In this paper, we investigate recommender systems from a network perspective
and investigate recommendation networks, where nodes are items (e.g., movies)
and edges are constructed from top-N recommendations (e.g., related movies). In
particular, we focus on evaluating the reachability and navigability of
recommendation networks and investigate the following questions: (i) How well
do recommendation networks support navigation and exploratory search? (ii) What
is the influence of parameters, in particular different recommendation
algorithms and the number of recommendations shown, on reachability and
navigability? and (iii) How can reachability and navigability be improved in
these networks? We tackle these questions by first evaluating the reachability
of recommendation networks by investigating their structural properties.
Second, we evaluate navigability by simulating three different models of
information seeking scenarios. We find that with standard algorithms,
recommender systems are not well suited to navigation and exploration and
propose methods to modify recommendations to improve this. Our work extends
from one-click-based evaluations of recommender systems towards multi-click
analysis (i.e., sequences of dependent clicks) and presents a general,
comprehensive approach to evaluating navigability of arbitrary recommendation
networks