figure 4.7).

Altered Fault Tree StructureAltered Fault Tree Structure

Fire Protection
System Fails

Fire Detector

Fails

Water Deluge

System Fails

Nozzles

Blocked

Pump

Fails

NB

FD

11

22

33

6

Type 3 Pump is
Fitted & Fails

Type 3 Pump
is Fitted

PT3

Type 1 Pump
is Fitted

PT1

Type 1 Pump
is Fitted

PT1

4

Type 1 Pump is
Fitted & Fails

Type 1
Pump Fails

PF

Type 1
Pump Fails

PF

5

Type 2 Pump is
Fitted & Fails

Type 2 Pump

is Fitted

PT2

Type 2 Pump

is Fitted

PT2

Type 2

Pump Fails

PFT2

Type 3
Pump Fails

PFT3

Figure 4.7. Pattern3 Application Example for Fire Protection System

The rule for defining the links between the introduced house events is identical to the one

used for Pattern1. If one of mt house events is set to TRUE the rest of them have a state

FALSE. For example, if the house event PT3 is set to TRUE then the rest of the two house

events PT1 and PT2 are defined as FALSE. For this case the resulting fault tree represents the

Fire Protection System where a type 3 pump is installed.

4.2.2.5. Selection Option of a Component Type for New Redundant Components

(Pattern4 and Pattern5)

When considering design changes it is possible to introduce redundant components where a

selection option for a component type also exists. Since there are two redundancy types two

possible FTMPs exist that can be used for the fault tree structure alterations regarding both

redundancies and component type selections. Pattern4 is employed when parallel redundant

components and choices for each component type are considered. Pattern5 is used to alter the

fault tree in the matter of k-out-of-n component redundancy added together with the

possibility to choose each component type.

Pattern4 combines two FTMPs, Pattern1 and Pattern3, where mn represents the maximum

possible number of parallel redundant components introduced and mt identifies the maximum

number of possible different component types for each redundant component. There are two

groups of house events introduced. The first group comprises mn and the second group has mt

house events. The ith (i=1,2,…, mn) house event from the first group is associated with the

Chapter 4. General System Design Optimisation Algorithm 57

possible failure causes for the system design case when i redundant components are used. The

failure event of each introduced component is then associated with the second group of house

events resulting in t sets comprising one basic event coupled with one house event. Here each

basic event indicates the failure of a specific type of component. The latter linking of house

events with basic events is analogous to the replacement of each earlier introduced basic event

when using Pattern3. The resulting fault tree structure also comprises (mt×mn) - 1 new

components. As in the previous cases the basic event chosen to be replaced represents the

failure for component number 1 with type 1. The example of the application of Pattern4 is

shown in Figure 4.8.

Fire Protection
System Fails

Fire Detector

Fails

Water Deluge

System Fails

Nozzles
Blocked

Pump(s)
Fail(s)

NB

FD

11

22

33

1 Pump is

Fitted

1PF

1 Pump is

Fitted

1PF

4

1 Pump is

Fitted & Fails

4

1 Pump is

Fitted & Fails

5

2 Pumps are

Fitted & Fail

5

2 Pumps are

Fitted & Fail

2 Pumps are
Fitted

2PF

2 Pumps are
Fitted

2PF
9

2 Pumps
Fail

9

2 Pumps
Fail

Pump 1

Fails

66

Type 1 Pump
is Fitted

PT11

Type 1 Pump
is Fitted

PT11

7

Type 1 Pump 1
is Fitted & Fails

Type 1
Pump 1 Fails

PF

8

Type 2 Pump 1
is Fitted & Fails

Type 2 Pump

is Fitted

PT12

Type 2 Pump

is Fitted

PT12

Type 2

Pump 1 Fails

PF1T2

6

Pump 1
Fails

Pump 2
Fails

10

Type 1 Pump

is Fitted

PT21

Type 1 Pump

is Fitted

PT21

7

Type 1 Pump 2
is Fitted & Fails

Type 1

Pump 2 Fails

PF2T1

8

Type 2 Pump 2
is Fitted & Fails

Type 2 Pump
is Fitted

PT22

Type 2
Pump 2 Fails

PF2T2

1HEn 2HEn

1HEt 2HEt

3HEt 4HEt

Altered Fault Tree StructureAltered Fault Tree Structure

Figure 4.8. Pattern4 Application Example for Fire Protection System

For the case analysed up to two redundant pumps can be installed and the possibility to

choose one of two pump types is implemented. Thus there are two house events associated

with the possible number of pumps to be installed, 1PF (1HEn) and 2PF (2HEn). Four house

events PT11 (1HEt), PT12 (2HEt), PT21 (3HEt) and PT22 (4HEt) are also introduced which

are associated with the choice of a type for any pump installed. Three new basic events are

incorporated in the fault tree, which are ‘Type 2 Pump1 Fails’, ‘Type 1 Pump 2 Fails’ and

‘Type 2 Pump 2 Fails’.

Chapter 4. General System Design Optimisation Algorithm 58

The two groups of house events are independent. It means rules for assigning either TRUE or

FALSE values for house events within the group apply for each group individually. For the

general case a particular design is defined by assigning values for the house events as follows:

if iHEn = TRUE; (i = 1,2,…, mn)

then jHEn = FALSE; (j = 1,2,…i-1,i+1,…, mn).

if iHEt = TRUE; (i = 1,2,…, mt)

then (i+mt*k)HEt = TRUE, (k = 1,2,…, mn-1)

and jHEt = FALSE; (j = 1,2,…, mt*mn, j ≠ i+mt*k, k = 1,2,…, mn-1).

Here iHEn and jHEn define the ith and jth house events from the first group of house events.

Accordingly iHEt and jHEt are used to define the ith and jth house events associated with the

choice of component type.

Note that once one of the sets of the house events implementing the choice of component type

are assigned their values the house events in the remaining sets will have the same values

assigned. It means the redundant components will be of the same type for any level of

redundancy. For example, for the Fire Protection system the house events are assigned values

as follows; 2PF=TRUE (2HEn) and PT11=TRUE (1HEt) therefore 1PF=FALSE (1HEn) and

PT21=TRUE (3HEt), PT12 = FALSE (2HEt), PT22 = FALSE (4HEt). As seen in Figure 4.8,

the resulting fault tree represents a system where two redundant pumps of type 1 are installed.

Pattern5 as well as Pattern4 is also equivalent to a combination of two FTMPs. The resulting

fault tree structure determined by Pattern5 could be defined by firstly applying Pattern2 and

then again altering the obtained fault tree a number of times using Pattern3. However the use

of only Pattern5 is simpler and straightforward.

The implementation of Pattern5 is very similar to the one of Pattern4. Indeed, the only

existing difference between the two is that the fault tree structure defined by Pattern5

corresponds to a system with k-out-of-n redundancy. Thus the new structure defined by the

pattern also has two groups of house events. The first group comprises events to model k-out-

of-n redundancy cases and the second corresponds to the choice of a type for a redundant

component. These two groups of house events are implemented as being independent.

Therefore the rules used for assigning values for house events from the first group are

identical to the ones used for Pattern2 and the rules employed for Pattern3 are used for house

Chapter 4. General System Design Optimisation Algorithm 59

events from the second group. An example of the application of the pattern is given in Figure

4.9 where up to two pumps can be installed into the Fire Protection System and each of them

can be either type1 or type 2.

Fire Protection

System Fails

Fire Detector

Fails
Water Deluge

System Fails

Nozzles
Blocked

Pump(s)
Fail(s)

NB

FD

11

2

33

5

2 Pumps are

Fitted & Fail

5

2 Pumps are

Fitted & Fail

2 Pumps are

Fitted

2PF

Altered Fault Tree StructureAltered Fault Tree Structure

Failure when 2

Pumps Fitted

7

Parallel Redundant
Pumps are fitted

PR

8

Parallel Redundant

Pumps are Fitted & Fails

8

k-out-of-2 Redundant

Pumps are Fitted & Fails

k-out-of-2 Redundant

Pumps are Fitted

k2R

2 Pumps

Fail

9

2 Pumps

Fail

Pump 1

Fails
Pump 2

Fails

1313

Pump 1

Fails
Pump 2

Fails

1 Pump is

Fitted

1PF

4

1 Pump is
Fitted & Fails

4

1 Pump is
Fitted & Fails

Pump 1

Fails

66

Type 1 Pump

is Fitted

PT11

Type 1 Pump

is Fitted

PT11

7

Type 1 Pump 1
is Fitted & Fails

Type 1

Pump Fails

PF

8

Type 2 Pump 1
is Fitted & Fails

Type 2 Pump

is Fitted

PT12

Type 2

Pump Fails

PF1T2

6
1010

Type 1 Pump

is Fitted

PT21

Type 1 Pump

is Fitted

PT21

11

Type 1 Pump 2

is Fitted & Fails

Type 1

Pump Fails

PF2T1

12

Type 2 Pump 2

is Fitted & Fails

Type 2 Pump

is Fitted

PT22

Type 2

Pump Fails

PF2T2

6 10

Figure 4.9. Pattern5 Application Example for Fire Protection System

4.2.2.6. Fault Tree Alteration at Gate Level

The question is posed: when can it be useful to apply FTMPs at gate level? Assume a

situation when a pumping device is considered to be replaced with n redundant pumping

devices where each of them is comprised of a pump and a switch. The pumping device fails if

either the pump or the switch fails. It means the failure of the pumping device is described

with an OR gate and two input basic events. Application of FTMPs for the pump and switch

replacements individually would be complicated. However, if the failure of a pumping device

is considered as a simple event then the fault tree comprising all design alternatives with

different numbers of redundant pumping devices can be built directly applying Pattern1 at the

OR gate level.

Chapter 4. General System Design Optimisation Algorithm 60

As an example, the Fire Protection system is shown in Figure 4.10. In this case a redundant

Water Deluge subsystem is introduced. Pattern1 is applied for AND gate 2. The initial

subsystem comprises of one pump and a nozzle. Thus after introducing a redundant Water

Deluge subsystem two new basic events appear in the fault tree. They are input events of the

output event ‘Water Deluge subsystem 2 fails’ and this fault tree part is considered as a new

intermediate event. The structure of the new part is a reproduction of the initial fault tree

structure for failure of the Water Deluge subsystem. Considering the replaceable fault tree

structure as a simple event, only two house events are needed to be incorporated in the new

fault tree. When one of them is set to TRUE and another one is set to FALSE the resulting

fault tree represents either the system with one Water Deluge subsystem or the system with

two parallel redundant Water Deluge subsystems.

Fire Protection
System Fails

Fire Detector
Fails

Water Deluge
System(s) Fail(s)

FD

11

22

1 Subsystem
is Fitted

1S

1 Subsystem
is Fitted

1S

3

1 Subsystem is
Fitted & Fails

3

1 Subsystem is
Fitted & Fails

4

2 Subsystems
are Fitted & Fail

2 Subsystems

are Fitted

2S

Subsystem 1
Fails

6

2 Subsystems

Fail

Subsystem 2

Fails

Water Deluge
System Fails

Nozzles

Blocked

Pump

Fails

NBPF

55

5

Nozzles 2

Blocked

Pump 2

Fails

NB2PF2

77

The structure
is the same

When making changes
at a gate level a repeated

sub-tree is treated as an

event

Altered Fault Tree StructureAltered Fault Tree Structure

Figure 4.10. Example of Pattern 1 Application at Gate Level for Fire Protection

System

The remaining four FTMPs can be employed at gate level in the same manner as the

discussed Pattern1 when a changeable part of a fault tree is treated as a simple event. In this

case the number of introduced house events will be equal to the number of house events when

FTMPs are applied at an event level. The same rules defining links between house events will

be valid. The number of new simple events, i.e. fault tree parts having an identical structure,

will be the same as the number of new basic events when applying FTMPs at event level.

Chapter 4. General System Design Optimisation Algorithm 61

4.3. QUANTITATIVE FAULT TREE ANALYSIS

When performing the quantitative system analysis for different design cases each design

needs to be analysed individually. For this purpose the fault tree representing causes of failure

for all possible design cases is utilised. House events in the fault tree are assigned the

appropriate Boolean states to specify the fault tree structure for a particular design case. Since

the value of the house event is specific to the design in question it must be specified prior to

each individual design quantification.

To set values for house events each fault tree part constructed according to a specific FTMP is

analysed individually. The house events are assigned either TRUE of FALSE values

according to the rules specific to the FTMP. As a result the fault tree structure represents

causes of failure of one design alternative defined by the FTMP.

The fault tree with house events assigned with specific values undergoes a trimming operation

before its quantification process. Branches with house events set to a FALSE state are cut off

resulting in a fault tree of an individual design case for the analysed system. Trimming allows

the size of the fault tree to be greatly reduced which results in much faster calculations. It is

especially useful when a large number of design variables is used and / or their range of

possible values is large or when alterations are made at sub-system level.

After the trimming operation has been performed the resulting fault tree is converted to its

BDD. Since the obtained fault tree has a simple structure a standard BDD approach is

employed to calculate the top event probability, i.e. the probability of the failure of the

specific system design. As it is known, conversion of the fault tree to the BDD format enables

the exact system unavailability to be found in a computationally more efficient way.. The

BDD methodology for quantitative fault tree analysis was discussed in detail in Chapter2

4.4. OPTIMISATION ALGORITHM

4.4.1. Mathematical Problem Concept

The objective of the process of safety system design construction and / or design alteration is

to determine an acceptable system design. The criteria for evaluation of the designs

acceptability can consist of system requirements based on its reliability, cost, weight, physical

size, etc. The most important feature of a safety system is that it works when the demand

arises. Therefore, in the developed approach system unavailability, i.e. the probability of

Chapter 4. General System Design Optimisation Algorithm 62

system failure on demand, has been chosen to provide a measure of system performance for

different design alternatives. A small value of the probability of system failure identifies a

highly reliable system design. Other design requirements are considered within the context of

pre-defined constraints.

The system design optimisation problem is analysed as a general single objective constrained

optimisation problem. The merit function of the problem is the probability of system failure

that is to be minimised:

()sysQ Xmin (4.1)

Here ()XQ is a function defining system failure probability and X is a m–dimensional vector

X = {x1, x2, …, xm} where its element xi is the failure probability value of a basic event i, i.e.

system component i. The vector dimension m is equal to the number of basic events, i.e.

system components subject to failure, in the fault tree for a specific design case. Thus if the

number of system components varies for different design cases the content of X is adjusted to

the changes. It follows that the optimisation objective to minimise system unavailability is

equivalent to the objective to find the vector X that corresponds to the minimum system

unavailability. The given objective function does not have an explicit form. As such, the Fault

Tree Modification Methodology and FTA discussed in Sections 4.2 and 4.3 are used to

quantify the system unavailability of each potential design.

When developing a system design, considerations could also be given to other factors that

influence the design criteria, additional to the used failure probability. Typically considered

design requirements include system cost, physical size, power consumption, etc. In the

approach developed for a general application it was decided to implement the possibility to

set limitations to system cost, weight and volume (physical size). To use the resources

efficiently it may be useful to have minimum and maximum limitation values. If only

maximum limit values are needed then the minimum values become equal to zero. Thus the

general system design optimisation problem is subject to the following constraints:

,

,

,

maxmin

maxmin

maxmin

VolumeVolumeVolume

WeightWeightWeight

CostCostCost

sys

sys

sys

<<

<<

<<

 (4.2)

where Costmin predefines a minimum possible cost for a system design, accordingly Costmax is

the maximum possible cost for the design being constructed and Costsys is the actual cost for

Chapter 4. General System Design Optimisation Algorithm 63

the system design in question. Variables for weight and volume constraints have respective

definitions.

Since a safety system works on demand, the time taken to maintain the system influences its

availability. Therefore the possibility to define limits for minimum (MDTmin) and / or

maximum (MDTmax) maintenance down time is also implemented in the algorithm:

maxmin MDTMDTMDT sys << (4.3)

4.4.2. Evaluation of Design Requirements

The total cost of a system differs for each individual system design. Every time a possible

system design is chosen its cost needs to be recalculated. In the proposed approach two main

types of system cost are considered: design cost and maintenance cost. Design cost can

include all costs associated with a system design, i.e. cost of a component, storage cost etc.

The maintenance cost of the system can be divided into three categories: maintenance test

cost, corrective cost and maintenance preventive cost. The generalised formula for system

cost evaluation introduced in the optimisation approach is as follows:

MDsys CostCostCost += , (4.4)

where CostD defines the total system design cost and CostM is associated with the cost

assigned for system maintenance.

The total system design cost for a specific design case is found by summing the design cost of

each component as follows:

∑
=

=
m

i

iD dcostCost

1

_ . (4.5)

Here idcost _ is the design cost of a component i, m is the total number of components

representing the system design case analysed.

The total system maintenance cost per examined time period for a specific design alternative

is evaluated as the sum of the system test cost, preventive maintenance cost and corrective

maintence cost:

Chapter 4. General System Design Optimisation Algorithm 64

∑∑∑
===

++=
m

i

i

m

i

i

m

i

iM ccostpcosttcostCost

111

___ . (4.6)

Here itcost _ is the cost of maintenance testing for component i, ipcost _ is the preventive

maintenance cost of the component and iccost _ is the corrective maintenance cost.

The cost of either testing or maintenance for each component per examined time period is

determined by multiplying the number of tests and/or amount of maintenance carried out

during the examined period by the cost of a single testing or maintenance. Both maintenance

testing and preventive maintenance are performed at regular defined intervals. Corrective

maintenance is performed when demand arises, i.e. when system failure occurs. Thus to find

the cost of maintenance testing for a component i the following formula is employed:

i
Ti

T
i tc

U
tcost __

θ
= . (4.7)

Here TU is the total number of time units per examined time period, Tiθ corresponds to the

interval between two tests for component i and itc _ is the cost of a single maintenance test.

The time units defining TU , and Tiθ are the same.

Analogically, the preventive maintenance cost for component i can be evaluated:

i
Pi

T
i pc

U
pcost __

θ
= , (4.8)

where Piθ is the time interval between two preventive maintenance activities and ipc _

represents the cost of a single preventive maintenance for the component. Piθ has the same

time units as Tiθ .

To find the cost of corrective maintenance for component i an expected number of failures

occurring during the examined period needs to be identified. If the number of expected

failures, iW , is known the following formula can be used:

iii rcWccost __ = (4.9)

Here irc _ represents the cost of a single repairs for component i.

Chapter 4. General System Design Optimisation Algorithm 65

If the number of expected failures is not given it can be evaluated using an appropriate

formula. For component i which has constant conditional failure intensity iλ the number of

expected failures over the analysed period can be found using the following formula:

() TiiTi UqUW −= 1),0(λ . (4.10)

Here iq is a failure probability of the component and TU is the total number of time units in

the examined time period.

If the component failure rate is defined by the Weibull distribution the expected number of

failures per examined time period is:

()dtq
tU

UW i

iPi

ii

i

Pi

T
Ti −

=

−

∫ 1),0(

1

0

βθ

ηη

β

θ
, (4.11)

where Piθ is the preventive maintenance interval of the component i presented using the time

units as for
TU . iβ and iη are Weibull distribution parameters, t denotes time and iq is the

failure probability of component i.

System weight and volume for different design cases may also differ. New components

introduced to the system will alter the overall system characteristics values. Thus if each

component weight is given the total system weight can be evaluated as their sum:

∑
=

=
m

i

isys wWeight

1

, (4.12)

where wi denotes the weight of component i and m is the total number of components fitted

for the design case analysed.

The equivalent formula is used to evaluate the overall system volume where vi is the volume

parameter calculated for component i:

∑
=

=
m

i

isys vVolume

1

 (4.13)

The second type of limitation that can be introduced is system maintenance down time. The

following formula (Formula 4.14) is employed to find the total system maintenance down

time:

Chapter 4. General System Design Optimisation Algorithm 66

= ∑∑
==

ic

T
U

MDT

N

j

j

N

i i

T
sys

11

θ

θ
 (4.14)

where
θ

N is the number of different maintenance test intervals, iθ corresponds to the test

interval, TU is the total number of time units per examined time period,
ic

N defines the

number of system components which are tested at the same time interval and jT is the test

time for each system component.

4.4.3. Genetic Algorithm Characterisation

A single objective GA has been chosen as the optimisation technique to solve the system

unavailability minimisation problem. The implemented GA is summarised by the flowchart in

Figure 4.11. Each stage of the algorithm is discussed in detail in the following sub-sections.

n

nn

n

INITIALISATION

TERMINATIONi = N i = i + 1

i = 0

i – iteration number

n – total number of chromosomes in the population
N – maximum generation number

EVALUATION

Offspring Population

REPRODUCTION

CROSSOVER

MUTATION

Parent Population

REPLACEMENT

New Population

NO

END

YES

Figure 4.11. Structure of the Implemented SOGA

4.4.3.1. Chromosome Encoding

If applying a GA, a problem specific representation is needed to describe each chromosome of

the population. In a general case, a chromosome encodes decision variables of the

optimisation problem. In the proposed case, in Equation 4.1, failure probability values of

system components compose the vector of the decision variables X. When using a fault tree

representing all possible system design alternatives and FTA to evaluate the objective

function of the problem, the dimension of vector X varies for different system design cases. If

Chapter 4. General System Design Optimisation Algorithm 67

coding these variables as genes the resulting chromosome structure will vary throughout the

optimisation process. It will result in a rather complicated implementation of the GA, which

would not necessary guarantee an efficient optimisation process.

The problem of the variable length chromosomes has been avoided by using chromosomes

encoding parameters of FTMPs instead. As mentioned earlier, during the optimisation process

structural design variables are assigned various specific values resulting in the variable

dimension of vector X. Since the set of components which are not considered to be replaced is

the same for every design case, only sets of components introduced after the implementation

of structural design changes are needed for identification of a specific design configuration

case. Therefore the search for the optimal design which minimises system failure probability

can be governed by manipulating only the values of structural design variables. Since the

design variables are represented by FTMPs which define their maximum values, the structure

of a chromosome is defined based on parameters of FTMPs. The number of FTMPs remains

the same throughout the whole optimisation process which means that a fixed length

chromosome is utilised for the problem analysed.

Binary numbers are used for the encoding of each variable. In defining the structure of a

chromosome, first parameters of FTMPs (mn, mt and mk) are allocated a particular number of

bits required to code their values. The bits associated with one parameter represent a gene. To

evaluate the size of the gene Formula 3.4 is used. Since the introduced values for parameters

of FTMPs define the maximum range limit of an associated design variable(s), a parameter

with the introduced value equal to 1 is omitted and no bits are allocated to it in the

chromosome. Next, a required number of bits are allocated to code the maximum possible

values of parameters which are not associated with the fault tree modifications, such as

maintenance test intervals. The number of genes in the chromosome is increased by the

amount which is equal to the number of different maintenance intervals. Such allocation of

bits ensures that the size of a chromosome is sufficient to store any values of design variables

and its size remains constant throughout the optimisation process. Thus the algorithm creates

an individual fixed size chromosome for a specific problem analysed.

As an example, three FTMPs are considered. Patterns are given in the following order:

Pattern1 (mn = 2, mt = 1, mk = 1), Pattern3 (mn = 1, mt = 3, mk = 1) and Pattern5 (mn = 4,

mt = 3, mk = 4). In order to encode the possible levels of parallel redundancy introduced with

Pattern1 in a binary format two bits are required. Thus the first two bits are allocated in the

chromosome for the parameter of Pattern1. In this case mt = 1 which means that no changes

Chapter 4. General System Design Optimisation Algorithm 68

are made regarding the choice of a different type for the component. As such, no bits are

allocated in the chromosome. Next, two bits in the chromosome are allocated to code the

parameter mt = 3 for Pattern3. Finally, a number of bits required to code parameters of

Pattern5 are allocated. To code number 4 in binary digits three bits are required. Therefore

the first three digits are allocated for parameter mn. A two bit length gene is allocated to code

the value of the variable mt and the next three digits are assigned to parameter mk. The final

structure of the chromosome is shown in Figure 4.12.

2 2 3 2 3
m

t=
3

m
n

=
4

m
k
=

4

m
n

=
2

m
t=

3

Pattern 5

P
a
tt

e
rn

 3

P
a
tt

e
rn

 1

Total 12 bits

Figure 4.12. The Chromosome Structure

4.4.3.2. Population Manipulation

In the proposed algorithm an initial population is generated as follows:

Step 1: Each gene in a chromosome is assigned a random binary number.

Step 2: The chromosome is decoded, i.e. a binary number assigned to each gene is converted

into a decimal number, to assign values of parameters for the design variables. At the same

time it is checked to see if the obtained phenotype of each gene, i.e. the decoded value of each

gene, does not exceed the predefined maximum value. If the generated value is bigger than

the maximum possible value of the particular parameter then the gene is assigned a new

binary number and its validation is checked again. The process is repeated until all the

generated parameter values are valid.

Step 3: A system design fault tree is reconfigured according to the obtained parameter values

of the design variables.

Chapter 4. General System Design Optimisation Algorithm 69

Step 4: System resources and system failure probability are evaluated for the design

generated.

Step 6: The generated chromosome enters the initial population.

Step7: If the number of chromosomes in the population is equal to the predefined value N the

process is terminated. Otherwise the process is repeated from Step 1.

The initial population is considered as the first generation parent population and is used to

generate a new generation offspring population. Each generation offspring population is

created using three main GA operators. The reproduction operator is implemented employing

a biased roulette wheel. The operator is used to select N/2 couples of parent strings entering

into a mating pool. Strings of each couple are crossed over employing a one-point crossover

operator. During the crossover process, a bit-by-bit mutation is also carried out. All the

mentioned GA operators were discussed in detail in Chapter 3.

Each time a pair of parent chromosomes are crossed over and mutation is implemented two

new strings are created. Before adding the new chromosomes into an offspring population

each gene is decoded to check the generated values for the corresponding design parameters.

In some cases the same number of bits allocated for one parameter value can represent a

larger decimal number than the given parameter value. For example, in order to code Pattern1

parameter mn=4 three bits need to be allocated in the chromosome. However decimal

numbers 5, 6 and 7 can also be coded using three bits. To avoid situations when a

chromosome with unfeasible genes enters into a population, a chromosome repair is carried

out. If a gene value is outside of the range a new binary number is generated for the

corresponding gene and its validation is checked again.

4.4.3.3. Replacement

The replacement procedure is implemented to preserve both elite and feasible chromosomes.

After an offspring population is generated each pair of offspring chromosomes is compared

with their parent chromosomes and a new parent population for the next generation is formed.

The following outcomes of the comparison are possible:

1. If both offspring are infeasible parent chromosomes enter in the new parent population.

2. If one of the offspring chromosomes is feasible the fitness value that it yields, i.e. the

measure of its fitness based on the objective function value, is compared with the fitness value

of each parent chromosome. In this case two out of three chromosomes which have the

Chapter 4. General System Design Optimisation Algorithm 70

smallest fitness values are stored in the new parent population. Both the chromosome with the

largest fitness values and the infeasible offspring chromosome are discarded.

3. If offspring chromosomes are feasible then both of them enter the new parent population.

4.4.4. Optimisation Algorithm Structure

This section provides an overview of the GSDOA. This algorithm has two major parts. The

first part is considered as a preparative part for the optimisation process. At this stage all

proposed design alternatives are introduced for the alteration of the initial system design using

appropriate FTMPs. The second part of the algorithm, i.e. optimisation part, comprises the

optimisation technique and the quantitative system failure analysis. The SOGA, chosen as the

optimisation technique, governs the generation of system design alternatives converging to an

optimal design case. FTA and BDD analysis are employed to quantify failure probabilities of

the generated design cases and the obtained results are passed back to the generation process

of new design alternatives. The final result of the optimisation process is a system design case

with the minimal failure probability. The detailed structure of the GSDOA is shown in Figure

4.13 and is further discussed in this section.

Initial System
Design

FTMPs

Quantitative
Data

All Possible Design
Alternatives

Quantitative Failure Analysis of
System Designs

Optimisation

Optimal System
Design

FTA BDD

FTA

SOGA

GA
Parameters

Figure 4.13. Structure of GSDOA

4.4.4.1. Preparative Part

To perform the design optimisation analysis for a chosen system the following data is

required: a fault tree structure for the initial system design, a list of chosen design variables

represented as FTMPs and parameters for the GA. Parameters used for the GA performance

Chapter 4. General System Design Optimisation Algorithm 71

and defined by the user are population size N, which should be an even number (the

requirement of the population to have even number of chromosomes is discussed in Section

4.3.5.3), crossover rate, mutation rate and maximum number of generations performed before

the optimisation process is terminated.

The fault tree for the initial system design and the list of the appropriate FTMPs with the

associated replaceable fault tree events are employed to construct a fault tree incorporating all

possible design alternatives. The construction of the fault tree occurs automatically within the

derived computer program. Structural fault tree changes defined by a particular FTMP are

completed for one chosen fault tree event at a time. The order in which FTMPs are

implemented corresponds to the sequence they are provided in the initial data. The sequence

of FTMPs is important and it is discussed in Section 5.4.2 considering a specific optimisation

example. The constructed fault tree representing causes of failure for all design alternatives is

then used in the following optimisation part of the algorithm.

4.4.4.2. Optimisation Part

The data required for this stage includes the fault tree representing all possible design

alternatives created in the first part of the algorithm and the same list of FTMPs implemented.

Moreover, for the quantitative analysis of system designs, a number of characteristics of

system components are required, such as design and failure-related data.

Design characteristics include components volume, weight and cost. This set of data is

arbitrary and varies from case to case. Three types of components can be introduced for the

analysis according to their failure characteristics. If a component is repairable then its failure

rate, mean time to repair and scheduled time interval for performing maintenance activities

have to be provided. If component failure times are distributed under the Weibull distribution

the distribution parameters β and η and also a value of scheduled maintenance interval need to

be given. Since a time interval between scheduled maintenance activities can be considered as

a design variable it can be omitted but it then needs to be defined in the provided list of design

variables. Finally, if introducing unrepairable components their failure probability values

should be provided.

Having the required data the optimisation process can be started. It starts with the generation

of the initial feasible population of N chromosomes which was discussed in detail in Section

4.3.3.2. In the population each chromosome represents a specific design configuration and has

a failure probability value of the design in question assigned to it. In order to find the failure

Chapter 4. General System Design Optimisation Algorithm 72

probability of a specific system design the fault tree representing all possible design

alternatives is utilised. The chosen chromosome is decoded and the design variables are

assigned specific values. Each house event representing the assigned value of the associated

design variable is set to TRUE. The rest of the house events are set to either TRUE or FALSE

according to the existing rules specific to each FTMP. Next, trimming of the fault tree follows

where fault tree branches with the house events set to FALSE are eliminated. At this stage the

fault tree structure is considered to be defined representing a particular design choice. The

fault tree is converted to its BDD which is then used to evaluate the failure probability of the

system design in question. The chromosome is assigned its fitness value.

Each chromosome also has assigned associated system characteristics for the system design it

represents. To evaluate the characteristics Equations 4.4 -4.14 are employed.

The initial population of chromosomes with their fitness values becomes a parent population

and three genetic operators are used to generate a new offspring population. The offspring

chromosomes provide a new set of system design cases. The fault tree for each of them is

constructed as explained earlier and resulting system design characteristics and failure

probability values are assigned to the corresponding chromosomes. At this stage the

replacement procedure takes place and a new population comprising a number of

chromosomes from either population is formed. The latter population is now considered a

parent population for the next generation of offspring chromosomes. The optimisation process

is terminated after a pre-set number of generations. The steps of the procedure are presented

in Figure 4.14.

The algorithm provides a set of results. After a defined maximum number of generations, the

feasible chromosome with minimal fitness value is presented. The genes of the chromosome

are decoded to get values for the design variables representing the optimal system design

case, while the chromosome fitness value gives the failure probability of the system. For the

purposes of analysis the algorithm also produces a set of the minimum feasible and average

fitness values for each generation.

Chapter 4. General System Design Optimisation Algorithm 73

Fault Tree for All
Design

Alternatives
Validation of
Constraints

Evaluation of
Fitness Values

Terminate the
Process?

Selection,
Crossover,
Mutation,

Replacement

New Population
of

Chromosomes

Initial
Population of

Chromosomes

FTMPs

Quantitative
Data

Results

NO

GA
Parameters

YES

Figure 4.14. Optimisation Process Flow Chart

4.4.5. Computer Implementation of the GSDOA - GSDOP

The software built for a general system design optimisation algorithm is called GSDOP

(General System Design Optimisation Programme). The code for the developed GSDOP was

written using Microsoft Visual C++ 2003. It includes the code for the fault tree modification

methodology and the code for optimisation process. The developed code for the GA

implemented is based on the original Pascal Simple Genetic Algorithm code presented by

Goldberg [45] which was translated and altered to adapt it to the problem analysed. The code

for the computation method to convert a fault tree to a BDD structure and perform its

quantitative analysis was previously developed at Loughborough University [74]. The source

code was incorporated in the code for GSDOP. The routines constituting the developed

programme and the subroutines they contain are discussed in detail.

4.4.5.1. Initialisation Stage

The routine Initial_Data is the initialisation routine called to read initial data stored in data

files created by the user. The data is entered into the files manually. The files are named to

define what set of data the file provides. Each name is composed of two parts. The first part

can consist of any combination of letters and the second part is to be chosen from the given

list in order to represent the content of the file. The list of possible file names, i.e. their default

parts, is given in Table 4.1.

Chapter 4. General System Design Optimisation Algorithm 74

Table 4.1. Data Files

Default Name Information File Contains

_fts.txt A fault tree structure in a text format

_var.txt Data of FTMPs employed

_bse.aqd Data of basic events

_cost_cst.txt Data of system cost constraints*

_mdt_cst.txt Data of system maintenance down time constraints*

_volume_cst.txt Data of system volume constraints*

_weight_cst.txt Data of system weight constraints*

_theta.txt Parameters of inspection intervals*

_gav.txt Genetic algorithm variables

The sign “*” identifies optional data files. The optional files store data for evaluation of

constraints. If any type of constraint is not considered for the analysed system the user does

not create the corresponding file(s). For instance, if there are no limitations applied for system

volume, then the file _volume_cst.txt is not provided.

The names of the files for the given initial data are kept in the main data file called

“data_files.txt”. Examples of data files together with the requirements for their contents are

provided in detail in Appendix 1.

The following sequence of subroutines is used to read specific data from the given files:

GA_Parameters_Data, Constraints_Data, Fault_Tree_Data, Variables_Data,

Inspect_Interval_Data and Basic_Events_Data. The subroutine GA_Parameters_Data reads

parameters governing the GA, i.e. population size, crossover rate, mutation rate and

maximum number of generations. The data is provided in the file _gav.txt. To read the

available constraints data the subroutine Constraints_Data is employed. The subroutine also

checks which constraints files are given. If any of the files are not provided validation of the

corresponding constraints is not checked during the optimisation process. The subroutine

Fault_Tree_Data reads the fault tree structure presented in a text format and saves it in a

specific data structure form where one record represents one fault tree gate. The subroutine

Variables_Data is employed to process the data of FTMPs. If the file _theta.txt is not

provided it means either times between maintenance inspections for repairable components

are given or all components are unrepairable. In this case the subroutine Basic_Event_Data is

used to read failure characteristics of system components, which is stored in a file _bse.aqd.

This file also contains data of components which will occur in the fault tree after

implementation of FTMPs. If the file _theta.txt is provided it means there are i maintenance

intervals considered as design variables and the information obtained from file _bse.aqd is not

sufficient to perform quantitative analysis. The file _theta.txt stores the list of all basic events

Chapter 4. General System Design Optimisation Algorithm 75

of the fault tree where each of them is assigned a number (1, 2,…i) indicating which

maintenance interval is associated with a system component represented by the basic event.

To read the data the subroutine Inspect_Interval_Data is used. Once the values of inspection

intervals are generated the stored data is used to assign these values to corresponding basic

events. Having the complete failure data the quantitative analysis can be performed.

4.4.5.2. Construction of the Fault Tree for all Possible Design Alternatives

Following the initialisation step the programme constructs a fault tree representing all

possible design cases. The routine Fault_Tree_Construction is illustrated step by step in

Figure 4.15. The routine is organised using a loop where one FTMP is implemented at each

iteration. In the data file every FTMP is given with a code number of the associated fault tree

element and a letter identifying a fault tree modification level. If the modification is made at

event level then the subroutine Change_Event_Gate is employed to transform the

corresponding basic event into an OR gate coded as max_gate + 1. Here max_gate is the

maximum code number of a gate in the fault tree before changes are made. The subroutine

FT_Modification_Event follows next. It implements a particular FTMP according to the

values of its parameters given. However if the basic event has not been found the employed

subroutine returns the value FALSE and no changes are made to the fault tree.

Figure 4.15. Algorithm for Construction of a Fault Tree for Possible Design Cases.

If the modification has been set to be made at a gate level only the code number for the

corresponding gate is changed to max_gate + 1 using the subroutine Change_Gate_Gate. If

the identified gate was found the subroutine Copy_Fault_Tree_Part is implemented first. It

creates a copy of a fault tree structure which will be incorporated as a principal event when

altering the initial fault tree structure. The details of the utilization of the copied part of the

fault tree were discussed in Section 4.2.2.5. A particular FTMP at the gate level is

implemented using the subroutine FT_Modification_Gate.

repeat for all i (i = 1, 2,…total_numbe_of_FTMPs)

If change made at event level = TRUE
 If Change_Event_Gate = TRUE

FT_Modification_Event

Else

 If Change_Gate_Gate = TRUE

 Copy_Part_Fault_Tree

FT_Modification_Gate

Chapter 4. General System Design Optimisation Algorithm 76

The systematic coding of names of gates, basic and house events within new branches of the

fault tree occurs automatically. The same rules apply in both fault tree modification cases, i.e.

when changes are made at basic event and gate levels. Codes used for gates and house events

consist of digits. As it was just mentioned earlier, the top gate of every new part of the fault

tree is named as max_gate + 1 and the rest of the gates have numbers of max_gate + 1 + i,

where i = 1,2,…,tn_gate (tn_gate is the total number of gates in the new part of the fault tree).

The actual value for tn is defined according to the FTMP employed and values of its

parameters. A similar rule applies for names of house events. They have names max_house +

i, where max_house is the name of the house event with the maximum number in a fault tree

before the alteration is made, i = 1,2,…,tn_house, where tn_house is the total number of house

events in the part of the fault tree being incorporated. To identify values for max_gate and

max_house two subroutines Max_Gate_Number and Max_House_Number are employed

respectively.

The names of basic events in the incorporated new part of the fault tree are defined using

particular rules. Each name is formed to represent the number and the type for the associated

system component. The name has three parts. The first part is a code which is the same as the

name of the initial event being replaced. The second part identifies the number of the

component in a group of redundant components. If no redundant components have been

introduced then it is coded as 1. The third number defines the type of the associated

component. All these three parts of the name are separated using a sign “_”. For example, a

basic event with code 5 is being replaced using Pattern4 (mn = 2, mt = 3, mk = 1). It means

failures caused by either one or two components are presented and it is possible to choose one

of three different types of those components. Thus 6 (2×3) new basic events are added to the

analysed fault tree with the following names: 5_1_1, 5_1_2, 5_1_3, 5_2_1, 5_2_2, 5_2_3.

The chosen component No 2 type 3 would be represented with the basic event coded 5_2_3

The code 5_1_1 is assigned to the basic event chosen to be replaced.

Note, the user should also use the same codes for the basic events when entering the required

initial data for system components, such as failure rates or cost etc.

4.4.5.3. Optimisation Part

The optimisation process is implemented in the routine Genetic. To manipulate populations of

chromosomes two arrays of variables pop_old and pop_new are employed in the routine. One

array represents a parent population and another is employed to store an offspring population

data. Each element of an array represents a chromosome. The number of elements in each of

Chapter 4. General System Design Optimisation Algorithm 77

them is equal to the size of the population. An element of the array is a variable of a structure

type named record. A structure is a collection of variables of different data types. The

variables in the structure record also called elements or members represent

chromosome-related data, such as, a binary structure of the chromosome, the fitness value or

the cost of the system design the chromosome represents. The introduced structure type is

shown in Figure 4.16.

Figure 4.16. Members of a Data Structure record.

The variable chrom is used to store a set of binary numbers, i.e. a chromosome. The variable

genes is an array of strings of binary numbers of different where each string represents a gene.

Values of decoded genes are stored using the variable phenotype. The objective function

value corresponding to the chromosome is assigned using the variable objective. When an

offspring chromosome is generated the order number of its parent chromosomes in the parent

population are stored using variables parent1 and parent2. To store system characteristics for

a system design identified with the current chromosome variables cost_d (design cost), cost_t

(maintenance testing cost), cost_p (preventive maintenance cost), cost_c (corrective

maintenance cost), volume, weight and downtime are employed.

Form_Chromosome is the first subroutine employed which defines the number of genes in the

chromosome and how many bits comprise each of the genes. The data of the FTMPs and

maintenance intervals introduced as variables is used. Once the structure for the chromosomes

is defined the initial population of chromosomes is generated using subroutine

Init_Population. The structure of the subroutine is given in Figure 4.17. In the current

subroutine one chromosome is generated at each iteration employing the subroutine

struct record

{

bool *chrom;

gene *genes;

 int *phenotype;

 double objective;

 double fitness;

 int parent1;

 int parent2;

 double cost_d;

 double cost_t;

 double cost_c;

 double cost_p;

 double volume;

 double weight;

 double downtime;

};

Chapter 4. General System Design Optimisation Algorithm 78

Init_Pop_Chromosome. The results obtained are stored as members chrom, gene and

phenotype of a certain element of an array old_pop.

The values of maintenance intervals (if they were not defined initially) and structural design

variables are obtained from the array phenotype and the fault tree representing all possible

designs is modified accordingly. The process is managed using the subroutine

Fault_Tree_Design.

Next, validation of the introduced constraints is checked. If the subroutine

Check_Constraints_Values returns a result FALSE, the corresponding element of an array

named valid is assigned the value 0. When the subroutine Check_Constraints_Values returns

the result TRUE it means all introduced constraints are satisfied and the corresponding

element of array valid is assigned the value 1. The subroutine also assigns values to the

variables cost_d, cost_t, cost_c, cost_p, volume, weight and downtime of the considered

element of the array old_pop. If certain constraints are not considered their corresponding

variables are assigned the value 0.

Figure 4.17. Structure of the Subroutine Init_Population.

If maintenance intervals are considered as variables their generated values need to be assigned

to the associated components, i.e. basic events, and failure characteristics for the components

need to be updated. Therefore two additional subroutines are employed such as,

Assign_Intervals and Update_Failure_Data. This step is omitted if the maintenance intervals

are defined or are not considered in the analysis.

The following step is performed to obtain a failure probability value for the generated design

alternative. The source code used for this purpose is implemented as an independent external

Repeat until i <= N

valid = 0;

while valid = 0

 Init_Pop_Chromosome

Fault_Tree_Design

If Check_Constraitns_Values = TRUE

 valid = 1;

Else
 valid = 0;

If a file _theta.txt exists

Assign_Intervals

Update_Failure_Data

Quantification

i = i + 1.

Chapter 4. General System Design Optimisation Algorithm 79

process. It returns a failure probability value of the system design considered which is

assigned to the variable objective.

One iteration of the loop is completed. Since this was an initial chromosome generation its

parents are not identified and members parent1 and parent2 for the considered element are

assigned values of zero. The subroutines are repeated in the described order until a population

of N chromosomes is generated.

The initial population is considered as a parent population for the next generation of an

offspring population. Prior to the generation of any offspring population the details of its

parent population are stored. The subroutine Statistics is employed to find the average of the

objective function values and identify the minimal feasible value of the objective function as

well as the chromosome that yields this minimal value. To report the results the subroutine

Report_Population is used. Every time the subroutine is called it updates three result files

“Average_Objective” “Best_Objective” and “Genetic_Results”. As the names suggest, files

“Average_Objective” and “Best_Objective” store corresponding objective function values

obtained from the parent population for each generation. The decoded chromosomes, i.e.

genes’ phenotypes corresponding to the minimal feasible objective function value are stored

for each parent population in the file “Genetic_Results”.

The process of generating new populations is organised using a main loop of the routine

Genetic. A number of iterations in the loop is equal to the maximum number of generations

which is defined by the user. In order to generate a new offspring population the subroutine

Generation is employed at each iteration. The subroutine has a loop implemented. In this

case, during each iteration, at first two parent chromosomes are selected. The subroutine

Reproduction is employed where the biased roulette wheel method is implemented. The

subroutine returns the order number of the selected chromosome in the population. These

numbers are then used in the subroutine Crossover which performs the crossover operation.

While performing the crossover operation both offspring chromosomes undergo a bit by bit

mutation governed by the subroutine Mutation. Next the resulting two chromosomes are

checked if each gene is feasible. If there is at least one infeasible gene it is regenerated using

the subroutine Repair. The output of the subroutine is assigned to variables chrom, gene and

phenotype and one iteration is completed. Thus in the subroutine Generation during a single

iteration the two offspring chromosomes have been generated. Since every time two parent

chromosomes are selected and two offspring are generated it is required that the total number

Chapter 4. General System Design Optimisation Algorithm 80

of chromosomes in a population would be an even number. The output of the subroutine

Generation is a new population of chromosomes stored using the variable new_pop.

Following this step the subroutine Fault_Tree_Design is employed for each chromosome in

the population. It transforms the fault tree with all possible design alternatives to the one that

represents one particular design case defined by the values of the parameters of the design

variables coded in the chromosome. Having the fault tree structure specified, appropriate

characteristics associated with basic events of the fault tree are used to check if the generated

design satisfies the predefined constraints. The subroutine Check_Constraints_Values is

employed and an array valid_new is introduced. Each element of the array corresponds to one

design case and is assigned the value 0 if any constraint is violated and 1 if none of

constraints are violated. Next, subroutines Assign_Intervals and Update_Failure_Data are

called if intervals between maintenance routines need to be defined. Otherwise the

programme of quantitative analysis is called out straight after the constraints-checking

procedure. The listed subroutines are applied for every chromosome in the population in the

order introduced.

The new generation parent population is formed from both the current parent and offspring

populations. The comparison between offspring chromosomes and their parent chromosomes

is implemented in the subroutine Replacement as described in Section 4.3.3.3. The resulting

population of chromosomes is considered as a new parent population which is used to

produce new offspring chromosomes. Thus the results files “Average_Objective”,

“Best_Objective” and “Genetic_Results” are updated and a single iteration of the main loop is

completed. Once the number of iterations completed reaches the predefined number the

optimisation process is terminated.

4.5. SUMMARY

A number of approaches seen in the literature have been developed by which an optimal

design can be obtained by combining the fault tree analysis method and the optimisation

technique. However they were developed for a specific example and have not been applied for

a general case system. The current research detailed so far has created a mechanism to solve a

design optimisation problem for any safety system. It is based on the following developments,

created as part of this research:

Chapter 4. General System Design Optimisation Algorithm 81

• newly defined FTMPs and utilised to represent possible design alternatives in one

fault tree for any system analysed;

• a newly developed optimisation algorithm combining the fault tree analysis and the

GA without restricted application to one particular system.

• a newly developed programme code to automate the design optimisation process.

A specific structure of a system fault tree is used in the developed optimisation algorithm. It

represents all given design alternatives. The newly developed FTMPs enable the required

fault tree for any system analysed to be built. Using the FTMPs establishes the possibility to

analyse design options for any safety system. Thus the application of the algorithm is not

restricted to one particular system.

The algorithm discussed in this chapter, GSDOA, was developed to solve non-specific safety

system design optimisation problems. The objective of the optimisation process is to define a

particular set of system components that would constitute an optimal system design. As a

result, the algorithm determines the case where the system failure probability is minimised

and the utilisation of available resources is optimised.

The programme code, GSDOP, was developed to implement GSDOA. It has three major

groups of subroutines. The first group is associated with the initialisation part of the

programme where the initial data provided is processed. The second group represents

subroutines employed to implement the required FTMPs and construct the fault tree

representing causes of failure for all possible design cases. The last group of the programme

subroutines are employed for the optimisation process. The code allows the user to introduce

an initial design, specify the possible design changes and limitations on resources and will

then automatically generate a possible solution.

The algorithm introduced and the code developed have the potential to be applied to a range

of safety system. To analyse the performance of the code a number of systems needs to be

examined. The systems chosen to be analysed are the High Integrity Protection System

(HIPS) and Firewater Deluge System (FWDS). The results of the application examples are

discussed in the following chapters, Chapters 5 and 6.

5. HIGH INTEGRITY PROTECTION SYSTEM

DESIGN OPTIMISATION USING GSDOA

5.1. INTRODUCTION

The purpose of this chapter is to present the application of the developed GSDOA to solve a

specific design optimisation problem. It provides guidelines of the GSDOA application

process and also demonstrates its problem solving capability. A High Integrity Protection

System (HIPS) has been chosen as an application example.

In hazardous industrial environments safety systems are designed to protect individuals and

the workforce by lowering the risk of the occurrence of a system failure. The analysed HIPS

is a safety system fitted on offshore platforms which aims to prevent a high-pressure surge

passing through the system. In an offshore platform the high pressure can come from a

production well and therefore protection is required for the equipment located downstream on

the processing platform. Thus, the HIPS protects the processing equipment whose pressure

rating could be exceeded.

In Section 5.2 the structure of the HIPS and its fault tree are introduced. Design options are

presented in Section 5.3. Section 5.4 considers the HIPS design optimisation problem and

includes detailed discussion about data preparation for the analysis. Implementation of

FTMPs and construction of the fault tree for all possible design cases of HIPS is also

discussed in this section. In Section 5.5 performance analysis of the GSDOP is provided

followed by the discussion of the results of the application, along with the generic

implications of the analysis.

The research about the GSDOA and its application example to the HIPS was presented at 18th

AR2TS and published in the proceedings (D. Astapenko and L.M. Bartlett, System Failure

Minimisation Using Automated Design Optimisation. Proceedings of the 18th AR
2
TS

(Advances in Risk & Reliability Technology Symposium), April 2009, Loughborough

University, UK, p.347-359).

5.2. HIGH INTEGRITY PROTECTION SYSTEM DESCRIPTION

The basic structure of the HIPS is shown in Figure 5.1. The system has two levels of

protection, which are the Emergency Shutdown (ESD) (Sub-system 1) and High – Integrity

Chapter 5. HIPS Design Optimisation Using GSDOA

83

protection subsystems (Sub-system 2). The ESD subsystem is the first level of protection that

includes Wing, Master and ESD valves (ESDV) and also a pressure transmitter (PT). When

the pipeline pressure exceeds the permitted value then all the valves in the ESD subsystem are

closed. The pressure transmitter is used to monitor pressure in the pipeline. The second fitted

subsystem works in a similar way to the first subsystem, but is independent in operation from

the ESD subsystem and provides an additional level of protection. It has a fitted HIPS valve

and a pressure transmitter.

PT PT

Master Wing ESDV HIPS

Sub-system 1 Sub-system 2

Production
Well

Processing

Platform

Equipment

PT PTPTPT

Master Wing ESDV HIPS

Sub-system 1 Sub-system 2

Production
Well

Processing

Platform

Equipment

Figure 5.1. High Integrity Protection System

The causes of failure to protect the processing equipment from the high pressure surge

passing through are analysed using FTA. The top event for the fault tree is defined as “Safety

system fails to protect”. It will occur if all the valves along the pipeline fail to close or in

another words both safety subsystems fail. Thus the input events related by AND gate logic

are “Wing valve fails to protect”, “Master valve fails to protect”, “ESD valve fails to protect”

and ”HIPS valve fails to protect”, as shown in Figure 5.2. Note that a number inside the gate

symbol in Figure 5.2 and numbers in the rest of the fault tree figures in the chapter are used to

number gates. Gate numbering is utilised throughout the analysis to help trace the

development of the system fault tree and the implementation of FTMPs.

Safety system fails

to protect

1

Wing valve

fails to protect

Master valve

fails to protect

ESD valve

fails to protect

HIPS valve

fails to protect

Figure 5.2. Top Event of System Fault Tree

All the system valves are of the “air to open” type. They are controlled by computer logic in

the following way: if pressure in the pipeline is lower than the permitted value then the

Chapter 5. HIPS Design Optimisation Using GSDOA

84

solenoid of the valve is energised, the pneumatic line is pressurised and the valve is retained

in the open state by the associated actuator. If the pressure increases above the acceptable

value, the circuit of the output channel to the solenoid is opened. The pressure in the pipeline

is monitored by the pressure transmitter, which sends a signal to the computer and the

computer causes the circuit to open. Two relay contacts are available to break the circuit.

Once the circuit is broken the solenoid is de-energised and a vent valve is activated. This

results in a drop of pressure to the actuator that causes the valve to close.

First consider the wing valve. The fault tree logic representing its causes of failure is shown in

Figure 5.3. The wing valve fails to close if either the wing valve itself fails or if the

pneumatic line to the actuator of the valve remains pressurised. Failure of the valve occurs

due to failure of either its valve part or its solenoid part which are represented with basic

events “WV” and “SVW” respectively. The pneumatic line remains energised due to two

reasons. The first one is the computer failure to send a trip signal. It occurs if either the

computer logic fails or the pressure transmitter fails and it results in no trip signal to the

computer. Failure of the computer logic is the basic event “PLC1” and failure of the pressure

transmitter corresponds to the basic event “PT1”. The second reason why the solenoid valve

stays energised is that both relay contacts stay closed. This situation in the fault tree is

described with two basic events “R1/1” and “R1/2” connected with an AND gate.

Wing valve

fails to protect

Wing valve

fails stuck

Solenoid stays
energized

Valve fails to

close

WV

22

3 66

Computer fails to

send trip signal

Computer

logic fails
PT fails

5

PLC1PT1

Computer fails to

send trip signal

Computer

logic fails
PT fails

55

PLC1PT1

Relay contacts

stay closed

Relay contact 2
stays closed

Relay contact 1
stays closed

R1/2R1/1

4

Solenoid
fails

SVW

Figure 5.3. Fault Tree for Failure of Wing Valve

The causes of failure of the master and ESD valves are analogous to the ones for the wing

valve. Therefore the structures of the fault trees for the valves remain the same. The only

changes that are introduced to the fault tree for each valve correspond to the failure of a valve

itself and its solenoid valve. In the fault tree for the master valve the basic event “MV” is used

instead of the basic event “WV” which identifies the failure of the master valve itself. The

failure of the solenoid valve for the master valve is defined with the basic event “SVM”

Chapter 5. HIPS Design Optimisation Using GSDOA

85

instead of event “SVW”. Accordingly basic events “ESD” and “SVE” are introduced in the

fault tree for the ESD valve failure. The passage of fault logic from detection of hazardous gas

levels to de-energising the solenoids of the wing, master and ESD valves is common for all

three valves and the event “Solenoid stays energised” is identical to that described for the

wing valve. Therefore the branching structure of the fault tree for this event, with the same

gate numbers and the same basic events, is replicated in the fault tree parts for failure of the

master and ESD valves.

The HIP subsystem has a pressure transmitter and a computer independent from the ESD

subsystem. It means the two subsystems do not have any common components even though

the logic of component failures leading to the subsystem failure is the same. Therefore the

fault tree representing causes of failure of the valve in the HIPS subsystem has the same

structure where the basic events are different from the ones in the fault trees for the valves of

the ESD subsystem. The HIPS subsystem fault tree is shown in Figure 5.4.

HIPS valve

fails to protect

HIPS valve

fails stuck

Solenoid stays
energized

Valve fails to

close

HIPS

11

12 15

Computer fails to

send trip signal

Computer

logic fails
PT fails

14

PLC2PT2

Relay contacts

stay closed

Relay contact 2
stays closed

Relay contact 1
stays closed

R2/2R2/1

13

Solenoid
fails

SVH

Figure 5.4. Fault Tree for Failure of HIPS Valve

5.3. OPTIONS FOR HIPS DESIGN ALTERATIONS

Having the initial design structure of the HIPS introduced there are a large number of options

for it to be altered with respect to the minimisation of the system failure probability. Design

alteration options considered in this case are listed in Table 5.1. The possibility to reduce the

HIPS failure probability through the choice of performing maintenance at appropriate

intervals is also considered. Time intervals between each maintenance testing performed for

ESD (θ1) and HIPS (θ2) subsystems can vary from 1 week to 2 years. The measurement unit

used for maintenance test intervals is one week.

Chapter 5. HIPS Design Optimisation Using GSDOA

86

Table 5.1. Structural Design Variables

Associated

Component
Description of Design Alteration

Design

Variable

Possible Values

of Parameters

Number of ESD valves fitted n1 1, 2
ESD Valve

Valve type t1 type 1, type 2

Number of HIPS valves fitted n2 1,2
HIPS Valve

Valve type t2 type 1, type 2

Number of pressure transmitters fitted in

subsystem 1
n3 1 - 4

Minimum number of pressure transmitters

required to function for subsystem 1
k3 1 - n3

Pressure

Transmitter 1

Pressure transmitter type t3 type 1, type 2

Number of pressure transmitters fitted in

subsystem 2
n4 1 - 4

Minimum number of pressure transmitters

required to function for subsystem 2
k4 1 – n4

Pressure

Transmitter 2

Pressure transmitter type t4 type 1, type 2

When analysing the possible HIPS design alterations considerations are given to the design

characteristics of cost and maintenance down time. The following requirements are

introduced: 1) total system cost (design cost) must be less than 1000 units; 2) maintenance

down time must be less than 130 hours per year.

For this example, each considered system component is repairable and can fail in the dormant

failure mode. Dormant failure is the inability of the component to carry out its desired task on

demand. The failure rate and mean repair time for each component option is given in

Table 5.2. A new HIPS design structure needs to meet the defined cost and maintenance

requirements therefore a design cost and a test time for each potential component is also given

in the table.

Table 5.2. Component Data

Component
Failure Rate,

h

Mean

Repair

Time, h

Cost

Test

Time,

h

Wing valve 1.14× 10
-5

 36 100 12

Master valve 1.14× 10
-5

 36 100 12

HIPS valve type 1 5.44× 10
-6

 36 250 15

HIPS valve type 2 1× 10-5 36 200 10

ESDV valve type 1 5.44× 10
-6

 36 250 15

ESDV valve type 2 1× 10
-5

 36 200 10

Solenoid valve 5× 10
-6

 36 20 5

Relay Contacts 0.23× 10
-6

 36 1 2

Pressure transmitter type 1 1.5× 10-6 36 20 1

Pressure transmitter type 2 7× 10
-6

 36 10 2

Computer logic 1× 10-5 36 20 1

Chapter 5. HIPS Design Optimisation Using GSDOA

87

5.4. HIPS DESIGN OPTIMISATION PROBLEM

The given list of structural design variables together with the possible choices of different

time intervals between maintenance activities provide 42,831,360 different potential HIPS

design and maintenance alternatives. To analyse each design case individually in order to find

the one which minimises the failure probability is impractical. The application of GSDOP in

this case could be very effective.

5.4.1. Data Initialisation

The initialisation stage of the optimisation process involves preparation of data in the format

satisfying specific GSDOP requirements. First of all, code numbers are introduced for gates

and basic events in the fault tree for the initial HIPS design. The gates are numbered starting

with a top gate which has a number 1 (Figure 5.2). Next, gates representing the failure logic

of the wing valve are coded as shown in Figure 5.3. Gates representing the failure logic of the

master and ESD valves are coded in the same order and so are the gates representing the HIPS

valve where the last gate has the code 15 (Figure 5.3.). Numbers used to code basic events

initially given in the fault tree are listed in Table 5.3.

Table 5.3. Number Codes for Basic Events

Component Failure Basic Event Code

Wing valve fails WV 1

Solenoid valve for the wing valve fails SVW 2

First relay contact in the ESD subsystem fails R1/1 3

Second relay contact in the ESD subsystem fails R1/2 4

Pressure transmitter in the ESD subsystem fails PT1 5

Computer logic in the ESD subsystem fails PLC 1 6

Master valve fails MV 7

Solenoid valve for the master valve fails SVM 8

ESD valve fails ESD 9

Solenoid valve for the ESD valve fails SVE 10

HIPS valve fails HIPS 11

Solenoid valve for the HIPS valve fails SVH 12

Pressure transmitter in the HIPS subsystem fails PT2 13

Computer logic in the HIPS subsystem fails PLC 2 14

First relay contact in the HIPS subsystem fails R2/1 15

Second relay contact in the HIPS subsystem fails R2/2 16

The given codes for gates and events are used when defining the fault tree structure in a text

format. The fault tree for the HIPS in the text form is stored in the data file “hips_fts.txt”. The

content of the data file is shown in Figure 5.5. Here the first number in each row identifies a

gate code followed by the gate type. Next a number of input gates and events are given and

first input gates and then input events are listed. An input gate is identified as “G:” and “E:” is

Chapter 5. HIPS Design Optimisation Using GSDOA

88

used to identify an input event. As a reminder, the rules of transformation of a graphical form

of a fault tree into a text form are explained in detail in Appendix 1.

Figure 5.5. Data File hips_fts.txt

The next step is to prepare the file named hips_var.txt which stores the given list of FTMPs.

The content of the file is presented in Figure 5.6. The data file was prepared based on the list

of the design variables. In total six FTMPs are used to implement the given design variables.

In the file each row corresponds to one FTMP. The first letter (E or G) in the row denotes if

the FTMP is implemented at event or gate level. Next the code number of event/gate being

altered follows. The last three numbers are parameter values of the FTMP.

Figure 5.6. Data File hips_var.txt

The FTMP given in the file hips_var.txt are implemented within the programme

automatically. Causes of failure corresponding to design cases with increased numbers of

pressure transmitters are implemented at event level for both subsystems. Events with codes 5

(pressure transmitter in the ESD subsystem fails) and 13 (Pressure transmitter in the HIPS

subsystem fails) are replaced using Pattern5 where mn=4, mt=2 and mk=4. Changes to the

fault tree representing the introduced possible design alternatives regarding the ESD valve are

implemented using two FTMPs as follows. The ESD valve section contains the solenoid and

the valve. The choice to use either a type 1 or type 2 valve refers only to the valve part and the

solenoid part remains the same. However, when introducing a redundant valve, both the

E 5 4 2 4

E 13 4 2 4

E 9 1 2 1

G 10 2 1 1

E 11 1 2 1

G 15 2 1 1

1 AND 3 0 G:2 G:7 G:12

2 OR 2 0 G:3 G:6

3 OR 2 0 G:4 G:5

4 AND 0 2 E:3 E:4

5 OR 0 2 E:5 E:6

6 OR 0 2 E:1 E:2

7 OR 2 0 G:3 G:8

8 OR 0 2 E:7 E:8

9 OR 2 0 G:3 G:10

10 OR 0 2 E:9 E:10

11 OR 2 0 G:12 G:15

12 OR 2 0 G:13 G:14

13 AND 0 2 E:16 E:17

14 OR 0 2 E:13 E:14

15 OR 0 2 E:11 E:12

Chapter 5. HIPS Design Optimisation Using GSDOA

89

solenoid and the valve parts are considered. This means that in order to implement the fault

tree changes corresponding to the possible choices of redundancy, both basic events “ESD”

and “SVE” need to be replaced. Therefore, first basic event “ESD” (code number 9) is

replaced using Pattern3 where mt=2. Following, gate number 10 is replaced using Pattern1

where mn=2 which implements causes of failure for design options with either one or two

redundant ESD valves. If the FTMPs are implemented in an opposite order, i.e. first Pattern1

is implemented, then Pattern3 would have to be implemented in each part of the fault tree

where the branching structure with the top gate 10 was replicated since it includes the basic

event “ESD”. The design variables for the HIPS valve are implemented in the same manner,

first basic event “HIPS” and then gate 15 are altered.

Components in the HIPS are repairable and to find their unavailability values Equation 2.6. is

employed which uses data of the failure rate, mean repair time and maintence test interval. In

the case analysed values for maintenance intervals are not specified therefore only failure

rates and mean repair times of components are provided in the file for failure characteristics.

Following requirements (see Section A.3 in Appendix 1), digit 1 is used as maintence interval

value. The fragment of the file is presented in Figure 5.7.

Figure 5.7. The Fragment of the File hips_bse.aqd

The data required for assigning values of maintenance intervals once they are generated to

appropriate components is given in the data file hips_theta.txt. It stores the list of sets

comprising of a basic even code and an identification number of associated maintence

10_1_1 d 0.000005 36 1

10_2_1 d 0.000005 36 1

11_1_1_1_1 d 0.00000544 36 1

11_1_1_2_1 d 0.00000544 36 1

11_1_2_1_1 d 0.00001 36 1

11_1_2_2_1 d 0.00001 36 1

12_1_1 d 0.000005 36 1

12_2_1 d 0.000005 36 1

…………………………………..

14 d 0.00001 36 1

15 d 0.00000023 36 1

16 d 0.00000023 36 1

ENDOFDATA

Basic

Event

Code

Failure

Rate
Mean

Repair

Time

Chapter 5. HIPS Design Optimisation Using GSDOA

90

interval. General information about maintenance test intervals, such as the lower and upper

bounds of their possible values, is also stored in the file. The fragment of the file is presented

in Figure 5.8. As a reminder, both basic events for existing components and basic events for

potential components are required to be listed in the latter data files. The codes for the basic

events of new potential components are defined using the rules introduced in Section 4.3.5.2.

Figure 5.8. The Fragment of the File hips_theta.txt

Two types of constraints are considered in the HIPS optimisation problem: system cost and

maintenance down time over a year. Data required for implementation of the problem

constraints is stored in two files: hips_cost_cst.txt and hips_mdt_cst.txt. Figure 5.9 shows a

fragment of the data file for system design cost. The first line stores lower and upper limits of

the system cost where the lower bound is set to 0 and the maximum cost limit is 1000 units.

Since only design cost is considered for the HIPS the total number of time units per examined

period (one year) is equal to 0. After the keyword “COMPONENTS” all fault tree basic

events with associated design costs are listed.

The data for the evaluation of the maintenance down time is stored in the file hips_mdt_cst.txt

(A fragment of the file is shown in Figure 5.10). The file stores lower and upper bounds of

possible values of maintenance down time which are listed after the keyword “MDT”. The

key word “UNIT” identifies a total number of time units (used for determination of time

intervals between maintenance activities) in the examined time period. The total number of

time units is needed to evaluate the number of times the system is maintained during the

examined period. Since maintenance test intervals are measured using weeks, the examined

1 1 104

2 1 104

COMPONENTS

1 1

1 2

1 3

………………

2 13_1_1

2 13_1_2

2 13_2_1

2 13_2_2

………………

Identification Number

of Maintenance Test

Interval Minimum Value Maximum Value

Basic Event

Code

Chapter 5. HIPS Design Optimisation Using GSDOA

91

period (a year) is divided into 52 weeks. The file also provides numerical values of test time

and maintenance test interval for each component. Since in the case analysed test intervals for

system components are considered as design variables and are generated during the

optimisation process the test interval is set to 1 for each component in the data file. Note that

limits on the system down time are given in hour units as test times for system components

are also provided in hours.

Figure 5.9. The Fragment of the File hips_cost_cst.txt

Figure 5.10. The Fragment of the File hips_mdt_cst.txt

COST 0 1000

UNITS 0

COMPONENTS

1 100 0 0 0

2 20 0 0 0

3 0.5 0 0 0

4 0.5 0 0 0

5_2_2 10 0 0 0

5_3_1 20 0 0 0

16 0.5 0 0 0

Keywords Minimum value Maximum Value

Basic

Event

Code

Testing

Cost

Corrective

Cost

Design

Cost

MDT 0 130

UNIT 52

COMPONENTS

……………….

5_1_1 1 1

5_1_2 2 1

5_2_1 1 1

5_2_2 2 1

5_3_1 1 1

5_3_2 2 1

5_4_1 1 1

5_4_2 2 1

………………

14 1 1

15 2 1

16 2 1

Basic
Event
Code

Test
Time

Test
Interva

l

Preventive

Cost

Chapter 5. HIPS Design Optimisation Using GSDOA

92

5.4.2. Fault Tree Construction

The fault tree structure representing the causes of failure for the introduced design alternatives

of the HIPS occurs automatically within the programme code. It is obtained using the given

list of six FTMPs. The order the FTMPs are implemented is considered to be the most easy

and straightforward. These general guidelines were followed when choosing the order:

• FTMPs can be listed according to the code numbers of events/gates they are

implemented at. Increasing/decreasing order of code numbers can be used.

• FTMPs implemented at event level can be listed first followed by those being

implemented at gate levels.

• If the situation occurs when failure of the component considered is defined using a

fault tree structure rather than a basic event and type and redundancy options are

introduced two FTMPs should be used. First, the FTMP (Pattern 3) for type options is

implemented at event level which is an input event of this fault tree structure. Next,

the FTMP(Pattern 1, Pattern 2) for redundancy options is implemented at the gate

level which is the top gate of the structure.

Pattern5 associated with event E5 (PT1) is the first FTMP to be implemented. It is used to

add a new fault tree section which represents the causes of failure to monitor pressure in the

pipeline in the ESD subsystem where up to four redundant pressure transmitters can be fitted.

The new fault tree logic is shown in Figure 5.11.

Computer fails to send

trip signal

Computer logic
fails

Failure to indicate trip

signal

55

PLC116

19

Failure to monitor
pressure.3 PT fitted

3 PT

Fitted

H3

1 PT
Fitted

H1

17

Failure to monitor
pressure.1 PT fitted

Failure to monitor
pressure.1 PT

fitted

18

Failure to monitor

pressure. 2 PT fitted

2 PT
Fitted

H2

Failure to monitor
pressure. 2 PT

fitted

Failure to monitor

pressure. 3 PT
fitted

2322

20

Failure to monitor
pressure.4 PT fitted

4 PT

Fitted

H4

Failure to monitor

pressure. 4 PT

fitted

24

PT No.1

type 1 fitted

H5

25

PT No.1 type 1
fails

PT No.1

type 1 fails

5_1_1

2121

PT No.1

type 2 fitted

H6

26

PT No.1 type 2
fails

PT No.1

type 2 fails

5_1_2

Figure 5.11. Pressure Transmitters Fail to Indicate High Pressure

Chapter 5. HIPS Design Optimisation Using GSDOA

93

The top gate of the incorporated part has a code 16 (max_gate + 1 = 15 + 1). Analysing from

the top of the structure the first level of gates represents design cases with different numbers

of pressure transmitters fitted. Here Gate17 represents the failure to indicate a trip when 1

pressure transmitter is fitted, Gate18 – failure to indicate a trip when 2 pressure transmitters

are fitted, Gate19 – failure to indicate a trip when 3 pressure transmitters are fitted and te20

corresponds to failure to indicate a trip when 4 pressure transmitters are fitted.

A failure scenario is defined according to the values of the following house events: H1 (1

pressure transmitter is fitted into the subsystem 1), H2 (2 pressure transmitters are fitted), H3

(3 pressure transmitters are fitted) and H4 (4 pressure transmitters are fitted). Only one house

event from the group can be assigned a value of TRUE while the rest of them are set to

FALSE. In the next level of gates the logic of the occurring failures for the different numbers

of pressure transmitters fitted is broken down. For example, consider the event of failure to

monitor pressure when two pressure transmitters are fitted (Gate22) shown in Figure 5.12.

House event H2 would be assigned the value of TRUE in this case. If the system is designed

to monitor pressure using either of the transmitters then failure of both of them will result in

the failure to monitor pressure in the pipeline. Conversely, if two pressure transmitters must

register an increase in pressure, failure of either will result in failure to register the increase in

pressure. To indicate which design case is analysed one of the house events H7 or H8 is

assigned the value of TRUE. In both cases the failure of a pressure transmitter is an

intermediate event. Each of the events terminate with two pairs of basic events coupled with

house events through an AND gate logic. The structure models an alternative type case for a

component, i.e. pressure transmitter. This structural relationship is common throughout the

analysed fault tree structure to model the inclusion of two different transmitter types.

The failure to monitor pressure when either three or four pressure transmitters are fitted is

modelled in a similar manner. Note that three possible combinations of two pressure

transmitters failing will be among all possible causes of failure to monitor pressure if three

pressure transmitters are to be used. Accordingly, there will be five possible combinations of

two pressure transmitters failing and three combinations of three transmitters failing if four

pressure transmitters are in the system.

Chapter 5. HIPS Design Optimisation Using GSDOA

94

Failure to monitor

pressure. 2 PT fitted

22

1 transmitter

monitors pressure

H7

27

Failure when 1 transmitter
monitors pressure

Failure of

PTs

PT No.1
type 1 fitted

H9

33

PT No.1 type 1
fails

PT No.1
type 1 fails

5_1_1

ESD valve
type 2 fitted

H10

34

PT No.1 type 2
fails

PT No.1
type 2 fails

5_1_2

PT No. 2
fails

31

PT No.1
fails

2 transmitters
monitor pressure

H8

28

Failure when 2 transmitters
monitor pressure

Failure of
PTs

PT No.1

fails

31

PT No.2

fails

29
30

ESD valve
type 1 fitted

H11

35

PT No.2 type 1
fails

PT No.2
type 1 fails

5_2_1

ESD valve
type 2 fitted

H12

36

PT No.2 type 2
fails

PT No.2
type 2 fails

5_2_2

32 32

Figure 5.12. Two Pressure Transmitters fail to Indicate High Pressure

The implementation of Pattern5 to replace event E13 (pressure transmitter in the HIPS

subsystem fails) results in the incorporation of the fault tree part which represents the causes

of failure to monitor pressure in the HIPS subsystem. The structure of this part of the fault

tree is identical to the one that represents the failure of pressure transmitters in the ESD

subsystem.

As explained in Section 5.4.1 two FTMPs are used to implement design alternatives

introduced for the ESD valve. First basic event ESD (code number 9) is replaced using

Pattern3 where mt=2. The resulting fault tree structure (Figure 5.13) represents causes of

failure of the ESD solenoid valve for two different types of the valve part. As seen in Figure

5.13 the solenoid part remains the same. Two house events H67 and H68 are introduced to

model this valve type as a design alternative. Event code 9 is renamed into code 9_1_1 (ESD

valve No. 1 type 1 fails) and the new introduced event is coded as 9_1_2 which represents

failure of ESD valve part No. 1 type 2.

Chapter 5. HIPS Design Optimisation Using GSDOA

95

ESD valve fails

to close

10

ESD valve

type 1 fitted

H67

156

ESD valve type
1 fails

ESD valve

type 1 fails

9_1_1

ESD valve

type 2 fitted

H68

157

ESD valve type
2 fails

ESD valve

type 2 fails

9_1_2

Valve

solenoid fails

10
155

ESD valve No.1

fail

Figure 5.13. Fault Tree Structure for Alternatives of Different Type of ESD Valve

Next, Pattern1 (mn=2 and mk=1) is implemented to model the structural changes in the fault

tree regarding the possible introduction of a redundant solenoid valve. Failure of the solenoid

valve is represented using an intermediate event in the fault tree. Therefore the FTMP is

implemented at gate level (Gate No. 10) to replicate the logic relationship between failures of

the basic valve components leading to the failure of the valve (Figure 5.14). The resulting

fault tree structure has two additional house events H69 and H70 to model the redundancy

level. Since one of the input events of gate 10 represents the earlier introduced alternative of

different types of the valve part of the ESD solenoid valve (Figure 5.13) this structural

relationship is mimicked in the fault tree part modelling the inclusion of the redundant valve.

Therefore other new house events coded H137 and H138 used to model the type of the second

introduced redundant valve mimic the house events H67 and H68 associated with the first

redundant valve. The codes of house events H137 and H138 are derived as follows:

max_house + i, where i is the code of a house event being replicated, i.e. 137=70 + 67 and

138=70 + 68. The codes of the existing basic events are changed following the rules

introduced in Section 4.3.5.2 as follows: 9_1_1_1_1, 9_1_2_1_1 and 10_1_1. They represent

input events of the intermediate event ‘Solenoid ESD valve No.1 fails’. Input basic events of

the intermediate event ‘Solenoid ESD valve No.2 fails’’ are coded as 9_1_1_2_1, 9_1_2_2_1

and 10_2_1.

The design alternatives for the HIPS valve are the same as the ones analysed for the ESD

valve. Therefore the same FTMPs are used in the same order as the ones for ESD valve. First

Pattern3 is implemented at event level (code 11), then design alternatives regarding

redundant HIPS valves are implemented using Pattern1 at gate level (gate code 15).

Chapter 5. HIPS Design Optimisation Using GSDOA

96

ESD valve
fails stuck

158

1 valve
Fitted

H69

159

1 ESD valve is

fitted and fails

ESD valve No.1
fails to close

10

ESD valve
type 1 fitted

H67

156

ESD valve type

1 fails

ESD valve
type 1 fails

9_1_1

_1_1

ESD valve
type 2 fitted

H68

157

ESD valve type

2 fails

ESD valve
type 2 fails

9_1_2

_1_1

Valve

solenoid fails

10_1_
1

155

ESD valve No.1
fail

2 valves

Fitted

H70

160

2 ESD valve are

fitted and fails

2 ESD valves

fail to close

161

ESD valve No.1

fails to close

11

ESD valve No.2

fails to close

173

ESD valve

type 1 fitted

H137

317

ESD valve No2

type 1 fails

ESD valve No2

type 1 fails

9_1_1
_2_1

ESD valve

type 2 fitted

H138

318

ESD valve No2

type 2 fails

ESD valve

type 2 fails

9_1_2
_2_1

Valve
solenoid fails

10_2_

1
316

ESD valve No.2

fail

Figure 5.14. Fault Tree Structure for Design Alternatives of ESD Valve

5.4.3. Chromosome Structure

The structure of chromosomes utilized during the optimisation process is specified

automatically by the developed code for each problem analysed. The structure of

chromosomes for the HIPS optimisation problem is based on the data stored in the files

hips_var.txt and hips_theta.txt. The file hips_var.txt provides information about FTMPs

corresponding to the given structural design variables and the file hips_theta.txt stores the list

of different time intervals between maintenance testing and ranges of their possible values.

Figure 5.15 shows the complete structure of the chromosome. Here the links between data

stored in data files hips_var.txt and hips_theta.txt and chromosome structure are

demonstrated.

Chapter 5. HIPS Design Optimisation Using GSDOA

97

m
n
=
4

m
k
=
4

m
n
=
4

m
k
=
4

m
t=
2

m
t=
2

m
t=
2

m
n
=
2

m
t=
2

Figure 5.15. The Chromosome Structure

As a reminder, parameters of the given FTMPs are coded in the first part of a chromosome.

Numbers of bits required to code each parameter are found employing Formula 3.4. A

parameter with its value equal to 1 identifies that the corresponding structural changes are not

made and therefore no bits are allocated for the parameter. Thus to code parameters of the

first FTMP, Pattern5, implemented at event E5 (PT1), eight bits are allocated. Here three bits

are used to code parameter mn which is equal to 4, mt=2 is coded using two bits and three bits

are utilised to code the value of parameter mk which is equal to 4. Eight bits are allocated in

the same order for the FTMP applied for the basic event E13 (PT2). Following this, four bits

are allocated to code parameters of FTMPs representing design options for the ESD valve.

The first two bits code the value of parameter mt for Pattern3 (mt=2) and other two bits are

allocated for parameter mn=2 for Pattern1. In the same way four bits are allocated for the

remaining two FTMPs related to design alternatives of the HIPS valve.

After allocating 24 bits for the coding of the structural design variables, i.e. their

corresponding FTMPs, the rest of the bits of the chromosomes are allocated for the two

maintenance test intervals. A time interval between maintenance for both subsystem 1 and

subsystem 2 can be from 1 to 104 weeks. This means that in order to code each value in

binary numbers seven bits are required. Thus the chromosomes used in the HIPS optimisation

problem have eight genes and thirty eight bits in total.

Chapter 5. HIPS Design Optimisation Using GSDOA

98

5.5. ANALYSIS OF GSDOP PERFORMANCE SOLVING THE HIPS

DESIGN OPTIMISATION PROBLEM

5.5.1. Selection of the Values of the GA Parameters

GAs are guided search methods and values of the GA parameters such as population size,

crossover rate and mutation rate influence the convergence of the optimisation process.

Moreover the best values for the GA parameters, i.e. the ones assuring good convergence to

the optimal solution, are case dependent. Setting values for GA parameters presents a

challenge in terms of achieving good performance of the algorithm as there are no precise

instructions with regards to what the values should be, although some guidance is available

based on empirical studies [75]. Some common settings for mutation rate and crossover rate

are presented in [76]. The right size of population is also important. If the population is too

small it can cause the loss of genetic diversity. On the other hand if a population is too large

over abundance of genetic diversity can appear [68]. Therefore an option to change the values

of the GA parameters has been implemented in the GSDOP and the use can define these in

the data file hips_gav.txt.

When solving the HIPS problem the choice of GA parameter values was based on studies

focused on determining good parameter values for genetic operators [77] and a trial-and-error

approach. In total forty eight sets of different combinations of values of the GA parameters

were used. The values of the parameters are listed in Table 5.4. Due to the stochastic nature of

the GA ten runs were performed for each set of parameters. Each time the process was

terminated after 100 generations.

Table 5.4. The List of Values of GA Parameters

 Value No.

Parameter

1
st
 Value 2

nd
 Value 3

rd
 Value 4

th
 Value

Population Size 10 20 30 50

Mutation Rate 0.001 0.002 0.005 0.1

Crossover Rate 0.75 0.8 0.95 -

The numerical quantities used for comparison of the optimisation results are derived as

averages of the best feasible unavailability values from 10 runs for each combination of GA

parameters. Thus each set of the GA parameter values is assigned its corresponding minimal

unavailability value. The average of the best unavailability values is also evaluated for each

value of the GA parameter considered. The results are presented in table format. Tables 5.5 -

5.9 are used to analyse the effect of different population sizes on the optimisation results

Chapter 5. HIPS Design Optimisation Using GSDOA

99

using different combinations of mutation and crossover rates. Tables 5.10-5.14 show how

combinations of different crossover rates and population sizes influence the optimisation

process when specific mutation rates are chosen. Accordingly, Tables 5.15-5.19 store the

results of the optimisation process when each different crossover rate value is combined with

all possible combinations of mutation rates and population sizes.

Results in Table 5.5 demonstrate that an average minimal unavailability value obtained after

100 generations decreases if larger sized populations are used. The minimum unavailability

value is obtained when the population size is equal to 50 (3.44E-07). Therefore it can be

stated that the convergence rate of the algorithm can be improved by increasing the

population size. However computation intensity increases with larger population sizes and

this needs to be taken into account.

Table 5.5. Minimal Average System Unavailability Values for Different Population Sizes

Population Size

10 20 30 50

Mean of Minimal System

Unavailability Values
4.44E-07 3.87E-07 3.69E-07 3.44E-07

As expected, if the population size is small, i.e. 10 chromosomes (Table 5.6), increasing

mutation rate induces smaller system unavailability values to be found over the limited

number of generations. When the population of chromosomes is small it takes longer to

analyse the search space. Therefore the high mutation rate which creates diversity in the

population enables explorations of diverse regions of the search space. Two different effects

of crossover rate values can be noticed in this case. When the mutation rate range from 0.001

to 0.005 is used and the crossover rate increases, so does the average of the minimal system

unavailability values. However combinations of higher crossover rates and the mutation rate

equal to 0.01 results in smaller unavailability values to be found. Thus the minimal average

unavailability value found using a population of 10 chromosomes is equal to 3.48E-07.

Table 5.6. Minimal Unavailability Values when Population Size is Equal to 10

Population size = 10

Crossover Rate

0.75 0.8 0.95

0.001 4.977E-07 5.330E-07 5.348E-07

0.002 4.765E-07 4.665E-07 5.297E-07

0.005 3.953E-07 3.978E-07 4.098E-07

Mutation Rate

0.01 3.844E-07 3.510E-07 3.480E-07

Chapter 5. HIPS Design Optimisation Using GSDOA

100

The results obtained for a population size of 20 chromosomes are shown in Table 5.7. Here

the performance of the optimisation algorithm was also improved when the mutation rate was

increased. The influence of the crossover rate values on the potential of the programme in

finding the optimal solution varies for every mutation rate. However the tendency that a high

crossover rate corresponds to a smaller optimal unavailability value remains.

Table 5.7. Minimal Unavailability Values when Population Size is Equal to 20

Population size = 20

Crossover Rate

0.75 0.8 0.95

0.001 4.355E-07 3.653E-07 5.343E-07

0.002 4.212E-07 3.954E-07 3.832E-07

0.005 3.603E-07 3.837E-07 3.551E-07

Mutation Rate

0.01 3.419E-07 3.192E-07 3.526E-07

For larger populations, i.e. 30 and 50 chromosome populations, the relationship between

different combinations of mutation and crossover rates and the optimal values was even less

consistent as shown in Tables 5.8 and 5.9. In both cases the increase of mutation rate up to

0.005 is beneficial for the optimisation performance. However the mutation rate equal to 0.01

introduces diversity in the population which has a negative effect on the convergence of the

process. The negative effect of a diverse population is noticeable when the crossover rate is

equal to 0.95 and the population consists of 30 chromosomes. Combinations of the latter

mutation rate with crossover rates equal to 0.8 and 0.95 also result in higher optimal values

for 50 chromosome populations. In both cases the algorithm performs better if combinations

of mutation and crossover rate are used such that one rate is low and the other has a high

value then using combinations where both parameter rates are either low or high. The smallest

unavailability value is obtained using the highest mutation rate (0.01) and the lowest

crossover rate (0.75).

Table 5.8. Minimal Unavailability Values when Population Size is Equal to 30

Population size = 30

Crossover Rate

0.75 0.8 0.95

0.001 3.948E-07 4.439E-07 3.613E-07

0.002 3.845E-07 4.315E-07 3.598E-07

0.005 3.551E-07 3.365E-07 3.403E-07

Mutation Rate

0.01 3.251E-07 3.338E-07 3.523E-07

Chapter 5. HIPS Design Optimisation Using GSDOA

101

Table 5.9. Minimal Unavailability Values when Population Size is Equal to 50

Population size = 50

Crossover Rate

0.75 0.8 0.95

0.001 3.633E-07 4.036E-07 3.494E-07

0.002 3.420E-07 3.607E-07 3.483E-07

0.005 3.220E-07 3.167E-07 3.083E-07

Mutation Rate

0.01 3.150E-07 3.435E-07 3.498E-07

When considering only the mutation rate its value has the same influence on algorithm

performance as the population size. Smaller unavailability values of feasible chromosomes

are found when using larger mutation rate values (Table 5.10). The minimal mean of the

averaged minimal unavailability values is equal to 3.434E-07 and corresponds to the mutation

rate equal to 0.01.

Table 5.10. Minimal Average System Unavailability Values for Different Mutation Rates

Mutation Rate

0.001 0.002 0.005 0.01

Mean of Minimal System

Unavailability Values
4.347E-07 4.091E-07 3.567E-07 3.434E-07

The minimal average system unavailability values obtained using combinations of the GA

parameter values where the mutation rate is set to 0.001 are listed in Table 5.11. The results

show that using small population sizes, such as 10 or 20 chromosomes, the approach performs

better if a low crossover rate is used. However if the population size is increased better results

are obtained using the crossover rate equal to 0.95. The results imply that a high reproduction

rate decreases the convergence rate of the algorithm if the diversity in small populations is

limited. On the other hand, when populations of chromosomes are larger new strings

introduced more quickly into the population improves the optimisation process.

Table 5.11. Minimal Unavailability Values when Mutation Rate is Equal to 0.001

Mutation Rate = 0.001

Crossover Rate

0.75 0.8 0.95

10 4.977E-07 5.330E-07 5.348E-07

20 4.355E-07 3.653E-07 5.343E-07

30 3.948E-07 4.439E-07 3.613E-07

Population Size

50 3.633E-07 4.036E-07 3.494E-07

When the mutation rate equal to 0.002 is used it is difficult to identify a clear tendency of

influence of other parameter values on the optimisation results (Table 5.12). For example, the

algorithm finds smaller near-optimal feasible solutions when the population size is either 10

Chapter 5. HIPS Design Optimisation Using GSDOA

102

or 20 if using the crossover rate equal to 0.8 in comparison with the other crossover rates.

However, if the size of a population is equal to 30 the smallest near optimal solution is

obtained using the crossover rate equal to 0.95. If the population size is 50 chromosomes then

the smallest average unavailability value is obtained using the crossover rate equal to 0.75.

Table 5.12. Minimal Unavailability Values when Mutation Rate is Equal to 0.002

Mutation Rate = 0.002

Crossover Rate

0.75 0.8 0.95

10 4.765E-07 4.665E-07 5.297E-07

20 4.212E-07 3.954E-07 3.832E-07

30 3.845E-07 4.315E-07 3.698E-07

Population Size

50 3.420E-07 3.607E-07 3.483E-07

Opposite to the previous two cases, parameter combinations where mutation rate is equal to

0.005 (Table 5.13) result in the decreasing minimal near optimal solutions when the

population size increases for each crossover rate value. Here the influence of the crossover

rate values to the optimisation process depends on the size of populations used. If a

population size is equal to 10 chromosomes then higher crossover rates lead to the loss of

chromosomes with good genetic information. On the contrary, the quicker introduction of

new chromosome when using the high crossover rate, i.e. 0.95, induces diversity in the large

populations and therefore the minimal near optimal solution is found when a population of 50

chromosomes is used.

Table 5.13. Minimal Unavailability Values when Mutation Rate is Equal to 0.005

Mutation Rate = 0.005

Crossover Rate

0.75 0.8 0.95

10 3.953E-07 3.978E-07 4.098E-07

20 3.603E-07 3.837E-07 3.551E-07

30 3.551E-07 3.365E-07 3.403E-07

Population Size

50 3.220E-07 3.167E-07 3.083E-07

Table 5.14 presents the optimisation results obtained using the mutation rate equal to 0.01 and

all possible combinations of population sizes and crossover rates. In this situation, if a

population comprises of 10 chromosomes then smaller unavailability values are obtained

using higher a crossover rate. Conversely, minimal average unavailability value increases if a

crossover rate increases when the population size is equal to 50 chromosomes. It follows that

for the high mutation rate value of either the population size or crossover rate used should be

small in order to maintain diversity in the population and preserve good genetic information at

the same time. The influence of different parameter values on the optimisation results is more

Chapter 5. HIPS Design Optimisation Using GSDOA

103

pronounced for the population size then the crossover rate. Therefore it can also be noted that

the population size has more influence on the optimisation process than the crossover rate

when the mutation rate used is equal to 0.01.

Table 5.14. Minimal Unavailability Values when Mutation Rate is Equal to 0.01

Mutation Rate = 0.01

Crossover Rate

0.75 0.8 0.95

10 3.844E-07 3.510E-07 3.480E-07

20 3.419E-07 3.192E-07 3.526E-07

30 3.251E-07 3.338E-07 3.523E-07

Population Size

50 3.195E-07 3.435E-07 3.498E-07

Increasing the values of the crossover rate has an opposite effect on the optimisation results

than previously discussed increasing population size or mutation rate. Table 5.15 shows that

the larger mean value of minimal unavailability values corresponds to the higher crossover

rate. Thus on average the smallest minimal unavailability values for the HIPS system are

found using the crossover rate equal to 0.75.

Table 5.15. Minimal Average System Unavailability Values for Different Crossover

Rates

Crossover Rate

0.75 0.8 0.95

Mean of Minimal System

Unavailability Values
3.824E-07 3.864E-07 3.892E-07

Using the GA parameter combinations with crossover rate set to 0.75 variations in both

population sizes and mutation rates have the same effect on the optimisation process. If their

values increase the minimal obtained unavailability value decreases. The results are presented

in Table 5.16.

Table 5.16. Minimal Unavailability Values when Crossover Rate is Equal to 0.75

Crossover Rate = 0.75

Mutation Rate

0.001 0.002 0.005 0.01

10 4.977E-07 4.765E-07 3.953E-07 3.844E-07

20 4.355E-07 4.212E-07 3.603E-07 3.419E-07

30 3.948E-07 3.845E-07 3.551E-07 3.251E-07

Population Size

50 3.633E-07 3.420E-07 3.220E-07 3.195E-07

It is difficult to identify a consistent pattern of influence of mutation rates and population

sizes to the optimisation results when the crossover rate used is equal to 0.8 as shown in Table

5.17. Combinations with population size equal either to 20 or 50 chromosomes result in

Chapter 5. HIPS Design Optimisation Using GSDOA

104

smaller optimal unavailability values. The mutation rate equal to 0.01 dominates among other

mutation rates in the contribution towards better optimisation results.

Table 5.17. Minimal Unavailability Values when Crossover Rate is Equal to 0.8

Crossover Rate = 0.8

Mutation Rate

0.001 0.002 0.005 0.01

10 5.330E-07 4.665E-07 3.978E-07 3.510E-07

20 3.653E-07 3.954E-07 3.837E-07 3.192E-07

30 4.439E-07 4.315E-07 3.365E-07 3.338E-07

Population Size

50 4.036E-07 3.607E-07 3.167E-07 3.435E-07

When the crossover rate is high and equal to 0.95 the algorithm performs better if larger size

populations are used (Table 5.18). Moreover, parameter combinations where population size

is small result in smaller optimal solutions when the mutation rate increases. However for

larger population sizes such a consistent pattern does not exist. In this case the overall

minimal unavailability value is obtained using the population of 50 chromosomes and the

mutation rate equal to 0.005.

Table 5.18. Minimal Unavailability Values when Crossover Rate is Equal to 0.95

Crossover Rate = 0.95

Mutation Rate

0.001 0.002 0.005 0.01

10 5.348E-07 5.297E-07 4.098E-07 3.480E-07

20 5.343E-07 3.832E-07 3.551E-07 3.526E-07

30 3.613E-07 3.698E-07 3.403E-07 3.523E-07

Population Size

50 3.494E-07 3.483E-07 3.083E-07 3.498E-07

From the presented results it follows that the algorithm produces better solutions if a larger

population size is used. The same principle is valid for the mutation rate. Even though the

smallest average system unavailability value is obtained using the crossover rate equal to 0.95

the mean system unavailability values increases if the crossover rate is high (Table 5.15).

Therefore, a further analysis of the optimisation of HIPS design is performed employing the

following set of the GA parameter values: the population size equal to 50, the mutation rate

equal to 0.01 and crossover rate set to 0.75. The analysis is discussed in Section 5.5.2.

5.5.2. Testing

To perform further testing the specified set of GA parameter values is used and 10 more runs

are carried out. The number of generations in a single run of the programme is left the same,

i.e. 100 generations.

Chapter 5. HIPS Design Optimisation Using GSDOA

105

The average fitness value in each generation is used as one of the indicating factors when

considering convergence of the optimisation process. As an example the results obtained per

generation for runs 3, 5, 7 and 10 are presented in Figure 5.16. The results demonstrate that

an average population fitness value converges towards the optimal solution. Due to the

random nature of the GA it is common that unfit genes are introduced in the population which

results in the fluctuation in average population fitness. However the results are scattered in a

relatively broad range and the convergence to a particular design can not be identified. This

occurs due to the inability of the algorithm to ensure a structured random search, and instead

the search tends to degenerate to unstructured enumerative technique. It was anticipated that

this situation would change and populations would be dominated by highly-fit chromosomes

which are similar to the best overall chromosome once a number of generations performed

before termination of the process would be increased. However, after performing a number of

runs when the termination condition for the optimisation process was set to 300 generations,

the desired convergence was not achieved. Figure 5.17 presents the results for three

experiment runs.

2.00E-07

3.00E-07

4.00E-07

5.00E-07

6.00E-07

7.00E-07

8.00E-07

9.00E-07

1.00E-06

1.10E-06

1 10 19 28 37 46 55 64 73 82 91 100

Generation No.

U
n

a
v
a
il

a
b

il
it

y
 V

a
lu

e
s

Test No. 3

Test No. 5

Test No. 7

Test No. 10

Average

Figure 5.16. Average Unavailability Value in Each Generation. Total 100 generations

Chapter 5. HIPS Design Optimisation Using GSDOA

106

2.00E-07

3.00E-07

4.00E-07

5.00E-07

6.00E-07

7.00E-07

8.00E-07

9.00E-07

1.00E-06

1.10E-06

1 20 39 58 77 96 115 134 153 172 191 210 229 248 267 286

Generation No.

U
n

a
v
a
il

a
b

il
it

y
 V

a
lu

e
s

Test No. 1

Test No. 2

Test No. 3

Average

Figure 5.17. Average Unavailability Value in Each Generation. Total 300 generations

The obtained results suggest that using the current optimisation algorithm the rate at which fit

chromosomes produce fit offspring and therefore the convergence rate is slow. The cause of

the current situation could be the approach used to introduce new chromosomes into a new

parent population. For constrained problems, the optimum solution lies on the boundary of at

least one of the constraints. The chosen approach preserves genetic information of feasible

solutions however it restricts the search within the infeasible region (even though it preserves

good genetic information) therefore limiting the search space.

Even though the convergence of average fitness values to one particular value representing

the optimal design case has not been achieved the algorithm shows the capability to find fit

chromosomes and therefore near optimal design cases in the search space. Figure 5.18

demonstrate the best feasible unavailability values obtained in each generation in 4 out of 10

runs. It shows a steady convergence of the best fitness values per generation to a particular

minimum value.

The best optimisation solution over 100 generations was obtained during run no 10. The best

chromosome, i.e. the chromosome that provides the smallest unavailability value arose in

generation 94 which corresponds to a system unavailability value equal to 3.13E-07. This

chromosome comprises the following values of genes which are represented in decimal

format: 2 2 2 2 2 2 2 1 2 2 46 34. Each of them is associated with a particular design

variable. Equivalents between genes and values of design variables are listed in Table 5.19.

Chapter 5. HIPS Design Optimisation Using GSDOA

107

The total cost of the generated system design is 982 units and its maintenance down time is

equal to 125.21 hours.

2.5E-07

3.5E-07

4.5E-07

5.5E-07

6.5E-07

7.5E-07

8.5E-07

9.5E-07

1.1E-06

1.2E-06

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation No

U
n

a
v
a
il

a
b

il
it

y
 V

a
lu

e
s

Test No. 3

Test No. 5

Test No. 7

Test No. 10

Average

Figure 5.18. Best Fitness Value per Each Generation

Table 5.19. Design Variables Values

Design

Variable
Values

(GSDOP)

Design

Variable

Values

(overall

optimal)

Design

Variable
Description

2 2 n3
Number of pressure transmitters for ESD

subsystem

2 2 t3
Type of pressure transmitter in ESD

subsystem

2 2 k3
Number of pressure transmitters required

to trip in ESD subsystem

2 2 n4
Number of pressure transmitters for HIPS

subsystem

2 2 t4
Type of pressure transmitter in HIPS

subsystem

2 2 k4
Number of pressure transmitters required

to trip in HIPS subsystem

2 2 n1 Number of ESD valves

1 1 t1 Type of a ESD valve

2 2 n2 Number of HIPS valves

2 2 t2 Type of a HIPS valve

46 44 θ1
Maintenance test interval for ESD

subsystem (in weeks)

34 33 θ2
Maintenance test interval for HIPS

subsystem (in weeks)

Chapter 5. HIPS Design Optimisation Using GSDOA

108

For comparison, the unavailability of the initial design system is equal to 1.568E-06, the cost

is 862 units and maintenance down time is 57.2 hours when components of the ESD

subsystem are tested every 71 weeks and HIPS subsystem undergoes maintence testing every

102 weeks. The unavailability value of the overall optimal feasible system design (found

using an exhaustive search) is equal to 3.05E-07, total cost is equal to 982 units and

maintenance down time equates to 129.75 hours a year. The design variable values

corresponding to the overall optimal system design are presented in Table 5.19. Thus, using

the developed GSDOP a HIPS design was identified with a significantly smaller

unavailability value and design cost compared to the initial system design. The GSDOP also

identified structural design variable values corresponding to the overall optimal feasible

system design. Values of the optimal maintenance intervals were very similar to the ones

found during the exhaustive search.

5.6. SUMMARY

In this chapter a systematic approach to system design optimisation has been demonstrated

with the successful application of the developed GSDOP to solve a specific HIPS design

optimisation problem. This example is the first step towards the validation of the potential of

the algorithm for application to a number of safety systems. It demonstrates that the algorithm

is:

• applicable to solve a chosen design optimisation problem;

• scalable according to the size of the system and the optimisation problem analysed.

In the chapter it has been demonstrated what data needs to be provided by the user and how it

is utilised in the automated design optimisation process for the specific system problem. It has

also been illustrated how to provide the set of FTMPs according to the chosen design options

and how the programme builds the corresponding fault tree representing all possible design

cases. The chromosome structure defined within the programme for the HIPS problem has

also been discussed.

An analysis of the performance of the programme has demonstrated how different GA

parameter values influence the optimisation results. The size of populations had the most

pronounced effect on the optimisation process. Larger chromosome populations lead to better

algorithm performance. In the mean time the balance between high and low values of

mutation and crossover rates had to be determined in order to achieve faster convergence

Chapter 5. HIPS Design Optimisation Using GSDOA

109

towards the optimal solution. It has been noticed that a high mutation rate and a low crossover

rate lead to smaller optimal solutions over a fixed number of generations.

The programme has an option that allows the user to set values for GA parameters, such as

the population size, the crossover rate, the mutation rate and the maximum number of

generations to be performed. Therefore the user can try different combinations of GA

parameter values for obtaining an optimal solution or use the default options to find a

near-optimal if not an optimal problem solution. The default population size is 50

chromosomes, the crossover rate is equal to 0.95 and the mutation rate is equal to 0.01.

The application of the GSDOP exhibits the potential of the algorithm to solve a system design

optimisation problem and find the near-optimal solution. However the optimisation results

have revealed that the implemented GA lacks the ability to converge to a population

dominated by the fittest designs. The solution to this problem could be a number of

improvements which would encourage the preservation of elite chromosomes when creating

new generation populations. A new penalisation method, an approach to form a parent

population and a scaling procedure are the amendments to be considered to increase the

effectiveness of the GSDOA and form the future research discussed in the following chapters

of this thesis.

6. FIREWATER DELUGE SYSTEM DESIGN

OPTIMISATION USING IMPROVED GSDOA

6.1. INTRODUCTION

The first application of the GSDOA was demonstrated when solving the HIPS design

optimisation problem discussed in Chapter 5. The HIPS is a relatively simple safety system

and therefore when solving its optimisation problem all specifics of the developed algorithm

could not be demonstrated. Moreover, the potential of the algorithm to solve the design

optimisation problem for different safety systems should be realised with more than one

application example. The Firewater Deluge System (FWDS) has been chosen to demonstrate

both the applicability of the algorithm to a range of safety systems and its ability to analyse

more complicated problems. Here the complexity of the optimisation of the FWDS is

determined by the increased size of the fault tree for the initial system design and the larger

number of design variables defining the size and complexity of the search space for the

optimisation problem solved.

This chapter is organised as follows. First, the FWDS and its optimisation problem are

introduced. System performance principles are explained along with the causes of failure and

the resulting system fault tree in Section 6.2. The optimisation problem is formulated

considering the design variables and available resources specified in Section 6.3. Initial data

arrangements including a detailed explanation of FTMPs used to construct the fault tree for all

possible design variations are discussed in Sections 6.4. Since the application of the GSDOP

to the HIPS revealed some shortcomings of the developed optimisation methodology,

improvements were made to the GA and they are discussed in Section 6.5. The last section of

the chapter, Section 6.6, discusses the performance analysis of the improved GSDOP in the

context of the design optimisation problem of the FWDS.

6.2. DESCRIPTION OF FIREWATER DELUGE SYSTEM

6.2.1. Performance Principles

FWDS (Figure 6.1) is a safety system that supplies, on demand, controlled pressurised water

and foam to a particular area that is protected by a deluge system on an offshore platform. It

can be used to mitigate the consequences of jet and pool fires and to reduce overpressure of an

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

111

explosion. There are three major system parts: the Deluge system, the Water Supply and

Distribution System and the Aqueous Film-Forming Foam (AFFF) Supply and Distribution

System.

Figure 6.1. The Firewater Deluge System

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

112

The Deluge system is a fabricated steel framework, called a skid, where the deluge valve set

together with all associated equipment is mounted on. The main distribution line, water

closing circuit and control air circuit complete the deluge valve set. The system works in the

following way. When a signal from the Main Fire and Gas Panel (MFGP) is received air

pressure is released from the control air circuit by de-energising and opening solenoid valves.

Air may also be released from the control air circuit manually, i.e. by opening the system

local manual release valve on the skid. The air pressure drop results in the opening of the

valmatic release valve and activation of the water closing circuit. Water starts running to drain

followed by the pressure fall on the deluge valve diaphragm. When the pressure on the

diaphragm falls to a particular set level, the firewater main pressure overcomes the load,

controlled by the diaphragm, and water starts to flow into the distribution pipe through the

nozzles and onto the hazard.

The deluge valve set is also fitted with an AFFF supply line. When the air pressure drops in

the control air circuit of the deluge system, the AFFF and valmatic release valves open

simultaneously. This allows the induction of foam concentrate from the AFFF line via the

foam proportioner while the water flows through the foam inductor in the main distribution

line. The distribution network is then supplied with the water and foam (approximately 3%)

solution through the nozzles and onto the hazard.

The AFFF system is activated when either the air pressure drops in the control air circuit or

when any firewater pump starts to supply water at the pressure level that meets the design

requirements. In order to keep the AFFF system at approximately the same pressure level as

the firewater system an air driven jockey pump is run continuously. The analysed FWDS has

two AFFF pumps fitted. One pump is motor driven and supplied from the platform power

plant. Another one is diesel driven, which is supplied from a diesel tank sized for a 24 hour

supply.

The aqueous film-forming foam concentrate is stored in a tank and is distributed through the

ringmain network when demand arises. The tank has to be filled to a certain level; otherwise a

low level alarm fitted in the tank sends an alarm signal to the Central Control Room.

The deluge system is also connected to a pressurised ringmain network. The pressure is

maintained by a jockey pump that draws water from the sea. If the ringmain pressure falls it is

detected by the pressure transducer and a signal is sent to the MFGP. As a result the MFGP

activates the firewater pumps to supply water at a sufficient pressure level that meets the

deluge requirements. Water into the pumps is taken directly from the sea. Each firewater

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

113

pump can be activated in two ways: automatically and manually. A pump can be activated

manually locally or at the fire control panel.

In the current system design two firewater pumps are fitted and they are powered in the same

way as the ones for AFFF. One pump is powered from the main electric plant and the other is

powered from the diesel engines. Note that diesel is supplied to the firewater diesel driven

pump independently from that of the AFFF pump.

6.2.2. FireWater Deluge System Failure

For quantitative system failure analysis components in the FWDS are divided into two

categories: “wear - out” or “non wear-out”. The unavailability, q, for components of “non

wear-out” type is determined using Formula 6.1:

)
2

(
θ

τλ +=q , (6.1)

here λ is dormant failure rate, τ is dormant mean time to repair and θ is a maintenance test

interval. Failure of components of “wear-out” type is expressed employing the Weibull

probability distribution. Thus component unavailability is found using Formula 6.2:

dteq

t

∫

−=

−θ

β

η

0

1 , (6.2)

here η and β are the scale and shape parameters of the Weibull distribution respectively and t

refers to time. Preventive maintenance is only carried out on components of wear-out type.

The initial system design is represented by the fault tree with the top event defined as the

“Firewater Deluge System Fails to Activate on Demand”. The top event occurs as a result of

any of the following failures: failure to activate both firewater and AFFF pumps mechanisms,

i.e. failure of the distribution network, failure to supply sufficient amount of water to the

ringmain, failure to supply sufficient foam to the ringmain or failure of the Deluge system.

The event of failure to activate mechanisms of firewater and AFFF pumps is defined as

“Failure to initiate pumps mechanisms” as shown in Figure 6.2. It occurs as a result of the

coincident failure of both automatic and manual activation of the pumps. Failure of the push

button on the MFGP (basic event “PBF”) or the operator’s failure to push the button (basic

event “OE”) will cause failure of manual activation. Automatic mechanism activation fails if

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

114

either the firewater pump selector unit fails (basic event “FSU”) or the pressure transmitter on

the firewater ringmain that senses low pressure fails (basic event “PT”).

Firewater Deluge

System Fails to
Activate on Demand

Failure to
initiate pumps

mechanisms

Failure of AFFF
and Water

Deluge skid

Firewater system
fails to supply

sufficient water to

ringmain

AFFF system
fails to supply

foam to ringmain

2

Manual start
fails

Auto start

fails

7

PT FSU

Pressure

transmitter
fails

Firewater

pump selector
unit fails

OE PBF

Operator

fails to push
button

Push button
on MFGP

fails

1

6

3 4 5

Figure 6.2. Causes of WFDS failure to activate on demand

Basic event failure data for the FWDS is provided in Appendix 2. Events considered in the

distribution network failure process and their corresponding fault tree basic events are listed

in Table A.2.1. Failure and repair data of each component used for quantitative analysis and

information regarding the systems’ available resources are provided in Table A.2.2. The latter

includes the number of hours of manual work required to test the component (HT), the number

of spares stored (NS), storage cost per component (CS) and component initial cost, i.e. design

cost (CI). Events due to human error require only specification of the probability of their

occurrence. Exception applies to the failure event of the manual push button (PBF) which is a

component failure however its probability of occurrence is specified directly.

If the firewater pump mechanisms or lines fail the FWDS cannot supply sufficient water to

the ringmain. The fault tree structure for the failure logic is presented in Figure 6.3.

Considering that the system initial design has one electrically driven and one diesel driven

pump, failure will occur if both pumps fail to supply water. Both pumps have similar failure

scenarios. The failure occurs if the energy supply goes out of order or either the pump itself

fails or components on the pump line fail. The causes of failure for the diesel driven pump

and its line leading to the FWDS failure are shown in Figure 6.3. Accordingly, logic relations

among the electrically powered pump and its line failure events are shown in Figure 6.4. All

failure events considered leading to firewater supply failure are specified in Table A.2.3. The

associated component data for the events is given in Table A.2.4.

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

115

Firewater system
fails to supply

sufficient water to
ringmain

Failure of
diesel driven

pump set

Failure of
electrically

powered pump set

No diesel
supply

Diesel driven
pump or line

fails

12

DPF DM

Pump

fails

Pump unavail.
due to

maintenance

D_EF

Diesel
supply lost

Diesel
engine fails

9

14

3

8

D_TIVC

Diesel tank
isolation

valve closed

D_TIVB

Diesel tank
isolation

valve closed

D_LAF

Diesel low
lever alarm

fails

D_OAF

Operator fails

to notice low

level alarm

13

Diesel driven
pump fails

10

Diesel driven
pump line

fails

11

D_CVB

Check
valve is
blocked

D_PRVO

Pressure

relieve valve

fails open

D_DVO

Discharge

valve to sea

left opened

D_SVO

Spillback

valve

fails open

D_FB

Filter
blocked

D_IVB

Isolation
valve

blocked

D_IVC

Isolation

valve

closed

Figure 6.3. Causes of failure of firewater diesel driven pump

Failure of

electrically

powered pump set

No electrisity

supply

Electrically

powered pump

or line fails

18

EPF EM

Pump
fails

Pump unavail.

due to

maintenance

E_MF

Electricity

supply fails

Motor

fails

15

14

Electrically

powered
pump fails

16

Electrically

powered pump

line fails

17

E_CVB

Check

valve is
blocked

E_PRVO

Pressure

relieve valve
fails open

E_DVO

Discharge

valve to sea
left opened

E_SVO

Spillback

valve
fails open

E_FB

Filter

blocked

E_IVB

Isolation
valve

blocked

E_IVC

Isolation

valve
closed

E_ESF

Figure 6.4. Causes of failure of firewater electrically powered pump

AFFF supply fails as the result of failures of either the AFFF pump mechanisms or pump

lines or isolation of the AFFF tank. Since the system design considered has one diesel driven

and one electrically powered AFFF pump the fault tree structure of the AFFF supply failure is

similar to that of the firewater supply system. The fault tree is shown in Figures 6.5 and 6.6.

All failure events leading to the AFFF supply system failure are listed in Table A.2.5.

Associated data for these events is given in Table A.2.6 in Appendix 2.

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

116

AFFF system fails to
supply sufficient foam

to ringmain

Failure of

electrically powered
pump set

Failure of diesel
driven pump set

20

4

26

Failure of AFFF
tank outlet

isolation valve

30

Failure of
AFFF pumps

sets

19

ATIVB

Isolation

valve
blocked

ATIVC

Isolation
valve closed

Electrically
powered pump

or line fails

AEPF AEM

Pump
fails

Pump unavail.
due to

maintenance

Electricity
supply fails

27

Electrically
powered

pump fails

28

Electrically
powered pump

line fails

29

AE_CVB

Check
valve is
blocked

AE_

PRVO

Pressure

relieve valve
fails open

AE_

CIVB

Suction

isolation

valve

blocked

AE_SVO

Spillback

valve
fails open

AE_FB

Filter
blocked

AE_

DIVB

Discharge

isolation

valve

blocked

AE_

DIVC

Discharge

isolation

valve closed

AE_ESF

AE_

CIVC

Suction

isolation valve

closed

Figure 6.5. Causes of failure of AFFF electrically powered pump

Failure of AFFF
diesel driven

pump set

No diesel supply

to AFFF pump set

Diesel driven

AFFF pump

or line fails

24

ADPF ADM

Pump

fails

Pump unavail.
due to

maintenance

AD_EF

Diesel

supply lost

Diesel

engine fails

21

20

AD_
TIVC

Diesel tank

isolation
valve closed

AD_
TIVB

Diesel tank

isolation
valve closed

AD_LAF

Diesel low

lever alarm
fails

AD_OAF

Operator fails

to notice low
level alarm

25

Diesel driven

pump fails

22

Diesel driven

pump line

fails

23

AD_CVB

Check

valve is
blocked

AD_

PRVO

Pressure

relieve valve
fails open

AD_
SIVC

Suction

isolation

valve

closed

AD_SVO

Spillback

valve
fails open

AD_FB

Filter
blocked

AD_

DIVB

Discharge

isolation

valve

blocked

AD_

DIVC

Discharge

isolation

valve

closed

AD_
SIVB

Suction

isolation

valve

blocked

Figure 6.6. Causes of failure of AFFF diesel driven pump

The last set of causal relationships resulting in FWDS failure to activate on demand is

associated with failure of the Deluge system. Its failure occurs if either the AFFF or Water

deluge skid fails. The causes of failure for AFFF deluge skid are depicted in Figure 6.7. The

corresponding fault tree of the Water Deluge skid is presented in Figure 6.8.

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

117

AV

Valve
fails

Failure of AFFF

deluge skid

31

36

32

Failure of AFFF
and Water Deluge

skid

5

Failure of Water
deluge skid

AFFF skid

failure

33
AINF

AFFF
inductor

nozzle fails

Failure of
isolation

valve

34

AFFF

valve fails
to open

35
ACVB

AFFF check

valve
blocked

AIVB

Isolation
valve

blocked

AHE

Isolation
valve left

closed

Failure to

activate
AFFF valve

Automatic
activation

fails

37

SI

Signal to
solenoid

valves fails

SV1

Solenoid
valve No.1

fails

SV2

Solenoid
valve No.

2 fails

MRM

Manual

release
mechanism

fails

Figure 6.7. Causes of failure of AFFF deluge skid

WV

Valve

fails

Failure of Water
deluge skid

32

43

Failure in
Water

deluge skid

38
WNB

Water spray

nozzle
blocked

Failure of
isolation

valve

39

Water

deluge valve
fails to open

40
WBS

Water spray
blocked

strainer

Failure to
activate water
spray valve

Automatic
activation

fails

44

WSI

Signal to

solenoid

valves fails

WSV1

Solenoid

valve No.1

fails

WSV2

Solenoid

valve No.

2 fails

WMRM

Manual

release
mechanism

fails

Failure of
isolation

valve No.1

41

WIVB1

Isolation

valve 1
blocked

WHE1

Isolation
valve 1 left

closed

Failure of
isolation

valve No. 2

42

WIVB2

Isolation

valve 2
blocked

WHE2

Isolation
valve 2 left

closed

WVRF

Failure of

valmatic

release

WVRF

Failure of

valmatic

release

Manual

activation
fails

45

Figure 6.8. Causes of failure of Water deluge skid

There are two main events leading to the failure of the AFFF Deluge skid, such as failure of

the AFFF skid itself or blockage of the inductor nozzle (basic event “AINF”). The logic of

failure of the AFFF skid itself is broken down into three events. First event, “Isolation valve

fails” occurs if the AFFF isolation valve is blocked (basic event “AIVB”) or it is left closed

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

118

(basic event “AHE”). The rest of the events are “AFFF valve fails to open” and “AFFF check

valve is blocked” (basic event “ACVB”). The AFFF deluge valve fails to open if it fails itself

(basic event “AV”) or both mechanic (basic event “MRM”) and automatic activation fail.

Accordingly, the failure of the Water Deluge skid occurs if either the water spray nozzle

becomes blocked (basic event “WNB”) or the skid fails itself. Failure of the skid occurs if the

strainer becomes blocked (basic event “WBS”) or either the deluge valve or one of isolation

valves fails. An isolation valve fails if it is blocked or left closed. Developing further the

event “Water deluge valve fails to open” requires consideration that restricts activation of the

valve or failure of the valve itself (basic event “WV”). The valve is not activated if the signal

to the solenoids is not sent, both fitted solenoid valves remain energised or the valmatic

relieve valve fails.

Events considered in the Deluge system failure process are listed in Table A.2.7 and the

failure and repair data, initial cost and test time for each component are specified in

Table A.2.8.

6.3. DESIGN ALTERATION OPTIONS

The introduced options for the possible FWDS design alternatives lead to a rather

complicated optimisation problem. First of all, the list of structural design variables together

with the choices of different maintenance intervals defines a very large set of possible

candidate solutions. Secondly, the choice of the appropriate FTMPs and the order they are

implemented are not straight forward. In order to construct fault tree structures incorporating

certain design alternatives some of the FTMPs need to be implemented at gates which do not

exist in the fault tree of the initial design and are created during the fault tree modification

process. Finally, the resulting fault tree representing all possible design cases increases in size

dramatically. It therefore increases the demand on computational resources.

The list of structural design variables to be used for possible FWDS alterations is provided in

Table 6.1. The choice of values of time intervals for three different maintence performance

tasks is also considered. The maintenance test interval for the firewater and AFFF pump sets

(θP) can vary from 1 to 28 days. Maintenance of the ringmain (θR) can be performed at time

intervals ranging from 1 to 24 weeks. The Deluge skid can undergo maintence at time

intervals (θD) from 3 and up to 18 months.

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

119

Table 6.1. Structural Design Variables

Associated System

Component
Description of Design Alteration

Design

Variable

Notation

Possible

Values

Initial

Design

Number of firewater diesel driven

pumps
nFD 1, 2, 3, 4 1

Pump capacity t1FD
100%, 50%,

33 1/3%
100%

Firewater diesel

driven pump

Type of firewater pump (for the 50%

and 33 1/3% capacity pumps only)
t2FD type1/ type2 type1

Number of firewater electrically

powered pumps
nFE 1, 2, 3, 4 1

Pump capacity t1FE
100%, 50%,

33 1/3%
100%

Firewater
electrically powered

pump
Type of firewater pump (for the 50%

and 33 1/3% capacity pumps only)
t2FE type1/ type2 type1

Number of AFFF diesel driven pumps nAD 1, 2 1 AFFF diesel driven

pump Pump capacity tAD 100%, 50% 100%

Number of AFFF electrically powered

pumps
nAE 1, 2 1 AFFF electrically

powered pump
Pump capacity tAE 100%, 50% 100%

Number of pressure transmitters nPT 1, 2, 3, 4 1

Minimum number of pressure

transmitters required to function
kPT 1, 2, 3, 4 1 Pressure transmitter

on the ringmain

Pressure transmitter type tPT
type1/ type2/

type 3
type1

Inductor nozzle Inductor nozzle material type tIN old/ new old

AFFF deluge valve AFFF deluge valve type tAD
type1/ type2/

type3
type1

Deluge nozzle Deluge nozzle material type tDN old/ new old

Water deluge valve Water deluge valve type tWD
type1/ type2/

type 3
type1

Valmatic relief valve Valmatic relief valve material type tVR old/ new old

Implementation of the listed structural design variables results in the fault tree structure

incorporating failure events of new components. The data of the new components to be used

for the quantitative failure analysis and evaluation of other characteristics of the introduced

system designs is provided in Table A.2.9 in Appendix 2. Note that the notation of the basic

events used in the table differs from the one required for the GSDOP. Providing data for the

GSDOP the new components will be coded following the introduced rules as applied to the

HIPS (Chapter 5).

The following requirements are also introduced regarding limitations imposed on new system

design cases: 1) total system design cost cannot exceed 81000 units; 2) maintenance down

time must be less than 30 days per year.

As discussed in Chapter 4, specific formulas are implemented in the GSDOA to evaluate

system design characteristics such as cost and maintenance down time. Equation 4.4 which is

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

120

used for evaluation of system cost requires cost data for each component. For the analysis of

FWDS these values are not provided and need to be evaluated. Design cost for each

component is evaluated by multiplying the given number of spares stored (NS) by the storage

cost (CS) and adding it up to the given initial cost, i.e.:

iIiSiSi CNCdcost +⋅=_ , (6.1)

where i identifies a component. Before the analysis a number of parameters also need to be

specified in order to use Equation 4.14 to evaluate the system maintence down time. One of

them is the total number of time units per examined time period, TU . In the case analysed it is

equal to 365 days since a day is the smallest time unit used for defining maintenance

intervals.

6.4. DATA ARRANGEMENT FOR THE OPTIMISATION

The data preparation for the FWDS optimisation problem is organised according to the

general requirements regarding the application of the GSDOP. The data arrangement in the

files such as fwds_fts.txt, fwds_bse.aqd, fwds_cost_cst.txt, fwds_mdt_cst.txt, fwds_theta.txt

and fwds _gav.txt is very similar to the one used for the HIPS system. Therefore to avoid

repetitiveness in this section the main focus is only given to the data preparation for

construction of the fault tree representing all possible design cases.

As it is known fault tree gates and events are identified using coded numbers in all data files.

Gates of the fault tree of the initial FWDS design are coded as shown in Figures 6.2 -6.8.

Code numbers for basic events are listed in Table 6.2.

Table 6.2. Basic Event Codes

Event Code Event Code Event Code Event Code

PT 1 E_CVB 21 AD_TIVC 41 AHE 61

FSU 2 E_PRVO 22 AD_TIVB 42 AV 62

OE 3 E_DVO 23 AD_LAF 43 MRM 63

PBF 4 E_SVO 24 AD_OAF 44 SI 64

DPF 5 E_FB 25 AE_ESF 45 SV1 65

DM 6 E_IVB 26 AEPF 46 SV2 66

D_CVB 7 E_IVC 27 AEM 47 WNB 67

D_PRVO 8 E_ESF 28 AE_CVB 48 WBS 68

D_DVO 9 E_MF 29 AE_PRVO 49 WIVB1 69

D_SVO 10 APFD 30 AE_SVO 50 WHE1 70

D_FB 11 ADM 31 AE_FB 51 WIVB2 71

D_IVB 12 AD_CVB 32 AE_DIVB 52 WHE2 72

D_IVC 13 AD_PRVO 33 AE_DIVC 53 WV 73

D_EF 14 AD_SVO 34 AE_SIVB 54 WVRF 74

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

121

Event Code Event Code Event Code Event Code

D_TIVC 15 AD_FB 35 AE_SIVC 55 WSI 75

D_TIVB 16 AD_DIVB 36 ATIVB 56 WSV1 76

D_LAF 17 AD_DIVC 37 ATIVC 57 WSV2 77

D_OAF 18 AD_SIVB 38 AINF 58 WMRM 78

EPF 19 AD_SIVC 39 ACVB 59

EM 20 AD_EF 40 AIVB 60

The FTMPs for the construction of the FWDS fault tree representing all design cases to be

considered are defined according to the given list of structural design variables. There are ten

FWDS components chosen to be replaced with new components or component sets and in

order to construct the fault tree corresponding to the relating changes eighteen FTMPs are

employed. These are given in data file fwds_var.txt (Figure 6.9). As a reminder, each row in

the data file is associated with one FTMP. The first letter identifies if replacement is

performed at gate or at event level which is followed by a gate/event code. The three numbers

represent parameter values of the corresponding FTMP.

Figure 6.9. Data File fwds_var.txt

In this case the order the FTMPs are implemented is very important. For instance, to

implement the design alteration regarding the firewater diesel driven pump four FTMPs are

required and they need to be applied in a specific order. Moreover, two out of the four FTMPs

are implemented in the fault tree branches created using the first FTMP. (The step by step

implementation of the patterns will be discussed later in the next paragraph). It means code

numbers of the events in the new fault tree part need to be known. It is relatively easy to

follow the numbering of new gates and events when implementing the first FTMPs. However

after a number of alterations it might be very complicated to identify the codes manually.

G 10 1 3 1

G 59 1 2 1

G 69 1 2 1

G 16 1 3 1

G 223 1 2 1

G 239 1 2 1

G 9 4 1 1

G 15 4 1 1

G 22 1 2 1

G 21 2 1 1

G 28 1 2 1

G 27 2 1 1

E 1 4 3 1

E 58 1 2 1

E 62 1 3 1

E 67 1 2 1

E 73 1 3 1

E 74 1 2 1

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

122

Therefore in this case the FTMPs which should be implemented in the added new fault tree

structures are listed at the top of the list.

The first three FTMPs from the list (Figure 6.9) are used to make alterations to the fault tree

to represent possible changes to the capacity and type of the firewater diesel driven pump.

First the fault tree is altered to introduce the choice of different capacity diesel driven pump,

i.e. 100%, 50% and 33 1/3% capacity. Since there are two basic events related to the failure of

the pump Pattern3 (mn=1, mt=3, mk=1) is implemented at Gate 10. The resulting fault tree

structure contains failure events of the 50% and 33 1/3% capacity pumps. Gates 59 and 69

represent failure of 50% and 33 1/3% capacity pumps respectively. Thus to implement a

further choice of a different type and either 50% or 33 1/3% capacity pump Pattern3 (mn=1,

mt=2, mk=1) is implemented twice at the latter gates.

The same design alternatives are introduced with regards to the replacement of the firewater

electrically-powered pump. Thus, two FTMPs need to be implemented within the newly

added fault tree structure after the introduction of different capacity pumps. Therefore instead

of continuing to implement the redundancy strategy of the diesel driven pump, first FTMPs

are introduced to represent the causes of failure when different type and capacity

electrically-powered firewater pump(s) are used. Pattern3 (mn=1, mt=3, mk=1) is

implemented at gate number 16 which results in the new fault tree structure representing

possible choice of three capacity pumps. Following Pattern3 (mn=1, mt=2, mk=1) is applied

twice at gates 223 and 239. It leads to the fault tree structure where either failure of a type1 or

type2 pump can be considered for a 50% or 33 1/3% capacity pump installed.

Fault tree alterations for the implementation of different numbers of redundant firewater

pumps are completed using two Pattern1 FTMPs. First Pattern1 (mn=4, mt=1, mk=1) is used

to incorporate a fault tree part which represents different redundancy levels for the

diesel-driven pump. When introducing a redundant pump it is installed together with a new

pump line. Either failure of the pump itself or failures of components on the pump line will

result in the failure of the redundant supply of water to the ringmain. Therefore Pattern1 is

applied at gate level, gate 9. Accordingly, the second Pattern1 (mn=4, mt=1, mk=1) is

applied at gate 15 to incorporate a fault tree structure representing the causes of failure for

different numbers of redundant electrically powered pumps and their lines. Since the FTMPs

associated with different pump capacities and types were applied first and followed by the

introduced redundancy alternatives, the redundancy strategy is applied to each pump with

different capacity and type.

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

123

Next four FTMPs are used to implement the design alterations regarding AFFF pumps. First a

diesel driven pump is considered. In this case both the number of pumps is being increased

and the choice of different capacity pumps is introduced. If the causes of pump failure were

associated only with the pump itself then one FTMP could be used. However, each redundant

pump is installed with a pump line and failures of the components on the line need to be taken

into consideration. Therefore first Pattern3 (mn=1, mt=2, mk=1) is applied at gate level, gate

22, to represent the causes of failure for different capacity diesel driven AFFF pumps.

Following this, Pattern1 (mn=2, mt=1, mk=1) is implemented leading to the introduction of

design cases with redundant sets of AFFF pumps and their lines to supply foam into the

ringmain. Accordingly Pattern3 and Pattern1 are implemented at gates 28 and 27

respectively to represent the design changes regarding the AFFF electrically powered pump.

The rest of the FTMPs can be implemented in any order. In the presented cases Pattern5

(mn=4, mt=3, mk=4) is implemented first at event level. Basic event No. 1 “Pressure

transmitter fails” is replaced with a fault tree structure representing the possible design cases

when up to four pressure transmitters can be installed. The number of transmitters that must

work can vary from one to four and either of different types of transmitters can be installed.

Next, Pattern3 is implemented at the following event levels, event 58 (mn=1, mt=2, mk=1),

event 62 (mn=1, mt=3, mk=1), event 67 (mn=1, mt=2, mk=1), event 73 (mn=1, mt=3, mk=1)

and event 74 (mn=1, mt=2, mk=1) with regards to the choices of different material type or

valve type for the AFFF inductor nozzle, AFFF deluge valve, waterspray deluge nozzle, water

deluge valve and valmatic relief valve respectively.

After the implementation of all FTMPs the number of gates in the FWDS fault tree increases

from 45 to 317, the number of basic events increases from 78 to 242 and 131 house events are

included.

The structure of chromosomes to be employed is problem-dependant and is defined by the

programme according to the FTMPs introduced and maintence time intervals considered as

design variables. There are twenty genes in the chromosome coding the parameters of the

chosen FTMPs as shown in Figure 6.10. The first six genes, each one comprising of two bits,

correspond to Pattern3 which was implemented six times. In all those genes parameter mt is

coded with its value equal to either 2 or 3. The seventh and eighth genes code parameters

mn=4 of Pattern1 which is applied twice. The next four genes each of the size of 2 bits code

parameters mt=2 (Pattern3), mn=2 (Pattern1), and mt=2 (Pattern3), mn=2 (Pattern1) which

represent design alterations of the AFFF diesel-driven and AFFF electrically-powered pumps

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

124

respectively. Three genes of sizes 3, 2 and 3 bits represent the parameters mn=4, mt=3 and

mk=4 of Pattern5. The remaining five genes are allocated to code the parameters mt for the

last five FTMPs implemented.

Pattern 5

32 2 2 2 2 2

m
t=
3

m
n
=
4

m
n
=
4

m
t=
2

 G10
 G59
 G69
 G16
 G223
 G239
 G9
 G15
 G22
 G21
 G28
 G27
 E1
 E58
 E62
 E67
 E73
 E74

1 3 1

 1 1

 2 7

 3 90 546

 COMPONENTS

 1 1_1_1

 �������

24

546

fwds_var.txt data

fwds_theta.txt data

Total 67 bits, 23 genes

3 2 3 5 bits 8 bits 10 bits3 2 2 2 2 2 2 2 2 2

1 2 1
1 2 1
1 3 1
1 2 1
1 2 1
4 1 1
4 1 1
1 2 1

2 1 1
1 2 1
2 1 1
4 3 4

1 2 1
1 3 1

1 3 1
1 3 1
1 2 1

168

m
t=
2

m
t=
3

m
t=
2

m
t=
2

m
n
=
4

m
t=
2

m
n
=
2

m
t=
2

m
n
=
2

m
t=
3

m
k
=
4

m
t=
2

m
t=
3

m
t=
2

m
t=
3

m
t=
2

Figure 6.10. Chromosome Structure

The last three genes in the chromosome are utilized to code values of three time intervals

between maintence activities. Time units for different time intervals are unified and a day has

been used as a time unit. Thus to code the maintenance test interval θP, a five bit gene is used.

Maintenance of the ringmain (θR) can be performed at time intervals ranging from 1 to 24

weeks or from 7 to 168 days. Therefore eight bits are allocated to code the possible values.

Finally, a gene of 10 bits is allocated to code the maximum value of the time interval, which

is 546 days (18 months) between any maintence performance for the Deluge skid (θD).

6.5. MODIFICATION OF THE GSDOA

Application of the GSDOA for the optimisation of the HIPS design discussed in Chapter 5

has revealed the issue of the algorithms ability to converge to a population dominated by the

fittest designs. It was envisaged that when analysing larger scale systems or solving

optimisation problems with a large search space the non-convergence problem would be even

more pronounced. In order to improve the performance of the algorithm a number of

modifications have been implemented in the algorithm. A penalty function approach for the

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

125

handling of constraint violations and a new replacement procedure were introduced (Section

6.5.1). Furthermore, scaling of the fitness function has been implemented (Section 6.5.2).

6.5.1. Penalty Function Method and New Replacement Procedure

In the initial GSDOA a death penalty strategy was implemented. Using this approach an

offspring chromosome which violated any constraint was not entered into the new parent

population and one of its parent chromosomes was entered instead. Such a strategy restricts

the search region by allowing the selection of just those population members which do not

violate any constraint. Although evolutionary strategies normally employ death penalties their

use may eliminate good genetic material by eliminating those population members which are

close to being feasible. Therefore an approach of applying some penalties to solutions that

violate one or more constraints has been introduced.

Applying a penalty method a constrained optimisation problem is transformed into an

unconstrained one by associating a penalty, i.e. by adding (or subtracting) a certain value to

(or from) the objective function, for any constraint violation. The basic approach is to define a

fitness value for an individual i by extending the domain of the objective function)(XiF as

follows:

i
p

ii
fitness

FFF ±=)()(XX (6.3)

where i
pF represents either a penalty for an infeasible individual i, or a cost for repairing such

individual, i.e. the cost for making it feasible [78]. If a minimisation problem is considered

the value of an objective function is increased by the magnitude of a penalty.

A number of penalty function categories exist. Coello mentions the following ones [79]:

static, dynamic, annealing, adaptive, co-evolutionary and the previously employed death

penalty. The choice of a new penalty method to be implemented has been made according to

properties of the algorithm, i.e. considering prospective application of the approach to a

variety of safety system design optimisation problems. Therefore the chosen penalty method

had to be problem-independent as much as possible and only constraint-specific. For this

reason the following form of a general penalty function was chosen which was introduced by

Coit et. al. [80]:

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

126

() () inc

i i

i
feasallp

NFT

Bd
FFF

κ

∑
=

−=

1

,
)(

x
x . (6.4)

Here allF is the best unpenalised value of the objective function yet found, feasF is the best

feasible value of the objective function yet found, iNFT denotes the near-feasibility threshold

that corresponds to a given constraint i, ()Bd i ,x is a magnitude of violation of a given

constraint i for solution x , iκ is the user-specified severity parameter and nc is the total

number of constraints set for the problem.

The general form of the penalty function (Formula 6.4) has been specified and modified for

the developed GSDOA. Four pairs of constraints defining maximum and minimum limits of

considered factors are implemented in the algorithm. Thus the maximum possible value of

variable nc is equal to eight. The severity parameter is set to 2 for every constraint resulting in

a penalty of the square of the Euclidean distance from the infeasible solution to the feasible

region over all constraints. In the implemented algorithm the dynamic form of the near

feasible threshold has been used, as it allows the penalty value to be adjusted according to the

search history. The near-feasibility threshold for each constraint is defined as follows:

g

NFT
NFT oi

i
⋅+

=
1.01

. (6.5)

Here oiNFT represents the actual value of a constraint i and g denotes the generation number.

The general form of the penalty function adjusted to the implemented optimisation approach

can be defined for the case when all constraints are violated as follows:

()

 ∆
+

 ∆
+

 ∆
+

 ∆
+

 ∆
+

+

 ∆
+

 ∆
+

 ∆
⋅−=

2

min

min

2

max

max
2

min

min
2

max

max
2

min

min

2

max

max
2

min

min

2

max

max)(

Weight

WeightVolumeVolumeMDT

MDTCostCost
feasallp

NFT

Weight

NFT

Weight

NFT

Volume

NFT

Volume

NFT

MDT

NFT

MDT

NFT

Cost

NFT

Cost
FFF x

, (6.6)

where ∆ is the magnitude of violation of the constraint, i.e. the difference between the actual

constraint value of a generated system design and the defined constraint value. For example:

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

127

.maxmax CostCostCost system −=∆ (6.7)

Thus each individual in a population is evaluated using the formula:

()

 ∆
+

 ∆
+

+

 ∆
+

 ∆
+

 ∆
+

 ∆
+

+

 ∆
+

 ∆
−+=

+=

2

min

min

2

max

max

2

min

min
2

max

max
2

min

min
2

max

max

2

min

min

2

max

max)()(

),()()(

WeightWeight

VolumeVolumeMDTMDT

CostCost
feasallfitness

pfitness

NFT

Weight

NFT

Weight

NFT

Volume

NFT

Volume

NFT

MDT

NFT

MDT

NFT

Cost

NFT

Cost
FFFF

FFF

xx

xxx

 (6.8)

If certain constraints are not violated the corresponding summands are eliminated from

Equation 6.8 automatically within the developed programme.

To implement the penalisation methodology in the optimisation programme two new routines

were added: Best and Penalty_Adaptive. Routine Best is used to identify the best unpenalised

value of the objective function and the best feasible value of the objective function in a

population yet found. The second routine Adaptive_Penalty estimates any constraint

violations and returns the value of the penalty magnitude pF .

With the new fitness penalisation methodology introduced the previously used replacement

approach also needs to be modified. Several replacement methods used for construction of the

parent population for the generation of new chromosomes are possible depending on the type

of GA being used. An accurately chosen replacement methodology can be beneficial to

improve the algorithm. It can prevent insufficient diversity in the population which can lead

the algorithm converging too quickly towards a weak solution.

The new replacement strategy was implemented by employing an algorithm described by

Chambers [68]. The idea of this algorithm is to replace a parent population with an offspring

population. If the best parent chromosome is fitter than the best offspring chromosome then it

replaces the worst offspring chromosome. This is performed every time a new offspring

population is generated.

The influence of the alterations made on the algorithm performance has been analysed. The

initial GSDOP and the one with the newly implemented penalisation and replacement

methodologies were applied to solve the FWDS design optimisation problem. Two sets of GA

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

128

parameter values were chosen to compare the influence of different GA parameter values on

the performance of the algorithms. The first set used includes a population size equal to 10

chromosomes, crossover rate equal to 0.75 and mutation rate equal to 0.001. From the earlier

analysis of the HIPS system (Chapter 5) it is known that the algorithm performs better if the

population size and mutation rate are increased. Therefore the next set of results chosen

includes a population of 50 chromosomes with crossover rate and mutation rate equal to 0.95

and 0.01 respectively. Five runs were performed for each set of parameters. A minimal

system failure probability value, i.e. best feasible fitness value, after 100 generations was

considered as the problem solution. The obtained results are presented in Table 6.3.

Table 6.3. Results of the Application of the Initial and the Improved GSDOP

Crossover Rate=0.75,

Mutation Rate=0.001,

Population Size=10,

Crossover Rate=0.95,

Mutation Rate=0.01,

Population Size=50

Original

SOGA

Improved

SOGA

Original

SOGA

Improved

SOGA

Run No.1 0.1701 0.1483 0.1071 0.0928

Run No.2 0.1153 0.1036 0.1059 0.0938

Run No.3 0.1643 0.1044 0.1064 0.0965

Run No.4 0.1646 0.1284 0.1082 0.0936

Run No.5 0.1676 0.1172 0.1082 0.0952

Average 0.1564 0.1204 0.1072 0.0944

The GSDOP with new the penalisation and replacement routines introduced achieves the best

fitness values which on average are smaller than the ones achieved using the original GSDOP.

Results are improved by 23% and 12% using the first and the second sets of GA parameters

correspondingly. Moreover, the difference in the best fitness values achieved for two sets of

GA parameters decreases from 31% to 22% after implementing the alterations to the initially

introduced algorithm. It demonstrates the lower sensitivity to variation in GA parameter

values and increased robustness of the algorithm.

6.5.2. Fitness Scaling

Research shows that linear fitness scaling improves the performance of GA algorithms and it

is especially valuable when small populations are utilised. Scaling of the fitness function has

been introduced to avoid two problems that can occur during the optimisation process when

employing GAs. The first one represents the situation when a few extra-ordinary individuals

appear among other less-fit individuals in the population at early generations. This could lead

to a situation in which the chromosomes with extraordinary fitness values take over a

significant portion of the population in just a few generations, leading the process to

premature convergence. The other problem may occur in later generations when the average

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

129

fitness value of the whole population is close to the fitness value of the best individual in the

population. If this situation is left alone, average members will contribute a similar number of

copies in the future generations and survival of the fittest, which is necessary for

improvement becomes a random walk among the less-fit solutions.

The chosen scaling method introduced in [45] defines a linear relationship between an initial

fitness value and fitness value after the scaling. It calculates the scaled fitness score for a

given chromosome i, ()xscaledF , using the chromosome fitness value, () fitnessF x , equal to

its objective function value if the chromosome is feasible or penalised objective function

value (Equation 6.8) if the chromosome is not feasible as follows:

() () bFaF fitnessscaled +⋅= xx (6.9)

Here parameters a and b are linear function coefficients and are problem-independent. These

parameters depend on a population and are re-evaluated in each generation.

In the implemented method the linear function coefficients are selected so that the average

fitness before scaling and the average scaled fitness values are equal

(
initialscaled avgavg ff =). The second condition which parameters need to satisfy can be

described as follows:

initialscaled avgmultmax fcf = (6.10)

where multc defines the number of expected chromosome copies desired for the best member

in the population. Goldberg in [45] suggests that the multc value would be from 1.2 to 2 for

populations where the number of chromosomes is from 50 to 100. Thus, the value for variable

multc has been fixed to 1.2 in the scaling procedure implemented in the modified GSDOP.

In some cases negative fitness values can be introduced if using the linear scaling procedure.

To avoid such situations equality between average initial fitness and average scaled fitness is

maintained and the minimum fitness value condition is introduced. Thus the parameters a and

b need to be defined such that the following non-negative test condition would be satisfied:

()
1−

−
<

mult

maxaveragemult
min

c

ffc
f initialinitial

initial
 (6.11)

The minimum initial fitness is then mapped to a scaled fitness equal to 0, i.e. .0=
scaledminf

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

130

The described scaling procedure was implemented in the GSDOP using three new

subroutines: Prescale, Scale and Scalepop. The subroutine Scalepop is the main subroutine

that governs the scaling process and also includes the other two. The subroutine Prescale is

employed to calculate the linear function coefficients a and b. The subroutine Scale is used to

scale each chromosomes fitness value at a time.

For comparison the results of simulations performed are given in Table 6.4.

Table 6.4. Results of the Application of the Initial and the Improved GSDOP

Crossover Rate=0.75,

Mutation Rate=0.001,

Population Size=10,

Crossover Rate=0.95,

Mutation Rate=0.01,

Population Size=50

Improved
SOGA

Improved

(scaling

implemented)

SOGA

Improved
SOGA

Improved

(scaling

implemented)

SOGA

Run No.1 0.1483 0.0945 0.0928 0.0928

Run No.2 0.1036 0.1515 0.0938 0.0925

Run No.3 0.1044 0.1025 0.0965 0.0924

Run No.4 0.1284 0.1144 0.0936 0.0924

Run No.5 0.1172 0.0937 0.0952 0.0932

Average 0.1204 0.1113 0.0944 0.0926

The results show the effectiveness of the scaling procedure in producing fitter chromosomes

over a fixed number of generations. The results obtained also demonstrate lower sensitivity to

different values of GA operators. Moreover the application of the scaling reduces the

fluctuation within average population fitness values, leading to lower average fitness values

and steady convergence towards the optimal solution as shown in Figure 6.11.

0.08

0.12

0.16

0.2

0.24

0.28

1 11 21 31 41 51 61 71 81 91

Crossover Rate=0.75, Mutation Rate=0.001, Population Size=10 (Original GSDOP)

Crossover Rate=0.95, Mutation Rate=0.01, Population Size=50 (Original GSDOP)

Crossover Rate=0.75, Mutation Rate=0.001, Population Size=10 (Improvedl GSDOP)

Crossover Rate=0.95, Mutation Rate=0.01, Population Size=50 (Improved GSDOP)

Figure 6.11. Average Fitness Values per Generation

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

131

6.5.3. Structure of the Improved SOGA

After the implementation of the introduced alterations the structure of the original SOGA

utilised in the GSDOA has changed. The new SOGA (Figure 6.12) now includes two new

procedures: penalisation and scaling. Additionally, alterations have also been made to the

replacement procedure.

INITIALISATION

REPRODUCTION

CROSSOVER

MUTATION

n

n
REPLACEMENT

TERMINATION

n

i=N

END

SCALING

Parent Population

EVALUATION PENALISATION

Offspring

New

Population

n

n

i=0

i= i+1

yes

no

i – iteration number,

n – total number of chromosomes in the population,

N – maximum generation number

Figure 6.12. Structure of the improved SOGA

Thus the initial population in the improved SOGA is generated through the following routine:

Step 1: Assign a random binary number for each gene in a chromosome.

Step 2: Check if the obtained phenotype of each gene does not exceed the predefined

maximum value. If the generated value of any gene is bigger than the maximum possible

value of the corresponding parameter then generate a new binary number and checked the

validation again. Repeat until all the generated parameter values are valid.

Step 3: Use the obtained parameters of the design variables to construct a corresponding

design case.

Step 4: Evaluate the objective function value for the design generated.

Step 5: Evaluated system resources for the design generated. If they do not exceed the

predefined limits Step 6 follows. Otherwise penalise the objective function value by the

corresponding magnitude and proceed to Step 6.

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

132

Step 6: The chromosome enters the initial population.

Step7: If the number of chromosomes in the population is equal to the predefined value N the

process is terminated. Otherwise the process is repeated from Step 1.

Penalisation and scaling are incorporated in the cycle for generation of offspring populations.

In the new GA a new population of chromosomes is produced by utilising three genetic

operators as in the originally used GA algorithm. Once the new chromosomes are generated

the objective function value for each of them is evaluated followed by the inspecting whether

or not the predefined constraints are violated. If at least one constraint is violated an objective

function value corresponding to that chromosome is penalised. Next, the new replacement

procedure follows. The resulting population comprises of offspring chromosomes and one or

more parent chromosomes if the best parent chromosome is fitter then the best offspring

chromosome. Fitness values of the chromosomes in the newly formed population undergo the

scaling procedure. At this stage one generation cycle is completed. The detailed process is

repeated until the number of performed generations is equal to a predefined maximum

number of generations.

6.6. ANALYSIS OF THE IMPROVED GSDOP PERFORMANCE

SOLVING THE FWDS DESIGN OPTIMISATION PROBLEM

6.6.1. Analysis of GA Parameters Influence on Algorithm Performance

Different sets of GA parameter values have been used to solve the FWDS optimisation

problem and to analyse performance of the improved GSDOP with new approaches

implemented for penalisation, replacement and scaling. The GA parameter values used were

the same as the ones for HIPS optimisation problem which had been chosen following

guidelines provided in literature. However, on the basis of the performance results obtained

when solving the HIPS optimisation problem (Chapter 4), the size equal to 20 chromosomes

and the mutation rate equal to 0.002 have been removed from the analysis. Thus the twenty

seven different combinations of values of the GA parameters have been employed in total.

The values of the parameters are listed in Table 6.5. As in the previous application example

due to the stochastic nature of the GA ten runs have been performed for one set of parameters

and the average of the best feasible fitness values, i.e. minimal feasible values, was calculated

per each generation. Each time the process was terminated after 100 generations. All obtained

analysis results can be found in Appendix 2, while this section provides their summary.

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

133

Table 6.5. The List of Values of GA Parameters

 Value No.

Parameter
1

st
 Value 2

nd
 Value 3

rd
 Value

Population Size 10 30 50

Mutation Rate 0.001 0.005 0.01

Crossover Rate 0.75 0.8 0.95

First the influence of the population size is considered. The average of the minimal feasible

fitness values obtained for all combinations of crossover and mutation rate values is evaluated

for each population size. The results are presented in Table 6.6. As expected, the larger

population size introduces more diversity in the population and therefore improves the

capability of the algorithm to find a near-optimal solution. If the results are compared with the

ones of the HIPS problem the difference between average minimal unavailability values is

much smaller for the FWDS problem. It suggests that either the search space for the problem

is rather small or the improved algorithm is less susceptible to changes of the population size.

Table 6.6. Minimal Average System Unavailability Values for Different Population
Sizes

Population Size

10 30 50

Mean of Minimal System

Unavailability Values
0.1001 0.0954 0.0940

The averages of minimal feasible fitness values obtained for each combination of crossover

and mutation rates over 10 runs when the population size has been fixed to 10, 30 and 50

chromosomes are given in Tables A.2.10-A.2.12. The results suggest that the rate at which

new chromosomes are introduced is less influential on the optimisation performance than the

retention of diversity in populations.

Table 6.7 shows that the average of feasible minimal fitness values evaluated for all

combinations of different crossover rate and population size decreases if the mutation rate is

increased. Analysing the influence of the mutation rate (Tables A.2.13-A.2.15) it has been

noticed that for the small mutation rate the algorithm performs better if an average population

size is used. Apparently, combinations of small mutation rate and large populations promote

the production of sub-optimal solutions. The increasing population size and the mutation rate

encourage the convergence of the algorithm to an optimal solution. However the same rule

does not apply to the crossover rate. If the mutation rate is lower and equal to 0.05 a trade-off

between the mutation rate and crossover rate needs to be found. Overall the best feasible

fitness values for the same combinations of crossover rate and populations size decrease with

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

134

increasing mutation rate. It shows the importance of the diversity in the population.

Nevertheless its level needs to be chosen according to the number of chromosomes in the

populations.

Table 6.7. Minimal Average System Unavailability Values for Different Mutation
Rates

Mutation Rate

0.001 0.005 0.01

Mean of Minimal System

Unavailability Values
0.0990 0.0958 0.0947

The average of the best feasible fitness values for all combinations of mutation rates and

population sizes was also evaluated for each value of crossover rate. The results are presented

in Table 6.8. It shows that a high crossover rate indicating a quick introduction of new strings

into the population helps to improve the performance of the optimisation process.

Table 6.8. Minimal Average System Unavailability Values for Different Crossover

Rates

Crossover Rate

0.75 0.8 0.95

Mean of Minimal System

Unavailability Values
0.1003 0.0947 0.0945

Results of the analysis performed to identify how combinations of different mutation rates

and populations sizes influence the FWDS optimisation process for each crossover rate value

are presented in Tables A.2.16-2.18. Here there is a tendency for the fitness value to decrease

for increasing values of both analysed parameters, i.e. mutation rate and population size. Even

though this tendency appears for every crossover rate, the increasing crossover rate does not

lead to smaller best fitness values. These results justify the earlier made conclusion that the

choice of values for the mutation rate and population size has a stronger influence on the

optimisation process than the crossover rate value for solving the FWDS problem.

Studying the performance results of algorithm after 100 generations, a relationship can be

identified between the average fitness value of the population and the best feasible solution

found. The results obtained using populations of 50 chromosomes are shown in Figure 6.13.

Here the best feasible fitness value is larger then the average population fitness value for

mutation rates equal to 0.001 and 0.005. When the mutation rate is increased up to 0.01 the

best feasible fitness value obtained is smaller than the average fitness value. This relationship

applies to all values of crossover rate.

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

135

-0.005

0

0.005

0.001 0.005 0.01

Mutation Rate

D
if

fe
re

n
c

e
 i

n
 F

it
n

e
s
s

 V
a
lu

e
s

Crossover Rate = 0.75 Crossover Rate = 0.8 Crossover Rate = 0.95

Figure 6.13. Differences Between Average and the Best Feasible Fitness Values

The optimisation results show that the GA is capable of finding good feasible solutions, but

converges to an infeasible solution if the mutation rate is lower. If the mutation rate equal to

0.01 is used the algorithm converges to a feasible solution and the quality of the solution

improves. It reinforces the hypothesis that increasing diversity increases the possibility of

obtaining good solutions among the populations.

The algorithm demonstrates the ability to solve the FWDS design optimisation problem and

to find a near-optimal solution. The analysis performed when using different values of GA

parameters and the influence of the parameters on the optimisation process suggests that the

algorithm performs better if a larger population size and higher mutation rate are used.

Results obtained for the HIPS (discussed in Section 5.5.1) also indicate that by using a larger

population size and a higher mutation rate the performance of the algorithm improves.

Thus to perform further testing on FWDS optimisation problem the mutation rate equal to

0.01 and population comprising of 50 chromosomes were chosen. Based on the results in

Table 6.8 the crossover rate equal to 0.95 was included in the set of chosen GA parameters.

The analysis performed is discussed in the following section.

6.6.2. Testing

The set of GA parameters (i.e. crossover rate, mutation rate and population size equal to 0.95,

0.01 and 50 respectively) identified in the preceding subsection are considered further here

applying them and by performing ten more runs. The number of generation-iterations in a

single run of the programme has been left the same, i.e. 100 generations. At the second stage

of the analysis the number of generation-iterations performed has been increased up to 200.

Five more runs have been performed to check the level of the improvement in terms of

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

136

algorithm convergence. Average fitness value of the population and the best feasible fitness

value yet found are two quantities evaluated for each generation and represented graphically.

Figure 6.14 presents the average population objective function values for each generation

from the four chosen runs. The average objective function value rapidly decreases during the

first 30 generations. In later generations both the convergence rate and the fluctuation in

average fitness values decreases significantly. The results demonstrate steady convergence of

average population fitness and dominance of highly-fit chromosomes in populations with later

generations.

0.08

0.12

0.16

0.2

0.24

0.28

1 9 17 25 33 41 49 57 65 73 81 89 97

Generation No.

U
n

a
v
a
il

a
b

il
it

y
 V

a
lu

e

Test No.1

Test No.3

Test No.6

Test No.10

Figure 6.14. Average Unavailability Value in Each Generation. Total 100 generations

Figure 6.15 presents the best feasible solutions found over 100 generations of four chosen

simulation runs. It confirms the capability of the algorithm to find good feasible solutions.

The standard deviation of the best solutions found after 100 generations is equal to 0.00034. It

suggests that the algorithm exhibits low sensitivity to the random number seed and therefore

is robust.

0.085

0.125

0.165

0.205

1 9 17 25 33 41 49 57 65 73 81 89 97

Generation No.

U
n

a
v
a
il

a
b

il
it

y
 V

a
lu

e

Test No.2

Test No.3

Test No.4

Test No.7

Figure 6.15. Best Feasible Fitness Value per Each Generation

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

137

Results obtained from 200 generation runs showed improvement in the best fitness values.

For instance, the mean of the best solutions after 100 generations was equal to 0.09278 and

after 200 generations it was equal to 0.09261. The standard deviation of the best solutions

found also decreased to 0.00031. It suggests that increasing the number of generations

encourages further exploration of the boundary region between feasibility and unfeasibility,

leading to better solutions. However one should take into account that increasing the number

of generations also increase computational burden. Therefore it needs to be assessed if the

level of improvement in the optimal solutions is worth the computation resources required in

order to find it.

The best system design arose during one of the runs in generation 161. The best system

design includes 2 firewater diesel-driven and electrically-powered pumps. All four pumps

have 33 1/3% capacity and are identified as type 2 pumps. It also includes 2 AFFF diesel-

driven and 2 AFFF electrically-powered 100 % capacity pumps. The optimal design has 2

pressure transmitters of type 3 where at least 1 pressure transmitter is required to function. A

new inductor nozzle and new valmatic relief valve together with an old deluge nozzle are in

the found optimal design. Finally, both AFFF deluge and water deluge valves of type 3 are

included in the new FWDS design. The maintenance test interval for the firewater and AFFF

pump was assigned to 10 days. Time intervals between maintenance of the ringmain and the

Deluge skid were equal to 12 days (~2 weeks) and 90 days (~3 months) correspondingly. The

newly designed FWDS with the new maintence scheduling implemented has an unavailability

of 0.092348. Its cost is equal to 80873 units and maintenance downtime is 29.6 days a year.

Table 6.9 lists the parameters of the best designs achieved throughout the optimisation

analysis. Results show that the optimal number of firewater and AFFF pumps is equal to two

in all best design cases. 33 1/3% capacity firewater pumps appear more often than 50%

capacity ones and 100% capacity firewater pumps have not been included in any optimal

design solution found. However, considering the capacity of AFFF pumps, 100% capacity

dominates in the best designs generated. According to the results, there is no need to increase

the number of pressure transmitters on the ringmain if it is replaced with a pressure

transmitter of type 3 in order to reduce the system failure associated with the activation of the

automatic FWDS mechanism. The new inductor nozzle dominates in the optimal FWDS

designs. In all listed cases the new valmatic relief valve and the original deluge nozzle are

introduced. Both AFFF deluge and water deluge valves of type 3 are included in the new

FWDS designs. The optimal maintenance test interval for the firewater and AFFF pump sets

varies from 7 days to up to 21. Ringmain maintenance can be performed at 12-day intervals.

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

138

Finally for all optimal designs found the optimal time interval between maintence of the

deluge skid is 90 days (3 months).

Table 6.9. Best Generated FWDS Designs

Associated System Component Design

Variable

Notation

Design 1 Design 2 Design 3 Design 4

nFD 2 2 2 2

t1FD 3 3 2 3 Firewater diesel driven pump

t2FD 2 2 1 1

nFE 2 2 2 2

t1FE 3 3 3 2
Firewater electrically powered

pump
t2FE 2 1 2 1

nAD 2 2 2 2
AFFF diesel driven pump

tAD 1 1 2 2

nAE 2 2 2 2 AFFF electrically powered

pump tAE 1 1 1 1

nPT 2 1 1 1

kPT 1 1 1 1
Pressure transmitter on the

ringmain
tPT 3 3 3 2

Inductor nozzle tIN 2 2 2 1

AFFF deluge valve tAD 3 3 3 3

Deluge nozzle tDN 1 1 1 2

Water deluge valve tWD 3 3 3 3

Valmatic relief valve tVR 2 2 2 2

θP 10 7 16 21

θR 12 12 12 13 Maintenance test intervals

θD 90 90 90 90

Cost 80873 80373 80873 80873

MDT 29.6 29.7 29 26.8 Characteristics

Q 0.092348 0.092349 0.092353 0.092478

6.7. SUMMARY

The successful application of the GSDOA to solve the FWDS optimisation problem proves

that the algorithm:

• has potential to be applicable to different safety systems;

• is efficient in finding good near optimal solutions;

• is indeed scalable and can deal with large scale complicated problems.

In this chapter the application of the GSDOA and the implementation of GSDOP to solve the

FWDS design optimisation problem have been demonstrated. In general, to be able to solve a

design optimisation problem using the algorithm it is imperative to form the list of FTMPs

corresponding to the structural design variables of the optimisation problem in question. The

list of FTMPs for the FWDS and their order in the formed list has been discussed and

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

139

reasoned. The problem-specific chromosome structure encoding the design variables and

therefore the FTMPs used has also been detailed in this chapter. Thus the FDWS example

supports the potential applicability of the algorithm for different safety systems.

The current FWDS design optimisation problem has been solved using the improved GSDOA

where new penalisation, replacement and scaling procedures were implemented in the GA.

The modifications demonstrate that the optimisation process has been improved. The

modified approach has an enhanced ability to converge on the fittest design. After a number

of generations the fluctuation of the average fitness values decreases, showing that the

domination of the designs similar to the best feasible overall design case increases in the

populations. Results from the optimisation analysis performed for FWDS and previously for

HIPS also suggest that the algorithm exhibits some sensitivity to the GA parameter variations.

Therefore, it is suggested to use larger sizes of chromosome populations and a higher

mutation rate. The crossover rate (if its value is reasonably high) has less influence on the

optimisation process.

Solving the more complicated optimisation problem has introduced an increase in

computational intensity. For comparison, it takes 558 seconds to run a simulation of one

hundred generations with a 50 chromosome population for the FWDS. A simulation with the

same parameters takes 220 seconds to run for the HIPS. The computations were carried out on

a Dual Core 1.60 GHz processor with 1.00GB of RAM on a 32-bit operating system.

Therefore in order to extend the capability of the algorithm to solve a wider range of problems

the future work should also focus on improving the performance of the algorithm and

minimisation of CPU time. It is noteworthy that this can be a key requirement for real-time

optimisation of engineering systems.

The application of the GSDOP to solve the FWDS problem has demonstrated that the

algorithm produces good feasible solutions for the large scale and more complicated problem.

Despite the fact that it could not guarantee to find the global optimal solution the algorithm

provided near-optimal solutions using minimal computational resources. To find the global

optimal solution for such problem using the exhaustive search method significantly more

computational resources and time would be required. There are 1,911,029,760 combinations

of the design variables and therefore the design cases to be analysed. Given that it takes 0.1

seconds to generate a specific system design case and evaluate its failure probability (based

on the results presented for computation time discussed in the paragraph above) it would take

Chapter 6. FWDS Design Optimisation Using Improved GSDOA

140

approximately 53084 hours or 6 years to find the global solution using the exhaustive search

approach.

The further development of the generalised optimisation methodology focuses on solving the

design optimisation problems of multi-phased mission systems.

7. MULTI-PHASED MISSION SYSTEM DESIGN

OPTIMISATION

7.1. INTRODUCTION

A phased mission system represents a system where its performance objectives are divided

into consecutive, non-overlapping phases. During each phase the system performs a certain

task or a number of tasks that have to be completed at the same time. The mission is

considered to be completed if every task in each phase is completed successfully. Failure to

complete any phase successfully causes the whole mission failure.

A large number of systems which can employ different technologies such as mechanical,

electronic, nuclear and chemical devices appear in industry and can be considered as phased

mission systems. The relevance and significance of optimising phased mission system

performance and the appropriate use of limited resources is therefore evident. In spite of its

importance, however, there is limited demonstrated evidence in the literature for research that

focuses on such phased mission optimisation problems. Susova & Petrov [81] proposed a

model for aircraft maintenance system optimisation. The model is based on a Markov

homogeneous process and is employed to ensure aircraft safety and minimise operation costs.

The research in this project has been focused on the development of an approach to construct

an optimal phased mission system design with the aim of minimising its failure within the

context of pre-defined design constraints and resources. The developed approach is based on

GSDOA which is used for the optimisation analysis of safety system designs (Chapters 4 and

6). Since any general system - including a safety system - can be considered as a system

performing a mission consisting of a single phase, GSDOA was altered so that a multi-phased

mission system analysis can be performed.

In this chapter an overview of methodologies used for reliability analysis of phased mission

system is given (Section 7.2). The developed approach and programme code are detailed in

Sections 7.3 and 7.6 respectively. An unmanned aerial vehicle (UAV) and military vessel

have been selected to demonstrate the methods application. The application examples are

discussed in Sections 7.4, 7.5 and 7.7.

Chapter 7. Multi-phased Mission System Design Optimisation 142

7.2. METHODS FOR RELIABILITY ANALYSIS OF PHASED MISSION

SYSTEMS

7.2.1. Overview

When analysing multi-phased mission systems it is necessary to acknowledge that a number

of system components may stay inactive during some phases, and that they can be employed

to complete a certain task later in the mission. For example, a braking system of a plane is not

in use whilst the plane is in the take-off or cruise phase, but it is activated when the landing

phase starts. The configuration of a system can also vary throughout each phase in the

mission. Therefore a situation may occur when a component fails at some point during the

mission and its failure is revealed later or its condition becomes critical just for one particular

phase. As such, the performance of the system in a certain phase is influenced by results of its

performance in previous phases.

The dependencies between phases as well as dependencies between failure behaviours for the

same components across different phases make reliability analysis of phased mission systems

complicated. The approaches used to evaluate the reliability of phased mission systems can be

classified into three major groups. The first group of methods, which are called combinatorial

methods, are based on FTA, block diagrams and BDD analysis. These methods are usually

applied to non-repairable systems, since neither fault trees nor block diagrams can easily

reflect the repair processes. However, Vaurio [82] suggested a fault tree based approach to

analyse phased mission systems with repairable components.

The second group of methods use Markov chain based approaches. These methods can be

adapted to analyse more complicated system behaviour compared with combinatorial

methods. Markov chain methods can be employed to analyse systems with random phase

durations and/or repairable components. For example, Alam and Ubaid [83] suggested the

Markov approach for quantitative reliability evaluation of systems with both deterministic and

stochastic mission-phase change times. Systems, where the failure rates of components

change from phase to phase, can also be analysed using this approach. A non-homogeneous

Markov model was considered by Smotherman and Zemoudeh in [84]. The method is

applicable for systems where mission-phase change times can be state dependent, mission

phases are of random duration and repair and failure rates are globally time dependant.

However, since the number of system states grows exponentially with the number of

components in the system and that initial conditions are needed to be defined for every phase,

it restricts the applicability of Markov methods for larger systems.

Chapter 7. Multi-phased Mission System Design Optimisation 143

Simulation methods can be used for very complex systems when neither combinatorial nor

Markov methods can be employed. Despite the fact that these methods have least restrictions

and both repairable and non-repairable systems can be analysed with different dependencies

between components, they are the most expensive approaches in terms of computation.

7.2.2. Non-Repairable Phased Missions

This part of the thesis is dedicated to the design optimisation of non-repairable phased

mission systems. Reliability analysis of non-repairable systems can be performed using

combinatorial, Markov chain or even simulation approaches. However in order to avoid state

space explosion problems arising in the Markov methods, fault tree and BDD based

approaches are usually employed. This section reviews combinatorial methods developed for

the reliability analysis of phased mission systems.

The fundamental idea of how to employ fault tree analysis for phased missions was

introduced by Esary and Ziehms in [85]. Their approach is to combine fault trees for failure

causes of each single phase into one system fault tree and to analyse the system as a single-

phase mission. Their method provides an exact unreliability value for a phased mission

system where all components are non-repairable and have s-independent failure

characteristics.

The method suggested by Esary and Ziehms comprises of four major steps. At first each

phase fault tree undergoes a simplification stage. The simplification is actually the

cancellation of a number of minimal cut-sets. If the phase i list of minimal cut-sets contains a

minimal cut-set that appears in any minimal cut-set from later phases then the minimal cut-set

is eliminated from the phase i list. For example, phase 1 has three minimal cut-sets: {A,B},

{A,C} and {A,D}. Phase 2 has the following minimal cut-sets: {A,B} and {E,F}. The cut set

{A, B} can be cancelled from phase 1 since it also appears in phase 2 and it means that if the

system fails in phase 1 it will still be in the same state in phase 2. As a result just the two

remaining cut-sets in phase 1 are used for further analysis.

The second step of the method involves basic event transformations. At this stage every basic

event in phase i is replaced by a series of basic events where each of them represents the

corresponding component failure in every phase up to and including phase i. For example,

basic event A in phase 3 would be replaced by components A1 + A2 + A3. It means that if

component A is failed in phase 3, it could have failed during phase 1 or phase 2 or phase 3,

Chapter 7. Multi-phased Mission System Design Optimisation 144

since the component is non-repairable. Using fault tree analysis, basic event A would be

replaced by an “OR” gate with corresponding input events A1, A2 and A3.

At the third step the individual transformed phases are joined in a series to form a single

system. The modified fault tree for each phase becomes an input event of the “OR” gate that

leads to the fault tree top event “Mission Failure”. A multi-phase mission system can then be

analysed as a single-phase mission system. Minimal cut sets can be identified from the new

logic model and the usual quantitative evaluation technique can then be used to obtain the

system unreliability value.

Somani and Trivedi introduced a new technique for phased mission system analysis based on

Boolean algebraic methods [86]. Specifically, the logic expressions are employed to represent

phase failure combinations (PFC) for each phase. Phase failure combinations for any phase i

consists of those combinations which represent failure modes in phase i (Ei) but are not failure

combinations in any of the subsequent phases (Ei+1, Ei+2,…, En):

()niii EEEPFC UUI ...1+= (7.1)

In the approach they also introduced the notation to denote failure of a component in each

phase equivalent to the one used by Esary and Ziehms in [85]. According to the notation

event Ai indicates failure of component A during an interval from the start of the mission to

the end of the analysed phase i. Using the new notation a Boolean expression specifying

failure combinations for subsystems presented in Figure 7.1 and used, for example, for

system phase i, can be expressed as follows:

.

,

,

iiiiZ

iiiiY

iiiiX

CBAE

CBAE

CBAE

=

+=

++=

 (7.2)

Algebraic rules were introduced to simplify the logic expressions for PFCs, where i and j are

two phases and i < j:

(7.3)

0→

→

→

ji

iji

jji

AA

AAA

AAA

1→+

→+

→+

ji

iji

jji

AA

AAA

AAA

0→

→

→

ji

iji

jji

AA

AAA

AAA

1→+

→+

→+

ji

iji

jji

AA

AAA

AAA

Chapter 7. Multi-phased Mission System Design Optimisation 145

A B C A

B C

A B C

Subsystem

X

Subsystem

Y

Subsystem

Z

AA BB CC AA

BB CC

AA BB CC

Subsystem

X

Subsystem

Y

Subsystem

Z

Figure 7.1. Fault trees of phases X, Y and Z

Thus employing the earlier introduced Boolean rules system unreliability can be found using

the following equation:

() ()∑
−

=

+=
1

1

n

i

inSYS PFCPEPQ (7.4)

where P(En) is the probability of failure of the last phase n and P(PFCi) is the probability of

phase failure combinations for phase i. The probability of phase failure combinations are

computed for each phase i (1...,,2,1 −= ni). The logical expressions are derived using the

phase fault trees and their probabilities are found using a failure distribution function for each

component.

Ma and Trivedi in [87] introduced a method to analyse and solve phased mission systems by

combining a phase algebra approach with a cancellation methodology. This method is based

on the approach represented by Somani and Trivedi in [86]. The new improvements made the

method more computationally efficient compared the original approach. The authors

introduced the minimal cut-sets cancellation rule, which was originally implemented by Esary

and Ziehms. The second improvement of the algorithm refers to the introduced formula of the

sum of disjoint phase products, which is a phased-extension of the formula for the sum of

disjoint products . Thus Equation 7.4 for the unreliability of a phased mission system can be

rewritten as:

∑
=

=
n

i

iSYS DPCPQ
1

)((7.5)

where n denotes the total number of phases in the mission and DPCi is a disjoint phase

constituent for phase i. If PEi represents a set of generally non-disjoint minimal cut-sets then

the phase constituent can be defined as iii PEPEPEPEPC 121 ... −= , where 1< i ≤ n. A PCi is

defined as DPCi if the phase products in PCi are mutually disjoint.

Chapter 7. Multi-phased Mission System Design Optimisation 146

La Band and Andrews in [88] proposed a new method for phased mission system analysis

which was also based on the fault tree approach. By employing the new method, the

unreliability of each phase can be determined in addition to the whole mission unreliability.

Actually, the whole mission unreliability is the sum of unreliability values of all phases in the

mission:

∑
=

=
n

i

iMISS QQ
1

, (7.6)

where Qi denotes unreliability of phase i and the total number of phases in the mission is

equal to n.

In the proposed methodology for Equation 7.6 to be valid, fault trees for each phase need to

be modified following certain rules. The first rule is equivalent to the basic event

transformation rule introduced by Esary and Ziehms in [85]. According to that rule every

basic event of a fault tree needs to be represented as an “OR” gate with i basic events for any

phase i. Each basic event represents the component failure event in every phase up to and

including phase i. As an example, the failure of component A in phase 2 is presented in

Figure 7.2. Here, A1 is the failure of component A in phase 1, and A2 represents the failure of

the component in phase 2.

Figure 7.2. Representation of event A as an “OR” gate

The second rule specifies combinations of the causes of success of previous phases with the

causes of failure for the phase being analysed. In other words, if a system fails in phase i, it

means it could not have failed during any previous phase j (j = 1, 2, …, i-1). Therefore,

system failure in phase i is represented by an “AND” gate that incorporates the success of

previous phases j (using “NOT” logic) and the failure for phase i. Figure 7.3 represents the

failure of a system in phase 2. Phase 2 failure is shown as a combination of success in phase 1

and failure in phase 2. In phase 2 components A, B and C are replaced using “OR” gates to

indicate that the components could have failed during phase 1 or phase 2, as shown previously

A1 A2

Component A

is failed in
Phase 2

A1 A2

Component A

is failed in
Phase 2

Chapter 7. Multi-phased Mission System Design Optimisation 147

in Figure 7.2. The overall mission unreliability is then equal to the sum of unreliability for all

phases (as stated in Equation 7.6).

Failure During

Phase 2

Success in

Phase 1

Failure in

Phase 2

C1

Failure in

Phase 1
C2

B1 B2A1 A2

Failure During

Phase 2

Success in

Phase 1

Failure in

Phase 2

C1

Failure in

Phase 1
C2

B1 B2A1 A2

Figure 7.3. An example of system failure during Phase 2.

The representation of the mission fault trees necessitate a different approach for quantification

analysis of the mission. In the general case, minimal cut-sets could be determined from a

phase fault tree and the inclusion-exclusion formula would be applied in order to find each

phase reliability. Since any phase after the first phase incorporates causes of success of

previous phases and they are represented using NOT logic, the phase fault tree will be non-

coherent. Therefore in this case prime implicants identify the sets of basic events that cause

system failure in any phase, except the first one to occur. The authors introduced a fault tree

modularization technique in order to enable prime implicates to be found more efficiently.

When applying the inclusion-exclusion formula for the established prime implicants the

authors introduced a new algebra over the phase to manipulate the derived logical

expressions. The summarised algebraic laws are presented (Equation 7.7). The following

notation is used to represent the presented laws. Ai denotes the failure of component A in

phase i and iA represents the functioning of component A throughout phase i. Phase i appears

some time before phase j, i.e. i < j. Therefore the new notation Aij was introduced that

indicates the failure of a component A at some time from the start of phase i to the end of

phase j.

(7.7)

0

0

=⋅

=⋅

=⋅

=⋅

ii

iiji

ji

iii

AA

AAA

AA

AAA

iji

ji

ii

ijjii

ijjii

jiiji

BA
BA

BA

AAAA

AAAA

AAA

→

=

=+++

=⋅

+

+

+

...

...

1

1

,1

0

0

=⋅

=⋅

=⋅

=⋅

ii

iiji

ji

iii

AA

AAA

AA

AAA

iji

ji

ii

ijjii

ijjii

jiiji

BA
BA

BA

AAAA

AAAA

AAA

→

=

=+++

=⋅

+

+

+

...

...

1

1

,1

Chapter 7. Multi-phased Mission System Design Optimisation 148

In the algorithm [88] a fault tree conversion to its corresponding BDD was implemented after

the required alterations to the mission or each phase fault tree were made, i.e. just before the

quantification process is started. It improved the efficiency of the analysis but on the other

hand, problems associated with constructing large BDDs appeared. For example, it requires a

global variable ordering scheme to construct these BDDs. Prescott et. al. [89] presented a

novel BDD based approach for phased mission analysis to overcome the global variable

ordering scheme requirement. In the proposed approach at the first step the fault trees for

mission phases are converted to BDDs. Since each BDD is converted by employing its own

variable ordering scheme, the size of the BDD is minimised.

The second step of the algorithm concerns to the assignment of the time intervals over which

each of the system component contributes to the phase failure for each constructed BDD.

Each component is assigned an indicator variable:

()

=
otherwise.0,

,timetotimefromfailscomponentif,1
,

ji
jik

ttk
ttx (7.8)

Here k identifies a component, ti is a start time of the interval and tj is the end of the time

interval. Since failure of a component can contribute to the failure of the phase at any time

from the start of the mission to the end of the phase, ti denotes the start of the mission and tj

marks the end of the phase.

If considering the success state of a component, i.e. when component k does not fail from the

start of the mission until a certain time ti, it can also be expressed using an indicator variable:

() ()∞= ,,0 ikik txttx (7.9)

From Equation 7.9 it follows that if component k has not failed by time ti then it must fail

some time later.

The authors use the same approach as described in [88] to represent mission failure during

any phase. The mission fails in phase i, if it did not fail in any of the previous i – 1 phases and

failure occurs in the phase i. If Fj represents the logical expression for the top event to occur

in phase j and Phj denotes mission failure in phase j then the following equations are valid:

Chapter 7. Multi-phased Mission System Design Optimisation 149

jjj FFFFPh

FFPh

FPh

121

212

11

....

..................

,

,

−=

=

=

 (7.10)

Using this approach Equation 7.6 is valid which can be rewritten using the new notation:

∑
=

=
n

i

iMISS PQ

1

)(Ph , (7.11)

where n is the total number of phases in the mission.

The next algorithm step involves building the logical expressions for mission failure in each

phase following the rule identified with Equations 7.10 and using the appropriate BDDs.

When connecting a number of BDDs to construct a logical expression for mission failure in

phase i, some BDDs might contain identical variables. However these variables are treated as

being independent since time intervals were associated with each of them in order to take into

account the existing dependencies among them.

The quantification process involves the analysis of BDDs representing mission failure in each

phase, i.e. BDDs constructed for each Phi (i=1, 2, …, n). In order to find the logical

expression of a possible outcome represented by the BDD, every possible path from a BDD

root node to a terminal 1 node has to be identified. In the proposed approach a simplification

process of each path takes place at the same time that the path is traversed. It involves

manipulating the time intervals associated with those variables that occur more than once

along the path. The following rules apply:

()
() () () ()()21212211 ,min,,max,.,

if,0,

jjiikjikjik

jijik

ttttxttxttx

ttttx

=

>=
 (7.12)

When the path logic is simplified, the probability values for each path variable are calculated

and then multiplied together to give the path probability. The probability of each variable

needs to be determined according to Equation 7.13 where t0 denotes the starting time of the

mission and Qk is the cumulative failure distribution function for component k.

()[]
() ()

()

∞=−−

∞≠−−−
==

jik

jikjk

jik
tttQ

tttQttQ
ttxP

if,1

if,
1,

0

00
 (7.13)

Chapter 7. Multi-phased Mission System Design Optimisation 150

Finally, the probabilities of all paths starting from the corresponding BDD root node and

terminating at terminal 1 nodes are summed which gives each phase a failure probability

value, i.e. P(Phi). The overall mission failure probability is found using Equation 7.11.

To summarise, the method introduced by Prescott et. al. converts each phase fault tree to a

BDD at the beginning of the analysis. Later all dependencies between components in different

phases are incorporated in each BDD. It means that a global ordering scheme of variables is

not required when constructing BDDs. The potential to minimise the size of the BDDs to be

quantified also exists. Overall, it makes the algorithm computationally more efficient then the

previously mentioned algorithms. Owing to these properties this algorithm was chosen to

perform the quantification analysis in the phased mission design optimisation algorithm. The

algorithm is discussed in the following section (Section 7.3).

7.3. PHASED MISSION SYSTEM DESIGN OPTIMISATION

ALGORITHM (PMSDOA)

7.3.1. Introduction

The phased mission system design optimisation algorithm (PMSDOA) has been developed to

solve multi-phased mission system design optimisation problems. On the basis that the

GSDOA is applicable to single phased mission systems it has been used as a foundation to

construct the new algorithm. The main techniques and performance principles implemented in

the GSDOA have been adopted in the PMSDOA. Amendments introduced in the new

approach were required due to specific characteristics and principles of a phased-mission

system operation.

The PMSDOA has the same conceptual structure as that of the GSDOA. It contains two main

parts as shown in Figure 7.4. In the first part all the possible system designs are introduced.

The fault tree modification patterns chosen according to a given list of structural design

variables are implemented in the fault tree for each phase. The second part comprises the

quantitative system analysis and the optimisation technique. The quantitative system analysis

is implemented to evaluate the mission failure probability for different design cases. The

resulting fault trees from the first part of the algorithm are utilised. Different system designs

are generated using the initially applied optimisation technique – the single objective GA

(SOGA).

Chapter 7. Multi-phased Mission System Design Optimisation 151

Some changes have been introduced in both parts of the algorithm. First of all considering a

multi-phased mission system a number of fault trees need to be analysed at the same time.

Thus, the methodology used to represent all possible design alternatives needs to be modified.

Quantification of system failure is performed employing the new methodology designed for

multi-phased mission systems.

Figure 7.4. Structure of Phased Mission System Design Optimisation Algorithm

With the same performance principles as the GSDOA the new algorithm has the potential to

solve optimisation problems of different phased mission systems, i.e. it is not restricted in

applicability to a particular system. However, it is designed for non-repairable phased mission

systems. A number of assumptions are considered. System components are assumed to be

working at the mission start. If a component failure occurs it therefore remains present in the

system. It is also assumed that the length of each phase is determined and known.

The PMSDOA has been built gradually extending its capability to solve a wider range of

problems. At the first stage a methodology for a simple optimisation problem was developed.

The objective of the analysed problem was to minimise the overall mission failure probability.

Next, constraints for system design regarding the overall mission were introduced. Finally,

the approach was extended by introducing constraints for system design characteristics at

different phases of the mission. In this section algorithm development is discussed in detail

emphasising the alterations and improvements made to the algorithm. Application examples

are also presented.

Chapter 7. Multi-phased Mission System Design Optimisation 152

7.3.2. Fault Trees for all Possible Design Alternatives

One of the characteristics of the GSDOA is the utilisation of system fault trees to represent

the initial system design as well as all possible design alternatives introduced. The adaptation

of the methodology for multi-phased mission systems is a complex process; amendments to

the methodology have been introduced due to the increased number of fault trees being

analysed at the same time.

It is known that a given set of structural design variables with their parameter values defines

the possible system design alternatives. Even though a phased mission system performs

different tasks throughout a mission and has an individual fault tree for each phase its design

is unchangeable from the beginning to the end of the mission. Therefore the given set of

structural design variables applies to each phase of the mission and the same design

alternatives should be represented in all of its fault trees. However it is also known that a

number of system parts may be inactive during certain phases which results in the use of

different fault trees for different phases. This means that in some cases particular design

alternatives cannot be represented in every phase fault tree. As such, individual subsets of

structural design variables need to be assigned for each phase. Each subset contains only

those variables which correspond to failure events stated in the phase fault tree.

In the programme the subsets of FTMPs representing the corresponding structural design

variables are formed when constructing the fault trees, incorporating the failure causes of all

possible system design alternatives as follows. One phase fault tree is considered at a time

starting with the first phase. The initial design fault tree is traversed to locate any events

corresponding to design variables from the given list. When such an event is found the

required alterations are made, i.e. the event is replaced by an associated sub-tree structure

defined using a certain FTMP. After the fault tree is checked for all events from the given list

and the required modifications are made, the fault tree for the second phase is traversed and

searched for the events identified to be replaced. The task is completed when the required

alterations are made for the last phase fault tree.

As a reminder, a sub-tree of each FTMP includes a group of house events linked with each

other. These links identify which house events are set to TRUE and which are set to FASLE.

The rules defining the links were introduced when discussing GSDOA. When analysing

phased mission systems one phase fault tree is altered at a time and the FTMPs which are

only relevant to this fault tree are used. Thus, house events appearing in the fault tree are not

linked to house events in the rest of fault trees. For example, house events of the first phase

Chapter 7. Multi-phased Mission System Design Optimisation 153

fault tree are linked with house events used only in this fault tree and do not have any links

with house events in fault trees of the second or any other phase. This means that there is no

need to introduce additional rules defining the links of house events between different fault

trees. Moreover the existing house event rules can be applied by analysing each fault tree of

the mission individually. However, a group of house events corresponding to the same design

variable can appear in a number of fault trees. In this case values of house events within the

group need to be the same in each phase fault tree in order to maintain the consistent system

design throughout each phase. For this purpose a data record is kept for each implemented

FTMP. It includes the list of fault trees where it has been implemented and a set of house

event values once they are specified. Using such records house events within the groups of

house events representing the same design alternative are assigned the same values

throughout the mission fault trees.

House events belonging to a particular phase fault tree are identified according to the house

event numbering rules. House events in a fault tree for phase i are numbered from hi-1 + 1 to

hi-1 + hi. Here hi-1 is the total number of house events in phase i – 1 and hi is the total number

of house events in a fault tree for phase i. For the first phase hi-1 is equal to 0, thus house

events would be numbered 1,…, h1. House events in the second phase would have numbers h1

+ 1, h1 + 2,…, h1 + h2. House events in the rest of the fault trees would be numbered

accordingly. Being able to differentiate house events for each phase fault tree enables groups

of house events that are linked together to be identified easily. The numbering rules for house

events within a linked group remain the same as the ones in GSDOA.

7.3.3. Evaluation of Phased Mission System Failure Probability

It is known that FTA is not a computationally efficient methodology to quantify system

failure. In the GSDOA the BDD methodology has already been used instead. Therefore the

BDD based approach introduced by Prescott et. al. [89] and discussed in Section 7.2 has been

chosen to evaluate the mission failure probabilities.

The employed BDD method can only be applicable once a system design is specified, i.e.

once a fault tree representing the specific design is constructed. In the single phase algorithm

a trimming operation was introduced before the fault tree is converted into its BDD. Although

fault tree trimming and conversion slowed down the optimisation process, it allowed the size

of the tree being analysed to be greatly reduced. The general system optimisation problems

solved using this methodology were relatively small. When solving a phased mission system

problem the number of fault trees analysed increases considerably and the old methodology

Chapter 7. Multi-phased Mission System Design Optimisation 154

becomes computationally inefficient. Therefore an improved approach has been introduced.

In the new approach the conversion of mission fault trees to their corresponding BDDs is

completed only once, after fault trees that account for all possible design alternatives are

constructed. The resulting BDDs are then utilised for specification of system design cases.

The implementation of the new approach is based on properties of both house events and

BDDs. Using BDD analysis the probability of occurrence of the top event of the

corresponding fault tree is equal to the probability of the sum of the disjoint paths from the

root node to each terminal 1 vertex. The probability of any disjoint path is obtained by

multiplying probabilities for the variables along the path. Therefore if a house event set to

FALSE is assigned the failure probability value equal to 0 each path containing such a house

event will have a failure probability value equal to 0. Accordingly a house event set to TRUE

needs to be assigned a value equal to 1. As a result BDD paths with house events set to

FALSE states will be eliminated and the remaining paths will represent a specific system

design case.

By employing this methodology the need to trim fault trees for each generated design can be

overcome. Moreover, the conversion of each phase fault tree to its BDD - as is required for

the evaluation of the mission failure probability - can also be omitted. Owing to the generally

increased number of fault trees in phased mission system analysis, this methodology becomes

especially beneficial and computationally more efficient than that used in GSDOA.

7.3.4. Mathematical Representation of the Problem (Overall Mission

Constraints)

The initial phased mission system design optimisation problem is introduced as the

minimisation of the failure probability for the overall mission by altering the system design

structure. Mathematically the problem is expressed as follows:

()missionQ Xmin . (7.14)

Here ()missionQ X is the mission failure probability. X (n–dimensional vector of independent

variables) is the result of the union of vectors of the failure probability values of system

components that ensure successful system performance and their individual or combined

failures cause mission failure:

Chapter 7. Multi-phased Mission System Design Optimisation 155

U
m

j

j

1=

= XX . (7.15)

Here, m is the number of phases in the mission. Each vector Xj represents the failure

probability values of the system components whose failures contribute towards the system

failure during phase j (j = 1, 2, …, m). In other words, X is a vector of failure characteristics

of components of a system with a specific design.

As in the GSDOA case the objective function cannot be expressed in an explicit form and the

methodology based on fault tree and BDD analysis is employed to evaluate the value of the

function as discussed in Section 7.3.3. Using the BDD based approach introduced by Prescott

et. al. [89] for quantitative system analysis the mission failure probability is expressed as a

sum of phase failure probabilities (Equation 7.6). Therefore the optimisation problem can be

defined as follows:

() ()ij

m

j

jmissioni QQ XX ∑
=

=

1

min , (7.16)

where ()ijjQ X is the probability of failure during phase j for the system with design i.

The requirements for a new design are typically associated with its reliability, cost, weight

and system size. In the proposed optimisation algorithm reliability (unreliability) of a phased

mission system is the optimisation objective. The remaining factors are considered as

optimisation problem constraints. Thus the possibility to set a limitation on the system cost,

weight and volume has been implemented in the algorithm. Three inequalities are introduced

regarding design limitations:

.

,

,

maxmin

maxmin

maxmin

VolumeVolumeVolume

WeightWeightWeight

CostCostCost

mission

mission

mission

<<

<<

<<

 (7.17)

Here min means a defined minimal resource value, accordingly max is a maximum defined

value and mission identifies an existing value of a design characteristic for a specific system

design case. To use the resources efficiently it may be useful to have minimum and maximum

constraints. If only maximum limit values are needed then the minimum constraint values

become equal to zero.

Chapter 7. Multi-phased Mission System Design Optimisation 156

Amounts of resources utilised for a specific design alternative are calculated using the

methodology employed in GSDOA. As such the total system design cost is found by

summing the design cost of each component, i.e. employing Equation 4.4. Since in this case

only unrepairable systems are considered the maintenance cost is eliminated from the formula

resulting in the following expression:

∑
=

==
ncm

i

iDmission dcostCostCost

1

_ (7.18)

were idcost _ is the design cost of a component i and ncm is the total number of different

components fitted in the system and subject to failure. Accordingly system weight and

volume are evaluated using Equations 4.12 and 4.13 correspondingly.

When solving a system design optimisation problem it is not an obligation to use all three

constraints. Only one or two constraints can be introduced for a particular phased mission

design optimisation problem. It is not a requirement that only limitations to system cost,

weight or volume are analysed. Other limitations can also be used if values of the introduced

limited attributes for the overall system can be evaluated using a formula equivalent to

Formula 7.18.

7.3.5. Development of Phased Mission System Design Optimisation

Programme (PMSDOP)

The programme code for PMSDOA has been developed using the basis of the original

GSDOP code and implementing the required amendments. Throughout the development

process some of the existing routines have been modified and a number of new routines have

been introduced which are discussed in this section. However, the structure of the code has

been preserved as the one of GSDOP presented in Section 4.3.5.

As a reminder, phased mission system design optimisation programme (MPSDOP) has three

groups of routines. The first group of routines is utilised to read the required data from the

data files. Routines in the second group control the construction of the mission fault trees

representing all possible system design alternatives and their conversion to BDDs. Finally, the

third group comprises of one main routine and a number of subroutines implemented for the

optimisation process. To avoid repetition only new routines and subroutines developed with

regards to the analysis of phased mission systems are introduced in this section.

Chapter 7. Multi-phased Mission System Design Optimisation 157

7.3.5.1. Data Processing

For the performance of the optimisation analysis the required problem data is presented in two

groups of files. The first group combines files storing the data of GA parameter values, design

variables and system component data such as cost, weight and/or volume together with the

imposed limitation on each characteristic. The files storing the names of mission phases also

belong to this group. The second group comprises pairs of files storing data for individual

phases of the mission. The data files needed for the analysis and links among all data files are

shown in Figure 7.5.

mission_var.txt

mission_gav.txt

mission_cst.txt

mission_fts.txt

phase1.txt

phase2.txt

phase3.txt

data_files.txt
mission_var.txt

mission_gav.txt

mission_cst.txt

mission_fts.txt

phase1.txt

phase1.aqd

phase1.txt

phase1.aqd

phase2.txt

phase2.aqd

phase2.txt

phase2.aqd

phase3.txt

phase3.aqd

phase3.txt

phase3.aqd

Figure 7.5. Example of Data Files

As in the GSDOP the initial data file named “data_files.txt” is utilised in the PMSDOP to

store names of the first group of data files. The files listed are named using the same principle

as the one in GSDOA. Since only unrepairable systems are analysed the data and therefore

files associated with system maintenance are not considered. Another change introduced is

that the file _fts.txt stores the names of data files where fault tree structures for each mission

phase are stored.

Data specific to each mission phase is stored in two files for each phase. The first file stores

the fault tree structure of the phase of the initial system design. The second file of type .aqd

and named as the first file stores the failure characteristics of the system components

considering that component failure occurs during this phase.

Chapter 7. Multi-phased Mission System Design Optimisation 158

Eight routines are used to read all the data from the provided files. New routines File_Names

and Data_Phases were specially introduced for a phased mission optimisation problem. The

routine File_Names is used to read the names of files where mission fault tree structures are

stored. The routine Data_Phases is employed to read each phase initial fault tree structure

from a data file. A subset of design variables for each phase is formed using the routine

Data_Variables. The routines Data_Files, Data_Constraints and Basic_Event_Data have

been adapted for phased mission analysis from the GSDOA.

7.3.5.2. Preparation for Quantitative Analysis

The preparation for quantitative analysis stage involves the construction of a fault tree for

every mission phase which represents the causes of the system failure for each possible

system design during that phase. The process is performed employing the routine

Phase_Fault_Tree_Construction. It is organised using a loop where one phase fault tree is

modified at a time using a corresponding subset of FTMPs.

A computational method to convert the failure logic represented by each fault tree to a BDD

structure was implemented using a programme developed at Loughborough University by

Remenyte-Prescott [74]. A routine Files_Bdd is used to provide the required data for this

process. The conversion of the fault trees into BDDs completes the preparation stage for the

optimisation process.

7.3.5.3. Optimisation Algorithm

The optimisation algorithm is implemented in the routine Genetic which was adapted from

GSDOP. The optimisation of a phased mission design starts with the generation of an initial

population of chromosomes providing values for utilised design variables. The information

obtained is then passed to a new routine called Mission_Fault_Tree_Designs which is

employed to assign the appropriate Boolean states of the house events in each phase BDD. In

this routine the rules for assigning values to house events are implemented which ensures that

the values of house events associated with the FTMP representing a particular design variable

are the same throughout all mission BDDs where the FTMP has been implemented.

With given component failure characteristics, BDDs incorporating all possible design

alternatives (constructed for each mission phase) and values of house events specified, the

mission failure probability for the generated designs can be evaluated. The programme code

used for the quantification analysis has been developed previously at Loughborough

University by Remenyte-Prescott and is based on the methodology introduced by Prescott et.

Chapter 7. Multi-phased Mission System Design Optimisation 159

al. [89]. The executable file of the code has been incorporated in the algorithm source code as

an independent process and as a result provides the mission failure probability and failure

probability values for each phase.

Two other new subroutines developed are associated with limitations imposed on the system

design characteristics. The subroutine Mission_Resources_Values evaluates system cost,

weight and volume (if these characteristics are considered) and returns the value 0 if at least

one constraint is violated. Otherwise it returns the value 1. The subroutine

Mission_Penalty_Adaptive replaces the subroutine Penalty_Adaptive previously used in the

improved GSDOP (Chapter 6). However, the methodology for penalising fitness values of

infeasible chromosomes remains the same.

The rest of the subroutines and routines employed in the optimisation process are directly

adopted from the GSDOP. Thus no changes have been made in the subroutines developed to

perform the generation of new populations, crossover and mutation operators and scaling of

chromosomes fitness values.

7.4. UAV DESIGN OPTIMISATION USING THE PHASED MISSION

DESIGN OPTIMISATION ALGORITHM

7.4.1. Introduction to a Phased Mission of an UAV

The algorithm developed for phased mission system design optimisation problems has been

applied to optimise the design of an unmanned aerial vehicle (UAV) for a six-phase mission.

For the problem analysed the emphasis is only given to the minimisation of the mission

failure probability and design limitations are not considered. Thus, the UAV design

optimisation problem is analysed as a single objective unconstrained optimisation problem.

The purpose of the analysis is to validate the capability of the developed optimisation

algorithm to solve a phased mission optimisation problem.

The UAV is remotely controlled and can perform specific tasks for the duration of its defined

mission. UAVs have been used in a variety of forms and for a variety of missions. They can

be employed to perform military, civil or research missions. In military applications UAVs

are commonly used for missions which would otherwise present a high risk as manned

missions. Civil use of UAVs may include aerial photography and observation of traffic

patterns. UAVs can also serve as upper atmospheric weather stations.

Chapter 7. Multi-phased Mission System Design Optimisation 160

A generalised mission for a simplified architecture UAV is analysed. It consists of six phases

occurring in the following order: take-off, climb, en-route in controlled airspace, en-route in

uncontrolled airspace, descent and landing. The UAV mission is considered successful if the

aircraft completes all phases successfully.

The first phase of the mission, i.e. the take-off phase, is considered to be unsuccessful and

mission failure occurs if the landing gear cannot be retracted or either the braking system,

propulsion system or avionics system fails. If the take-off phase is aborted for any reason or

communication errors occur these will also lead to phase failure. Note that a communication

mistake can occur in any phase and cause mission failure, and so it appears in each phase fault

tree. The detailed fault tree for the take-off phase is shown in Figure 7.6.

Take-off
Fails

Take-off is
Aborted

Aircraft
Systems Fail

valve
_a_O

valve
_b_O

Antiskid
Valve Fails

Opened

Brake Control

Valve Fails
Opened

brake

Brakes

Fail

Brake

Valves Fail

Braking
Systems Fails

Landing
Gear Fails to
be Retracted

Propulsion
Systems Fails

Avionics
System

Fails

First
Engine
Fails

LGretavion

canc

Second
Engine
Fails

Fuel System
1 Fails

bird 1

Bird
Strike

eng 1

Engine 1
Fails

1

Fuel System
2 Fails

bird 2

Bird
Strike

eng 2

Engine 2
Fails

2

Communication
mistake

comm

Take-off
Fails

Take-off is
Aborted

Aircraft
Systems Fail

valve
_a_O

valve
_b_O

Antiskid
Valve Fails

Opened

Brake Control

Valve Fails
Opened

brake

Brakes

Fail

Brake

Valves Fail

Braking
Systems Fails

Landing
Gear Fails to
be Retracted

Propulsion
Systems Fails

Avionics
System

Fails

First
Engine
Fails

LGretavion

canc

Second
Engine
Fails

Fuel System
1 Fails

bird 1

Bird
Strike

eng 1

Engine 1
Fails

1

Fuel System
2 Fails

bird 2

Bird
Strike

eng 2

Engine 2
Fails

2

Communication
mistake

comm

Figure 7.6. Fault Tree for the Take-off Phase.

Following take-off a UAV starts climbing to a particular altitude. During this phase failure in

the propulsion or the avionics systems will cause mission failure. Other causes of failure for

the phase include flight surface failures or the occurrence of a severe storm. The phase fault

tree is presented in Figure 7.7. Failure logic for both fuel systems identified with transfer

symbols 1 and 2 are developed further in Figure 7.10.

Chapter 7. Multi-phased Mission System Design Optimisation 161

Climb

Phase Fails

Avionics
System

Fails

avion

Flight
Surfaces

Fail

flight

Storm

storm

Propulsion
Systems Fails

First

Engine
Fails

Second

Engine
Fails

Fuel System
1 Fails

eng 1

Engine 1
Fails

1

Fuel System
2 Fails

eng 2

Engine 2
Fails

2

Communication

mistake

comm

Climb
Phase Fails

Avionics
System

Fails

avion

Flight
Surfaces

Fail

flight

Flight
Surfaces

Fail

flight

Storm

storm

Storm

storm

Propulsion
Systems Fails

First

Engine
Fails

Second

Engine
Fails

Fuel System
1 Fails

eng 1

Engine 1
Fails

1

Fuel System
2 Fails

eng 2

Engine 2
Fails

2

Propulsion
Systems Fails

First

Engine
Fails

Second

Engine
Fails

Fuel System
1 Fails

eng 1

Engine 1
Fails

1

Fuel System
2 Fails

eng 2

Engine 2
Fails

2

Communication

mistake

comm

Communication

mistake

comm

Figure 7.7. Fault Tree for Climb Phase

When the required altitude is reached the en-route phase starts. The phase is divided into two

phases. At first a UAV flies through controlled airspace after which uncontrolled airspace

follows. When the UAV enters controlled airspace the navigation system together with the

propulsion and avionics systems are in use. Failure in any of these systems as well as storm

occurrence or an air collision will result in mission failure. The same cause of failure appear

when the UAV flies through uncontrolled air space. However, when the UAV is in controlled

airspace an air collision with another aircraft may occur due to an air traffic control failure.

The sense and avoidance system has to fail for an air collision to occur if the UAV is in

uncontrolled airspace. As an example, a fault tree of the en-route phase in uncontrolled

airspace is shown in Figure 7.8. The fault tree for the en-route phase in control airspace is

similar where the basic event avoid is replaced with a basic event atc which identifies failure

of air traffic control. Fault trees for failures of fuel systems are presented in Figure 7.10.

En-route

Fails

Avionics
System

Fails

avion

Navigation
Systems

Fails

navig

Air Collision

Other
Aircraft

Sense &
Avoidance system

Fails

avoid
Air

craft

Storm

storm

Propulsion
Systems Fails

First
Engine
Fails

Second
Engine
Fails

Fuel System
1 Fails

eng 1

Engine 1
Fails

1

Fuel System
2 Fails

eng 2

Engine 2
Fails

2

Communication
mistake

comm

En-route

Fails

Avionics
System

Fails

avion

Navigation
Systems

Fails

navig

Navigation
Systems

Fails

navig

Air Collision

Other
Aircraft

Sense &
Avoidance system

Fails

avoid
Air

craft

Storm

storm

Storm

storm

Propulsion
Systems Fails

First
Engine
Fails

Second
Engine
Fails

Fuel System
1 Fails

eng 1

Engine 1
Fails

1

Fuel System
2 Fails

eng 2

Engine 2
Fails

2

Communication
mistake

comm

Figure 7.8. Fault Tree for the En-route Phase

Chapter 7. Multi-phased Mission System Design Optimisation 162

The descent phase follows the en-route phases. During this phase a UAV changes altitude

before starting to land. UAV failure causes in this case are identical to the ones that appear

when the vehicle is changing its altitude after the take-off phase. Therefore the fault tree for

the descent phase is identical to the fault tree of the climb phase shown in Figure 7.7.

The last phase of the UAV mission is the landing phase. As shown in the phase fault tree in

Figure 7.9 the braking system, propulsion system and avionics system are in use during this

phase. Failure of any of these systems causes the mission failure. The phase and at the same

time the whole mission can also fail if the landing gear cannot be extended or the flight

surfaces fail. If the mission has to be finished in a certain time then abortion of the landing

phase for any reason will also result in phase failure.

Landing

Fails

Landing is

Aborted

Aircraft

Systems Fail

valve

_a_C

valve

_b_C

Antiskid

Valve Fails

Closed

Brake Control

Valve Fails

Closed

brake

Brakes

Fail

Brake

Valves Fail

Braking
Systems Fails

Landing
Gear Fails to

be Extended

Avionics
System

Fails

LGexavion

canc

Flight
Surfaces

Fail

flight

Propulsion
Systems Fails

First

Engine

Fails

Second

Engine

Fails

Fuel System

1 Fails

eng 1

Engine 1

Fails

1

Fuel System

2 Fails

eng 2

Engine 2

Fails

2

Communication

mistake

comm

Landing

Fails

Landing is

Aborted

Aircraft

Systems Fail

valve

_a_C

valve

_b_C

Antiskid

Valve Fails

Closed

Brake Control

Valve Fails

Closed

brake

Brakes

Fail

Brake

Valves Fail

Braking
Systems Fails

Landing
Gear Fails to

be Extended

Avionics
System

Fails

LGexavion

canc

Flight
Surfaces

Fail

flight

Flight
Surfaces

Fail

flight

Propulsion
Systems Fails

First

Engine

Fails

Second

Engine

Fails

Fuel System

1 Fails

eng 1

Engine 1

Fails

1

Fuel System

2 Fails

eng 2

Engine 2

Fails

2

Propulsion
Systems Fails

First

Engine

Fails

Second

Engine

Fails

Fuel System

1 Fails

eng 1

Engine 1

Fails

1

Fuel System

2 Fails

eng 2

Engine 2

Fails

2

Communication

mistake

comm

Communication

mistake

comm

Figure 7.9. Fault Tree for the Landing Phase

The fuel systems are one of several UAV subsystems which operate throughout the mission.

Failure of any of them can cause mission failure during any phase. Failure causes for both

fuel systems are shown in Figure 7.10.

Chapter 7. Multi-phased Mission System Design Optimisation 163

1

valve
1c_O

tank2tank1 tank2
valve
1c_C

tank1

Tank 2
Fails

Cross Feed
Valve Fails

Opened

Tank 1
Fails

Tank 2
Fails

Tank 1
Fails

Cross Feed
Valve 1 Fails

Closed

Cross Feeding
Can not Start

Both Tanks
are Empty

Cross Feeding
Can not Stop

Cross
Feeding

Fails
pump

1

Pump 1
Fails

Fuel System
1 Fails

1

valve
1c_O

tank2tank1 tank2
valve
1c_C

tank1

Tank 2
Fails

Cross Feed
Valve Fails

Opened

Tank 1
Fails

Tank 2
Fails

Tank 1
Fails

Cross Feed
Valve 1 Fails

Closed

Cross Feeding
Can not Start

Both Tanks
are Empty

Cross Feeding
Can not Stop

Cross
Feeding

Fails
pump

1

Pump 1
Fails

Fuel System
1 Fails

2

valve

2c_O
tank1tank1 tank2

valve

2c_C
tank2

Tank 1
Fails

Cross Feed
Valve 2 Fails

Opened

Tank 1
Fails

Tank 2
Fails

Tank 2
Fails

Cross Feed
Valve 2 Fails

Closed

Cross Feeding
can not Start

Both Tanks
are Empty

Cross Feeding
can not Stop

Cross
Feeding

Fails
pump

2

Pump 2
Fails

Fuel System
Fails

2

valve

2c_O
tank1tank1 tank2

valve

2c_C
tank2

Tank 1
Fails

Cross Feed
Valve 2 Fails

Opened

Tank 1
Fails

Tank 2
Fails

Tank 2
Fails

Cross Feed
Valve 2 Fails

Closed

Cross Feeding
can not Start

Both Tanks
are Empty

Cross Feeding
can not Stop

Cross
Feeding

Fails
pump

2

Pump 2
Fails

Fuel System
Fails

Figure 7.10. Fault Trees of Fuel Subsystems

7.4.2. UAV Design Alternatives

The objective of the introduced UAV design optimisation problem is to minimise the overall

UAV mission failure probability by altering the initial vehicle design and constructing an

optimal design case. All structural design variables and their parameter values considered for

the optimisation problem are presented in Table 7.1.

Table 7.1. Design variables

Associated

System

Component
Description of Design Alteration

Possible Values of

Parameters of

Design Variables

Landing gear Type of a landing gear type1, type 2

Antiskid valve Type of an antiskid valve type1, type 2, type 3

Number of brake sets 3, 2, 1

Type of a brake set type1, type 2

Brakes

Minimal number of failed brakes that

cause failure to brake
3, 2, 1

Number navigation subsystems 2, 1

Type of a navigation subsystem type1, type 2

Navigation

system

 Minimal number of failed navigation

subsystems causing navigation failure
2, 1

Number of sense and avoidance

subsystems
2, 1

Sense and

avoidance system Type of a sense and avoidance

subsystem
type1, type 2

Chapter 7. Multi-phased Mission System Design Optimisation 164

Basic event failure probability data used to perform quantitative analysis of system failure is

presented in Tables A.3.1 and A.3.2 in Appendix 3. Table A.3.1 provides failure probability

values of system components that are in the initial system design together with the probability

values of occurrence of the external factors leading to system failure. The failure data for new

components which appear in the potential design cases is provided in Table A.3.2. It is

assumed that failure characteristics of each component do not change through each phase, i.e.

their failure probability values in each phase are the same.

As it is known, the programme constructs a chromosome structure corresponding to the

problem analysed by utilising values of the parameters of FTMPs. Figure 7.11 presents the

binary form of the chromosome structure. Here the first two bits refer to the first design

variable, i.e. the type of the landing gear. The second two bits are used to represent the type of

an antiskid valve. The third group of genes are used for the parameters of the design variable

referring to the brake sets while the fourth group is used to code parameters of the design

variable associated with the navigation system. The last two couples of two bits are used to

define the number and type of a sense and avoidance system(s).

Figure 7.11. Structure of Chromosome

7.4.3. Analysis of Optimisation Results

Two aspects have been considered throughout the analysis of the application of PMSDOP.

One of them is the ability of the algorithm to find the optimal (near-optimal) solution. For this

purpose the global minimum fitness value has been identified employing the exhaustive

search method and evaluating all possible design alternatives. The smallest UAV mission

failure probability value that has been found is equal to 0.111118 while the initial design

UAV failure probability is 0.135871. The combination of values of design variables

corresponding to the minimal mission failure probability is presented in Table 7.2.

Chapter 7. Multi-phased Mission System Design Optimisation 165

Table 7.2. Values of design variables for the optimal UAV design

Changeable

Component

Description of Modifications / Design

Variable

Design Variable

Value (New Design)

Initial

Design

Landing gear Type of a landing gear type 2 Type 1

Antiskid valve Type of an antiskid valve type 2 Type 1

Number of brake sets 3 1

Type of a brake set type 2 Type 1
Brakes

Minimal number of failed brakes that

cause failure to brake
3 1

Number of navigation subsystems 2 1

Type of a navigation subsystem type1 type1 Navigation

system Minimal number of failed navigation

subsystems causing navigation failure
2 1

Number of avoidance subsystems 2 1 Sense and

avoidance system Type of an sense and avoidance subsystem type1 type1

Another aspect of the analysis considered is the sensitivity of the optimisation process to

variations in the values of the GA parameters. The optimisation process was performed

employing a set of different combinations of GA parameter values. Different values of

population size, crossover rate and mutation rate were employed while the number of

generations was initially chosen equal to 100. Three population sizes were analysed: 50, 30

and 10 chromosomes. Mutation rates were chosen equal to 0.001, 0.005 and 0.01 and

crossover rate values were equal to 0.75, 0.8 and 0.95. These values are based upon the earlier

experiments from application examples of GSDOA.

For each set of GA parameter values the best fitness value was the main quantity considered

in each generation. Due to the stochastic nature of GAs the simulations were run five times

for each combination of GA parameter values. Following this the averages were derived for

the best fitness values at each generation. The standard deviation was also evaluated for each

set of five best fitness values taken from the last generations. Finally, an average number of

generations needed for the global minimal fitness value to be found was derived for each set

of five runs. All results are provided in Appendix 3.

In total one hundred and thirty five runs were carried out to investigate all GA parameters.

The main findings are summarised in this section. When the size of chromosome populations

was small, i.e. equal to 10, the results showed that the trade-off between the rate at which new

strings are introduced and the rate of diversity created in the population needs to be found in

order to increase the convergence rate of the algorithm. For instance, if the crossover rate is

high then fewer generations are required to approach a near minimal solution when smaller

mutation rate values are used. Conversely, using the low crossover rate and higher mutation

rates a near optimal solution is found with less generations. The results are presented in

Chapter 7. Multi-phased Mission System Design Optimisation 166

Figures A.3.1-A.3.2 in Appendix 3. The lowest fitness value after performing 100 generations

was obtained using the mutation rate equal to 0.01 for all crossover rate values. The global

minimum solution was obtained in at least one out of the five runs for all combinations of GA

parameters. The average number of generations required to be performed in order to find the

global minimum for each combination of parameters is presented in Table 7.3. Results show

that on average the smallest number of generations was performed when the mutation rate

was equal to 0.05 for any value of crossover rate.

Table 7.3. Number of Generations Performed to Find the Minimal Fitness Value

Crossover Rate 0.75 0.8 0.95

Mutation Rate 0.001 0.005 0.01 0.001 0.005 0.01 0.001 0.005 0.01

Number of Generations 81 71 74 82 56 58 88 25 54

Means of best fitness values when 30 chromosome populations were used are presented in

Figures A.3.5-A.3.7 in Appendix 3. In this case the fitness values approached a near optimal

and/or optimal value in less than 20 generations for all combinations of crossover and

mutation rates. During all five runs the global minimum was found by employing mutation

rates 0.005 and 0.01 in combination with every crossover rate value introduced. Average

numbers of generations performed to find the optimal solution (Table 7.4) tended to decrease

with the increasing mutation and crossover rates. They are also smaller than the ones obtained

when using 10 chromosome populations.

Table 7.4. Number of Generations Performed to Find the Minimal Fitness Value

Crossover Rate 0.75 0.8 0.95

Mutation Rate 0.001 0.005 0.01 0.001 0.005 0.01 0.001 0.005 0.01

Number of Generations 45 27 20 35 27 19 17 23 36

For populations of 50 chromosomes differences between convergence rates are small and less

significant for different combinations of crossover and mutation rates than the ones obtained

when using populations of a smaller size as shown in Figures A.3.9-A.3.11 in Appendix 3.

After increasing the population size, the global minimum fitness values were found in 100

generations for all five runs using each combination of the mutation and crossover rates. It

was noticed that the algorithm requires more generations to be performed in order to find the

optimal solution if the mutation rate is increased as shown in Table 7.5. It suggests that the

high mutation rate tends to convert the GA into a random search procedure when the

population size is large.

Chapter 7. Multi-phased Mission System Design Optimisation 167

Table 7.5. Number of Generations Performed to Find the Minimal Fitness Value

Crossover Rate 0.75 0.8 0.95

Mutation Rate 0.001 0.005 0.01 0.001 0.005 0.01 0.001 0.005 0.01

Number of Generations 23 33 23 17 23 25 17 30 33

7.4.4. Summary of the Analysis

The analysis carried out to identify GA parameter values that result in good algorithm

performance revealed three sets of parameter values. The first set of parameters includes the

population size of 30 chromosomes, the crossover rate equal to 0.95 and the mutation rate

equal to 0.001. The second and the third sets have the mutation rate of 0.001, population size

50 and crossover rates 0.8 and 0.95 respectively. In this case the quality of optimisation

algorithm in terms of performance has been interpreted according to the smallest number of

generations required to find the global minimum and the smallest standard deviation of the

best fitness values after 100 generations from five runs.

The computations were carried out on a Dual Core 1.60 GHz processor with 1.00GB of RAM

on a 32-bit operating system. The average CPU time to evaluate an objective function value

was equal to 0.143 seconds and the average time to generate a single population was equal to

6.43 seconds. For this analysis the mutation rate equal to 0.01 was used along with the

population size of 50 chromosome and the crossover rate equal to 0.95.

The application example of the UAV design optimisation problem has shown the capability of

the developed algorithm to solve a design optimisation problem of an unconstrained

multi-phased mission system. During the optimisation process the global optimum of the

problem has been found. It is the set of values of structural design variables corresponding to

the minimum mission failure probability selected from the introduced design alternatives. The

analysis results also suggest that combinations of a large population size and a high crossover

rate tend to reduce the number of generations required to be performed in order to find the

optimal solution. Furthermore, the optimisation process is more sensitive to the size of

population rather than the values of GA operators.

7.5. MILITARY VESSEL DESIGN OPTIMISATION USING PMSDOP

(CASE 1)

The military vessel performing a mission “Harbour/ Sea Training” is the second example of

the application of PMSDOP. The military vessel design optimisation problem has been

Chapter 7. Multi-phased Mission System Design Optimisation 168

chosen to demonstrate the capability of the developed algorithm to solve larger scale and

more complex problems. The objective of the optimisation is to choose a vessel design that

would successfully complete a specified mission with minimal failure probability and optimal

usage of available resources. Therefore given limitations to vessel cost and weight have been

considered throughout the optimisation process. More complexity to the analysed problem has

been added by considering that the failure probability values of vessel components are not the

same in each phase.

7.5.1. Initial Military Vessel Design

The simplified vessel structure comprises of six independent systems: propulsion & power

system, electrical distribution system, cooling water system, hydraulic system, hydroplanes &

steering system and rudder control system. In this example the systems are analysed as non

repairable systems. The first propulsion & power system comprises two major subsystems:

propulsion power provision and primary propulsion. The fault trees for the subsystems are

shown in Figures 7.12 and 7.13 respectively. Failure of either subsystem causes power

disruption in the vessel. All failure causes, i.e. basic events of the fault trees for the propulsion

& power system are listed in Table A.3.6 in Appendix 3 together with their failure probability

values.

Figure 7.12. Propulsion Power Provision Fault Tree

Chapter 7. Multi-phased Mission System Design Optimisation 169

Figure 7.13. Primary Propulsion Fault Tree

The electrical supply system includes alternating current generation, alternating current

supply, direct current generation and direct current supply subsystems. Alternating current

subsystems are constructed of two redundant units. For example, alternating current can be

supplied by two redundant switch boards and the alternating current generation subsystem has

two redundant turbine generator units. Both the direct current generation and direct current

supply subsystems are constructed to have single units, i.e. no component redundancies are

implemented in the subsystems. The fault tree of the system is presented in Figures 7.14 and

7.15. Table A.3.7 (Appendix 3) provides the list of basic events in the fault trees and their

failure probability value.

Figure 7.14. Electrical Supply System Fault Tree

Chapter 7. Multi-phased Mission System Design Optimisation 170

Figure 7.15. Fault Tree for Turbine Generators

The fresh water cooling system has two redundant paths. Each path includes an inlet and an

outlet hull valves, two flexible coupling units, a sea water service unit, a pump and a heat

exchanger. Therefore the system fails if failures in both paths appear. A fault tree in Figure

7.16 shows all possible system failure causes. Failure data of system components is provided

in Table A.3.8 in Appendix 3.

Gate

14

Gate

16

Gate

16

Gate

15

Gate

15

HUlVI_1 FCU_1 SEAWSYS_1PUMP_1

Hull Valve

(Inlet) 1 Fails

FCU 1

Fails

Pump 1

Fails

Sea Water

System 1 Fails

FCU_2 HULLVO_1 HEATEX_1

FCU 2

Fails

Heat

Exchanger 1
Fails

Hull Valve

(Outlet) 1 Fails

HULLVI_2 FCU_3 SEAWSYS_2PUMP_2

Hull Valve

(Inlet) 2 Fails

FCU 3

Fails

Pump 2

Fails

Sea Water
System 2 Fails

FCU_4 HULLVO_2 HEATEX_2

FCU 4

Fails

Heat
Exchanger 2

Fails

Hull Valve

(Outlet) 2 Fails

Cooling Water

System Fails

Sub-system 1

Fails

Sub-system 2

Fails

Figure 7.16. Fresh Water Cooling System Fault Tree

The hydraulics system comprises of the following subsystems: external hydraulics, aft

hydraulics and main hydraulics subsystem. Failure modes of the external and main hydraulics

subsystems are identical. The subsystems fail if either plant or hydraulics unit fails. Aft

hydraulics subsystem has two different redundant plants. One of them uses alternating current

and the other uses direct current. Causes of failure for the hydraulics subsystems are shown in

the fault tree in Figure 7.17. System component failure data is presented in Table A.3.9 in

Appendix 3.

Chapter 7. Multi-phased Mission System Design Optimisation 171

Figure 7.17. Hydraulics System Fault Tree

The hydroplanes control system comprises of aft hydroplane and forward hydroplane control

units. Each subsystem has an individual control surface, a ram servo unit and an order

transmission box. Hydraulic tilting and air tilting cylinders together with emergency air

control are additionally installed in the aft hydroplane control subsystem. The forward

hydroplane subsystem also has a tilting cylinder. The fault tree for the hydroplanes control

system is given in Figure 7.18 and component failure data is provided in Table A.3.10 in

Appendix 3.

Figure 7.18. Hydroplanes Control System Fault Tree

Chapter 7. Multi-phased Mission System Design Optimisation 172

Finally, the rudder control system failure may be caused by failure of control surfaces, rudder

ram failure, ram servo unit failure or rate control failure. Table A.3.11 in Appendix 3 provides

the system components failure data.

The analysed mission of the military vessel is divided into phases according to tasks needed

to be completed. The mission comprises four phases carried out in the following order:

harbour shore support, transit shallow water, receive broadcast and again harbour shore

support. During the mission the number of earlier described systems being in use varies. For

example, during the Harbour phase the vessel does not perform any task and therefore the

electrical supply system alone is required to operate. Therefore the phase fault tree

corresponds to the electrical supply system fault tree which was presented in Figures 7.14 and

7.15. When the vessel transits to deep waters or in order to perform the task of the Broadcast

phase all six systems are in operation. Failure of the mission during those phases will occur if

any of these systems fail. Therefore the fault trees for the latter phases comprise the fault trees

given for the different ship systems as shown in Figure 7.19.

Figure 7.19. Transit Shallow Water Phase Fault Tree

7.5.2. Military Vessel Design Alternatives

Six components have been chosen to be replaced if necessary in order to develop new design

alternatives which would reduce the failure probability of the mission. As in the previous

optimisation examples, the possible modifications to the vessel systems designs are

characterised with the list of structural design variables. The list is provided in Table 7.6.

Chapter 7. Multi-phased Mission System Design Optimisation 173

Table 7.6. Design Variables and their Values

Component Design Variable Description
Design Variable

Value

Number of CW Pumps 3, 2, 1

Number of CW Pumps Required to trip 3, 2, 1 Circulating Water (CW) Pump

Type of a CW pump Type 1, Type 2

Number of Feed Pumps 4, 3, 2, 1

Number of Feed Pumps required to

Trip
4, 3, 2, 1 Feed Pump

Type of a Feed Pump Type1, Type 2

Number of Ahead Valves 3, 2, 1
Ahead Valve

Type of an Ahead Valve Type 2, Type 1

Number of MG VFRs 2, 1 Motor Generator (MG) Voltage

and Frequency Regulator (VFR) Type of a MG VFR Type 1, Type 2

External Hydraulic Plant Type of an External Hydraulic Plant Type 1, Type 2

Main Hydraulic Plant Type of a Main Hydraulic Plant Type 1, Type 2

Owing to the potential introduction of new components and their arrangements new basic

events are incorporated in the fault trees of the mission phases. As a reminder, if design

alterations result in incorporation of components that differ from those originally used their

corresponding basic events have also different failure probability values. In the case analysed

there are six such components. The list of basic event failure probability values corresponding

to the new components is provided in Table A.3.12 in Appendix 3.

Development of potential vessel design alternatives involves the considerations of two design

characteristics, such as cost and weight of the military vessel. A new design is required not to

exceed the initial design cost and weight which are 400 units and 21000 units respectively.

Cost and weight values for the individual vessel components are estimated. Units of

measurements are non-dimensional for both component characteristics. The cost and weight

of each component are provided in Table A.3.13 in Appendix 3.

As there are 12 design variables specified for the military vessel design optimisation problem,

the chromosome structure created for the optimisation process comprises 12 genes. The first

three genes are used for design variables associated with the CW pump. The second group of

three genes relates to the feed pump. The third group of genes is employed to code the

number and type of ahead valves in the vessel. The next two genes refer to the VFR of the

motor generator. Finally the last two genes are used to identify the types of external and main

hydraulic plants respectively. The complete structure of the chromosome is presented in

Figure 7.20.

Chapter 7. Multi-phased Mission System Design Optimisation 174

Figure 7.20. Structure of Chromosome

7.5.3. Analysis of Optimisation Results

Solving the military vessel design optimisation problem the same aspects of the algorithm

performance have been considered as the ones in the UAV optimisation case. These are the

ability of the algorithm to find the global optimal solution and the influence of different

values of GA parameters to the optimisation process. Thus first the minimum failure

probability value and the corresponding optimal set of values of design variables have been

found by performing an exhaustive search. The smallest vessel mission failure probability

value was equal to 0.0945415 considering the limitations set on the overall vessel cost and

weight. The failure probability of the initial design vessel is 0.1231664. The list of the values

of design variables corresponding to the optimal design is presented in Table 7.7. The cost of

the optimal design vessel is 399.9 units and its weight is equal to 20376 units.

Table 7.7. Design Variables and their Values

Component Design Variable Description

Design

Variable

Value for the

Optimal

Design

Design

Variable

Value for

the Initial

Design

Number of CW Pumps 2 1

Number of CW Pumps Required to

Operate
1 1 CW Pump

Type of a CW pump Type 2 Type 1

Number of Feed Pumps 2 1

Number of Feed Pumps required to

Operate
1 1 Feed Pump

Type of a Feed Pump Type1 Type1

Number of Ahead Valves 3 1
Ahead Valve

Type of an Ahead Valve Type 2 Type 1

Number of MG VFRs 2 1 MG VFR

 Type of a MG VFR Type 1 Type 1

External Hydraulic Plant Type of an External Hydraulic Plant Type 2 Type 1

Main Hydraulic Plant Type of a Main Hydraulic Plant Type 1 Type 1

Chapter 7. Multi-phased Mission System Design Optimisation 175

The same scheme to analyse the performance of the algorithm is used as the one for UAV

problem. The algorithm efficiency is studied for the sets of GA parameters where population

size is equal to 50, 30 or 10 chromosomes, mutation rate is equal to 0.001, 0.005 or 0.01 and

crossover rate value is equal to 0.75, 0.8 or 0.95. As done previously, simulations are run five

times for each combination of GA parameter values and the best feasible chromosome fitness

value yet found is stored at each generation. The means of the best feasible fitness values over

five runs for each generation are used to compare algorithm performance. The standard

deviation and the best mean feasible chromosome fitness value obtained in 100 generations

for each set of five best fitness values are also evaluated. All detailed results can be found in

Appendix 3.

The means of best feasible chromosome fitness values yet found at each generation for every

combination of crossover and mutation rates when population size is set to 10 chromosomes

are shown in Figures A.3.12-A.3.14 in Appendix 3. The mean values are noticeably bigger for

the combination of both small mutation and crossover rates. It means that the results tend to

converge to a local minimum when the diversity of a population is small. Increasing the

crossover rate eliminates the problem of population diversity when using a small mutation

rate. Utilising populations of 10 chromosomes the GA with both higher mutation and

crossover rates has produced design options with on average smaller failure probabilities. The

results are given in Table 7.8.

Table 7.8. Mean Values of the Lowest Failure Probability after 100 Generations

Mutation

Rate

Crossover

 rate

0.001 0.005 0.01

0.75 0.098335 0.094922 0.094934

0.8 0.095628 0.095027 0.095212

0.95 0.095406 0.095189 0.094765

When the population size has been increased up to 30 chromosomes the optimisation results

obtained using different mutation rates for the same crossover rate have assimilated. The

biggest improvement in optimisation results appear on average in 25 generations. From the

results in Table 7.9 it can be seen that when using different mutation rates the minimum mean

failure probabilities are less diverse in their values when the crossover rate is 0.75 than using

the crossover rate equal to 0.95. The tendency also appears for the minimum mean values to

decrease when at least one value of the genetic operator increases. The global minimum was

Chapter 7. Multi-phased Mission System Design Optimisation 176

found at least in one run out of five for every mutation rate when the crossover rate was equal

to 0.8 and using mutation rates of 0.001 and 0.01 when the crossover rate was 0.95.

Table 7.9. Mean Values of the Lowest Failure Probability after 100 Generations

Mutation

Rate

Crossover

 rate

0.001 0.005 0.01

0.75 0.094736 0.094778 0.094695

0.8 0.094768 0.094668 0.094728

0.95 0.094676 0.094828 0.094562

When the population size is increased up to 50 chromosomes the biggest improvements in

optimisation results appear on average in 20 generations. Therefore when increasing the

population size the chances to find an optimal solution in fewer generations are also

increased. In this case the mean fitness values obtained are smaller for combinations of a

mutation rate of 0.01 with every crossover rate as seen in Table 7.10. Standard deviations of

the minimum values of five runs were also the smallest when combinations of GA parameters

included a mutation rate equal to 0.01. These results are presented in Figure A.3.23 in

Appendix 3. The global minimum was found at least once for every combination of crossover

and mutation rates when using a population of 50 chromosomes.

Table 7.10. Mean Values of the Lowest Failure Probability after 100 Generations

Mutation

Rate

Crossover

 rate

0.001 0.005 0.01

0.75 0.094755 0.09461 0.094588

0.8 0.094736 0.094732 0.094571

0.95 0.094632 0.094591 0.094571

7.5.4. Summary of the Analysis

Since GA parameters as the factors influencing the performance of the algorithm tend to be

less problem-dependent there is scope to find sets of their values aimed at improving the

performance of the GA in more general applications. The performed analysis has shown that

on average the best performance of the algorithm is achieved when using a population of 50

chromosomes, crossover rate equal to 0.95 and mutation rate equal to 0.01. In this case the

global optimum solution was identified. It was also noticed that in solving the larger-scale

Chapter 7. Multi-phased Mission System Design Optimisation 177

constrained problem, better optimisation results were obtained using the higher mutation rate

(0.01) rather then using the lower one as used when solving the UAV optimisation problem. It

suggests that a large population size and high crossover and mutation rates are promising in

achieving good performance of the algorithm for larger constrained optimisation problems.

For the analysis of the timescales of the optimisation process the population of 50

chromosomes with the mutation rate equal to 0.01 and the crossover rate equal 0.95 were

used. As previously the computations were carried out on a Dual Core 1.60 GHz processor

with 1.00GB of RAM on a 32-bit operating system. The average CPU time to evaluate the

military vessel mission failure probability value was equal to 0.164 second and the average

time to generate a single population was equal to 9.454 seconds.

The military vessel design optimisation example indicates the ability of the algorithm to solve

a large scale and complex optimisation problem for a phased mission system. Moreover it

provides evidence that the algorithm is not a system-specific optimisation tool and has the

potential to analyse a range of optimisation problems for different phased mission systems.

The developed approach combining FTA and the GA is a novel optimisation tool. Its novelty

pertains to its application to solve design optimisation problems of phased mission systems

and the potential to analyse a range of different optimisation problems. Systems having

components with changing failure probabilities across phases and constraints defined for

systems overall cost, weight and/or volume can be analysed.

7.6. SYSTEM DESIGN LIMITATIONS FOR INDIVIDUAL PHASES

At the initial development stage of PMSDOA the optimisation objective was to minimise the

overall mission failure probability subject to the overall system cost and/or weight and/or its

volume. In some cases a number of system parts can be inactive during some phases and they

are not considered when performing both qualitative and quantitative phase failure analysis.

Only active subsystems are analysed. It follows that it would be beneficial to introduce design

constraints only for active subsystems in every phase.

Introduction of constraints for each phase individually enables the impact of design alterations

to both subsystems in use and the overall system to be analysed. Defined constraint limits and

design requirements set for different phases control the choice of design alterations for

specific subsystems and therefore a more precise analysis of the overall system design

characteristics can be performed. The capability to analyse either a single subsystem or a

Chapter 7. Multi-phased Mission System Design Optimisation 178

group of subsystems depends on the system being analysed. For example, if analysing the

earlier introduced military vessel mission, it is possible to define design requirements for only

one specific subsystem, as the electrical distribution subsystem is active during the first and

the last phases.

The developed PMSDOA has been enhanced with the possibility to use additional constraints

set at each phase of the mission. Two groups of constraints were introduced. The first group

refers to system characteristics such as cost, weight and volume. The characteristics evaluated

for a particular phase refer only to the subsystems active in that phase. In order to quantify the

corresponding properties, characteristics of components in each subsystem are added up. For

example, consider system cost in phase j. System cost, i.e. cost of subsystems which are

active, is evaluated as follows:

∑
=

=

j
incm

k

k
j

mission costCost

1

 (7.19)

Here
j

incm is the total number of different components subject to failure included in

subsystems which are in use in phase j, costk is the cost for a component k which has an

associated basic event in the phase fault tree. The subsystems analysed represent a system

with a particular design i.

If any costs referring to the phase cannot be associated with any of the basic events then these

costs are included as an additional fixed cost in the total phase cost:

j
additional

j
i

k

k
j

mission cost

ncm

costCost += ∑
=1

 (7.20)

If a design of any active subsystem during the phase analysed is changed then the phase cost

will also change. Such a methodology allows the cost of certain subsystems to be separated

from the overall system cost and analysed individually. For example, consider again a harbour

phase of the military vessel where only an electrical distribution subsystem is active. In this

case the phase cost is equal to the cost of the subsystem. Thus alterations to vessel design can

be identified which do not overcome the predefined cost limits of the electrical subsystem.

The system weight and volume for a particular phase can be estimated using the same

formulas with corresponding component characteristics.

Chapter 7. Multi-phased Mission System Design Optimisation 179

Since the optimal usage of available resources is considered both minimum and maximum

constraints are introduced for the design characteristics for each phase. The constraints for

resources can be defined as follows:

.

,

,

maxmin

min

maxmin

jj
mission

j

j
ma

j
mission

j

jj
mission

j

VolumeVolumeVolume

WeightWeightWeight

CostCostCost

<<

<<

<<

 (7.21)

where j identifies a phase number, min means a defined required minimal limit of a system

attribute, accordingly max is a maximum defined limit and mission identifies the system

attribute for a particular design when performing a task in phase j.

In some cases design alterations can result in the reduction of system failure probability

during certain phases but at the same time they can increase the system failure probability for

the other phases. The second group of constraints are placed on phase failure probability

values for different phases. The following set of equations (7.22) is used:

() ()

() ()

() ()
max

max2222

max1111

.................................

mmmm QQ

QQ

QQ

XX

XX

XX

≤

≤

≤

 (7.22)

Here Qi(Xi) identifies the mission failure probability in phase i, Qi(Xi)max is the maximum

allowed system failure probability value in phase i and m defines the number of phases in the

analysed mission. The number m varies for different systems. Implementing these constraints

allows component combinations to be identified that minimise the failure probability of the

whole mission without exceeding limits set for system failure probability values during each

phase. It also ensures that the improvement achieved for the whole mission is not a result of a

significant improvement in one phase and significant decline of reliability in another.

The amendments introduced to the algorithm extend its possibilities of applications. Problems

analysed can be specified more accurately resulting in more precise optimisation results.

The improved PMSDOA was applied to solve both the UAV and military vessel design

optimisation problems. In the application examples constraints for failure probabilities and/or

design characteristics for each phase were introduced. The application examples of PMSDOP

to solve the UAV design optimisation problems were published in the proceedings of ISSC

Chapter 7. Multi-phased Mission System Design Optimisation 180

conference [90] and International Journal of Performability Engineering [91]. The application

examples of the improved PMSDOA to solve the military vessel design problems were

published in the proceedings of the conference ESREL-2008 [92] and the International

Journal of Reliability and Safety [93]. The military vessel design optimisation problem with

constraints defined for the electrical distribution system and the overall vessel is discussed in

detail in the following section (Section 7.7).

7.7. MILITARY VESSEL DESIGN OPTIMISATION PROBLEM WITH

CONSTRAINTS ADDED AT EACH PHASE (CASE 2)

In this section the application of the improved PMSDOP to solve the earlier analysed military

vessel design optimisation problem (Section 7.5) is discussed. The problem has been extended

and constraints for system cost and weight of active subsystems for each phase together with

system failure probabilities during every phase have been introduced. The aim of the

application is to analyse the capability of the algorithm to solve a larger scale and more

complex optimisation problem with an increased number of constraints.

Owing to the fact that only the electrical subsystem is active during the harbour phase its own

design characteristics can be analysed together with the overall ship characteristics. The limits

introduced for to system failure probabilities for each phase allows the overall system failure

probability to be minimised and at the same time a failure probability of the electrical

distribution to be maintained below the predefined limit. Similarly the introduced cost and

weight constraints at each phase are the limits for cost and weight of the electrical distribution

system and the whole vessel. Thus in the application example three sets of constraints are

considered:

jj
designnew

jj
designnew

jj
designnew

WeightWeight

CostCost

QQ

max_

max_

max_

≤

≤

≤

 (7.23)

Here j is phase number and j = {1, 2, 3, 4};
j

designnew
Q

_
denotes the failure probability of a

new design vessel during phase j while j
Qmax is a predefined limit of a probability that the

vessel fails during the same phase. The remaining variables identify the cost and weight for a

new design and the predefined limits in the corresponding phases.

Chapter 7. Multi-phased Mission System Design Optimisation 181

All limits for constraints were evaluated. Probabilities of mission failure in each phase of the

initial military vessel design were employed as guidance limits of the failure probability

constraints used for the optimisation problem. Limits for cost and weight constraints were

also estimated according to the initial design vessel cost and weight in each phase. The limits

introduced are listed in Table 7.11.

Table 7.11. Limits of Constraints

Phase Failure Probability Cost Weight

Harbour 0.0058 120 1300

Transit 0.055 400 21000

Broadcast 0.058 400 21000

Harbour 0.0053 120 1300

In order to analyse the influence of different GA parameter values on the performance of the

algorithm the same values of crossover and mutation rates were used as the ones in the

previous application examples. However the previous examples of applications of both

GSDOA and PMSDOA have revealed that populations of 10 chromosomes produce the worst

results. Furthermore owing to the fact that this is a more complicated problem a larger

population size has been introduced and populations of 30 and 70 chromosomes were utilised.

The termination condition, i.e. the number of generations performed, has also been changed

and reduced to 75 generations. This allows the reduction of the time required to find an

optimal solution. However it still needs to be investigated to ensure that by performing just 75

generations a global minimum can be found.

As in the previous cases five simulations were run for each combination of different values of

GA parameters. The average and best fitness values were the two main quantities considered

in each generation. These derived values were then used for further analysis. In addition, the

average number of generations, needed to be performed in order to find the global minimal

fitness value, was also derived for different combinations of crossover and mutation rates.

An exhaustive search has also been performed for this problem. The global feasible minimum

value of mission failure probability was the same as that for the first ship optimisation

problem, i.e. 0.094542. The list of the values of design variables defining the optimal ship

design is presented in Table 7.7. However, if the cost limits for the second and third phases

were just a few units higher, for example 402 units, the set of design variable values

representing the optimal system design would have been different from that for the first ship

optimisation problem.

Chapter 7. Multi-phased Mission System Design Optimisation 182

7.7.1. Analysis of Optimisation Results

The average fitness values for each generation obtained when using sets of different GA

parameter values are presented in Figures A.3.24-A.3.27 in Appendix 3. They show the best

feasible fitness values for each generation for the same sets of algorithm parameters.

To summarise, the average fitness values are larger when populations of 70 chromosomes are

used. A higher mutation rate also increases the average fitness values for all three crossover

rate cases. On the other hand both the size of a population and mutation rate have contrasting

effects on the best fitness values. The best fitness values converge to a minimum value faster

when a population of 70 chromosomes is used. It is also obvious that a higher mutation rate

influences the results in the same way if the low crossover rate is used. However it cannot be

stated that by using higher mutation rates fewer generations are performed before the

minimum fitness values has been found when using crossover rates equal to 0.8 and 0.95. The

average numbers of generations required to obtain the optimal fitness values are presented in

Table 7.12. It can be seen that the algorithm finds the optimal solutions in fewer generations if

the crossover rate is increased in combination with a large population size and high mutation

rate.

Table 7.12. Number of Generations Performed to find the Minimal Fitness Value
 Population Size =70 Population Size = 30

Mutation

Rate

Crossover

Rate

0.001 0.005 0.01 0.001 0.005 0.01

0.75 75 75 67 75 75 75

0.8 38 75 32 75 75 75

0.95 38 71 32 75 75 75

7.7.2. Summary of the Analysis

The military vessel design with the lowest failure probability which satisfies constraints

defined for the electrical distribution system and the overall vessel has been identified using

few sets of different values of GA parameters. The best performance of the algorithm has

been achieved using a population of 70 chromosomes, mutation rate equal 0.01 in

combination with two crossover rate values: 0.8 and 0.95. The observation was made after

taking into account the number of generations required to be performed before the optimal

solution had been found.

Chapter 7. Multi-phased Mission System Design Optimisation 183

The successful application example demonstrates the potential of the algorithm to solve large

scale and strongly constrained phased mission system design optimisation problems. When

analysing the influence of GA parameters on the performance of the algorithm it was noticed

that the same rules can be applied for choosing crossover and mutation rate values for both

the highly constrained and the less constraint optimisation problems. The algorithm performs

better if both the mutation and crossover rates are high. Moreover by increasing the number of

constraints considered, the population sizes should also be increased in order to find an

optimal or a near-optimal solution when it is envisaged that a relatively small number of

generations will be performed.

7.8. SUMMARY

The research detailed in this chapter has focused on the development of a basic methodology

to solve multi-phased mission system design optimisation problems which has not been

systematically treated in the literature. The following goals have been achieved:

• The methodology implemented to solve safety system design optimisation problems

has been successfully adapted to multi-phased mission system design optimisation

problems.

• The programme code, PMSDOP, for the new PMSDOA has been developed to

automate the design optimisation problem for a chosen phased mission system.

• The PMSDOA and PMSDOP maintain the essential property of the original approach,

i.e. potential application to a broad range of multi-phased mission systems.

• The new PMSDOA has been applied to solve different optimisation problems catering

for:

1) the overall mission failure minimisation considering mission constraint

limitations;

2) the overall mission failure minimisation considering phase failure and explicit

phase constraints limitations.

Three application examples of the developed PMSDOA have been analysed. The solved UAV

design optimisation problem was relatively simple. No constraints were considered in the

analysis. The first military vessel design optimisation problem was more complex and larger

Chapter 7. Multi-phased Mission System Design Optimisation 184

scale than the UAV problem and had limitations introduced for the overall vessel cost and

weight. In the second vessel design problem restrictions were introduced on the cost and

weight of active subsystems and mission failure probability during each mission phase.

The optimal designs were found corresponding to the global minimum failure probabilities of

the missions for all three cases. As expected the optimisation process converged much slower

and more generations were required to find the global minimum value when larger scale and

more complex problems were solved, i.e. ship optimisation problems.

A study of the influence of different GA parameter values on the optimisation process was

also carried out. Results showed that the algorithm performed better when larger population

sizes and both higher crossover and mutation rates were used. It was also noticed that the

algorithm performance is more sensitive to population size than the chosen variations of

crossover and mutation rates.

Consideration is needed for the computational intensity and processing time of the PMSDOP.

Differences in computational intensity and processing time between the two problems were

evident. It took on average 220 seconds to run 100 generations using 50 chromosomes

populations for the UAV problem. While solving the military vessel design optimisation

problem the average run time was 560 seconds using the same values of GA parameters. In

addition, it requires more generations to be performed in order to find a global solution. In

solving the current problems the run time is not an issue as the analysis does not need to be

performed in real-time. However, improvements made to the quantitative system analysis

methodology as well as advancements of the implemented GA could significantly reduce the

processing time and improve the efficiency of the programme. This could improve the

potential of the algorithm to solve real time and more complex mission design optimisation

problems.

8. DESIGN OPTIMISATION OF MULTI-

PHASED MISSION SYSTEM CONSIDERING

MULTIPLE MISSIONS

8.1. INTRODUCTION

Most real world systems are designed to perform a number of missions. When improving a

phased mission system design it is desirable that it would also improve the likelihood of

success of its different missions. In some cases a system design that guarantees a low failure

probability for one mission may have no influence on system performance in another mission

or may increase its failure probability in the worst case. Thus, optimisation of phased mission

system design should involve an analysis of all the missions the system is designed for or at

least those deemed the most critical.

A problem of optimisation of a system design involving a number of missions can be

analysed as a multi objective optimisation problem. In this case the failure probabilities of

each mission being minimised are the objectives of the problem. A system design that

provides a trade-off across the minimal failure probabilities for each mission is the solution of

the problem. A number of constraints can also be included in the problem being solved.

Building upon the developed single objective PMSDOA, a multi objective optimisation

technique has been developed. The new algorithm has been named as the multiple phased

missions system design optimisation algorithm (MPMSDOA).

In this chapter a brief introduction is given about multi-objective optimisation (Section 8.2).

Evolutionary algorithms used for multi-objective optimisation and the detailed explanation of

the adapted multi-objective genetic algorithm follow in Section 8.3. In Section 8.4 the

methodology developed to solve multi objective phased mission design optimisation problems

is introduced. The last section (Section 8.5) of the chapter addresses the application example

of the developed approach and discusses the optimisation results obtained.

8.2. MULTI-OBJECTIVE OPTIMISATION

A multi-objective optimisation problem has more than one objective which are to be

minimised or maximised. Without loss of generality (a component to be maximised can be

Chapter 8. Design Optimisation of Multi-phased Mission System Considering Multiple Missions

186

converted into a minimisation objective by multiplying by negative one), consider the

problem of simultaneously minimising the k components kif i ,...,1, = , of a vector function f:

() () ()()xxx kfff ,...,1= . (8.1)

Here ()nxx ...,,1=x is an n-dimensional decision variable vector in the decision variable space

X [94]. The decision variable space is generally restricted by a number of constraints. Thus

the multi-objective optimisation problem can be stated as:

() () ()()xxx kfff ,...,minmin 1= (8.2)

subject to the following constraints:

()

() .,...,1,0

;,...,1,0

Jjh

Iig

j

i

==

=≥

x

x
 (8.3)

The solution to the problem is a vector ()nxx *,...,** 1=x which minimises a given set of

objective functions.

Single-objective optimisation algorithms have one objective to be optimised and so they

provide one unique solution for it. A general multi-objective optimisation problem presents a

set of solutions and each of them represents a trade-off in the objective space. For example,

consider a situation when system reliability needs to be improved at as low a cost as possible.

One way to improve it is by introducing redundant components. The new components will

increase the cost of the system. The more redundant components are introduced the more

expensive the system becomes. If the system reliability needs to be improved and its cost

minimised the two objectives will be conflicting. A system with minimum cost will have a

low reliability rate. Conversely, the system with high reliability will cost more. The problem

will not have one unique solution. Instead there will be solutions where a trade-off between

reliability and cost exists. Thus a resulting outcome to a general multi-objective optimisation

problem is a set of optimal solutions, each of which satisfies the objectives and is not

dominated by any other solution [95].

Due to the existence of conflicting objectives the concept of domination is used in multi-

objective optimisation algorithms. If considering a minimisation problem, dominance of one

solution over another can be defined as follows:

Chapter 8. Design Optimisation of Multi-phased Mission System Considering Multiple Missions

187

Definition 8.1. A solution ()nxx ,...,1=x is said to dominate another solution ()nyy ,...,1=y

()yx p , if both conditions are true [94]:

The solution x is no worse than the solution y in all objectives, i.e. { }ni ,...,1∈∀ ,

() ()yx ii ff ≤ .

The solution x is strictly better than the solution y for at least one objective function, i.e.

{ } () ()yx ii ffni <∈∃ :,...,1 .

If any of the above conditions is violated, the solution x does not dominate the solution y .

Definition 8.1 defines the relationship between any two solutions. Three types of relationships

can be identified between solutions on the basis of dominance [94]: a) solution x dominates

solution y , b) solution x is dominated by solution y , c) solutions x and y do not dominate

each other.

For a given finite set of solutions there exist groups of solutions of different non-domination

levels [45]. One of the groups represents solutions which are non-dominated with respect to

each other.

Definition 8.2. Among a set of solutions X, the non-dominated set of solutions P* are those

that are not dominated by any member of set X.

Definition 8.3. A solution ()nxx ,...,1=x is set to be Pareto-optimal if and only if there is no

other solution ()nyy ,...,1=y in X for which ()yif dominates ()xif .

The non-dominated set of Pareto-optimal solutions is called the Pareto-optimal set. Any two

Pareto-optimal solutions do not dominate each other. This set also has the property of

dominating all other solutions which do not belong to this set. In other words, any solution in

the Pareto-optimal set will dominate any other solution from outside the set. For a given

Pareto-optimal set the corresponding objective function values in the objective space are

called the Pareto front. It follows that the search space of objectives can be divided into two

non-overlapping regions. One region is optimal and another is non-optimal. Thus the solution

of the multi-objective optimisation problem is a set of solutions from the Pareto optimal set.

There are two goals in multi-objective optimisation. The first goal is to identify a set of

solutions as close as possible to the Pareto-optimal set. The convergence of the solutions to

Chapter 8. Design Optimisation of Multi-phased Mission System Considering Multiple Missions

188

the true optimal solutions corresponds to convergence of the single objective optimisation

algorithm to an optimal unique solution. The second goal is entirely specific to a multi-

objective optimisation problem. Solutions in the best-known Pareto set should be as diverse as

possible. Only a diverse set can provide a good set of trade-off solutions amongst the

objectives.

The discussed multiple Pareto optimal solutions do not exist for all multi-objective

optimisation cases. The optimal Pareto set contains more than one solution only if the

objectives of the problem are conflicting to each other. If the objectives are not conflicting to

each other, the cardinality of the Pareto-optimal set is one. It means that any objective

function has the same optimal solution [94].

8.3. MULTI-OBJECTIVE OPTIMISATION TECHNIQUES

A number of classical search and optimisation techniques exist to deal with multi-objective

optimisation problems. Coello et al. [96] grouped them into three categories: enumerative,

deterministic and stochastic. The classical methods combine the objectives into a single,

parameterized objective function by analogy to decision making before search. The

parameters of this function are systematically varied by the optimizer. Each time an

optimisation run is performed one particular Pareto-optimal solution is achieved. Thus the

method needs to be applied several times with different parameter settings in order to find

different solutions and achieve the approximate Pareto-optimal set. The weighted sum

method, ε -constrained method, weighted metric methods and goal programming method are

a few representatives of the classical techniques. Debs [94] mentioned potential difficulties

which may accompany these techniques. For example, most algorithms need to be applied

many times in order to find the approximation to the Pareto-optimal set. Some of the

techniques may require additional knowledge about the problem being solved. Sometimes

they may be sensitive to the shape of the Pareto front. Moreover classical methods are rather

inefficient for problems having discrete search spaces. Due to their drawbacks these methods

are not widely used in practice to solve multi-objective optimisation problems.

Recently, GAs have become established as an alternative to classical methods to explore the

Pareto-optimal front in multi-objective optimisation problems. These algorithms have proven

themselves as a general, robust and powerful search mechanism. They have the ability to find

multiple Pareto-optimal solutions in a single run, they work without derivatives, converge

speedily to Pareto-optimal solutions and handle combinatorial optimization problems. GAs

Chapter 8. Design Optimisation of Multi-phased Mission System Considering Multiple Missions

189

are also less susceptible to the shape or discontinuity of a Pareto front and have the potential

to converge to Pareto-optimal solutions with a high degree of accuracy [97].

The first multi-objective GA was proposed by Schaffer in 1984 and was called vector

evaluated GA (VEGA). The next important contribution towards the development of a GA

based optimisation technique was made by Goldberg [45]. He introduced the new non-

dominated sorting procedure. Since then many researches have developed different versions

of multi-objective optimisation algorithms. Several survey papers have been published on

evolutionary multi-objective optimisation where authors have attempted to summarise studies

in the field from different perspectives and introduced comparative analysis of different

algorithms [98], [99], [100]. Generally speaking, multi-objective GAs can be categorised on

the bases of elitism, diversification approaches or different fitness assignment strategies [95].

Fonseca and Fleming [99] compared the fitness assignment procedures and distinguished

plain aggregating approaches, population-based non-Pareto approaches, and Pareto-based

approaches. The first group of methods combine the objectives into one higher scalar function

that is used for fitness calculation. The objectives may be combined using either addition,

multiplication or any other combination of arithmetic operations [98]. There are, however a

number of problems applying such approaches. For example, some accurate scalar

information on the range of the objectives needs to be provided in order to avoid dominates of

one objective over the others. On the other hand, if the required information is available this is

not only the simplest approach, but also one of the most efficient [98]. Popular aggregation

methods are the Weighted-sum Approach, Target Vector Optimization, and the Method of

Goal Attainment.

As the title implies, Population-based non-Pareto approaches are based on population policies

or special handling of the objectives and generate multiple non-dominated solutions. However

actual definition of Pareto optimality is not directly implemented in these algorithms [99].

Some of the most popular approaches that belong to this category are the earlier mentioned

VEGA, Lexicographic Ordering and Weighted Min-max Approach.

The idea of using Pareto-based fitness assignment was first proposed by Goldberg. All

approaches of this type use Pareto dominance in order to determine the reproduction

probability of each individual [101]. Examples of such approaches are Multi Objective

Genetic Algorithm (MOGA), Non-dominated Sorting Genetic Algorithm (NSGA) proposed

by Srinivas and Deb [102] and Niched Pareto Genetic Algorithm (NPGA).

Chapter 8. Design Optimisation of Multi-phased Mission System Considering Multiple Missions

190

Other well known algorithms that have also been widely studied [95] are: Strength Pareto

Evolutionary Algorithm (SPEA), Improved SPEA (SPEA2), Pareto-Archieved Evolution

Strategy (PAES), Rank-Density Based Genetic Algorithm (RDGA) and Random Weighted

Genetic algorithm (RWGA).

8.3.1. Handling of Constraints

Solutions of some real-world problems may be constrained by a number of restrictions

imposed on the decision variable. A number of different constraint handling strategies exist

for a single objective GA [96], [103]. One of the strategies is to create such genetic operators

that always produce feasible solutions. A repair process can also be implemented where

infeasible solutions are transformed in to being feasible. Another methodology employs a

penalty function to increase the fitness of infeasible solutions (when a minimisation problem

is considered). There is also a methodology called death penalty. When using this

methodology all infeasible solutions are discarded from the analysis process.

The first three penalty strategies can be directly applied in a multi-objective GA [95].

However implementation of the penalty method is not straight forward in those multi-

objective GAs where fitness assignment is based on the non-dominance rank of a solution.

Otherwise if fitness assignment is based on objective function values, as in plain aggregating

approaches, penalty function strategies can also be implemented directly.

Several methods have been developed specifically to solve constraint multi-objective

problems. For example, Jimenez et al. [104] proposed a niched selection strategy to deal with

infeasibility while maintaining diversity and dominance of the population. Deb et al. [105]

proposed a constrained tournament method where the constraint-domination concept and

binary tournament selection method based on it are implemented.

8.3.2. Performance Metrics

There are multiple optimisation goals in the multi-objective optimisation, unlike the single

optimisation goal for a single objective optimisation. The first goal requires a search towards

the Pareto-optimal set and to discover solutions as close to the Pareto optimal solutions as

possible. The second goal requires a search along the Pareto-optimal front in order to find

solutions as diverse as possible in the obtained non-dominated set. Since the two goals of the

optimisation are distinctive and somewhat conflicting, no single metric can be used to assess

the performance of the algorithm in an absolute way. Therefore at least two performance

metrics should be used [94].

Chapter 8. Design Optimisation of Multi-phased Mission System Considering Multiple Missions

191

A number of different performance measures have been suggested. Fonseca and Fleming

[106] developed statistical methods. Zitzler and Thiele in [101] used dominated area in the

objective function space. Visualization of a Pareto set of solutions can also be used to

demonstrate the performance of the algorithm [107]. The quantitative metrics (performance

metrics) give a quantitative performance measurement and also are simple to formulate.

The performance metrics can be categorized in three groups: metrics that measure the

convergence to the Pareto-optimal front explicitly, metrics that are used to measure diversity

among the obtained solutions explicitly and the ones which measure both goals of multi-

objective optimisation [94]. Three metrics are given here which were chosen as potential

metrics to evaluate the performance of the developed algorithm.

Generational distance [94] or simply called the convergence metric [105] measures how far

the given solutions of the obtained Pareto-optimal set are on the average from the true Pareto-

optimal front. For each solution obtained, a minimum Euclidian distance between the solution

and the solutions on the Pareto-optimal front is computed [107]:

{ }∑
∈

∈−=

*

;min
*

1

P

P

P

GD TTT

x

xxx , (8.4)

where |P*| is the cardinality of an obtained Pareto-optimal set P*, ||· || is Euclidian distance

metric and PT is the true Pareto-optimal set of the problem. A small value of this metric

indicates good convergence towards the Pareto-optimal front.

Let *
1P and *

2P be two obtained Pareto sets. The function C maps the ordered pair (*
1P , *

2P)

into the interval [0, 1]:

{ }
*

:*;*

,

2

12

21

P

PP

PPC

xxxx ′′′∈′∃∈′′

=

p

. (8.5)

The value

 ,

21 PPC = 1 signifies that all solutions in *
2P are dominated by or equal to

solutions in *
1P . The opposite, value

 ,

21 PPC = 0 means that no solution in
*

2P is covered

by any of the solutions in *
1P . The measure C, which is also sometimes called coverage

metric, can be extended for the performance measure of an algorithm if a true Pareto set is

Chapter 8. Design Optimisation of Multi-phased Mission System Considering Multiple Missions

192

known [97]. Thus the metric ()
T

PPC *, will determine what proportion of the solutions

obtained in the Pareto-optimal set are dominated by members of the true Pareto-optimal set.

The spacing metric evaluates diversity among non-dominated solutions. A number of

definitions of this metric have been proposed [97], [107]. For the algorithm analysis the

following metric was employed [105]:

()∑
=

−=

*

1

2

*

1
P

i

i dd
P

S , (8.6)

where id is the minimum value of the sum of the absolute differences between the value of

the objective function of the i-th solution and the values of the objective function of any other

solution in the P*, i.e.:

∑
=≠∧∈

−=
k

m

j
m

i
m

ijPj
i ffd

1*
min . (8.7)

In Equation 8.6 d is the mean value of the distances id is given by:

*

*

1

P

d

d

P

i

i∑
== (8.8)

This spacing metric measures the standard deviations of different id values. When the

obtained solutions are near uniformly spaced, the distance measure will have a small value

[105].

8.3.3. Proposed Multi-Objective Optimisation Technique

The purpose of this part of the research was to expand the application of the originated system

design optimisation tool and develop a methodology for optimising a design of the system

performing a number of multi-phased missions. The developed optimisation approach needed

to be altered and a multi-objective GA (MOGA) has been used instead of a single-objective

one. The RWGA which transforms a multi-objective problem into a single-objective one can

be easily adapted as an optimisation technique in the earlier developed PMSDOA. Moreover,

the complexity of the algorithm is smaller than other multi-objective evolutionary algorithms

while the algorithm can be very efficient [98]. Therefore the RWGA has been chosen as the

Chapter 8. Design Optimisation of Multi-phased Mission System Considering Multiple Missions

193

core to the new developed GA. This section provides a detailed explanation of the developed

MOGA.

Murata and Ishibuchi [108] proposed a weighted-based algorithm where the following

weighted sum approach is used in order to combine multiple objective functions into a scalar

fitness function (it is assumed that all the objective functions should be minimised):

() () () (),w...w...w 11 xxxx kkii ffff ++++= (8.9)

were x is an n-dimensional decision variable vector (a string if using GA terminology), ()xf

is a combined fitness function, ()xif is the i-th objective function, wi is a constant weight for

()xif , and k is the number of objective functions.

If a weight vector ()nw,...,w1=w is constant for each generation, the search direction in the

genetic algorithm becomes fixed. In the proposed approach random weights are introduced to

search for Pareto optimal solutions. A normalised weight vector w is randomly generated for

each solution during the selection phase at each generation. A random real number is assigned

to each weight using the following equation:

∑
=

=
n

j

j

j
i

r

r

1

w , (8.10)

where rj is a non-negative random number and ∑
=

=
n

i

i

1

1w . This approach utilizes multiple

search directions in a single run without using additional parameters [95].

The elite preserve strategy was also implemented in the original algorithm. After a new

population is generated a random portion of it is replaced with an equal number of solutions

chosen from the external population. The external population is stored and updated at every

generation. However in the algorithm developed for the optimisation of multiple phased

missions a different strategy was used for maintaining non-dominated solutions.

The implemented elitist strategy to preserve non-dominated solutions and induce convergence

of the population towards Pareto optimality was based on that proposed by Marseguerra et al.

[109]. During the optimisation search, non-dominated solutions are stored and updated using

an external archive. The maximum size of the archive is set to 2N, where N is the number of

Chapter 8. Design Optimisation of Multi-phased Mission System Considering Multiple Missions

194

strings in the population. Non-dominated solutions of a current population are compared with

those stored in the archive after each generation using the concept of dominance described in

Definition 8.1. The following outcomes are possible:

1. If a new solution dominates an existing member of the archive, the dominated

solution is replaced.

2. If a new solution is dominated by any member of the archive, no changes are made to

the current archive.

3. If the new solution and the rest of the archive members do not dominate each other

either of the following rules apply:

3.1. If the archive is not full, the new solution is added into the archive,

3.2. If the archive is full, the new individual replaces the member of the archive which

is the closet to the new solution in the solution space. The Euclidean distance is used

to measure the distance between two solutions.

The concept of elitism is implemented by introducing members of the external population of

non-dominated solutions into the selection procedure. The mating pool of parent strings ready

to undergo the selection process is combined with members of the current population where

Nelite random strings are removed and replaced with the Nelite randomly selected members of

the archive. Typically Nelite is not more than N/4.

The procedure of the proposed algorithm can be summarised as follows:

Step 1: Random population of N chromosomes is generated.

Step 2: Fitness values are assigned to each generated solution P∈x :

1. A random number ri in [0,1] is generated for each objective i, i = 1,…,k.

2. The random weight for each objective is generated using Formula 8.10.

3. Fitness of the solution is calculated using the given Formula 8.9.

Step 3: The selection probabilities are specified for each string of the population as follows:

()

()()∑
∈

−

−
=

Px

i

i
i

fxf

fxf
xP

min

min

)(, where (){ }Pxxff ∈= |minmin (8.11)

Chapter 8. Design Optimisation of Multi-phased Mission System Considering Multiple Missions

195

Step 4: Pairs of parents are selected using probability values from Step 3. Single point

crossover is performed to produce N offspring chromosomes. While performing crossover

mutation is carried out with a predefined mutation rate.

Step 5: The external population of non-dominated solutions is updated.

Step 6: Nelite random strings are removed from the current population and replaced with the

Nelite randomly selected members of the external elite population.

Step 7: If the maximum number of generations has not been reached the algorithm is started

from Step 2. Otherwise the external archive of non-dominated solutions is the final set of

Pareto-optimal solutions.

Both tasks required in the multi objective algorithm are presented in the proposed GA. It

converges to the Pareto–optimal solutions as the application analysis discussed later in this

chapter will show. The diversity in the non-dominated solutions is maintained in two ways: 1)

a random weight vector is used to evaluate each solution stimulating to search for different

solutions in the Pareto-optimal region, and 2) a proportion of the population is replaced with

the solutions from the external set [94].

8.4. MULTIPLE PHASED MISSIONS SYSTEM DESIGN

OPTIMISATION ALGORITHM (MPMSDOA)

In real world problems it is common that one system is designed to perform a number of

different missions. It is therefore possible that the system reliability changes with every

mission owing to the different tasks performed. If the system structural design and therefore

its reliability has been improved on the basis of one mission analysis the resulting outcome

does not provide information on how these changes influence system performance in the rest

of the missions. Moreover the changes may result in an undesirable decrease of system

reliability in some of the missions. If all missions to be performed are analysed every time an

alteration is introduced in the system design this problem can be overcome.

8.4.1. Mathematical Representation of the Problem

Following the considerations above it was decided to alter the PMSDOA and to adapt it to

analyse systems designed for multiple multi-phased missions. In the earlier developed

PMSDOA (Chapter 7) the problem was formulated as the minimisation of the overall mission

failure probability. The multiple missions problem can also be solved as a minimisation

Chapter 8. Design Optimisation of Multi-phased Mission System Considering Multiple Missions

196

problem where each mission is assigned one objective function. Thus the problem to be

solved can be defined as follows:

),...,,(min

...

),...,,(min

),...,,(min

21

21
2

21
1

inmission
k

inmission

inmission

xxxQ

xxxQ

xxxQ

 (8.12),

Here),...,,(21 inxxx is a set of failure probability values of system components that ensure

normal system performance and their individual or combined failures cause mission failure

during different phases. ni is the number of potential failures of components of a particular

design i system.),...,,(21 inmission
j

xxxQ is the jth (j = 1,…, k) mission failure probability for a

system with design i which is identified with a specified set of system components. k is the

number of objectives or missions being analysed. The objectives are independent and

therefore each mission failure probability is evaluated individually.

It is common that alterations made to the system design are subject to a number of constraints

for real world problems. Following the previously developed system design optimisation

algorithms, possible limitations for the system cost, weight and volume in each mission have

been implemented:

.

,

,

max
min

maxmin

maxmin

jj

mission

j

jj

mission

j

jj

mission

j

VolumeVolumeVolume

WeightWeightWeight

CostCostCost

<<

<<

<<

 (8.13)

Here min means a defined minimal resource value, accordingly max is a maximum defined

value and mission identifies an existing value of a design characteristic for a specific system

design case analysed, j denotes the mission number being analysed (j= 1,2,…,k). The

approach for the evaluation of these characteristics is identical to the one presented for the

PMSDOA (Section 7.3.4).

8.4.2. Algorithm Particulars

The general structure of the new algorithm for system design optimisation for multiple phased

missions (MPMSDOA) remains very similar to the PMSDOA and is presented in Figure 8.1.

The only difference is in the type of the optimisation algorithm used, which in this case is

Chapter 8. Design Optimisation of Multi-phased Mission System Considering Multiple Missions

197

MOGA. Thus, at first fault trees representing all possible system design alternatives are

created for each considered mission. As in the PMSDOA FTA and BDD analysis are

employed and the fault tree structure alterations are made using rules of FTMPs. The

generation of system design alternatives and the assessment of their unreliability is governed

by the MOGA.

Initial Phased

Mission System
Design

FTMPs
All Possible Design

Alternatives

Quantitative Failure Analysis of
System Designs

Optimisation

Optimal Phased
Mission System

Design

BDD

FTA

MOGA

BDD

Figure 8.1. Structure of the MPMSDOA

The data required for the optimisation process includes a number of different data groups. An

initial system design is given in the form of fault trees constructed for each phase of every

mission analysed. To construct fault trees representing all possible design alternatives a list of

components chosen to be replaced and associated design variables with their parameter values

are used. Failure and design characteristics of all potential system components which are used

for qualitative system design analysis also need to be provided. The exception to this applies

only to design characteristics for components since they do not need to be given if no

restrictions to the system design are considered. On the other hand, if system design

restrictions are considered they should also be provided. Finally, the user can also define the

GA parameter values as in the earlier versions of the optimisation algorithm.

It is considered that the analysed system performs one mission at a time. As such the missions

can be treated as being independent and can be analysed individually. Therefore the

optimisation approach is developed so that fault trees representing all possible system design

alternatives are constructed for each mission at a time. Thus, FTMPs corresponding to design

variables found in fault trees for phases of the first mission are implemented first. Next, the

Chapter 8. Design Optimisation of Multi-phased Mission System Considering Multiple Missions

198

corresponding FTMPs are employed to alter the fault trees of the second mission. The process

is continued until the last mission fault trees are modified. Moreover, the methodology for

implementation of FTMPs in one mission fault trees can be directly adapted from the

PMSDOA. The resulting fault trees are then converted to their BDDs and are used for

quantitative system failure analysis in this form.

The optimisation part of the MPMSDOA implements the MOGA which is based on RWGA

and was discussed in detail in Section 8.4. The main principle of the algorithm is to combine a

number of objective functions into one scalar function. The number of objectives is not fixed

in the algorithm, allowing the analysis to be performed for various numbers of missions. It

therefore ensures the potential of the algorithm to analyse different design optimisation cases.

The principles for the evaluation of the objective functions (in this case more than one

objective function is assigned for each chromosome) remain the same.

The process to find values of objective functions for each chromosome, i.e. to evaluate a

particular design system failure during each mission, is organised as follows. Once a

generated chromosome is decoded and the phenotypes of its genes are obtained sets of house

events introduced in the fault trees (BDDs) are defined accordingly. Since the missions are

considered to be independent the quantitative analysis for each mission is also performed for

each mission at a time. Thus first house events of the first mission are set to either 0 or 1. The

same procedure is then performed for the second and the following missions. The house event

numbering rules and the rules for the assignment of their values according to the generated

values of the design variables are the same as the ones in the PMSDOA. The next stage

involves evaluating the failure probability for the mission. Having values of house events

defined, each mission can undergo the quantification process. As one mission is analysed at a

time, the same algorithm as the one implemented in the PMSDOA is used.

8.5. UAV DESIGN OPTIMISATION USING THE MPMSDOA

8.5.1. Problem Overview

The UAV design optimisation problem presented earlier when discussing the PMSDOA has

also been chosen as an application example of the MPMSDOA and multiple phased missions

system design optimisation programme (MPMSDOP).

The UAV considered in the analysis is designed to perform two missions. One mission that

needs to be performed involves flying over controlled airspace. It consists of the following

Chapter 8. Design Optimisation of Multi-phased Mission System Considering Multiple Missions

199

phases: take-off, climb, en-route (in controlled airspace), descent and landing. The second

mission requires operation of the UAV over uncontrolled airspace. The phases constituting

the mission are the following: take-off, climb, en-route (in uncontrolled airspace), descent and

landing. Fault trees for each phase are the same as the ones given in Section 7.4. No

constraints for any mission were defined.

For the UAV design optimisation with respect to its failure minimisation during both missions

replacements of seven components have been considered. The complete list of structural

design variables and their values is given in Table 8.1.

Table 8.1. Design variables

Component
Description of Modifications / Design
Variable

Possible Values of
Design Variables

Landing gear Type of a landing gear type1, type 2

Antiskid valve Type of an antiskid valve type1, type 2, type 3

Number of brake sets 3, 2, 1

Type of a brake set type1, type 2

Brakes

Minimal number of failed brakes that

cause failure to brake
3, 2, 1

Engine 1 Type of engine 1 type1, type 2, type 3

Engine 2 Type of engine 2 type1, type 2, type 3

Number navigation subsystems 2, 1

Type of a navigation subsystem type1, type 2

Navigation

system

Minimal number of failed navigation

subsystems causing navigation failure
2, 1

Number of sense and avoidance

subsystems
2, 1

Sense and

avoidance system Type of a sense and avoidance

subsystem
type1, type 2

While developing the algorithm it has been considered that the reliability characteristics of the

components could vary for both different phases and missions. Certain existing external

factors can influence these changes. For example, if a mission is performed only under

extreme weather conditions, some UAV parts can have higher failure probabilities. On the

other hand, the same parts operating under normal weather conditions would have lower

failure probabilities. It was decided to introduce such a situation in the UAV analysis. The

estimated failure probabilities for the majority of components are the same throughout both

missions. However potential new components have different failure characteristic for mission

Chapter 8. Design Optimisation of Multi-phased Mission System Considering Multiple Missions

200

1 and mission 2. The data for quantitative analysis is provided in Appendix 4. Failure

probabilities for the components in the initial design are given in Table A.4.1. Table A.4.2

provides data of failure characteristics for the possible new components. Using the data and

considering the initial UAV design failure probabilities of the first and the second missions

are equal to 0.14276 and 0.16792 respectively.

8.5.2. Analysis of Optimisation Results

The introduced UAV design optimisation problem has been used to analyse the performance

of the developed MPMSDOA. As in the previous optimisation cases, the optimisation process

was performed by employing different combinations of GA parameter values. Different

values of population size, crossover rate and mutation rate were employed. Three population

sizes were analysed: 30, 50 and 70 chromosomes. Three mutation rates were used: 0.001,

0.005 and 0.01. Crossover rate values were equal to 0.75, 0.8 and 0.95. The algorithm was set

to terminate after 100 generations for any combination of GA parameter values.

As mentioned earlier in the chapter, two goals are needed to be achieved in any multi-

objective optimisation. The obtained results need to converge to the Pareto-optimal set and

diversity in the solutions of the obtained Pareto-optimal set needs to be maintained. To

evaluate if each of the goals is obtained three performance metrics were used in the

optimisation analysis of the UAV design. For each combination of GA parameter values the

convergence metric, function C and spacing metric were obtained. The obtained results are

presented graphically and can be found in Appendix 4. It is known that GAs have a stochastic

nature, therefore five independent runs were made for each combination of GA parameter

values and the average values were evaluated for all three metrics. These values were

considered in the comparative analysis of the algorithm performance.

The true Pareto-optimal set is required for the evaluation of all three performance metrics.

The set contains 120 members for the problem solved which were identified after performing

an exhaustive search. The results of the search are presented in Figure 8.2. It can be seen that

the true Pareto-optimal set is not distributed uniformly and its elements arrange in ten

clusters. Therefore it is expected that the obtained non-dominated sets of solutions will not be

spread uniformly. Some of the obtained optimal solutions, i.e. sets of the optimal values of

design variables, are presented in Table 8.2.

Chapter 8. Design Optimisation of Multi-phased Mission System Considering Multiple Missions

201

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

Failure probaility for mission1

F
a

ilu
re

 p
ro

b
a
il
it
y

 f
o

r
m

is
s
io

n
2

Dominated set
Non-dominated set

Figure 8.2. True Pareto-optimal Set

Table 8.2. Values of design variables for the optimal UAV design

Component
Description of Modifications /

Design Variable

Design Variable Value

(New Designs)

Landing gear Type of a landing gear type 1 type 1 type 2

Antiskid valve Type of an antiskid valve type 3 type 2 type 1

Number of brake sets 3 3 1

Type of a brake set type 1 type 1 type 2
Brakes

Minimal number of failed brakes that

cause failure to brake
3 2 1

Engine 1 Type of engine 1 type 1 type 3 type 3

Engine 2 Type of engine 2 type 2 type 1 type 2

Number navigation subsystems 2 2 1

Type of a navigation subsystem type 1 type 1 type 2
Navigation system

Minimal number of failed navigation

subsystems causing navigation
failure

2 2 1

Number of avoidance subsystems 2 2 1
Sense and
avoidance system Type of an sense and avoidance

subsystem
type 2 type 1 type 2

missionQ
1

 0.12710 0.11808 0.14318

missionQ
2

 0.14356 0.15400 0.12440

Chapter 8. Design Optimisation of Multi-phased Mission System Considering Multiple Missions

202

Figures A.4.1-A.4.4 in Appendix 4 present the results of metrics obtained using different

combinations of mutation rates and population sizes with the crossover rate equal to 0.75. The

average distance between the solutions of the obtained Pareto set and the solutions of the true

Pareto set decrease significantly in 20 generations for all combinations of GA parameters

used. The convergence of the results is clear; it can be stated that the mutation rate has an

apparent influence on the optimisation process. The metric values decrease if the mutation

rate is increased for all population sizes. If the metric values obtained using the same mutation

rate and different population sizes are compared it can be seen that the smallest metric values

are associated with a population size of 70 chromosomes for all mutation rates. Values of

Function C tend to decrease when the mutation rate and the population size increase. The

spacing metric gained higher values when populations of 70 chromosomes were used. Since

the true Pareto-optimal front is not spread uniformly and forms a number of clusters it was

expected that the obtained sets of non-dominated solutions will have even more clusters of

solutions. However, the obtained values of the spacing metric are rather small which shows a

good spread of the non-dominated solutions.

Figures A.4.5 – A.4.8 in Appendix 4 provide evaluation results of the algorithm performance

when GA parameter combinations comprised different mutation rates and the population sizes

and the crossover rate equal to 0.8. In these runs the convergence to the Pareto-optimal set is

slower using combinations of mutation rates equal to 0.001 and 0.005 and population size of

30 chromosomes. The non-dominated sets obtained when using a population of 50

chromosomes with mutation rate equal to 0.01 and population of 70 chromosomes with a

mutation rate of 0.005 are the closest to the true Pareto-optimal set. In the final

non-dominated sets obtained the proportion of solutions, which are weakly dominated by

solutions of the true Pareto-optimal set, is smallest for all GA parameter sets with population

size equal to 70 chromosomes. However, the increased value of the crossover rate resulted in

the increased number of dominated solutions in the final non-dominated sets. The increased

value of crossover rate also influenced the maintained diversity in the optimal sets obtained.

The spacing values have increased for all combinations of mutation rate equal to 0.01 and

different population sizes.

Results of the generational distance obtained using combinations of GA parameter sets with

the crossover rate equal to 0.95 are given in Figures A.4.9 - A.4.12 in Appendix 4. The

consistent pattern of decreasing convergence metric values with increasing mutation rates

noticed earlier does not exist for this case. The smallest generational distances for populations

of 30 and 50 chromosomes were achieved using a mutation rate equal to 0.005. However, the

Chapter 8. Design Optimisation of Multi-phased Mission System Considering Multiple Missions

203

overall smallest average distance between the obtained set and the true Pareto-optimal set was

obtained using a mutation rate equal to 0.01 and a population size of 70 chromosomes. The

results of coverage metric (Function C) imply that the algorithm performs better using

population size of 70. This fact can also be justified by analysing the evaluation results of the

maintained population diversity. The spacing metric takes smaller values for every mutation

rate when using populations of 70 chromosomes than employing any other size of the

population.

8.5.3. Summary of the Optimisation Analysis

The given analysis suggests that differences in values of the mutation rate and the population

size have less influence on algorithm performance when a crossover rate equal to 0.95 is used.

However the algorithm produced better results overall when larger population sizes were

used. The exact influence of the mutation rate on the algorithm performance has not been

identified. The Pareto-optimal set obtained maintained diverse solutions and was the closest

to the true Pareto-optimal set when the population of 70 chromosomes, crossover and

mutation rates equal to 0.95 and 0.01 respectively were employed.

8.6. SUMMARY

During a system design process the objective is to design a cost effective and reliable system.

Considering systems performing phased missions, it is often assumed that they are designed

to perform one specific task. However, most real world systems perform a number of different

missions. Thus the challenge arises how to optimise the phased mission system design which

would be suitable for a number of operation tasks and would be reliable within the context of

pre-defined design constraints and resources. In this chapter such problems were considered

and the main interest was focused on the following:

• development of the basic design optimisation algorithm, MPMSDOA, to optimise the

design structure of systems which are constructed to perform a number of different

phased-missions;

• development of the code, MPMSDOP, to automate the design optimisation process;

• development of the MPMSDOA and MPMSDOP to be problem-independent, i.e.

potentially any system performing any number of missions could be analysed;

• demonstrate the application of the algorithm to solve a chosen system design

optimisation problem.

Chapter 8. Design Optimisation of Multi-phased Mission System Considering Multiple Missions

204

The developed algorithm defines the system design from the given list of possible design

alternatives such that a trade-off between failure probability values of different missions is

achieved. If failure data of system components given for different missions are conflicting or

design alterations have a different impact on the system reliability during different missions a

set of optimal design solutions is provided. Otherwise the algorithm will produce one optimal

design case.

The MPMSDOA has been applied to optimise a UAV designed to perform two different

missions. Some components had failure characteristics which were different for each mission

and were conflicting. The performance of the algorithm was analysed using the number of

different combinations of GA parameter values. As in the previous application examples, the

algorithm tended to find good solutions quicker if higher mutation and crossover rates were

used and large chromosome populations were utilised. The obtained results have

demonstrated the capability of the algorithm to solve the optimisation problem and find a sub-

set of the true Pareto-optimal set.

The major drawback of the algorithm that has been noticed is the increasing performance time

when larger systems or systems designed to perform more missions are analysed. Attention

should be given to the improvement of the phased mission quantification technique in this

case. The multi-objective GA implemented in the algorithm is one of the simplest examples

of MOGA. Therefore the use of a more sophisticated MOGA could also improve the

optimisation process, for example, less generations could be required to find the Pareto-

optimal solutions. The improved algorithm could be applied to a larger range of systems.

More complex systems and a larger number of missions could also be analysed.

9. CONCLUSIONS AND FUTURE WORK

9.1. SUMMARY

Following an extensive critical review on the available design reliability optimisation

techniques, the development of a generic optimisation approach applicable to a diverse range

of real engineering systems was deemed necessary. The majority of the methods used for

reliability design optimisation problems consider simple or well-structured systems.

Moreover, usually only one or two means through which system reliability can be enhanced

are considered. For example, a number of methods take into account the possible choices of a

redundancy strategy or increasing the reliability of constituent components in the system, or a

combination of both strategies. In some cases system performance is optimised through

maintenance scheduling. However, real world systems are usually very complex and therefore

the list of methods applicable to such problems is rather short. It is possible to analyse a

simplified structure of the real system, however, in this case there is a compromise in the

accuracy of the results. Additionally, it is worth considering a set of different means through

which system availability/reliability can be enhanced such as redundancy allocation,

reliability allocation, repair/ preventive maintence scheduling and/or decreasing the downtime

of the system.

The development of a General System Design Optimisation Algorithm (GSDOA) was

completed in order to create a technique which identifies the optimal system design with the

optimal usage of available resources, such that the best performance possible is obtained.

GSDOA has the potential to be applicable to a diverse range of real engineering systems. The

benefit of using the general algorithm is the ability to identify an optimal or near optimal

design case for any system considered rather than developing the system dependant approach.

In the approach availability/reliability has been chosen to indicate the performance of a

system. Improvement of system availability/reliability has been considered through the

optimal allocation of redundancies and/or component reliabilities which may be subject to

constraints and maintenance scheduling, if a repairable system is analysed. For quantitative

comparison of different design options unreliability/unavailability measures have been

utilised. Limitations for system cost, weight, volume and maintenance down time have been

considered as possible constraints for the available resources.

Chapter 9. Conclusions and Future Work

206

206

The developed approach uses a combination of FTA and BDD analysis to introduce and

evaluate the design proposals. Since FTA provides a schematic visual representation of the

possible combinations of system conditions that could lead to its failure it is employed to

represent all potential design configurations through their failure causes. The first major

development was to devise patterns to enable transformation of an initial design fault tree into

one for all possible designs so the optimisation approach could be applied. Moreover the fault

tree modification patterns (FTMPs) were developed to represent any design alteration in the

fault tree for any system under consideration. House events which are incorporated when

applying the FTMPs developed enable the construction of a single fault tree representing

causes of the system failure mode for all possible design alternatives. By setting certain house

events to TRUE while the rest of them are set to FALSE the corresponding branches are

switched on and off which results in the fault tree for a specific design alternative. Possible

design alternatives for a considered system case are determined using the FTMPs which are

chosen according to the list of design parameters (component selection and/or redundancy

type and levels) given.

The conventional techniques for the quantitative analysis of fault trees can be computationally

intensive and require the use of approximations, which inevitably leads to a loss of accuracy.

The BDD technique is used as an alternative approach for performing the required analysis.

Converting the fault tree, representing all possible design alternatives, into its BDD rather

than converting individual design fault trees to their BDDs enhances the computational

efficiency of quantitative failure analysis for any problem solved.

In the approach developed new possible optimal design solutions are generated and analysed

using a simple GA. The GA provides a means of optimisation which is capable of coping with

all requirements of the design problems considered. First of all the design parameters, i.e.

decision variables used, are discrete numbers. The objective function of the optimisation

problem formulated is not in a closed mathematical form and FTA and BDD analysis are used

to evaluate its values. System design alterations are subject to a number of constraints which

need to be considered during the analysis. Finally, the approach is not one system orientated

which means the chosen technique needs to be easily adaptable for solving design

optimisation problems for different systems.

A computer programme has been developed to automate the application of the GSDOA to

solve system design optimisation problems. The approach has been assessed through the

consideration of two systems of increasing complexity; namely the High Integrity Protection

Chapter 9. Conclusions and Future Work

207

207

System (HIPS) and the Fire Water Deluge System (FWDS) relating to an offshore platform.

Through applying the approach the applicability to different system problems and scalability

of the technique has been addressed. The application of the initial GA tested on the HIPS has

highlighted potential areas of improvement. This resulted in the development of an approach

with the improved GA which was applied to the FWDS. The improved GA has fitness

scaling, an adaptive penalty methodology and a new population replacement strategy

implemented. This in turn leads to the applicability of the method to complex engineering

systems.

The development of the approach applicable to a range of different systems made it possible

to adapt it to analyse multi-phased mission systems. Phased mission systems are important in

various applications, e.g. military operations; however there is no demonstrated evidence in

the literature for research about the design optimisation problems of such systems. The

alterations made to the algorithm were with regards to the evaluation of system performance

during each phase of the mission. In the Phased Mission System Design Optimisation

Algorithm (PMSDOA) the initially-developed methodology of FTMPs has been amended to

introduce house events and therefore design alternatives in the fault tree for each phase. Each

phase fault tree represents only those possible design alternatives whose failure contributes to

the failure of the phase in question. The GA implemented has been amended to include

limitations on available resources and system performance characteristics throughout the

whole missions as well as each individual phase. The initially developed computer code has

also been amended to implement the corresponding alterations of the algorithm.

Three application examples of the new optimisation approach have been investigated. First a

relatively simple unmanned aerial vehicle (UAV) design optimisation problem was solved.

Next military vessel design optimisation problems of increasing complexity followed. The

optimal designs were found corresponding to the global minimum failure probabilities of the

missions within the limits of defined available resources (if such were considered) for all

three cases. The application examples proved the scalability of the algorithm and its

applicability to different systems.

The use of the optimisation approach was further developed adapting it to solve design

optimisation problems for multi-phased mission systems considering more than one mission.

It is common that one system is designed to perform a number of different missions, e.g. a

military vessel. Therefore design optimisation problems of such systems are relevant, even

though such problems have not been considered before. In this case the amendments to the

Chapter 9. Conclusions and Future Work

208

208

algorithm were made with regards to the analysis of system performance and design

alternatives in different missions. In the Multiple Phased Mission System Design

Optimisation Algorithm (MPMSDOA) the system unreliability for each mission analysed is

evaluated individually using the methodology developed in PMSDOA. The initially used

single objective GA has been replaced with the multi objective GA since a trade-off of system

performance in different missions was required. The programme code was developed which

automates the reliability design optimisation process for multiple multi-phased missions. All

new developments were successfully implemented in the UAV design optimisation problem.

It is known that GAs require tuning of their parameters to achieve good performance results.

The influence of different values of GA parameters on the performance of the developed

algorithm has been analysed for each instance of the application example. The tendency has

been noticed that the developed algorithm performs better, i.e. finds an optimal solution in

fewer generations, if larger size populations, comprising of 50 or 75 chromosomes, are used.

In some cases, there is a trade-off between mutation rate and crossover rate. The general

tendency, however, is that a higher mutation rate and a higher crossover rate improve

convergence of the algorithm. Thus a population of 50 chromosomes, a mutation rate equal to

0.01 and a crossover rate equal to 0.95 are the recommended default values to be used for

solving optimisation problems.

9.2. CONCLUSIONS

The developed FTMPs enables all proposed design options to be modelled in a single fault

tree by transforming an initial design fault tree into one for all possible designs. The FTMPs

are developed to be applicable for any system under consideration.

The application of FTA and BDD analysis for the evaluation of the objective function, i.e.

system unavailability/unreliability means that the developed algorithm can be applied to solve

optimisation problems for complex engineering systems. Moreover, this methodology enables

the development of a general optimisation approach adaptable to any system since the

individual FT and BDD is constructed and analysed for the system under consideration.

The application examples proved the scalability of the developed optimisation approach. The

algorithm is capable of solving reliability optimisation problems for industrial systems of

different degrees of complexity.

Chapter 9. Conclusions and Future Work

209

209

The significant novelty of the developed optimisation methodology is its capability to analyse

phased mission systems and provide their optimal design solutions. The algorithm is also

applicable to solve design optimisation problems of the phased mission systems which are

involved in more than one mission.

The employment of the MOGA which does not depend on the form of the objective functions

and their evaluation methodology assures that the algorithm developed for multiple multi-

phased missions is not the one-problem oriented approach. Furthermore, it provides a number

of good solutions which are critical in the system design process.

The objectives of the research have been met resulting in the developed automated general

GA based optimisation approaches for the construction of an optimal system design case with

minimal unavailability/unreliability and optimal utilisation of available resources. The

approaches are applicable to general systems, multi-phased mission systems and multiple

multi-phased missions systems.

9.3. FUTURE WORK

Future work would involve application of the developed automated algorithms to a variety of

different engineering systems. It is foreseen that analysis of more complicated problems will

introduce additional computational intensity in terms of evaluating the objective function,

which may incur a processing time issue. The issue of scalability may pose the most difficulty

with an upper limit being needed on the number and complexity of each phase (due to

processing consideration) when solving problems of phased mission systems. Therefore,

future work should focus on improving the performance of the algorithm to minimise CPU

time and improve the convergence rate.

The GA has proven itself to be a very flexible and useful technique for the optimisation of

system designs. Hybrid optimisation techniques combining GA with heuristic algorithms,

simulation annealing methods, ant colony optimisation or neural networks could be very

promising optimisation techniques in this field. They have the ability to retain the advantages

of GAs in robustness and feasibility but significantly improve their computational efficiency

and searching ability in finding the global optimum. This could also enable analysis of

larger/more complex systems. Another way to improve performance of the optimisation

process is to handle constraints as additional objectives by transforming a single objective

constrained optimisation problem into a multi-objective one. Multi-objective optimisation

Chapter 9. Conclusions and Future Work

210

210

techniques seem one of the most promising in solving constrained optimisation problems. In

this case a MOGA or a hybrid MOGA could be implemented.

FTA and BDD analysis are very useful techniques for the assessment of system failure

characteristics. However the results of the application examples have highlighted the need to

improve the efficiency of the methodology for objective function evaluation. Incorporating

the use of alternative analysis techniques, for example, the ones used in real time analysis

could provide a solution for the efficiency problem. Furthermore, incorporating the use of

alternative methods, such as Markov methods, could expand the applicability of the

optimisation approaches to a more diverse range of systems, such as where inter-dependency

between components exists.

There are a number of other aspects of the design optimisation approaches developed that

could be improved. For example, it would be useful if the user could define the possible

minimum value of a design variable instead of using the default value which is equal to 1.

Moreover, the order FTMPs are implemented could be chosen automatically within the

programme ensuring the optimal size and complexity of the resulting fault tree. The data

provision could be made more user-friendly. It is also envisaged from the methods that there

is scope to easily alter the range of constraints considered.

Bibliography 211

BIBLIOGRAPHY

1. Crosetti, P.A. Fault tree analysis with probability evaluation. IEEE Transactions on

Nuclear Science1971; 18(1): 465-471.

2. Barlow, R. E., Fussell, J. B., Singpurwalla, N.D. et al. Reliability and fault tree analysis:

theoretical and applied aspects of system reliability and safety assessment. Philadelphia:

Society for Industrial and Applied Mathematics; 1975.

3. Lee, C.Y. Representation of switching circuits by binary-decision programs. The Bell

System Technical Journal 1959; 38: 985 – 999.

4. Akers, S.B. Binary Decision Diagrams. IEEE Transactions on Computers 1978; C-27(6):

509-516.

5. Bryant, R. E. Graph-based algorithms for Boolean function manipulation. IEEE

Transactions on Computers 1986; C-35(8): 677-691.

6. Rauzy, A. New algorithms for fault trees analysis. Reliability Engineering & System Safety

1993; 40(3): 203-211.

7. Andrews, J.D., Moss T. R. Reliability and Risk Assessment. 2nd edn. London: Professional

Engineering Pub; 2002.

8. Sinnamon, R. M., Andrews, J.D. New approaches to evaluating fault trees. Reliability

Engineering & System Safety 1997; 58(2): 89-96, 1997.

9. Schneeweiss, W.G. Boolean functions: with engineering applications and computer

programs. London: Springer-Verlag; 1988.

10. Sinnamon, R. M., Andrews, J.D. Improved efficiency in qualitative fault tree analysis.

Quality and Reliability Engineering International 1997; 13(5): 293-298.

11. Murty, K.G. Linear and combinatorial programming. London: Wiley; 1976.

12. Vanderplaats, G. N. Numerical optimization techniques for engineering design with

applications. London: McGraw-Hill; 1984.

13. Kuo, W., Prasad, V.R., Tillman F.A. et al. Optimal reliability design: fundamentals and

applications. Cambridge: Cambridge University Press; 2000.

14. Ramirez-Marquez, J. New approaches for reliability design in multistate systems.

Handbook of Performability Engineering 2008; 465-476.

15. Pardalos, P.M., Resende, M.G.C. Handbook of applied optimization. Oxford: University

Press; 2002.

16. Joshi, M.C. Optimization: theory and practice. Harrow: Alpha Science International;

2004.

17. Dantzig, G. B., Thapa, M. N. Linear programming 2. Theory and extensions. London:

Springer; 2003.

Bibliography 212

18. Kolesar, P.J. Linear programming and the reliability of multicomponent systems. Naval

Research Logistics Quarterly 1967; 14(3): 317-327.

19. Hsieh, Y. A linear approximation for redundant reliability problems with multiple

component choices. Computers & Industrial Engineering 2003; 44(1): 91-103.

20. Everett III, H. Generalized Lagrange multiplier method for solving problems of optimum

allocation of resources. Operations Research 1963; 11(3): 399-417.

21. Hwang, C., Tillman, F. A. and Kuo, W. Reliability optimization by generalized

Lagrangian-function and reduced-gradient methods. IEEE Transactios on Reliability

1979; 28(28): 316-319.

22. Li, D., Haimes, Y. Y. A decomposition method for optimization of large-system

reliability. IEEE Transactions on Reliability 1992; 41(2): 183-188.

23. Tillman, F. A. Optimization of systems reliability. New York: Dekker; 1980.

24. Levitin, G. Genetic algorithms in reliability engineering. Reliability Engineering &

System Safety 2006; 91(9): 975-976.

25. Diwekar, U. Introduction to applied optimization. Kluwer: Academic Publishers; 2003.

26. Yalaoui, A., Chatelet, E. and Chengbin C. A new dynamic programming method for

reliability & redundancy allocation in a parallel-series system. IEEE Transactions on

Reliability 2005; 54(2): 254-261.

27. Ng, K., Sancho, N. G. F. A hybrid dynamic programming/depth-first search algorithm,

with an application to redundancy allocation. IIE Transactions 2001; 33 (12): 1047-1058.

28. Nakagawa, Y., Nakashima K. and Hattri, Y. Optimal reliability allocation by branch-and-

bound technique. IEEE Transactions on Reliability 1978; 27(1): 31-38.

29. Sung, C.S., Cho, Y. K. Reliability optimization of a series system with multiple-choice

and budget constraints. European Journal of Operational Research 2000; 127(1): 159-

171.

30. Ha, C., Kuo, W. Reliability redundancy allocation: an improved realization for

nonconvex nonlinear programming problems. European Journal of Operational

Research 2006; 171(1): 24-38.

31. Misra, K. B. An algorithm to solve integer programming problems: an efficient tool for

reliability design. Microelectronics and Reliability 1991; 31(2-3): 285-294.

32. Kuo, W., Prasad, V.R. An annotated overview of system-reliability optimization. IEEE

Transactions on Reliability 2000; 49(2): 176-187.

33. Pirlot, M. General local search methods. European Journal of Operational Research

1996; 92(3): 493-511.

34. Reeves, C. R. Modern heuristic techniques for combinatorial problems. Oxford:

Blackwell Scientific; 1995.

35. Cepin M. Optimization of safety equipment outages improves safety. Reliability

Engineering & System Safety 2002; 77(1): 71-80.

Bibliography 213

36. Harunuzzaman, M., Aldemir, T. Optimization of standby safety system maintenance

schedules in nuclear power plants. Nuclear Technology 1996; 113(3): 354-367.

37. Kim. H., Bae, C. and Park, D. Reliability-redundancy optimization using simulated

annealing algorithms. Journal of Quality in Maintenance Engineering 2006; 12(4): 354-

363.

38. Meta-Heuristics International Conference, Meta-heuristics : theory & applications.

Boston: Kluwer Academic; 1996.

39. Kulturel-Konak, S., Smith, A.E. and Coit, D.W. Efficiently solving the redundancy

allocation problem using tabu search. IEE Transactions 2003; 35(6): 515-526.

40. Ouzineb, M., Nourelfath, M., Gendreau, M. Tabu search for the redundancy allocation

problem of homogenous series–parallel multi-state systems. Reliability Engineering and

System Safety; 93(8): 1257-1272.

41. Eberhart, R., Kennedy, J. A new optimizer using particle swarm theory. Micro Machine

and Human Science, 1995. MHS '95, Proceedings of the Sixth International Symposium

on Micro Machine and Human Science; 1995.

42. Coelho, L. D. S. An efficient particle swarm approach for mixed-integer programming in

reliability–redundancy optimization applications. Reliability Engineering & System

Safety 2009; 94(4): 830-837.

43. Shi, Y., Eberhart, R. C. Empirical study of particle swarm optimization, CEC 99.

Proceedings of the 1999 Congress on Evolutionary Computation; 3:1945-1950.

44. Holland, J. Adaptation in natural and artificial systems. Ann Arbor: University of

Michigan Press; 1975.

45. Goldberg, D. E. Genetic algorithms in search, optimization, and machine learning.

Reading: Addison-Wesley; 1989.

46. Coit, D.W., Smith, A.E. Reliability optimization of series-parallel systems using a genetic

algorithm. IEEE Transactions on Reliability 1996; 45(2): 254-260.

47. Tavakkoli-Moghaddam, R., Safari, J., Sassani, F. Reliability optimization of series-

parallel systems with a choice of redundancy strategies using a genetic algorithm.

Reliability Engineering& System Safety 2008; 93(4): 550-556.

48. Yun, W. Y., Kim, J. W. Multi-level redundancy optimization in series systems.

Computers & Industrial Engineering 2004; 46(2): 337-346.

49. Hsieh, Y., Chen, T., Bricker, D. L. Genetic algorithms for reliability design problems.

Microelectronics &. Reliability 1998; 38(10): 1599-1605.

50. Levitin, G., Lisnianski, A., Ben-Haim, B. et al. Redundancy optimizaton for series-

parallel multi-state systems. IEEE Transactions on Reliability 1998; 47(2): 165-172.

51. Levitin, G. Multistate series-parallel system expansion-scheduling subject to availability

constraints. IEEE Transactions on Reliability 2000; 49(1): 71-79.

Bibliography 214

52. Levitin, G. Redundancy optimization for multi-state system with fixed resource-

requirements and unreliable sources. IEEE Transactions on Reliability 2001; 50(1): 52-

59.

53. Munõz, A., Martorell, S., Serradell, V. Genetic algorithms in optimizing surveillance and

maintenance of components. Reliability Engineering & System Safety 1997; 57(2): 107-

120.

54. Lapa, C. M. F., Pereira, C. M. N. A., Mol, A. C. D. A. Maximization of a nuclear system

availability through maintenance scheduling optimization using a genetic algorithm.

Nuclear Engineering and Design 2000; 196(2): 219-231.

55. Lapa, C. M. F., Pereira, C. M. N. A., Frutuoso de Melo, P.F. Surveillance test policy

optimization through genetic algorithms using non-periodic intervention frequencies and

considering seasonal constraints. Reliability Engineering & System Safety 2003; 81(1):

103-109.

56. Lapa, C. M. F., Pereira, C. M. N. A., de Barros, M. P. A model for preventive

maintenance planning by genetic algorithms based in cost and reliability. Reliability

Engineering & System Safety 2006; 91(2): 233-240.

57. Marseguerra, M., Zio, E. Optimizing maintenance and repair policies via a combination

of genetic algorithms and Monte Carlo simulation. Reliability Engineering & System

Safety 2000; 68(1): 69-83.

58. Monga, A., Zuo, M.J. Optimal design of series-parallel systems considering maintenance

and salvage value. Computers & Industrial Engineering 2001; 40(4): 323-337.

59. Dengiz, B., Altiparmak, F., Smith, A.E. Local search genetic algorithm for optimal

design of reliable networks. IEEE Transactions on Evolutionary Computation 1997; 1(3):

179-188.

60. Ren,Y., Dugan, B,J. Design of reliable systems using static and dynamic fault trees. IEEE

Transactions on Reliability 1998; 47(3), 234-244.

61. Andrews, J. D., Bartlett, L. M. Genetic algorithm optimization of a Firewater Deluge

system, Quality and Reliability Engineering International. 19(1): 39-52, 2003.

62. Gen, M. Genetic algorithms and engineering design. New York: Wiley; 1997.

63. Beasley, D., Bull, D. R., Martin, R. R. An overview of genetic algorithms: part 1,

fundamentals. University Computing 1993; 15(2): 58-69.

64. Gen. M., Yun, Y. Soft computing approach for reliability optimization: state-of-the-art

survey. Reliability Engineering & System Safety 2006; 91(9), 1008-1026.

65. Vinod, G., Kushwaha, H. S., Verma, A. K. et al. Optimisation of ISI interval using

genetic algorithms for risk informed in-service inspection. Reliability Engineering &

System Safety 2004; 86(3): 307-316.

66. Arora, J. S. Introduction to optimum design. 2
nd

 edn. Elsevier Academic Press; 2004.

67. Zalzala, A. M. S., Fleming, P. J. Genetic algorithms in engineering systems. London:

Institution of Electrical Engineers; 1997.

Bibliography 215

68. Chambers, L. The practical handbook of genetic algorithms. 2nd edn. Boca Raton:

Chapman & Hall/CRC; 2001.

69. Busacca, P.G., Marseguerra, M., Zio, E. Multiobjective optimization by genetic

algorithms: application to safety systems. Reliability Engineering & System Safety 2001;

72(1): 59-74.

70. Marseguerra, M., Zio, E., Martorell, S. Basics of genetic algorithms optimization for

RAMS applications. Reliability Engineering & System Safety 2006; 91(9): 977-991.

71. Martorell, S., Sánchez, A., Carlos, S. et al. Alternatives and challenges in optimizing

industrial safety using genetic algorithms. Reliability Engineering & System Safety 2004;

86(1): 25-38.

72. R. E. Barlow, H. E. Lambert., Reliability and fault tree analysis: theoretical and applied

aspects of system reliability and safety assessment. Philadelphia: Society for Industrial

and Applied Mathematics; 1975.

73. Andrews, J. D., Pattison, R. L. Optimal safety system performance. Proceedings of

Annual Reliability and Maintainability Symposium 1997; 76-83.

74. Remenyte-Prescott, R., System failure modelling using binary decision diagrams,Thesis

(Ph.D.). Loughborough University. Department of Aeronautical and Automotive

Engineering; 2007.

75. Proceedings of the Third International Conference on Genetic Algorithms, George

Mason University, June 4-7, 1989. San Mateo, Calif.: Morgan Kaufmann Publishers;

1989.

76. Bäck, T. Evolutionary algorithms in theory and practice: evolution strategies,

evolutionary programming, genetic algorithms. Oxford: New York; 1996.

77. Pham, D., Karaboga, D. Genetic algorithms with variable mutation rates: application to

fuzzy logic controller design. Proceedings of the Institution of Mechanical Engineers,

Part I: Journal of Systems and Control Engineering 1997; 211(2): 157-167.

78. Coello Coello, C.A. A survey of constraint handling techniques used with evolutionary

algorithms. Rep. No. Technical Report Lania-RI-99-04. Veracruz, Mexico: Laboratorio

Nacional de Informática Avanzada; 1999.

79. Coello Coello, C. A. Theoretical and numerical constraint-handling techniques used with

evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied

Mechanics and Engineering 2002; 191(11-12): 1245-1287.

80. Coit, D.W., Smith, A.E., Tate, D. M. Adaptive penalty methods for genetic optimization

of constrained combinatorial problems. INFORMS Journal of Computing 1996; 8(2):

173-182.

81. Susova, G. M., Petrov, A.N. Markov model-based reliability and safety evaluation for

aircraft maintenance-system optimization. Proceedings of Annual Reliability and

Maintainability Symposium 1997; 1997. 29-36.

82. Vaurio, J. K. Fault tree analysis of phased mission systems with repairable and non-

repairable components. Reliability Engineering & System Safety 2001; 74(2): 169-180.

Bibliography 216

83. Alam, M., Al-Saggaf, U. Quantitative reliability evaluation of repairable phased-mission

systems using Markov approach. IEEE Transactions on Reliability 1986; 35(5): 498-503.

84. Smotherman, M., Zemoudeh, K. A non-homogeneous Markov model for phased-mission

reliability analysis. IEEE Transactions on Reliability 1989; 385(5): 585-590.

85. Esary, J.D., Ziehms, H. Reliability of phased missions. Proceedings of Conference on

Reliability and Fault-Tree Analysis, 1974. Philadelphia: Society for Industrial and

Applied Mathematics; 1975, 213-236.

86. Somani, A. K., Trivedi, K. S. Phased-mission system analysis using Boolean algebraic

methods. Proceedings of the 1994 ACM SIGMETRICS Conference on Measurement and

Modelling of Computer Systems. Nashville, United States; 1994, 98-107.

87. Ma, Y., Trivedi, K.S. An algorithm for reliability analysis of phased-mission systems.

Reliability Engineering & System Safety 1999; 66(2): 157-170.

88. La Band, R., Andrews, J.D. Phased mission modelling using fault tree analysis.

Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process

Mechanical Engineering 2004; 218(2): 83-91.

89. Prescott. D. R., Remenyte-Prescott, R., Reed, S. et al. A reliability analysis method using

binary decision diagrams in phased mission planning. Proceedings of the Institution of

Mechanical Engineers, Part O: Journal of Risk and Reliability 2009; 223(2), 133-143.

90. Astapenko, D., Bartlett, L.M. Phased mission failure minimisation using optimal system

design. Proceedings of the 26th International System Safety Conference, ISSC, 25-29 Aug

2008. Vancouver, Canada.

91. Astapenko, D., Bartlett, L.M. Phased mission system design optimisation using genetic

algorithms. International Journal of Performability Engineering 2009; 5(4), 313-324.

92. Astapenko, D., Bartlett, L.M. System design optimisation involving phased missions.

Proceedings of the European Safety and Reliability Conference, ESREL-2008, 22-25 Sept

2008. Valencia, Spain: CRC Press/Balkema; 2008, 2021-2027.

93. Astapenko, D., Bartlett, L.M. System design optimisation involving phased missions.

International Journal of Reliability and Safety (IJRS), 2009; 3(4): 331-344. DOI:

10.1504/IJRS.2009.028580.

94. Deb, K. Multi-objective optimization using evolutionary algorithms. Chichester:

Wiley;2001.

95. Konak, A.; Coit, D. W.; Smith, A. E. Multi-objective optimization using genetic

algorithms: a tutorial. Reliability Engineering & System Safety 2006; 91(9): 992-1007.

96. Coello Coello, C.A.; Van Veldhuizen, D.A.; Lamont, G.B. Evolutionary algorithms for

solving multi-objective problems. 2
nd

 edn. New York; 2002.

97. Suman, B. Study of self-stopping PDMOSA and performance measure in multiobjective

optimization. Computers & Chemical Engineering 2005; 29(5): 1131-1147.

98. Coello, C. A. An updated survey of GA-based multiobjective optimization techniques.

ACM Computing Surveys 2000; 32(2): 109-143.

Bibliography 217

99. Fonseca, C.M.; Fleming, P.J. An overview of evolutionary algorithms in multiobjective

optimization. Evolutionary Computation 1995; 3: 1-16.

100. Van Veldhuizen, D., Lamont, G. Multiobjective evolutionary algorithm research: a

history and analysis. Air Force Inst. Technol., Dayton, OH, Tech. Rep. TR-98-03, 1998.

101. Zitzler, E., Thiele, L. Multiobjective evolutionary algorithms: a comparative case study

and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 1999;

3(4): 257-271.

102. Srinivas, N.; Deb, K. Multiobjective optimization using nondominated sorting in

genetic algorithms. Evolutionary Computation 1994; 2(3): 221-248.

103. Fonseca, C. M., Fleming, P. J. Multiobjective optimization and multiple constraint

handling with evolutionary algorithms I: a unified formulation. IEEE Transactions on

Systems, Man and Cybernetics Part A: Systems and Humans 1998; 28(1): 26-37.

104. Jimenez, F.; Gomez-Skarmeta, A.F.; Sanchez, G. et al. An evolutionary algorithm for

constrained multi-objective optimization. CEC '02. Proceedings of the 2002 Congress

on Evolutionary Computation 2002; 1133-1138.

105. Deb, K.; Pratap, A.; Agarwal, S. et al. A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 2002; 6(2): 182-

197.

106. Fonseca, C.M.; Fleming, P.J. On the performance assessment and comparison of

stochastic multiobjective optimizers. Proceedings of the 4th International Conference

on Parallel Problem Solving from Nature, 1996.584-593.

107. Zitzler, E.; Deb, K.; Thiele, L., Comparison of multiobjective evolutionary algorithms:

empirical results. Evolutionary Computation 2000; 8:173-195.

108. Murata, T., Ishibuchi, H. MOGA: multi-objective genetic algorithms. IEEE

International Conference on Evolutionary Computation 1995; 289-294.

109. Marseguerra, M.; Zio, E.; Martorell, S. Basics of genetic algorithms optimization for

RAMS applications. Reliability Engineering & System Safety 2006; 91(9): 977-991.

Publications 218

PUBLICATIONS

Conference papers

1. Astapenko, D., Bartlett, L.M. Phased mission failure minimisation using optimal system

design. Proceedings of the 26th International System Safety Conference, ISSC, 25-29 Aug

2008. Vancouver, Canada.

2. Astapenko, D., Bartlett, L.M. System design optimisation involving phased missions.

Proceedings of the European Safety and Reliability Conference, ESREL-2008, 22-25 Sept

2008. Valencia, Spain: CRC Press/Balkema; 2008, 2021-2027.

3. Astapenko D., Bartlett, L.M. System failure minimisation using automated design

optimisation. Proceedings of the 18th AR
2
TS (Advances in Risk & Reliability Technology

Symposium), April 2009. Loughborough University, UK, 347-359.

Journal papers

1. Astapenko, D., Bartlett, L.M. Phased mission system design optimisation using genetic

algorithms. International Journal of Performability Engineering 2009; 5(4), 313-324.

2. Astapenko, D., Bartlett, L.M. System design optimisation involving phased missions.

International Journal of Reliability and Safety (IJRS), 2009; 3(4): 331-344. DOI:

10.1504/IJRS.2009.028580.

Appendix 1 219

APPENDIX 1

The correct and sufficient data is critical for finding a solution for the optimisation problem to

be solved. This section provides guidelines for data presentation in the required format. Each

subsection is denoted to a set of data stored in a single file. It provides a detailed explanation

of the file content based on a specific example. It also specifies the main rules to be followed

to assure the data is presented in a correct format.

A.1. FILE – fts.txt

The file _fts.txt stores the fault tree structure of the initial system design in the text format. It

is required that names (codes) of fault tree gates and basic events contain only digits.

Therefore code-names should be introduced to basic events and/or gates whose names do not

meet this requirement. It is also important that each basic event and gate code-name is unique,

i.e. two or more fault tree components cannot have the same code-name.

Consider the fault tree example in Figure A.1. In the given example, gate codes correspond to

the given gate numbers. The basic event codes to be used are provided in Table A.1.

Figure A.1 Example Fault Tree

Appendix 1 220

Table A.1 Number Codes for Basic Events

Basic

Event
Code

A 1

B 2

C 3

D 4

E 5

F 6

G 7

Each row in the file contains data of a single gate and it starts with the gate code. Note that

gates can be listed in any order in the file. The only requirement is that the top gate data is

written in the first row of the file.

After a gate code the gate type follows identified with a key word ‘OR’ or ‘AND’. The next

two numbers identify the total number of input gates and events that the considered gate has.

It is required that the first figure denotes the total number of input gates. Finally, the code-

names of input gates and input events are listed. Each gate code-name comprises an

identification symbol ‘G:’ and its code. Accordingly an input event code-name comprises of

the symbol “E:” and its code.

Consider the example fault tree in Figure A.1. The fault tree has six gates, thus six data rows

will be needed in order to present its structure in a text format. The top gate is an AND gate

and has two input gates coded as 2 and 3. Thus the first row of the fault tree data file would

be:

1 AND 2 0 G:2 G:3

Gate 2 is an OR gate and also has two input gates. In the data file it would be written as

follows:

2 OR 2 0 G:4 G:5

Gate 3 is an AND gate. It has one input gate and two inputs events. In this case the data in the

text format would be provided as follows:

3 AND 1 2 G:6 E:3 E:7

The rest of the gates have two input basic events each. For example, the data row for gate 4

would be:

Appendix 1 221

4 AND 0 2 E:1 E:2

To summarise, there are three main requirements for the presentation of the fault tree

structure. Names of basic events and gates contain only digits. The top gate data has to be

written in the first row of the file. First the total number of input gates is to be written

followed by the total number of input events. Accordingly foremost input gates are listed and

then the list of input events is given.

A.2. FILE _var.txt

The file stores the data required to implement changes in the system design regarding the

structural design variables introduced for the problem solved. In the file each row represents a

fault tree event (gate or basic event) chosen to be replaced and parameters of a FTMP,

associated with a particular design variable or a set of variables, which defines the fault tree

structure to be incorporated instead. Each row is started with the fault tree event

identification. For this reason, either symbol ‘G’ (gate) or ‘E’ (basic event) is used followed

by the event code. Next values are written for the FTMP parameters. The values for the

parameters are written in the following order. First mn value is given, then mt is defined and

finally an mk value is written (see Section 4.2.2).

Consider the previous example fault tree in Figure A.1. Two FTMPs are introduced, Pattern 1

(mn = 2, mt = 1, mk = 1) and Pattern 4 (mn =3, mt = 2, mk = 1). The events chosen to be

replaced are gate 6 and basic event 4 respectively. The data file for the chosen modifications

would consist of two rows:

G 6 2 1 1

E 4 3 2 1

A.3. FILE _bse.aqd

Basic event failure data is stored in the file with the ending _bse.aqd. Every row in the data

file corresponds to a single basic event which is coded with a unique code-name. As

mentioned earlier (Section A.1) it is required to use only digits for codes of basic events. It is

also essential to proved new basic events, which occur after implementation of modification

in the fault tree, and their correct code-names following the rules introduced in Section

4.3.5.2.

Appendix 1 222

The programme is developed to utilise three different types of component failure data.

Depending on a component failure type, a number of numerical parameters used to find the

basic event probability will vary. An identification letter written next to the basic event code

is used to determine the model to be used. Letter ‘d’ identifies a dormant failure probability.

In this case failure rate, mean time to repair and maintenance test interval values are provided

for the basic event. Letter w, which identifies that component failure times are distributed

under the Weibull distribution, is followed by values of the distribution parameters β and η,

and a maintenance test interval value. Note that in both cases, in order to find the component

unavailability value the maintenance test interval value is required. However, if maintenance

test intervals are design variables, then a digit 1 is to be written as a maintenance test interval

value. Finally, in the data file letter f is to be used if a component unavailability value is given

which will be written after the letter.

The last row containing a key word ‘ENDOFDATA’ identifies the end of list of basic events.

Consider the fault tree example given in Figure A.1. All basic events and their failure data are

presented in Figure A.2.

Figure A.2 File _bse.aqd

1 d 0.000007 0.000004 30

2 d 0.000014 0.000004 30

3 d 0.000021 0.000004 30

4_1_1 w 2 14035 40

4_2_1 w 2 14035 40

4_3_1 w 2 14035 40

4_1_2 w 1 12075 55

4_2_2 w 1 12075 55

4_3_2 w 1 12075 55
5_1_1 w 4 17050 30

5_2_1 w 4 17050 30

6_1_1 f 0.00001
6_2_1 f 0.00001

7 f 0.0000005

ENDOFDATA

Basic

Event

Code

Failure

Rate

Failure

Probability

Maintenance

Interval

Mean

Repair

Time

Appendix 1 223

In the file fault tree basic events are named using their code-names given in Table A.1. Basic

events 1, 2 and 3 are given failure rate, mean time to repair and maintenance test interval

values. Failure rates for basic events 4 and 5 have a Weibull distribution and for events 6 and

7 actual failure probabilities are defined. Assuming that the FTMP from Section A.2 are being

implemented the list of basic events increases as new basic events are introduced.

A.4. FILE _cost_cst.txt

If the system design improvement is restricted by its cost, then a data file with the ending

cost_cst.txt is required in order to solve the optimisation problem. The file is used to store

values for design cost limits as well as each component cost.

In the first row of the file following the key word ‘COST’ minimum and maximum design

cost limits are to be written, whereby the first number represents the minimum value. For

evaluation of maintenance costs the total number of maintence interval time units covering an

examined time period (one year) is provided after the keyword ‘UNITS’. If maintenance costs

are not considered for a problem solved, value 0 should be written.

After the keyword “COMPONENTS” component cost data is provided. Each subsequent row

corresponds to a single basic event. As in the file with the ending _bse.aqd, a row starts with

the unique event code. Then component costs are listed. First component design cost is to be

written. Next, maintenance costs are listed in the following order: a single maintenance test

cost, component maintenance and repair costs. If any of the mentioned costs is not considered

a zero value has to be written.

As an example, the fault tree in Figure A.1 is considered that is modified using FTMPs as

described in Section A.2. The optimal design cost cannot exceed 20 units. Figure A.3

demonstrates the data file contents where maintenance costs are considered for only basic

events 1, 2 and 3.

A.5. FILE _mdt_cst.txt

The data required to implement systems down time constraints is stored in the file

_mdt_cst.txt. Minimum and maximum range limits for possible values of maintenance down

time are listed after the keyword ‘MDT’ in the first row. The second row of the data file starts

with the key word ‘UNIT’ which identifies that the numerical value followed after is a total

Appendix 1 224

number of time units (used for maintence time intervals) in the examined time period (TU as

used in Formula 4.14). The third row with the key word ‘COMPONENTS’ indicates that the

consequent rows of the data file contain basic events data. In each row a basic event code is

followed by test time and time interval values between maintence activities. These are used to

calculate maintenance down time for each component.

Figure A.3 File _cost_cst.txt

If maintenance intervals are not known and defined as design variables, the maintenance

interval value for each basic event is set to 1 in the data file.

Figure A.4 represents the data file content prepared for the same fault tree example as in the

previous section (Section A.4). Maintence intervals are evaluated using days as time units. It

means that the total number of time units in one year is equal to 365. Each component test

time is measured in hours therefore the same time units, i.e. hours, are to be used for

maintence down time assessment. Maintenance down time limits are set to 10 and 15 hours a

year.

COST 0 20

UNITS 0

COMPONENTS

1 2 1 2 2
2 3 1 1 2

3 2 2 3 4
4_1_1 4.5 0 0 0

4_2_1 4.5 0 0 0

4_3_1 4.5 0 0 0
4_1_2 3 0 0 0

4_2_2 3 0 0 0

4_3_2 3 0 0 0
5_1_1 2 0 0 0

5_2_1 2 0 0 0

6_1_1 3.5 0 0 0

6_2_1 3.5 0 0 0

7 5 0 0 0

Keywords Minimum value Maximum Value

Basic

Event

Code

Testing

Cost

Corrective

Cost

Design

Cost

Preventive

Cost

Appendix 1 225

Figure A.4 File _mdt_cst.txt

A.6. FILES _volume_cst.txt AND _weight_cst.txt

The structures of data files _volume_cst.txt and _weight_cst.txt, which are used to store data

for calculation of volume and weight constraints, are identical. The first row has minimum

and maximum limit values of system volume/ weight identified with the key word

‘VOLUME’/’WEIGHT’. In either file the second row has the key word ‘COMPONENTS’.

The consequent rows start with a basic event code followed by the corresponding component

volume/ weight.

A.7. FILE _theta.txt

If time intervals between maintence activities are considered as design variables an additional

data file with the ending _theta.txt is required to be produced. The data in the file is divided

into two parts. Different system components can undergo maintenance at different time

intervals, therefore the range limits for time intervals between anticipated different maintence

activities are provided first. It is implemented by storing each interval identification number

and possible minimum and maximum limit values.

MDT 10 15

UNIT 365
COMPONENTS

1 3 30

2 1 30
3 2 30

4_1_1 1 40
4_2_1 1 40

4_3_1 1 40

4_1_2 1.5 55
4_2_2 1.5 55

4_3_2 1.5 55

5_1_1 0.5 30
5_2_1 0.5 30

6_1_1 1.2 25

6_2_1 1.2 25

7 1 30

Basic

Event

Code

Test

Time
Test

Interval

Appendix 1 226

The second part of the file is separated from the first one by the key word “COMPONENTS”.

It is used to store maintenance interval data of system components. Each row starts with a

maintence interval identification number as introduced in the first part of the file. After the

interval identification number a basic event code follows which represents a system

component that has been assigned to undergo maintenance at these particular intervals. It is

common, that a number of components undergo maintence at the same time, therefore a

maintence interval identification number needs to be listed as many times as there are

components maintained at these time intervals. In the same way, the remaining specified

maintence intervals and associated basic events are listed. Note that this file does not provide

numerical values of maintenance intervals, but it defines links between each basic event and

its associated maintence interval.

To illustrate the file content an example introduced in Section A.1 and analysed through out

the appendix is analysed. Consider the system components 1, 2, 3 and 4 (as well as

components 4_1_1, 4_1_2, etc.) undergo maintenance at the same time and it can be

performed within the range of 3 to 5 months. The remaining components 5 (including 5_1_1

and 5_2_1), 6 (including 6_1_1 and 6_2_1) and 7 can be maintained as often as 6 months but

at least once a year. In consistence with the earlier given _mdt_cst.txt file example, range

limits of maintence intervals should be provided in the same time units, i.e. days. For

example, 3 month will be equivalent to 90 days and 5 month will be equal to 150 days. The

data file is shown in Figure A.5.

A.8. FILE _gav.txt

GA parameters such as population size, crossover rate, mutation rate and number of

generations have to be defined by the user in the data file _gav.txt. The example of the file

content is shown in Figure A.6. The keywords in each file line are indispensable because they

are used to identify a value of a certain parameter used by the GA.

Appendix 1 227

Figure A.5 File _theta.txt

Figure A.6. File _gav.txt

1 90 150

2 180 360
COMPONENTS

1 1

1 2

1 3
1 4_1_1

1 4_2_1

1 4_3_1
1 4_1_2

1 4_2_2

1 4_3_2
2 5_1_1

2 5_2_1
2 6_1_1

2 6_2_1
2 7

Identification

Number of

Maintenance Test

Minimum

Value

Maximum

Value

Basic Event

Code

population 10

crossover 0.75

mutation 0.002
generations 100

Appendix 2 228

APPENDIX 2

A.2.1. DATA FOR QUANTITATIVE FWDS FAILURE ANALYSIS

Table A.2.1. Distribution Network Failure Events

Notation Event Description

FSU
Failure of pump selector unit to initiate start of the standby pump in sequence, on

detection of failure of duty pump/pump to restore ringmain pressure.

OE
Designated duty pump/pump inadvertently left in a mode other than auto start at the

end of the test.

PBF Manual push button in the control room failing to initiate pump start when pressed.

PT (type 1) Failure of ringmain low pressure sensor to indicate low ringmain pressure.

Table A.2.2. Distribution Network Failure Basic Events

Notation λ τ HT NS CS C1 Q

FSU 8e-6 2.4e-5 1 1 200 2000

PT 7e-6 4e-6 1 2 100 500

OE 0.01

PBF 0.01

Table A.2.3. Firewater System Failure Basic Events

Notation Event Description

E_FB/D_FB
The pump, which includes seawater filter, is blocked by debris

(electrical and diesel driven).

E_IVB/D_IVB
The firewater pump line isolation valve being blocked (electrical and

diesel driven).

E_IVC/D_IVC
The firewater pump line isolation valve closed (electrical and diesel

driven).

E_PRVO/D_PRVO
Pressure relief valve on header from pump to ringmain fails open

(electrical and diesel driven).

E_SVO/D_SVO
The flow control valve fails to open on demand. (It is used to dump

excess flow from pumps to ringmain) (electrical and diesel driven).

E_CVB/D_CVB
Check valve on header between the pump and ringmain blocked

(electrical and diesel driven).

D_DVO/E_DVO Line discharge valve to sea fails open (electrical and diesel driven).

EM/DM
Maintenance is being carried out on an firewater pump (electrical and

diesel driven).

D_TIVB Diesel tank isolation valve blocked.

D_TIVC Diesel tank isolation valve closed.

D_LAF Diesel tank level switch fails to signal low level to control room.

D_OAF Operator fails to notice firewater diesel tank low level alarm.

D_EF Firewater diesel engine fails.

DPF Failure of firewater diesel pump.

E_ESF Failure of electric supply to the electric driven pumps.

E_ESF Failure of electric supply to the electric driven pumps.

E_MF Global motor failure.

EPF Failure of firewater electric pump.

Appendix 2 229

Table A.2.4. Firewater System Failure Basic Events

Notation λ τ HT NS CS C1 β η Q

E_FB/D_FB 2.8e-5 1.2e- 2 4 150 100

E_IVB/D_IVB 1.8e-5 1.8e-5 2 2 300 400

E_PRVO/D_PRVO 1.2e-5 1.8e-5 2 2 300 500

E_SVO/D_SVO 1.8e-5 2.4e-5 2 3 300 800

E_CVB/D_CVB 1.8e-5 1.8e-5 2 2 300 400

E_IVC/D_IVC 0.01

D_DVO/E_DVO 0.01

EM/DM 0.04

D_TIVC 0.01

D_OAF 0.01

D_EF 0.00128

D_TIVB 3e-5 8e-6 2 2 300 400

D_LAF 3e-5 6e-6 2 2 200 200

DPF 2 1 1000 2900 2 14035

EPF 2 1 1000 3000 2 16667

E_ESF 5e-5 2e-6 2 1000

E_MF 4.5e-05

Table A.2.5. Basic Events of AFFF Supply System Failure

Notation Event Description

AE_FB/AD_FB
The pump, which includes filter, is blocked by debris

(electrical and diesel driven).

AE_SIVB/AD_SIVB
The AFFF pump line suction isolation valve being blocked

(electrical and diesel driven).

AE_SIVC/AD_SIVC
The AFFF pump line suction isolation valve closed

(electrical and diesel driven).

AE_PRVO/AD_PRVO
Pressure relief valve on header from pump to ringmain fails

open (electrical and diesel driven).

AE_SVO/AD_SVO

The flow control valve fails open on demand. (It is used to

dump excess flow from pumps to ringmain) (electrical and

diesel driven).

AE_CVB/AD_CVB
Check valve on header between the pump and ringmain

blocked (electrical and diesel driven).

AE_DIVB/AD_DIVB
The AFFF pump line discharge isolation valve being

blocked (electrical and diesel driven).

AE_DIVC/AD_DIVC
The AFFF pump line discharge isolation valve closed

(electrical and diesel driven).

AE/DM
Maintenance is being carried out on an AFFF pump

(electrical and diesel driven).

AD_ATIVB AFFF diesel tank isolation valve blocked.

AD_ATIVC AFFF diesel tank isolation valve closed.

AD_LAF
Diesel tank level switch fails to signal low level to control

room.

AD_OAF Operator fails to notice AFFF diesel tank low level alarm.

AD_EF Diesel global engine failure.

ADPF Failure of AFFF diesel pump.

AE_ESF
Failure of electric supply to the electric driven AFFF

pumps.

ATIVB AFFF tank isolation valve blocked.

ATIVC AFFF tank isolation valve closed.

AEPF Failure of AFFF electric pump.

Appendix 2 230

Table A.2.6. Data of AFFF System Failure Basic Events

Notation λ τ HT NS CS C1 β η Q

AE_FB/AD_FB 2.8e-5 1.2e-5 2 4 150 100

AE_SIVB/AD_SIVB 1.8e-5 1.8e-5 2 2 300 400

AE_PRVO/AD_PRVO 1.2e-5 1.8e-5 2 2 300 500

AE_SVO/AD_SVO 1.8e-5 2.4e-5 2 3 300 800

AE_CVB/AD_CVB 2.5e-5 1.8e-5 2 2 300 500

AE_DIVB/AD_DIVB 1.8e-5 1.8e-5 2 2 300 400

AE_SIVC/AD_SIVC 0.01

AE_DIVC/AD_DIVC 0.01

AE/DM 0.04

AD_ATIVC 0.01

AD_OAF 0.01

AD_EF 0.00128

AD_ATIVB 3e-5 8e-6 2 2 300 400

AD_LAF 3e-5 6e-6 2 2 200 200

ADPF 2 1 800 1450 2 14035

AEPF 2 1 800 1500 2 16667

AE_ESF 5e-5 2e-6 2 1000

ATIVB 3e-5 8e-6 2 2 300 400

ATIVC 0.01

Table A.2.7. Deluge System Failure Basic Events

Notation Event Description

SI/WSI
Failure of MFGP to select and send a close signal to the solenoid valve
correctly in AFFF and water Deluge Skid accordingly.

MRM/WMRM Manual release mechanism fails to dump instrument air.

SV1/SV2/WSV1/

WSV2

Solenoid activated valve fails to dump instrument air on receipt of the

signal from the MFGP in AFFF and water Deluge Skid accordingly

(there are 2 solenoid valves in each deluge skid).

WBS Strainer, located downstream of the water deluge valve, blocked.

WNB Deluge nozzle on the waterspray system blocked.

WIVB1/WIVB2
Locked open butterfly valve blocked (one upstream and one downstream

of the water deluge valve).

WHE1/WHE2
Operator leaves the normally locked open butterfly valve in the shut

position (one upstream and one downstream of the water deluge valve).

WV Water deluge valve fails to open.

WVRF (old type) Valmatic relief valve sticks closed on activation.

AHE AFFF isolation valve left closed.

AIVB
Normally locked open butterfly valve on the AFFF distribution line

blocked (only one isolation valve on AFFF line).

AINF
The foam supply into the firewater distribution line is blocked by the

inductor nozzle.

ACVB The check valve in the AFFF injection line is blocked.

AV (type 1) AFFF deluge valve fails to open on demand.

Table A.2.8. Data of Basic Events for Deluge System Failure

Notation λ τ HT NS CS C1 Q

SI/WSI 2e-7 6e-6

MRM/WMRM 1e-5 1.2e-5 2 1 300 600

SV1/WSV1 3e-6 1.2e-5 2 2 300 400

Appendix 2 231

Notation λ τ HT NS CS C1 Q

SV2/ WSV2 2e-5 1.2e-5 2 2 300 250

WBS 2.8e-5 1.2e-5 2 4 75 100

WNB(old type) 3e-5 1.2e-5 2 3 300 1000

WIVB1/WIVB2 1.8e-6 1.8e-6 2 2 300 400

WHE1/WHE2 0.01

WV (type 1) 4e-5 1.8e-5 2 2 200 400

WVRF (old type) 5e-6 1.2e-5 2 1 300 600

AHE 0.01

AIVB 1.8e-5 1.8e-5 2 2 300 400

AINF (old type) 3e-5 1.2e-5 2 3 300 1000

ACVB 2.5e-5 1.8e-5 2 2 300 600

AV (type 1) 4e-5 1.8e-5 2 2 150 300

Table A.2.9. Data of New System Components

Associated

Design

Variable

Basic Event Notation λ τ β η HT NS CS C1

tPT PT (type 2) 1.4e-5 4e-6 1 2 100 200

tPT PT (type 3) 2.1e-5 4e-6 1 2 100 100

t1FE, t2FE
EPF (50% capacity)

(type 1)
 1.5 22857 2 2 900 1800

t1FE, t2FE
EPF (50% capacity)

(type 2)
 1.5 26667 2 2 900 2000

t1FE, t2FE
EPF (33 1/3%

capacity) (type 1)
 1.5 32000 2 2 800 1200

t1FE, t2FE
EPF (33 1/3%

capacity) (type 2)
 1.5 40000 2 2 800 1400

t1FD, t2FD
DPF (50% capacity)

(type 1)
 1.5 20000 2 2 900 1500

t1FD, t2FD
DPF (50% capacity)

(type 2)
 1.5 22857 2 2 900 1800

t1FD, t2FD
DPF (33 1/3%

capacity) (type 1)
 1.5 28571 2 2 800 1000

t1FD, t2FD
DPF (33 1/3%

capacity) (type 2)
 1.5 33333 2 2 800 1100

tAE AEPF (50% capacity) 1.5 22857 2 2 600 900

tAD APFD (50% capacity) 1.5 20000 2 2 600 750

tWD WV (type 2) 3.5e-5 1.8e-5 2 2 200 500

tWD WV (type 3) 2.8e-5 1.8e-5 2 2 200 600

tAD AV (type 2) 3.5e-5 1.8e-5 2 2 150 400

tAD AV (type 3) 2.8e-5 1.8e-5 2 2 150 500

tDN WNB(new type) 5e-6 1.2e-5 2 3 300 3000

tIN AINF (new type) 5e-6 1.2e-5 2 3 300 3000

tVR WVRF (new type) 2e-6 1.2e-5 2 1 300 900

Appendix 2 232

A.2.2. ANALYSIS OF THE IMPROVED GSDOP PERFORMANCE

SOLVING THE FWDS DESIGN OPTIMISATION PROBLEM

Table A.2.10. Minimal Unavailability Values when Population Size is Equal to 10

Population size = 10

Crossover Rate

0.75 0.8 0.95

0.001 0.1113 0.0977 0.0983

0.005 0.1088 0.0960 0.0953

Mutation Rate

0.01 0.1048 0.0947 0.0942

Table A.2.11. Minimal Unavailability Values when Population Size is Equal to 30

Population size = 30

Crossover Rate

0.75 0.8 0.95

0.001 0.1076 0.0950 0.0948

0.005 0.0937 0.0939 0.0936

Mutation Rate

0.01 0.0934 0.0934 0.0934

Table A.2.12. Minimal Unavailability Values when Population Size is Equal to 50

Population size = 50

Crossover Rate

0.75 0.8 0.95

0.001 0.0958 0.0956 0.0949

0.005 0.0935 0.0938 0.0933

Mutation Rate

0.01 0.0933 0.0928 0.0926

Table A.2.13. Minimal Unavailability Values when Mutation Rate is Equal to 0.001

Mutation Rate = 0.001

Crossover Rate

0.75 0.8 0.95

10 0.1113 0.0977 0.0983

30 0.1076 0.0950 0.0948

Population Size

50 0.0958 0.0956 0.0949

Table A.2.14. Minimal Unavailability Values when Mutation Rate is Equal to 0.005

Mutation Rate = 0.005

Crossover Rate

0.75 0.8 0.95

10 0.1088 0.0960 0.0953

30 0.0937 0.0939 0.0936

Population Size

50 0.0935 0.0938 0.0933

Appendix 2 233

Table A.2.15. Minimal Unavailability Values when Mutation Rate is Equal to 0.01

Mutation Rate = 0.01

Crossover Rate

0.75 0.8 0.95

10 0.1048 0.0947 0.0942

30 0.0934 0.0934 0.0934

Population Size

50 0.0933 0.0928 0.0926

Table A.2.16. Minimal Unavailability Values when Crossover Rate is Equal to 0.75

Crossover Rate = 0.75

Mutation Rate

0.001 0.005 0.01

10 0.1113 0.1088 0.1048

30 0.1076 0.0937 0.0934

Population Size

50 0.0958 0.0935 0.0933

Table A.2.17. Minimal Unavailability Values when Crossover Rate is Equal to 0.8

Crossover Rate = 0.8

Mutation Rate

0.001 0.005 0.01

10 0.0977 0.0960 0.0947

30 0.0950 0.0939 0.0934

Population Size

50 0.0956 0.0938 0.0928

Table A.2.18. Minimal Unavailability Values when Crossover Rate is Equal to 0.95

Crossover Rate = 0.95

Mutation Rate

0.001 0.005 0.01

10 0.0983 0.0953 0.0942

30 0.0948 0.0936 0.0934

Population Size

50 0.0949 0.0933 0.0926

Appendix 3

234

APPENDIX 3

A.3.1. UAV DESIGN OPTIMISATION USING THE PHASED MISSION

DESIGN OPTIMISATION ALGORITHM

Table A.3.1. Basic Event Failure Probability Data

Basic Event

Name in

Fault Trees

Description
Failure

Probability

LGret Landing gear can not be extended 0. 02

LGex Landing gear can not be retracted 0. 025

Avion Avionics system fails 0.01

Valve_b_O Brake control valve fails opened 0.05

Valve_b_C Brake control valve fails closed 0.05

Valve_a_O Antiskid valve fails opened 0.04

Valve_a_C Antiskid valve fails closed 0.05

Brake Brakes fail 0.03

Eng 1 Engine 1 fails 0.01

Eng 2 Engine 2 fails 0.01

Valve1c_O Cross feed valve 1 fails opened 0.037

Valve1c_C Cross feed valve 1 fails closed 0.06

Valve2c_O Cross feed valve 2 fails opened 0.037

Valve2c_C Cross feed valve 2 fails closed 0.04

Tank1 Tank 1 fails 0.01

Tank2 Tank 2 fails 0.01

Pump1 Pump 1 fails 0.03

Pump2 Pump 2 fails 0.03

Navig Navigation system fails 0.01

Avoid Sense and avoidance system fails 0.01

Flight Flight control surfaces fail 0.01

Canc Phase is aborted 0.035

Bird1 Bird strike on engine 1 0.06

Bird2 Bird strike on engine 2 0.06

Atc Air traffic control failure 0.01

Aircraft Other aircraft 0.02

Storm Storm 0.03

Comm Communication mistake 0.01

Table A.3.2. Additional Basic Events Data

Description

Basic Event

Code in the

Data Files

Failure

Probability

Type 1 landing gear can not be extended 1_1_1 0. 02

Type 2 landing gear can not be extended 1_1_2 0. 01

Type 1 antiskid valve fails opened 6_1_1 0.04

Type 2 antiskid valve fails opened 6_1_2 0.035

Appendix 3

235

Description

Basic Event

Code in the

Data Files

Failure

Probability

Type 3 antiskid valve fails opened 6_1_3 0.045

Type 1 brakes fail 8_1_1 0.03

Type 2 brakes fail 8_1_2 0.02

Type 1 navigation system fails 19_1_1 0.01

Type 2 navigation system fails 19_1_2 0.015

Type 1 sense and avoidance system fails 20_1_1 0.01

Type 2 sense and avoidance system fails 20_1_2 0.0125

Crossover Rate 0.75

0.111

0.112

0.113

0.114

0.115

0.116

0.117

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation No.

F
it

n
e

s
s

 V
a

lu
e

Mutation Rate 0.001 Mutation Rate 0.005 Mutation Rate 0.01

Figure A.3.1. Means of Best Fitness Values from Five Runs when Crossover Rate =

0.75, Population Size 10 Chromosomes

Crossover Rate 0.8

0.111

0.1115

0.112

0.1125

0.113

0.1135

0.114

0.1145

0.115

0.1155

0.116

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation No.

F
it
n
e
s
s
 V

a
lu

e

Mutation Rate 0.001 Mutation Rate 0.005 Mutation Rate 0.01

Figure A.3.2. Means of Best Fitness Values from Five Runs when Crossover Rate =

0.8, Population Size 10 Chromosomes

Appendix 3

236

Crossover Rate 0.95

0.111

0.1115

0.112

0.1125

0.113

0.1135

0.114

0.1145

0.115

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation No.
F

it
n

e
s

s
 V

a
lu

e

Mutation Rate 0.001 Mutation Rate 0.005 Mutation Rate 0.01

Figure A.3.3. Means of Best Fitness Values from Five Runs when Crossover Rate =

0.95, Population Size 10 Chromosomes

0

0.00004

0.00008

0.00012

0.00016

0.0002

 0.001 0.005 0.01

Mutation Rate

S
ta

n
d

a
rd

 D
e
v

ia
ti

o
n

Crossover Rate 0.75 Crossover Rate 0.8 Crossover Rate 0.95

Figure A.3.4. Standard Deviation of the Best Fitness Values from Five Runs,

Population Size 10 Chromosomes

Mutation

Rate

Crossover

 rate

0.001 0.005 0.01

0.75 0.111193998 0.111143857 0.111124663

0.8 0.111123294 0.11111812 0.11111812

0.95 0.111127812 0.111117676 0.111117676

Table A.3.3. Average Best Optimisation Results after 100 Generations for Five Runs,

Population Size 10 Chromosomes

Appendix 3

237

Crossover Rate 0.75

0.111

0.1112

0.1114

0.1116

0.1118

0.112

0.1122

0.1124

0.1126

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation No.
F

it
n

e
s

s
 V

a
lu

e

Mutation Rate 0.001 Mutation Rate 0.005 Mutation Rate 0.01

Figure A.3.5. Means of Best Fitness Values from Five Runs when Crossover Rate =

0.75, Population Size 30 Chromosomes

Crossover Rate 0.8

0.111

0.1112

0.1114

0.1116

0.1118

0.112

0.1122

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation No.

F
it

n
e

s
s

 V
a

lu
e

Mutation Rate 0.001 Mutation Rate 0.005 Mutation Rate 0.01

Figure A.3.6. Means of Best Fitness Values from Five Runs when Crossover Rate =

0.8, Population Size 30 Chromosomes

Crossover Rate 0.95

0.111

0.1112

0.1114

0.1116

0.1118

0.112

0.1122

0.1124

0.1126

0.1128

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation No.

F
it

n
e

s
s

 V
a

lu
e

Mutation Rate 0.001 Mutation Rate 0.005 Mutation Rate 0.01

Figure A.3.7. Means of Best Fitness Values from Five Runs when Crossover Rate =

0.95, Population Size 30 Chromosomes

Appendix 3

238

0

0.0000004

0.0000008

0.0000012

0.0000016

 0.001 0.005 0.01

Mutation Rate

S
ta

n
d

a
r
d

 D
e

v
ia

ti
o

n
Crossover Rate 0.75 Crossover Rate 0.8 Crossover Rate 0.95

Figure A.3.8. Standard Deviation of the Best Fitness Values from Five Runs when

Population Size is 30 Chromosomes

Table A.3.4. Average Values for Best Optimisation Results after 100 Generations,

Population Size 30 Chromosomes

Mutation

Rate

Crossover

 rate

0.001 0.005 0.01

0.75 0.111118565 0.111117676 0.111117676

0.8 0.111117689 0.111117676 0.111117676

0.95 0.111117676 0.111117676 0.111117676

Crossover Rate 0.75

0.111

0.1112

0.1114

0.1116

0.1118

0.112

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation No.

F
it

n
e

s
s

 V
a

lu
e

Mutation Rate 0.001 Mutation Rate 0.005 Mutation Rate 0.01

Figure A.3.9. Means of Best Fitness Values from Five Runs when Crossover Rate =

0.75, Population Size 50 Chromosomes

Appendix 3

239

Crossover Rate 0.8

0.111

0.1112

0.1114

0.1116

0.1118

0.112

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation No.
F

it
n

e
s

s
 V

a
lu

e

Mutation Rate 0.001 Mutation Rate 0.005 Mutation Rate 0.01

Figure A.3.10. Means of Best Fitness Values from Five Runs when Crossover Rate =

0.8, Population Size 50 Chromosomes

Crossover Rate 0.95

0.111

0.1112

0.1114

0.1116

0.1118

0.112

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation No.

F
it

n
e

s
s
 V

a
lu

e

Mutation Rate 0.001 Mutation Rate 0.005 Mutation Rate 0.01

Figure A.3.11. Means of Best Fitness Values from Five Runs when Crossover Rate =

0.95, Population Size 50 Chromosomes

Table A.3.5. Average Values for Best Optimisation Results after 100 Generations,

Population Size 50 Chromosomes

Mutation

Rate

Crossover

 rate

0.001 0.005 0.01

0.75 0.111117676 0.111117676 0.111117676

0.8 0.111117676 0.111117676 0.111117676

0.95 0.111117676 0.111117676 0.111117676

Appendix 3

240

A.3.2. MILITARY VESSEL DESIGN OPTIMISATION USING PMSDOP

(CASE 1)

Table A.3.6. Data of Power & Propulsion System Components

Failure Events
Failure

Probabilities

Nuclear steam raising plant fails 1.7278×10
-4

Condenser fails 2.5654×10
-4

Circulating water pump fails 8.7222×10
-4

Circulating water hull valve fails 1.9368×10-4

Circulating water system fails 1.9368×10
-4

Air ejection gland fails 2.5654×10
-4

Lubricating oil system fails 2.3277×10-4

Main lubricating oil filter fails 3.1033×10
-4

Main lubricating oil cooler and thermostat fails 2.3278×10
-4

Feed pump fails 3.1035×10
-4

Extraction pump 1, 2 fails 4.6399×10-4

Main lubricating oil pump (alternating current) fails 3.8733×10
-4

Main lubricating oil pump (direct current) fails 5.8093×10
-4

Ahead valve fails 2.6165×10-3

Astern throttle valve fails 2.6165×10
-3

Turbine fails 1.3093×10
-3

Main gear box fails 4.4457×10
-3

Clutches fail 4.4457×10-3

Shaft fails 2.5654×10
-4

Shaft seal fails 2.5654×10
-4

Thrust block fails 2.5654×10-4

Propulsor fails 1.7611×10
-4

Table A.3.7. Data of Electrical Supply System Components

Failure Events
Failure

Probabilities

Motor generator (MG) Fails 1.8141×10
-3

MG alternating current automatic voltage regulator fails 6.6208×10
-4

MG direct current voltage and frequency regulator fails 2.9791×10-3

Direct current switchboard fails 3.3112×10
-4

Alternating current switch board 1, 2 fails 2.8407×10
-4

Turbine 1, 2 Fails 2.6193×10-4

Turbo generator (TG) bearing 1, 2 fails 2.0075×10
-4

Generator bearing 1, 2 fails 2.0075×10
-4

TG air cooler 1, 2 fails 2.0075×10
-4

TG governor trips & control system 1, 2 fails 2.6196×10-4

Duplex filter 1, 2 fails 2.6196×10
-4

Generator 1, 2 fails 2.3919×10
-3

TG automatic voltage regulator 1, 2 fails 9.952×10-5

Table A.3.8. Data of Fresh Water Cooling System Components

Failure Events
Failure

Probabilities

Hull valve (inlet) 1, 2 fails 1.7611×10
-4

Flexible coupling unit 1, 2, 3, 4 fails 1.7611×10
-4

Appendix 3

241

Failure Events
Failure

Probabilities

Sea water services system 1, 2 fails 1.7611×10-4

Sea water service pump 1, 2 fails 5.2825×10
-4

Hull valve (outlet) 1, 2 fails 1.7611×10
-4

Heat exchanger 1, 2 fails 1.7611×10-4

Table A.3.9. Data of Hydraulics System Components

Failure Events
Failure

Probabilities

External hydraulic plant fails 1.0861×10
-3

External hydraulic system fails 2.7164×10
-4

Aft system fails 2.7164×10
-4

Aft plant (steering) (alternating current) fails 2.7131×10-3

Aft plant (steering) (direct current) fails 9.4637×10
-3

Main hydraulic plant fails 1.6287×10
-3

Main hydraulic system fails 2.7164×10-4

Table A.3.10. Data of Hydroplanes Control System Components

Explanation
Failure

Probabilities

Aft hydroplane control surfaces fail 2.3277×10-4

Hydraulic tilting cylinder fails 2.3277×10
-4

Aft hydroplane ram servo unit fails 6.9770×10
-4

Aft hydroplane order transmission box fails 2.3283×10-4

Air tilting cylinder fails 2.3277×10
-4

Air in emergency control fails 6.9770×10
-4

For’d hydroplane control surfaces fail 2.3277×10
-4

Tilting cylinder fails 2.3277×10-4

For’d hydroplane ram servo unit fails 6.9770×10
-4

For’d hydroplane order transmission box fails 2.3283×10
-4

Table A.3.11. Data of the Rudder Control System Components

Failure Events
Failure

Probabilities

Control surfaces fail 4.6549×10-4

Rudder ram fails 2.3277×10
-4

Ram servo unit fails 1.3963×10
-3

Rate control fails 2.3283×10
-4

Table A.3.12. Data of New Vessel Components

Components
Failure

Probabilities

CW pump type 2 5.2825×10-4

Feed pump type 2 1.2546×10
-4

Ahead valve type 2 3.6328×10
-3

MG VFR type 2 1.9654×10
-3

External hydraulic plant type 2 5.6120×10
-4

Main hydraulic plant type 2 2.7131×10
-3

Appendix 3

242

Table A.3.13. Data of Components Cost and Weight
Component Cost Weight Component Cost Weight

NRSP 10 20 TG Air Cooler 1, 2 7 200

Condenser 6 700
TG Governor Trips & Control System

1, 2
6 60

CW Pump Type 1 1 76 Duplex Filter 1, 2 3 10

CW Pump Type 2 0.7 80 Generator 1, 2 4 120

CW Hull Valve 1 10 TG AVR 1, 2 3 15

Circ Water System 9 50 Hull Valve (Inlet) 1, 2 2 10

Air Ejection Gland 6 10 Flexible Coupling Unit 1, 2, 3, 4 3 70

Lub Oil System 7 30 Sea Water Services System 1, 2 6 30

Main Lub Oil Filter 5 3 Sea Water Service Pump 1, 2 3 200

Main Lub Oil Cooler and

Thermostat
7 20 Hull Valve (Outlet) 1, 2 3 70

Feed Pump Type 1 4 6 Heat Exchanger 1, 4 8

Feed Pump Type 2 5 5 External Hydraulic Plant Type 1 7 1500

Extraction Pump 1, 2 3 5 External Hydraulic Plant Type 2 7 1700

Main Lub Oil Pump AC 4 4 External Hydraulic System 8 200

Main Lub Oil Pump DC 2 4.5 Aft System 9 150

Ahead Valve Type 1 2 6.5 Aft Plant (Steering) AC 4 100

Ahead Valve Type 2 1.5 5 Aft Plant (Steering) DC 4 100

Astern Throttle Valve 2 6.5 Main Hydraulic Plant Type 1 8 1000

Turbine 9 2300 Main Hydraulic Plant Type 2 7 900

Main Gear Box 7 2600 Main Hydraulic System 10 150

Clutches 7 2600 Aft Hydroplane Control Surfaces 4 60

Shaft 5 30 Hydraulic Tilting Cylinder 3.5 15

Shaft Seal 6 10 Aft Hydroplane Ram Servo Unit 5 50

Thrust Block 5 50
Aft Hydroplane Order Transmission

Box
3 310

Propulsor 10 5000 Air Tilting Cylinder 2.5 12

MG 5 150 Air in Emergency Control 4 30

MG AC AVR 3 5 For’d Hydroplane Control Surfaces 4 60

MG DC VRF Type 1 1 4 Tilting Cylinder 3 15

MG DC VRF Type 2 1.5 5 For’d Hydroplane Ram Servo Unit 5 50

DC Switchboard 5.5 10
For’d Hydroplane Order Transmission

Box
3 310

AC Switch board 1, 2 6 15 Control Surfaces 5 60

Turbine 1, 2 8 150 Rudder Ram 6 230

TG bearing 1, 2 7 30 Ram Servo Unit 4.5 50

Generator Bearing 1, 2 5 20

Rate Control 6 30

Appendix 3

243

Crossover Rate 0.75

0.094

0.096

0.098

0.1

0.102

0.104

0.106

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation No.
F

it
n

e
s

s
 V

a
lu

e

Mutation Rate 0.001 Mutation Rate 0.005 Mutation Rate 0.01

Figure A.3.12. Means of Best Fitness Values from Five Runs when Crossover Rate =

0.75, Population Size 10 Chromosomes

Crossover Rate 0.8

0.094

0.096

0.098

0.1

0.102

0.104

0.106

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation No.

F
it

n
e

s
s

 V
a

lu
e

Mutation Rate 0.001 Mutation Rate 0.005 Mutation Rate 0.01

Figure A.3.13. Means of Best Fitness Values from Five Runs when Crossover Rate =

0.8, Population Size 10 Chromosomes

Crossover Rate 0.95

0.094

0.095

0.096

0.097

0.098

0.099

0.1

0.101

0.102

0.103

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation No.

F
it

n
e

s
s

 V
a

lu
e

Mutation Rate 0.001 Mutation Rate 0.005 Mutation Rate 0.01

Figure A.3.14. Means of Best Fitness Values from Five Runs when Crossover Rate =

0.95, Population Size 10 Chromosomes

Appendix 3

244

0

0.0006

0.0012

0.0018

0.0024

0.003

0.0036

0.0042

 0.001 0.005 0.01

Mutation Rate

S
t
a
n

d
a
rd

 D
e
v

ia
t
io

n

Crossover Rate 0.75 Crossover Rate 0.8 Crossover Rate 0.95

Figure A.3.15. Standard Deviation of the Best Fitness Values from Five Runs,

Population Size 10 Chromosomes

Crossover Rate 0.75

0.094

0.095

0.096

0.097

0.098

0.099

0.1

0.101

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation No.

F
it

n
e

s
s

 V
a

lu
e

Mutation Rate 0.001 Mutation Rate 0.005 Mutation Rate 0.01

Figure A.3.16. Means of Best Fitness Values from Five Runs when Crossover Rate =

0.75, Population Size 30 Chromosomes

Crossover Rate 0.8

0.094

0.095

0.096

0.097

0.098

0.099

0.1

0.101

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation No.

F
it

n
e

s
s

 V
a

lu
e

Mutation Rate 0.001 Mutation Rate 0.005 Mutation Rate 0.01

Figure A.3.17. Means of Best Fitness Values from Five Runs when Crossover Rate =

0.8, Population Size 30 Chromosomes

Appendix 3

245

Crossover Rate 0.95

0.094

0.0945

0.095

0.0955

0.096

0.0965

0.097

0.0975

0.098

0.0985

0.099

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation No.
F

it
n
e

s
s

 V
a
lu

e

Mutation Rate 0.001 Mutation Rate 0.005 Mutation Rate 0.01

Figure A.3.18. Means of Best Fitness Values from Five Runs when Crossover Rate =

0.95, Population Size 30 Chromosomes

0

0.00005

0.0001

0.00015

0.0002

0.00025

 0.001 0.005 0.01

Mutation Rate

S
ta

n
d

a
rd

 D
e
v

ia
ti

o
n

Crossover Rate 0.75 Crossover Rate 0.8 Crossover Rate 0.95

Figure A.3.19. Standard Deviation of the Best Fitness Values from Five Runs,

Population Size 30 Chromosomes

Crossover Rate 0.75

0.094

0.0945

0.095

0.0955

0.096

0.0965

0.097

0.0975

0.098

0.0985

0.099

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation No.

F
it

n
e

s
s

 V
a

lu
e

Mutation Rate 0.001 Mutation Rate 0.005 Mutation Rate 0.01

Figure A.3.20. Means of Best Fitness Values from Five Runs when Crossover Rate =

0.75, Population Size 50 Chromosomes

Appendix 3

246

Crossover Rate 0.8

0.094

0.0945

0.095

0.0955

0.096

0.0965

0.097

0.0975

0.098

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation No.
F

it
n

e
s

s
 V

a
lu

e

Mutation Rate 0.001 Mutation Rate 0.005 Mutation Rate 0.01

Figure A.3.21. Means of Best Fitness Values from Five Runs when Crossover Rate =

0.8, Population Size 50 Chromosomes

Crossover Rate 0.95

0.094

0.0945

0.095

0.0955

0.096

0.0965

0.097

0.0975

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Generation No.

F
it

n
e

s
s

 V
a

lu
e

Mutation Rate 0.001 Mutation Rate 0.005 Mutation Rate 0.01

Figure A.3.22. Means of Best Fitness Values from Five Runs when Crossover Rate =

0.95, Population Size 50 Chromosomes

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

0.00016

 0.001 0.005 0.01

Mutation Rate

S
ta

n
d

a
r
d

 D
e
v
ia

ti
o

n

Crossover Rate 0.75 Crossover Rate 0.8 Crossover Rate 0.95

Figure A.3.23. Standard Deviation of the Best Fitness Values from Five Runs,

Population Size 50 Chromosomes

Appendix 3

247

A.3.3. MILITARY VESSEL DESIGN OPTIMISATION PROBLEM

WITH CONSTRAINTS ADDED AT EACH PHASE

Crossover Rate 0.75

0.094

0.095

0.096

0.097

0.098

0.099

0.1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73

Generation No.

F
it

n
e
s
s
 V

a
lu

e

Population size 70; Mutation Rate 0.001
Population size 70; Mutation Rate 0.005
Population size 70; Mutation Rate 0.01
Population size 30; Mutation Rate 0.001
Population size 30; Mutation Rate 0.005
Population size 30; Mutation Rate 0.01

,

,

Figure A.3.24. Average Fitness Values for Generations when Crossover Rate = 0.75

Crossover Rate 0.8

0.094

0.095

0.096

0.097

0.098

0.099

0.1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73

Generation No.

F
it

n
e

s
s

 V
a

lu
e

Population size 70; Mutation Rate 0.001
Population size 70; Mutation Rate 0.005
Population size 70; Mutation Rate 0.01
Population size 30; Mutation Rate 0.001
Population size 30; Mutation Rate 0.005
Population size 30; Mutation Rate 0.01

,

Figure A.3.25. Average Fitness Values for Generations when Crossover Rate = 0.8

Crossover Rate 0.75

0.0944

0.0945

0.0946

0.0947

0.0948

0.0949

0.095

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73

Generation No.

F
it
n

e
s

s
 V

a
lu

e

Population size 70; Mutation Rate 0.001
Population size 70; Mutation Rate 0.005
Population size 70; Mutation Rate 0.01
Population size 30; Mutation Rate 0.001
Population size 30; Mutation Rate 0.005
Population size 30; Mutation Rate 0.01

,

,

Figure A.3.26. Best Fitness Values for Generations when Crossover Rate = 0.75

Appendix 3

248

Crossover Rate 0.8

0.09437

0.09447

0.09457

0.09467

0.09477

0.09487

0.09497

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73

Generation No.
F

it
n

e
s

s
 V

a
lu

e

Population size 70; Mutation Rate 0.001
Population size 70; Mutation Rate 0.005
Population size 70; Mutation Rate 0.01
Population size 30; Mutation Rate 0.001
Population size 30; Mutation Rate 0.005
Population size 30; Mutation Rate 0.01

,

,

Figure A.3.27. Best Fitness Values for Generations when Crossover Rate = 0.8

Appendix 4 249

APPENDIX 4

UAV DESIGN OPTIMISATION USING THE MPMSDOA

Table A.4.1. Basic Event Data

Basic Event

Name in

Fault Trees

Description
Failure

Probability

LGret Landing gear can not be extended 0. 002

LGex Landing gear can not be retracted 0. 0025

Avion Avionics system fails 0.001

Valve_b_O Brake control valve fails opened 0.005

Valve_b_C Brake control valve fails closed 0.005

Valve_a_O Antiskid valve fails opened 0.004

Valve_a_C Antiskid valve fails closed 0.005

LGret Landing gear can not be extended 0.002

LGex Landing gear can not be retracted 0.0025

Avion Avionics system fails 0.001

Valve_b_O Brake control valve fails opened 0.005

Valve_b_C Brake control valve fails closed 0.005

Valve_a_O Antiskid valve fails opened 0.004

Valve_a_C Antiskid valve fails closed 0.005

Brake Brakes fail 0.003

Eng 1 Engine 1 fails 0.004

Eng 2 Engine 2 fails 0.006

Valve1c_O Cross feed valve 1 fails opened 0.0037

Valve1c_C Cross feed valve 1 fails closed 0.006

Valve2c_O Cross feed valve 2 fails opened 0.0037

Valve2c_C Cross feed valve 2 fails closed 0.004

Tank1 Tank 1 fails 0.001

Tank2 Tank 2 fails 0.001

Pump1 Pump 1 fails 0.003

Pump2 Pump 2 fails 0.003

Navig Navigation system fails 0.001

Avoid Sense and avoidance system fails 0.001

Flight Flight control surfaces fail 0.001

Canc Phase is aborted 0.0035

Bird1 Bird strike on engine 1 0.006

Bird2 Bird strike on engine 2 0.006

Atc Air traffic control failure 0.001

Aircraft Other aircraft 0.002

Storm Storm 0.003

Comm Communication mistake 0.001

Appendix 4 250

Table A.4.2. Additional Basic Event Data

Description

Failure

Probability

during

Mission 1

Failure

Probability

during

Mission 2

Type 1 landing gear can not be extended 0.002 0.008

Type 2 landing gear can not be extended 0.006 0.003

Type 1 antiskid valve fails opened 0.004 0.004

Type 2 antiskid valve fails opened 0.003 0.006

Type 3 antiskid valve fails opened 0.008 0.002

Type 1 brakes fail 0.003 0.001

Type 2 brakes fail 0.001 0.004

Type 1 engine 1 fails 0.004 0.005

Type 2 engine 1 fails 0.006 0.003

Type 3 engine 1 fails 0.009 0.009

Type 1 engine 2 fails 0.006 0.002

Type 2 engine 2 fails 0.0035 0.005

Type 3 engine 2 fails 0.0015 0.008

Type 1 navigation system fails 0.001 0.008

Type 2 navigation system fails 0.005 0.0025

Type 1 sense and avoidance system fails 0.001 0.007

Type 2 sense and avoidance system fails 0.004 0.0025

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

1 10 19 28 37 46 55 64 73 82 91 100

Generation No

G
e
n
e

r
a

ti
o
n

a
l
D

is
ta

n
c
e

population size=30,

mutation rate=0.001

population size=30,

mutation rate=0.005

population size=30,

mutation rate=0.01

population size=50,

mutation rate=0.001

population size=50,

mutation rate=0.005

population size=50,

mutation rate=0.01

population size=70,

mutation rate=0.001

population size=70,

mutation rate=0.005

population size=70,

mutation rate=0.01

Figure A.4.1. Generational Metric Values when Crossover Rate = 0.75

Appendix 4 251

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

4.0E-04

70 73 76 79 82 85 88 91 94 97 100

Generation No

G
e

n
e

r
a

ti
o

n
a

l
D

is
ta

n
c

e

population size=30,

mutation rate=0.001

population size=30,

mutation rate=0.005

population size=30,

mutation rate=0.01

population size=50,

mutation rate=0.001

population size=50,

mutation rate=0.005

population size=50,

mutation rate=0.01

population size=70,

mutation rate=0.001

population size=70,

mutation rate=0.005

population size=70,

mutation rate=0.01

Figure A.4.2. Generational Metric Values for the Last 30 Generations when Crossover

Rate = 0.75

0.528

0.641

0.488

0.401
0.355 0.345

0.562 0.535

0.333

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Mutation Rate=0.001 Mutation Rate=0.005 Mutation Rate=0.01

Population Size=30 Population Size=50 Population Size=70

Figure A.4.3. Function C Values when Crossover Rate = 0.75

0
.0

3
1

3

0
.0

1
8
6

0
.0

1
5
8

0
.0

2
0
4

0
.0

2
0

0

0
.0

2
1
1

0
.0

1
7
4

0
.0

1
8
4

0
.0

1
7
7

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Mutation Rate=0.001 Mutation Rate=0.005 Mutation Rate=0.01

Population Size=30 Population Size=50 Population Size=70

Figure A.4.4. Spacing Metric Values when Crossover Rate = 0.75

Appendix 4 252

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

1 10 19 28 37 46 55 64 73 82 91 100

Generation No

G
e
n

e
ra

ti
o

n
a
l
D

is
ta

n
c
e

population size=30,

mutation rate=0.001

population size=30,

mutation rate=0.005

population size=30,

mutation rate=0.01

population size=50,

mutation rate=0.001

population size=50,

mutation rate=0.005

population size=50,

mutation rate=0.01

population size=70,

mutation rate=0.001

population size=70,

mutation rate=0.005

population size=70,

mutation rate=0.01

Figure A.4.5. Generational Metric Values when Crossover Rate = 0.8

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

70 73 76 79 82 85 88 91 94 97 100

Generation No

G
e

n
e

r
a

ti
o

n
a

l
D

is
ta

n
c

e

population size=30,

mutation rate=0.001

population size=30,

mutation rate=0.005

population size=30,

mutation rate=0.01

population size=50,

mutation rate=0.001

population size=50,

mutation rate=0.005

population size=50,

mutation rate=0.01

population size=70,

mutation rate=0.001

population size=70,

mutation rate=0.005

population size=70,

mutation rate=0.01

Figure A.4.6. Generational Metric Values for the Last 30 Generations when Crossover

Rate = 0.8

0.631
0.597

0.504

0.368
0.347

0.461

0.556

0.375
0.349

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Mutation Rate=0.001 Mutation Rate=0.005 Mutation Rate=0.01

Population Size=30 Population Size=50 Population Size=70

Figure A.4.7. Function C Values when Crossover Rate = 0.8

Appendix 4 253

0
.0

1
9
1

0
.0

2
3
6

0
.0

1
8

4

0
.0

1
9
0

0
.0

1
7

20
.0

2
2
4

0
.0

2
2
3

0
.0

1
7
6

0
.0

1
8
5

0

0.005

0.01

0.015

0.02

0.025

Mutation Rate=0.001 Mutation Rate=0.005 Mutation Rate=0.01

Population Size=30 Population Size=50 Population Size=70

Figure A.4.8. Spacing Metric Values when Crossover Rate = 0.8

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

1 10 19 28 37 46 55 64 73 82 91 100

Generation No

G
e
n

e
ra

ti
o

n
a
l
D

is
ta

n
c
e

population size=30,

mutation rate=0.001

population size=30,

mutation rate=0.005

population size=30,

mutation rate=0.01

population size=50,

mutation rate=0.001

population size=50,

mutation rate=0.005

population size=50,

mutation rate=0.01

population size=70,

mutation rate=0.001

population size=70,

mutation rate=0.005

population size=70,

mutation rate=0.01

Figure A.4.9. Generational Metric Values when Crossover Rate = 0.95

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

1.6E-04

70 73 76 79 82 85 88 91 94 97 100

Generation No

G
e
n

e
ra

ti
o

n
a
l
D

is
ta

n
c
e

population size=30,

mutation rate=0.001

population size=30,

mutation rate=0.005

population size=30,

mutation rate=0.01

population size=50,

mutation rate=0.001

population size=50,

mutation rate=0.005

population size=50,

mutation rate=0.01

population size=70,

mutation rate=0.001

population size=70,

mutation rate=0.005

population size=70,

mutation rate=0.01

Figure A.4.10. Generational Metric Values for the Last 30 Generations when Crossover

Rate = 0.8

Appendix 4 254

0.382 0.397
0.421

0.3270.34

0.388

0.595

0.3940.375

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Mutation Rate=0.001 Mutation Rate=0.005 Mutation Rate=0.01

Population Size=30 Population Size=50 Population Size=70

Figure A.4.11. Function C Values when Crossover Rate = 0.95

0
.0

1
6
9

0
.0

1
6
90
.0

2
0
7

0
.0

1
9
5

0
.0

2
0
5

0
.0

1
7
3

0
.0

1
8
8

0
.0

1
8
2

0
.0

1
7
5

0

0.005

0.01

0.015

0.02

0.025

Mutation Rate=0.001 Mutation Rate=0.005 Mutation Rate=0.01

Population Size=30 Population Size=50 Population Size=70

Figure A.4.12. Spacing Metric Values when Crossover Rate = 0.95

