6,476 research outputs found

    A Cognitively Inspired Clustering Approach for Critique-Based Recommenders

    Full text link
    The purpose of recommender systems is to support humans in the purchasing decision-making process. Decision-making is a human activity based on cognitive information. In the field of recommender systems, critiquing has been widely applied as an effective approach for obtaining users' feedback on recommended products. In the last decade, there have been a large number of proposals in the field of critique-based recommenders. These proposals mainly differ in two aspects: in the source of data and in how it is mined to provide the user with recommendations. To date, no approach has mined data using an adaptive clustering algorithm to increase the recommender's performance. In this paper, we describe how we added a clustering process to a critique-based recommender, thereby adapting the recommendation process and how we defined a cognitive user preference model based on the preferences (i.e., defined by critiques) received by the user. We have developed several proposals based on clustering, whose acronyms are MCP, CUM, CUM-I, and HGR-CUM-I. We compare our proposals with two well-known state-of-the-art approaches: incremental critiquing (IC) and history-guided recommendation (HGR). The results of our experiments showed that using clustering in a critique-based recommender leads to an improvement in their recommendation efficiency, since all the proposals outperform the baseline IC algorithm. Moreover, the performance of the best proposal, HGR-CUM-I, is significantly superior to both the IC and HGR algorithms. Our results indicate that introducing clustering into the critique-based recommender is an appealing option since it enhances overall efficiency, especially with a large data set

    RecMem: Time Aware Recommender Systems Based on Memetic Evolutionary Clustering Algorithm

    Get PDF
    Nowadays, the recommendation is an important task in the decision-making process about the selection of items especially when item space is large, diverse, and constantly updating. As a challenge in the recent systems, the preference and interest of users change over time, and existing recommender systems do not evolve optimal clustering with sufficient accuracy over time. Moreover, the behavior history of the users is determined by their neighbours. The purpose of the time parameter for this system is to extend the time-based priority. This paper has been carried out a time-aware recommender systems based on memetic evolutionary clustering algorithm called RecMem for recommendations. In this system, clusters that evolve over time using the memetic evolutionary algorithm and extract the best clusters at every timestamp, and improve the memetic algorithm using the chaos criterion. The system provides appropriate suggestions to the user based on optimum clustering. The system uses optimal evolutionary clustering using item attributes for the cold-start item problem and demographic information for the cold start user problem. The results show that the proposed method has an accuracy of approximately 0.95, which is more effective than existing systems

    NEXT LEVEL: A COURSE RECOMMENDER SYSTEM BASED ON CAREER INTERESTS

    Get PDF
    Skills-based hiring is a talent management approach that empowers employers to align recruitment around business results, rather than around credentials and title. It starts with employers identifying the particular skills required for a role, and then screening and evaluating candidates’ competencies against those requirements. With the recent rise in employers adopting skills-based hiring practices, it has become integral for students to take courses that improve their marketability and support their long-term career success. A 2017 survey of over 32,000 students at 43 randomly selected institutions found that only 34% of students believe they will graduate with the skills and knowledge required to be successful in the job market. Furthermore, the study found that while 96% of chief academic officers believe that their institutions are very or somewhat effective at preparing students for the workforce, only 11% of business leaders strongly agree [11]. An implication of the misalignment is that college graduates lack the skills that companies need and value. Fortunately, the rise of skills-based hiring provides an opportunity for universities and students to establish and follow clearer classroom-to-career pathways. To this end, this paper presents a course recommender system that aims to improve students’ career readiness by suggesting relevant skills and courses based on their unique career interests

    On Recommendation of Learning Objects using Felder-Silverman Learning Style Model

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The e-learning recommender system in learning institutions is increasingly becoming the preferred mode of delivery, as it enables learning anytime, anywhere. However, delivering personalised course learning objects based on learner preferences is still a challenge. Current mainstream recommendation algorithms, such as the Collaborative Filtering (CF) and Content-Based Filtering (CBF), deal with only two types of entities, namely users and items with their ratings. However, these methods do not pay attention to student preferences, such as learning styles, which are especially important for the accuracy of course learning objects prediction or recommendation. Moreover, several recommendation techniques experience cold-start and rating sparsity problems. To address the challenge of improving the quality of recommender systems, in this paper a novel recommender algorithm for machine learning is proposed, which combines students actual rating with their learning styles to recommend Top-N course learning objects (LOs). Various recommendation techniques are considered in an experimental study investigating the best technique to use in predicting student ratings for e-learning recommender systems. We use the Felder-Silverman Learning Styles Model (FSLSM) to represent both the student learning styles and the learning object profiles. The predicted rating has been compared with the actual student rating. This approach has been experimented on 80 students for an online course created in the MOODLE Learning Management System, while the evaluation of the experiments has been performed with the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The results of the experiment verify that the proposed approach provides a higher prediction rating and significantly increases the accuracy of the recommendation

    Effective Mechanism for Social Recommendation of News

    Get PDF
    Recommendation systems represent an important tool for news distribution on the Internet. In this work we modify a recently proposed social recommendation model in order to deal with no explicit ratings of users on news. The model consists of a network of users which continually adapts in order to achieve an efficient news traffic. To optimize network's topology we propose different stochastic algorithms that are scalable with respect to the network's size. Agent-based simulations reveal the features and the performance of these algorithms. To overcome the resultant drawbacks of each method we introduce two improved algorithms and show that they can optimize network's topology almost as fast and effectively as other not-scalable methods that make use of much more information

    Improving Reachability and Navigability in Recommender Systems

    Full text link
    In this paper, we investigate recommender systems from a network perspective and investigate recommendation networks, where nodes are items (e.g., movies) and edges are constructed from top-N recommendations (e.g., related movies). In particular, we focus on evaluating the reachability and navigability of recommendation networks and investigate the following questions: (i) How well do recommendation networks support navigation and exploratory search? (ii) What is the influence of parameters, in particular different recommendation algorithms and the number of recommendations shown, on reachability and navigability? and (iii) How can reachability and navigability be improved in these networks? We tackle these questions by first evaluating the reachability of recommendation networks by investigating their structural properties. Second, we evaluate navigability by simulating three different models of information seeking scenarios. We find that with standard algorithms, recommender systems are not well suited to navigation and exploration and propose methods to modify recommendations to improve this. Our work extends from one-click-based evaluations of recommender systems towards multi-click analysis (i.e., sequences of dependent clicks) and presents a general, comprehensive approach to evaluating navigability of arbitrary recommendation networks

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports
    • …
    corecore