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ABSTRACT

Next Level: A Course Recommender System Based on Career Interests

by Shehba Shahab

Skills-based hiring is a talent management approach that empowers employers

to align recruitment around business results, rather than around credentials and

title. It starts with employers identifying the particular skills required for a role,

and then screening and evaluating candidates’ competencies against those

requirements. With the recent rise in employers adopting skills-based hiring

practices, it has become integral for students to take courses that improve their

marketability and support their long-term career success. A 2017 survey of over

32,000 students at 43 randomly selected institutions found that only 34% of

students believe they will graduate with the skills and knowledge required to be

successful in the job market. Furthermore, the study found that while 96% of chief

academic officers believe that their institutions are very or somewhat effective at

preparing students for the workforce, only 11% of business leaders strongly agree

[11]. An implication of the misalignment is that college graduates lack the skills

that companies need and value. Fortunately, the rise of skills-based hiring provides

an opportunity for universities and students to establish and follow clearer

classroom-to-career pathways. To this end, this paper presents a course

recommender system that aims to improve students’ career readiness by suggesting

relevant skills and courses based on their unique career interests.
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CHAPTER 1

Introduction

1.1 Problem

Success starts with a plan. The earlier students take ownership of their

academic plans, the more likely they are to graduate on time and find success in an

increasingly competitive job market. Studies have shown that every additional year

of enrollment in college costs students more than $26,000 in tuition, fees, books, and

living expenses, as well as more than $22,000 in lost lifetime wages. It is estimated

that students in the California State University system who take six years to earn a

bachelor’s degree will incur $110,900 in extra expenses and lost wages than students

who graduate within four years[1]. Despite numerous incentives to begin academic

planning early, many students feel ill-equipped to navigate the complicated process

of course selection. Without adequate tools to facilitate their decision-making,

students often spend more time hunting for data to make an informed decision than

using it to craft a solid plan.

Educational needs vary from student to student based on their career goals

and skills-gap. There is no one-size fits all solution for student success. In this

context, personalized course recommender systems have proven to be useful

supplements to traditional academic advising in helping students select relevant

courses for their specific goals. Researchers have attempted to perfect the art of

course recommendations for the last decade. [3] recommended courses using a

hybrid recommender system that connected learners’ preferences with ratings given

to learning content by similar users, [5] recommended courses based students’ job

interests using a manually annotated corpora, and [6] recommended courses based
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on the courses students had taken in previous semesters. After researching the

strengths and weaknesses of each of these previous approaches, we propose Next

Level, a course recommender system that helps students discover relevant skills and

courses based on their unique career interests.

1.2 Proposed Solution

Skills-based hiring is a talent management approach that empowers employers

to align recruitment around business results, rather than around credentials and

title. It starts with employers identifying the particular skills required for a role, and

then screening and evaluating candidates’ competencies against those requirements.

With the recent rise in employers adopting skills-based hiring practices, it has

become integral for students to take courses that improve their marketability and

support their long-term career success. A 2017 survey of over 32,000 students at 43

randomly selected institutions found that only 34% of students believe they will

graduate with the skills and knowledge required to be successful in the job market.

Furthermore, the study found that while 96% of chief academic officers believe that

their institutions are very or somewhat effective at preparing students for the

workforce, only 11% of business leaders strongly agree[11]. An implication of the

misalignment is that college graduates lack the skills that companies need and value.

Fortunately, the rise of skills-based hiring provides an opportunity for universities

and students to establish and follow clearer classroom-to-career pathways. To this

end, we propose Next Level, a course recommender system that uses content-based

filtering and an ensemble of k-means clustering and TF-IDF keyword extraction to

help students discover skills and courses based on their unique career interests.

Unlike existing statistical keyword extraction techniques such as TextRank, RAKE

2



and TF-IDF that can only extract keywords from context, Next Level’s ensemble

algorithm combines the benefits of TF-IDF’s keyword extraction with the power of

unsupervised k-means clustering to mine large volumes of job descriptions and

identify closely related skills to students’ career interests. This allows Next Level to

serve as a discovery tool for both skills and courses. We believe the expanded search

scope will result in higher quality course recommendations than existing keyword

extraction techniques and k-means clustering on its own. To test our hypothesis, we

will benchmark Next Level’s recommendations against k-means clustering,

TextRank, TF-IDF and RAKE on the basis of precision and recall. Next Level’s

approach offers several advantages over previous recommender systems:

1. The results are highly relevant: Because content-based recommendations

rely on characteristics of objects themselves, the course recommendations are

likely to be highly relevant to the user’s unique job interests and are not

biased by course ratings from peers with dissimilar career goals.

2. Recommendations are transparent: The process by which any

recommendation is generated can be made transparent, which may increase

students’ trust in their recommendations or allow them to tweak the results.

3. New items can be recommended immediately: Unlike

collaborative-filtering, content-based filtering does not require a user to

interact with an item before it can be recommended. Furthermore, Next

Level’s ensemble approach is able to rely on data outside of the user’s basic

query. This can be useful technique for automatically expanding the search

scope when the user’s query does not yield any matching courses.

4. Users can get started more quickly: Avoids cold-start problem because a

3



user must enter search terms in order to get recommendations.

5. Benefits multiple stakeholders:

• Students: Students can discover both the skills and the courses needed

to obtain their dream jobs.

• Educators: Educators can learn trends in the industry and evolve

Course Learning Outcomes accordingly.

• Employers: Students enter the workforce with the skills needed to make

an immediate impact to the organization.

1.3 Organization

The remainder of the paper is organized as follows: Chapter 2 surveys related

literature on the topic of course recommender systems. In Chapter 3, we provide

background on the topic of recommender systems. In Chapter 4, we review existing

techniques for keyword extraction. In Chapter 5, we discuss strategies for taming

unstructured text. In Chapter 6, we detail our technical implementation. In

Chapter 7, we describe the results of our experiment. Finally, Chapter 8 concludes

the paper and presents possible future work.

4



CHAPTER 2

Related Work

Crafting the perfect course schedule requires careful consideration of a number

of factors ranging from a students’ career interests to scheduling conflicts, major

requirements, time commitment, grade potential and professor ratings. Over the

last decade, several researchers have proposed recommender systems taking one or

more of these factors into account. This chapter presents an overview of previous

approaches and their relative advantages and disadvantages.

2.1 Learning Objects: Building Blocks for Course Recommendations

The explosive rise of e-learning in the early 2000s led to efforts to standardize

media content for ease of search and retrieval. The term "learning object" was first

coined by Wayne Hodgins in 1994 to describe media that was accessible by, reusable

across, and interoperable with multiple learning management systems. This

paradigm called for a standardized and structured data model for capturing

descriptive attributes about media [2]. In his 2002 paper entitled "The Future of

Learning Objects" Hodgins discussed the importance of widespread adoption of

learning objects as a building block for personalized learning. It was his belief that

standardization would be key to connecting learning content and learners in the

future. While Hodgins did not build a course recommender system himself, his

vision became the inspiration for several early course recommender systems. We will

describe some of these approaches in the subsequent sections.
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2.2 Hybrid Course Recommender System Based on Ontologies

In 2006, the National Cheng Kung University proposed a hybrid

content-collaborative algorithm for learning content recommendations [3]. This was

one of the earliest experiments in the domain of learning content discovery and

extended Hodgin’s idea of using learning objects to connect learners with learning

content. In this study, a preference-based algorithm was used to calculate a learner’s

preference score and a neighbor-interest algorithm used the experiences of similar

learners to calculate an interest score. The two scores were aggregated to generate a

final recommendation score.

2.2.1 Feature Extraction and User Preference Profile

The study assumed the set of relevant learning objects for each course were

previously generated. The relevant characteristics of the learning objects were

defined in compliance with the IEEE Learning Object Metadata (LOM) standard.

In pursuit of adaptive personalized recommendations, the recommendation system

extracted the features of learning objects into the set c. Each fi represented a

feature of the learning object lo. These values were stored in a learning object

profile data structure. Learners interactions with learning objects were captured in

their Learner Profile History (LPH) and sorted by their unique preferences for the

learning object. The user preference score was calculated such that if a user studied

a learning object but did not rate it, a score of 1 was assumed. If the user later

rated the learning object, the score was replaced with the user rating. The feedback

range was between 1 and 5.

6



2.2.2 Preference-Based Algorithm

A content-based filtering preference algorithm was used to bias the

recommendations. The algorithm assigned a preference score, p-score to a learning

object if the feature was found in the user’s preferences, LPH. A

collaborative-filtering based nearest neighbor algorithm was used to incorporate the

recommendations of similar users into the model. This was a two-part algorithm

that first required finding neighbors with similar profiles to the active learner. The

formula used the feedback scores for items rated by both the target and neighbor

and the averages of feedback scores for all learning objects shared between the two

users to determine similarity. The second part of the algorithm involved calculating

an interest score for the neighbors returned in part one. The interest formula

formula predicted the active user’s interest in the recommended learning objects for

the course based on the interests of similar learners. This value was normalized by

the MaxScore an item could be given, the value 5.

2.2.3 Recommendations

Finally, learning objects were recommended by aggregating the preference and

relevance scores using the formula RS(lo), shown in Figure 1. The p-weight and

i-weight were used to capture sentiment over a period of time to account for changes

in the active learner and neighbors preferences over time. At the time of the study,

the weights were assigned a period of 1 month.

Figure 1: Recommendations Using Aggregating Preference and Relevance Scores

7



2.2.4 Strengths and Weaknesses

As a hybrid approach, this study was able to circumvent the problem of

overspecialization that is characteristic of content-based recommendation systems.

Likewise, it circumvented the cold-start problem characteristic of collaborative

filtering based systems by falling back on learners’ preferences if no similar

neighbors were found. In this case, both approaches were handled in memory and

therefore susceptible to scalability issues as the item and user databases grew in

size. Furthermore, as an ontology-based approach, the model was highly accurate

but required manual annotations by a domain-expert for optimal results. If the

annotations were sparse or inaccurate then it could bias the recommendations.

From a functional perspective, ratings from other users could be a highly subjective

variable to introduce into a recommender system. Students often rate courses which

are "easy" higher than courses which are more difficult but provide them the skills

needed to move further in their careers. This could artificially inflate the value of a

course in the eyes of a student.

2.3 CourseRank

In 2007, the InfoLab at Stanford University developed CourseRank, a social

tool for course planning and discovery [4]. CourseRank allowed users to read and

write course reviews, view grade distributions for classes, and plan their course loads

through personalized recommendations. The tool differed from traditional

recommendation systems in that it was not "hard-wired" to support a fixed set of

recommendation algorithms. Rather, students and designers (administrators) were

provided the flexibility to define their own recommendation workflows that could be

executed over the relational database in real-time. This approach aimed to address

8



three fundamental limitations with traditional course recommendation systems:

• Not all learners found "hard-wired" recommendations useful

• Designers could not experiment with new recommendation algorithms without

modifying system code

• Recommendation systems were typically based on either item content or

ratings, they did not utilize rich data representations

CourseRank’s approach allowed designers to build recommendation workflows using

either traditional content or collaborative filtering, or a custom hybrid approaches if

neither was suitable. Designers could choose from among several similarity measures

including cosine, pearson and jaccard. These formulas were abstracted to library

functions and could be referenced from within the workflows. Additionally,

designers were provided flexibility in choosing how items were weighted.

2.3.1 Recommendation Expression Trees

Recommendation workflows were translated into recommendation expression

trees such as the one shown in Figure 2. In this example, the workflow has two

recommend operators. The lower one finds students similar to the active student

(StudId <> 444) using the euclidean distance of their ratings. The upper

recommend operator finds courses recommended by these students and takes a

weighted average of their ratings to make the final recommendation for the active

user.

9



Figure 2: Recommendation Expression Tree

2.3.2 System Architecture

As illustrated in Figure 3, designers defined workflows using the Workflow

Manager. The Query Parser parsed the workflows into expression trees such as the

one shown in Figure 2. The Recommendation Plan Generator constructed a

sequence of SQL statements based on the input expression tree. The

Recommendation Generator interacted directly with the MySQL database to

execute the recommendation plan and generate the recommendations for the active

user. Finally, a student would interact with the CourseRank user interface to

execute the workflows defined by the designers for their organization. Figure 4

shows a screenshot of the advice panel students interacted with in the 2009 version

of the tool.

2.3.3 Strengths and Weaknesses

CourseRank improved transparency around recommendations results and was

largely considered a success. Yet, it required designers to understand the data

model in order to model relationships between classes. The recommendation engine,

like its predecessors, was built in memory and susceptible to the same scalability

10



Figure 3: System Architecture for CourseRank

issues that plagued other recommendation systems of its time.

2.4 A Semantic Recommender System for Adaptive Learning

A 2015 research project by the Polytechnic University of Turin proposed a

recommender system that suggested courses that would improve a learner’s chances
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Figure 4: Advice Panel

of entering the workforce [5]. This recommender system first identified the

competency gaps between a learner’s profile and a job listing posted by a company,

and then proposed recommended courses to correct the deficiencies. This approach

benefited multiple stakeholders:

• Students: Allowed students to choose courses that would put them on track

for landing their dream jobs.

• Educators: Provide an incentive to offer courses that aligned with the job

market.

• Companies: Allowed companies to directly communicate skill requirements

with both students and educators.
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2.4.1 System Architecture

This proposed system used a hybrid strategy to create its ontology. Courses,

resumes, job postings, and relevant competencies were expressed in terms of the

Word Net semantic thesaurus and adhered to guidelines recommended by the

European Qualification Framework. End-users could manually annotate metadata

using this pre-defined ontology or rely on the system to automatically annotate the

metadata on their behalf. Automatically annotated metadata tended to be less

accurate than metadata annotated manually by a domain expert. All terms in the

corpus were lemmatized and pre-processed to exclude stop words. The

recommendation system used a content-based filtering algorithm to rank courses by

computing the semantic similarity between the sentences used in the learner’s

resume with the company’s requirements and then with the course descriptions.

This process is illustrated in Figure 5. The recommendations were thus highly

specific to the active learner and were not concerned with data on other learners in

the system.

As in the 2015 recommendation engine proposed by Stanford University, this

recommendation system also provided its learners flexibility in controlling the final

output of the recommendation engine. Learners could control whether to give more

weight to the course title, course summary or course sections, which ranking

algorithm to use, as well as the depth of the search. This allowed the system to

provide transparency around the recommendations.

2.4.2 Strengths and Weaknesses

This proposed system was the first of its kind to combine heterogeneous data

that benefitted multiple stakeholders when making comparisons. The
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Figure 5: Course Recommendations Based on Competency Gaps

recommendation engine was also transparent in that end-users knew exactly why a

set of courses were being recommended to them and had flexibility to further tailor

the results. However, this was still susceptible to the cold-start problem where no

recommendations could be made if the learner never completed their user profile or

if educators or companies never populated their profiles.
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2.5 Course Recommendations Using Markov Chains

In 2016, Elham S. Khorasani, Zhao Zhenge and John Champaign of the

University of Illinois Springfield proposed a recommender system that considered

the sequence of courses students had previously taken when recommending courses

for the upcoming semester [6]. In an offline setting, course order tends to play a

major role in discussions around course planning. For example, a faculty advisor

might suggest taking a course in "data structures" before taking a course in

"algorithms" or encourage students to take "algorithms" and "operating systems"

in separate semesters because both courses are time-intensive. Khorasani et al.

aimed to capture these traditional course sequences in their recommender system.

2.5.1 Data Preprocessing

Khorasani et al. used a dataset from a Canadian research university

containing all students who had taken a computer science course at that university

between September 2001 and December 2011. The study highlighted a number of

data anomalies that were modified or omitted in the data pre-processing phrase:

• Remove duplicate enrollments: If a student enrolled in the same course

more than once (due to failing the course in a previous semester), only the

latest enrollment with the highest grade was retained.

• Remove infrequent courses: Courses that appeared less than six times

were removed from the dataset on the basis that these courses were either

unpopular or cancelled by the university.

• Removed students with sparse data: Students with less than two

semesters of data were also removed from the data set.
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Once the data had been cleaned, it was split into separate training and testing

sets. For each student, the current semester’s data was put into the training set and

the previous semester’s data was added to the testing set.

2.5.2 Markov Chains

Khorasani et al. modeled course sequences in their collaborative

filtering-based recommender system using Markov chains. A state in this basic

Markov model was represented as a set of k courses taken in k consecutive

semesters. The transitional probability of going from one state to another was

calculating using the Maximum Likelihood Estimation (MLE) formula as depicted

in Figure 6. In this equation, the numerator represents the number of students who

took ck+1 after taking the consecutive courses in k previous semesters and the

denominator is the total number of students who took the consecutive courses in k

consecutive semesters. Each student maps to several states in the state space

because students tend to take multiple courses per semester.

Figure 6: Maximum Likelihood Estimate

This approach calculates the recommendation score r(st, cj, j ) for each course

c that a student st is likely to take in a semester j, given their enrollments in k

previous semesters by adding up all of the transitional probabilities for s1 where s1

is the sequence of consecutive courses taken by the student in k previous semesters.
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Figure 7: Recommendation Score

2.5.3 Skip Model

One of the problems with the basic Markov chain explained in the previous

section is data scarcity. If the set of consecutive courses taken by a student does not

match those taken by any other student in the dataset, then the model would not

be able to make a recommendation for this student. Khorasani et al. addressed this

issue by modifying their model such that recommendations for the next semester

k+1 do not depend exclusively on k previous semester, but can also depend on

semesters prior to that. This is referred to as a simple skip model. In the skip

model approach, weights are assigned to each state to differentiate between built

with and without skipping. The more semesters skipped in a state, the less the state

should factor into the recommendation. Figure 8 illustrates the new weighted

Maximum Likelihood Estimation formula:

Figure 8: Weighted Maximum Likelihood Estimation

In the skip model, the recommendation score is computed as shown in Figure

9. If no semesters were skipped, this model reduces to the basic Markov model.

Figure 9: Weighted Recommendation Score
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2.5.4 Strengths and Weaknesses

This approach is novel in that it weighs course ordering heavily when

considering a recommendation. But course ordering alone is not a good criteria for

recommendations because not all students follow a linear path toward graduation. If

a student switches majors, for example, their course recommendations would

incorrectly recommend courses for their previous academic plan. Secondly, a data

scarcity issue exists if a particular pattern has not been before.
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CHAPTER 3

Background on Recommender Systems

Recommender systems can be classified into two basic architectures:

content-based filtering and collaborative filtering.

• Content-Based Filtering: Content-based systems focus on properties of

items. Similarity of items is determined by measuring the similarity in their

properties.

• Collaborative Filtering: Collaborative-filtering systems focus on the

relationship between users and items. Similarity of items is determined by the

similarity of the ratings of those items by the users who have rated both items.

Hybrid recommender systems combine the two basic approaches [7].

3.1 Content-Based Filtering

Content-based filtering recommends items based on their similarity to content

a user has either explicitly or implicitly indicated a preference for in the past. To

compute the recommendations, descriptive characteristics about each item, known

as features, are captured in an item profile data structure. Similarly, users

preferences for item features are captured in a user profile data structure. Most text

mining techniques cannot process text directly. Instead, the text needs to be

transformed to a list of numerical values representing characteristics of the text

known as a feature vector. This process is known a vectorization. Historically,

content-based filtering algorithms have relied on Gerald Salton’s vector space model
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for ranked retrieval. Under the vector space model, item and user profiles are stored

as vectors in the same feature space. Given a user and a set of item vectors, the

vector space model measures the degree of similarity between the vectors. The

smaller the angle, the more similar the vectors. This is illustrated in Figure 10 [8].

Figure 10: Document similarity under the vector space model.

Content-based filtering works well when it is easy to determine the features of

an item. Term frequency inverse document frequency (TF-IDF) is a widely used

technique for extracting features from items. Each feature in the item and user

profile vectors is represented by its TF-IDF weight. The normalized vectors can

then be used to compare the similarity of the item to the user’s preferences. Cosine

similarity is a popular measure for computing similarities between two vectors in the

vector space model. For each item in the collection, this approach takes the dot

product of the item and user profile vectors using the formula [8]:

𝑠𝑖𝑚( ⃗𝑖𝑡𝑒𝑚, ⃗𝑢𝑠𝑒𝑟) =
⃗𝑖𝑡𝑒𝑚

| ⃗𝑖𝑡𝑒𝑚|
· ⃗𝑢𝑠𝑒𝑟

| ⃗𝑢𝑠𝑒𝑟|
(1)

The items with the highest cosine similarity values are returned as
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recommendations.

A major advantage of the content-based filtering approach is that

recommendations are tailored to users’ unique interests. This allows content-based

recommenders to avoid the cold-start problem for new and unpopular items.

Another advantage is that the logic behind the recommendations can be explained

clearly, and users tend to like and feel more confident about recommendations that

they perceive as transparent. There can be drawbacks to using content-based

filtering in certain situations. The algorithm makes highly specialized

recommendations and cannot recommend items outside of a user’s preferences. This

greatly reduces its scope as a content discovery tool. Furthermore, it is susceptible

to the cold-start problem when there is insufficient data about an item or a user has

failed to indicate their preferences. Lastly, content-based filtering cannot take

advantage of quality assessments made by other users.

3.2 Collaborative Filtering

Collaborative filtering recommends items based on how similar users have

rated the item. This paradigm is based on the assumption that users with similar

interests in the past will have similar interests in the future. Two major classes of

collaborative filtering algorithms exist today: memory-based and model-based.

3.2.1 Memory-Based Filtering

Memory-based collaborative filtering algorithms use the entire database to

generate a recommendation. These algorithms use the notion of distance to find a

set of users or items, known as neighbors, that are similar to the active user. The

preferences of the neighbors are then joined to produce a recommendation for the
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active user. The memory-based approach is further categorized into user-based and

item-based algorithms.

User-Based Collaborative Filtering: User-based collaborative filtering

algorithms recommend items based on similar user’s ratings, ie: users who are

similar to you also liked. This approach is a generalization of the k-nearest neighbor

(KNN) algorithm and can be reduced to four simple steps:

1. Compute the similarity between the active user and all other users

2. Sort the results and return the top k users

3. Predict the rating the active user would give to unseen items based on

neighbors’ ratings

4. Recommend the highest rated items.

There are many ways to quantify distance between two users. The four commonly

used similarity measures are euclidean distance, pearson’s correlation coefficient,

jaccard coefficient and cosine similarity. Once the top k neighbors have been

identified, a user-item utility matrix, such a the one shown in Figure 11, is used to

predict how the active user would rate unseen items based on an average or

weighted average of the ratings for those items provided by their neighbors.

Figure 11: A utility matrix representing ratings of courses on a 1-5 scale.
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User-based collaborative filtering was a popular algorithm in the early days of

recommender systems due to its relative ease of implementation and context

independence but its widespread use revealed several problems:

• Data sparsity: Recommendations were inaccurate when the system had

many items but comparatively few ratings. Similarly, new items would not

have enough ratings to show up as recommendations.

• Scalability: The more neighbors the algorithm considers, the more

computationally expensive it becomes. Furthermore, user profiles change

frequently and therefore the entire model needs to be re-computed each time.

• Cold-start problem: Not possible to generate accurate recommendations

when the system has little to no information about a user. Similarly, it is not

possible to generate recommendations for users with unique ratings patterns

as there may not be any neighbors they can be compared against.

Item-Based Collaborative Filtering: In 1998, Amazon proposed

item-based collaborative filtering to address some of the limitations of the

user-based approach [9]. Rather than matching the active user to similar users,

item-based algorithms match items the active user has rated to similar items. The

algorithm then aggregates and recommends the similar items, ie: users who liked

this item also liked. Like user-based collaborative filtering, similarity between two

items can be calculated using any similarity measure. Item-based algorithms return

top k recommendations, but many approaches also simply return all items with a

similarity score above a certain threshold. With user-based collaborative filtering,

pre-computing the user neighborhood can lead to poor predictions because user

similarity is a dynamic measure and changes constantly. Therefore, all
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computations must be completed online. Item-based collaborative filtering avoids

this problem because item similarity is more static. This allows for pre-computation

of the item-item similarity and leads to vast improvements in performance.

3.2.2 Model Based

Memory-based recommender systems use the entire database to make

recommendations. These algorithms do not perform well in a real-world setting with

a large datasets. Model-based recommendation systems address this issue by

extracting a subset of information about users and items to use as a representative

’model’ for making recommendations. The reduced dimensionality offers benefits of

both speed and scalability. Common models for reducing the dimensionality of a

ratings matrix include Bayesian Networks, Clustering Models, and Latent Semantic

Models such as Singular Value Decomposition (SVD), Principal Component

Analysis (PCA) and Probabilistic Matrix Factorization. The overall goal of these

techniques is to uncover latent factors that explain observed ratings. One drawback

of the model-based approach is that generalizations often result in lower levels of

accuracy than their memory-based counterparts [10].

24



CHAPTER 4

Keyword Extraction Techniques

Keywords describe the main topics expressed in a document. Previous course

recommender systems employed professional curators to manually annotate

metadata using relevant keywords. In this section, we will describe statistical

techniques for automatic keyword extraction.

4.1 Term Frequency-Inverse Document Frequency (TF-IDF)

TF-IDF, short for term frequency-inverse document frequency, is a text mining

technique to weigh a term according to its importance in a document: the higher

the term frequency, the larger its weight will be. At the same time, it weighs the

term inverse to its frequency across all documents. That means words such as the,

a, and is which are likely to show up in multiple documents but are not useful for

recommendation are weighed less than words that are more unique to the document.

TF-IDF can be computed for a term using the formula shown in Figure 12 [8]:

Figure 12: TF-IDF Formula.
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4.1.1 Strengths and Weaknesses

TF-IDF is a widely used technique due to its simplicity and ease of

implementation. Its advantages include that it is unsupervised, domain-independent

and language-independent. One of the drawbacks of the TF-IDF technique is that it

ignores the conceptual meaning of words, and therefore, it suffers from issues with

synonymy and polysemy. As an extension of the bag of words model, the algorithm

does not take word order into account and does not strip stopwords; however, these

strategies can be employed in the pre-processing phrase prior to TF-IDF

calculations. Lastly, TF-IDF weights are typically computed on a per term basis

and the algorithm does not take meaningful phrases into consideration.

4.2 TextRank

TextRank is a graph-based ranking model for keyword extraction from

text-based documents. The approach builds a graph of word co-occurrences and

ranks the importance of individual words using Google’s PageRank algorithm.

4.2.1 Candidate Keywords

The first step in the TextRank algorithm is to tokenize a document into basic

lexical units. The lexical units represent the vertices that are added to the text

graph. Various tokenization strategies can be employed to refine the selection to the

most relevant lexical units. In traditional implementations of the TextRank

algorithm, it is common to apply stopword lists and syntactic filters, such as Part of

Speech Tagging (POS) to remove terms that are not nouns or adjectives. The use of

nouns and adjectives follows the observation that human annotators tend to use

nouns rather than verbs to summarize documents.
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4.2.2 Undirected Weighted Graph of Co-occurrences

Next, all candidate keywords are added to the graph. To avoid excessive

growth of the graph size, TextRank only considers single words as candidates for

addition to the graph. An edge is added between lexical units that co-occur between

a window of N words. In TextRank, the window of co-occurrence is always fixed.

To illustrate how this works, when the co-occurence window is 2, no occurrence edge

would be created for the sentence "Peter likes pasta" because likes is a verb that did

not pass the syntactic filter. However, if the co-occurence window changed to 3,

then Peter and pasta would become connected. Figure 13 shows an example of a

co-occurrence graph created for a small corpus [13].

Figure 13: Graph of Co-occurrences
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4.2.3 PageRank

After the co-occurrence graph is constructed, the score associated with each

vertex is set to an initial value of 1. Then the algorithm goes through the list of

nodes and collects the influence of each of its inbound connections. The influence is

the value of the sum of the connect vertices summed to determine the new score for

the node. Then these scores are normalized, the highest score becomes 1, and the

rest are scaled from 0 to 1 based on that value. Each time through the algorithm

gets closer to the actual "value" for each node, and it repeats until the values

converge - usually for 20-30 iterations. Once a final score is obtained for each vertex

in the graph, vertices are sorted in reversed order of their score, and the top T

vertices in the ranking are retained for post-processing. By default, T is set to one

third of the number of vertices in the graph. During post-processing, all lexical

units selected as candidate keywords by the TextRank algorithm are marked in the

text, and sequences of adjacent keywords are collapsed into a multi-word keyphrase.

4.2.4 Strengths and Weaknesses

Like TF-IDF, TextRank is an unsupervised, domain-independent, and

language independent method for extracting keywords. TextRank’s advantage over

TF-IDF is that it is able to generate keyword phrases which might have more

meaning than individual words. A major drawback of this technique is that it does

not have the context of outside word usage and therefore cannot reliably predict the

most important words for a specific document.
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4.3 Rapid Automatic Keyword Extraction (RAKE)

RAKE, short for Rapid Automatic Keyword Extraction, is an algorithm for

extracting keywords from individual documents. The algorithm tries to determine

key phrases in a body of text by analyzing the word frequencies and their

co-occurrences with other words in the text. The RAKE algorithm is based on the

observation that keywords frequently contain multiple words but rarely contain

punctuation or stop words such as the, a, and is. As input, RAKE accepts a list of

stop words, a set of phrase delimiters, and a set of word delimiters. RAKE uses stop

words to partition the document into candidate keywords, which are sequences of

content words as they occur in the text. Co-occurence of words within the

candidate keywords allows the algorithm to gauge a word’s meaningfulness.

4.3.1 Candidate Keywords

RAKE generates a list of candidate keywords by splitting the document text

into an array of words by the specified word delimiters. This array is then split into

sequences of contiguous words at phrase delimiters and stop word positions. The

words within a sequence together form a candidate keyword. Figure 14 illustrates

an example of a candidate keyword list [11].

Figure 14: Candidate keywords parsed from the sample abstract
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4.3.2 Keyword Scores

Using the candidate keywords generated in Figure 14, the RAKE algorithm

builds a graph of word co-occurrences across all candidate keywords. This is

illustrated in Figure 15 [12].

Figure 15: The word co-occurrence graph for candidate keywords

A score is calculated for each candidate keyword and defined as the sum of its

member word scores. The scores for the word co-occurrence graph are shown in

Figure 16 [12]. The algorithm allow for flexibility in choosing the metric by which to

score the words:

• Degree of the word, deg(w): Favors words that occur often and in longer

candidate keywords

• Frequency of the word, freq(w): Favors words that occur frequently

regardless of the number of words with which they co-occur

• Ratio of degree of word to its frequency, deg(w)/freq(w): Favors
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words that predominantly occur in longer candidate keywords. This is the

default metric.

Figure 16: Word scores calculated from the word co-occurrence graph

4.3.3 Adjoining Stop Words

It is important to note that RAKE does not blindly omit stop words from its

candidate keyword generation. The algorithm accounts for the possibility that two

content words could be joined together by one or more stop words, such as "Day of

the Dead." If the algorithm finds such keywords adjoined by a stop word, and the

pair occurs twice in the same document and in the same order, then a new

candidate keyword including the interior stop words is generated. Because of the

two occurrence restriction, it is more likely that these combinations will be found in

larger documents than smaller ones.

4.3.4 Extracting Keywords

After candidates are scored, the top T candidate keywords with the highest

scores are selected as the keywords for the document. T is defined as a third of the

number of words in the graph.

4.3.5 Strengths and Weaknesses

Like TF-IDF and TextRank, RAKE is an unsupervised, domain-independent,

and language independent method for extracting keywords. RAKE’s advantage over
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TF-IDF is that it is able to generate keyword phrases which might have more

meaning than individual words. It is also a fast and computationally efficient

solution. Experiments have shown RAKE is faster than TextRank while achieving

higher precision and comparable recall scores [12]. Like TextRank, a major

drawback of this technique is that it does not have the context of outside word

usage and therefore cannot reliably predict the most important words for a specific

document. It also requires generation of a stop word list which need to take

consideration of the domain and language of the document being processed.
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CHAPTER 5

Strategies for Taming Unstructured Text-Based Data

Document preprocessing is an important step in the data mining process. The

phrase "garbage in, garbage out" is particularly applicable in the context of

recommender systems. In this section, we will describe various strategies for

preprocessing documents with the goal of 1) increasing recommendation accuracy

by eliminating noise features, 2) improving computational time and efficiency by

decreasing the size of the effective vocabulary.

Normalization is the process of transforming unstructured documents into a

more uniform sequence. By transforming the terms in a document to a standard

format, subsequent processing will not have to deal with issues that might

compromise the recommendations. For example, converting all terms to lowercase

simplifies feature comparisons. Text normalization can take many forms: correcting

punctuation and capitalization, stemming, lemmatization and stopping. We will

describe each of these strategies in the subsequent sections.

5.1 Punctuation and Capitalization

Natural language contains a number of features that create minor tokenization

problems. Many of them are related to punctuation and capitalization. Word

tokenization may seem simple in a language that separates words by a special

’space’ character; however, not every language does this and often, white space

alone is not sufficient even for English. For example, "Los Angeles" and "rock ’n’

roll" are independent thoughts despite containing spaces and punctuation. Properly

accounting for these nuances is critical to maintaining high recommendation

33



accuracy. Similarly, it is important to take case normalization considerations into

account before adjusting the tokenization procedure. Case normalization is the

process of converting all characters to a common case, (i.e. upper or lower). While

this can improve similarity comparisons in some cases, there is a risk that the

meaning of the term is not preserved after the normalization. For example, the

acronym "US" and the word "us" can become conflated when case normalization is

applied.

5.2 Stemming

It is not uncommon for unstructured documents to use different forms of a

word such as help, helps, and helping. Stemming is a normalization technique that

attempts to reduce each word to its root form by removing the differences between

its inflected forms. The root form of a word may not even be a real word. The words

jumping and jumpiness may both stem to jumpi. When a stemmer transforms a

term into its root form, it is not directly concerned with the linguistic validity of

this transformation, but only with the measurable impact on retrieval effectiveness.

Stemming is not an exact science and careful consideration must be given to

avoid understemming and overstemming.

• Understemming is the failure to reduce words with the same meaning to the

same root. For example, jumped and jumps may be reduced to jump, while

jumping may be reduced to jumpi. Understemming reduces retrieval–relevant

documents are not returned.

• Overstemming is the failure to keep two words with distinct meanings

separate. For instance, general and generate may both be stemmed to gener.
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Overstemming reduces precision–irrelevant documents are returned.

5.3 Lemmatization

Lemmatization, like stemming, tries to group related words, but it goes one

step further than stemming in that it tries to reduce words to a lemma, or word in

the sense of a dictionary entry. In an unstructured text, the same word may

represent two meanings–for example, the word wake can mean to wake up or refer

to a funeral. While lemmatization would try to distinguish these two word senses,

stemming would incorrectly conflate them. Lemmatization is a much more

complicated and expensive process that needs to understand the context in which

words appear in order to make decisions about what they mean. In practice,

stemming appears to be just as effective as lemmatization, but with a much lower

cost.

5.4 Stopping

Sometimes, some extremely common words which would appear to be of little

value in helping select documents matching a user need are excluded from the

vocabulary entirely. These words are called stop words. For a small number of

queries, stop words form an essential form of a phrase. "To be or not to be" is a

well-known example. Eliminating these stop words would prevent us from

discovering the term. The general consensus is that for features that do not consider

proximity between terms, stopwords may be eliminated. For features that do

consider proximity between terms, particularly to match their occurrence in the

phrase, it may be appropriate to retain stop words.
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CHAPTER 6

Implementation

6.1 System Architecture

The overall system architecture for the Next Level course recommender

system is shown in Figure 17. The architecture can be summarized into four parts:

1. Application: Accept user query.

2. Text Pre-Processing Engine: Normalize the query.

3. Learning Engine: Extract top N skills from context using TF-IDF. Extract

the top N skills from nearest cluster using k-means. Combine the lists into a

set of relevant skills.

4. Recommendation Engine: Compute the similarity score between skills and

courses using cosine measure. Recommend top N courses with highest

similarity score.

6.2 Technical Stack

The following libraries and frameworks were used in the development of the

Next Level application:

Component Library/Framework
UI Flask
Keyword Extraction Scikit-learn, Rake-nltk, Gensim
Text Processing nltk, pandas, bs4
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Figure 17: Next Level Architecture Diagram

6.3 Data Preparation

An important prerequisite to the implementation shown in Figure 17 is data

preparation. Noisy and unreliable data can greatly hinder knowledge discovery
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during the training phrase. To avoid "garbage in, garbage out" and improve data

quality and therefore model performance, we executed a series of steps to collect,

clean and transform our data for training.

6.3.1 Data Selection

There are two sources of data that we use: the course database (which

contains information related to the courses such as name, description, and other

metadata), and job description database that contains thousands of job descriptions

pertaining to roles in the field of Computer Science.

Course Data: The course database was populated with course data from the

2018-2019 San Jose State University Computer Science Department Course Catalog

[14]. The dataset includes both undergraduate and graduate courses. To conduct a

controlled experiment, we limited our dataset to courses in the Computer Science

Department at San Jose State University. In the future, the scope of the

recommender system can be easily expanded to include multiple departments and

universities by simply expanding the dataset.

Each course in the course database contains the Course ID, Course Name and

Course Description. The descriptions found in the Course Catalog summarize the

Course Learning Outcomes (CLO) for each course. CLOs describe the learning that

will take place through concise statements, made in specific and measurable terms,

of what students will know and/or be able to do as the result of having successfully

completed a course. CLOs were selected in favor of course syllabi because their

contents do not change between course offerings. We did not want to bias our model

with unique keywords only found in a single offering of a course. In addition, CLOs

containing sparse descriptions were omitted from our database. In total, 74 courses
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were selected for addition into the course database.

Job Description Data: In the absence of a public dataset of job

descriptions for roles in the field of Computer Science, we built a web scraper to

collect job descriptions from recent job postings on Indeed.com. To generate a list of

trending skills in Computer Science, we combined StackOverflow’s 2018 Developer

Survey [16] results of most popular tools and technologies for professional developers

along with Kaggle’s 2018 [17] list of most in demand skills for data scientists to form

a dataset of 157 top technical skills for Computer Scientists in 2018. Then for each

skill, we queried Indeed.com for job postings containing the term. In total,

approximately 70 job postings were returned per skill. After removing duplicate

postings from the database, we were left with a total of 1,128 unique job

descriptions. Once again, for the purposes of conducting a controlled experiment,

we limited our dataset to job descriptions written in the English language and

pertaining to roles in the field of Computer Science. In the future, the model can be

extended to support additional languages and fields of study with the help of

domain-specific training data and preprocessing techniques.

6.3.2 Data Preprocessing

After extensive data exploration, including visualization of frequently

occurring words and phrases (unigrams, bigrams, trigrams), and cluster analysis to

identify outliers in the dataset, the following dimensionality reduction and

normalization techniques were applied to the course and job description databases:
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• Exclude:

– HTML tags, links, email addresses

– Punctuation

– Excess whitespaces

– Non-ASCII characters

– Stop words and stop phrases

– Verbs, possessive endings and cardinal digits

• Standardized the vocabulary, e.g. oop, object-oriented programming and

object-oriented programming were all replaced with "oop"

• Expand contractions

• Lowercase the text

• Lemmatize the text

For parity, the same preprocessing was applied to both courses and job

descriptions. To optimize runtime performance, preprocessing of the datasets was

handled offline. It should be noted that preprocessing of the course database joined

the course name and course description into a single field. This followed the

observation that both fields contain unique keywords that could be useful for

recommendation purposes. Furthermore, cluster analysis of the job description

dataset revealed the presence of non-informative company overviews, compensation

details and equal opportunity statements. These blocks of text were removed

manually.
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6.4 Application

Next Level is a web application built using Python and Flask. The main entry

point to the Next Level application is shown in Figure 18. On the client, users can

provide either the job description for a role they are interested or directly list skills

they are interested in learning. The recommender system is flexible enough to

handle either form of input.

Figure 18: UI Entry Point

When a user submits the form on the client, the form data is sent as a POST

request to the server. The server then orchestrates the data through the text
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processing, learning and recommendation engines. When the synchronous task

orchestration is complete, the server responds back to the client with the lists of

suggested skills and courses. An example of the final output can be seen in Figure

19.

Figure 19: UI Recommendations
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6.5 Text Preprocessing Engine

For parity, queries were preprocessed using the same normalization method

applied to the training data. This step aims to dynamically standardize the query in

order to improve its chances of successful semantic comparison with the course

database. Because user queries, courses and job descriptions do not follow a common

ontology, step step is instrumental to improving the quality of the recommendations.

6.6 Learning Engine

Unsupervised machine learning algorithms infer patterns from datasets

without reference to known, or labeled, outcomes. They can be useful techniques for

discovering the underlying structure of the data when labeled data is unavailable.

Clustering algorithms, a subclass of unsupervised machine learning, organize

unlabeled data into similar groupings known as clusters. Documents within a

cluster should be as similar as possible; and documents in one cluster should be as

dissimilar as possible from documents in other clusters. Next Level uses a two-step

ensemble approach to generate a list of relevant skills based on the user’s query:

k-means clustering and TF-IDF keyword extraction. First, the learning engine uses

the k-means clustering algorithm to group the job description training dataset into k

unique clusters. Once the k-means algorithm has been run and the groups are

defined, any new data can be easily assigned to the correct group. This particular

algorithm was selected because it scales well to very large training sets and medium

sized clusters [15]. Once the k-means algorithm has identified the cluster for the

user query, Next Level stores the top 10 keywords from the cluster in a list. Then,

we run TF-IDF keyword extraction to store the top 10 keywords from the user

query into a separate list. The two lists are combined into a set of relevant skills
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and passed along to the recommendation engine for similarity scoring against the

course database.

6.6.1 Step 1: k-means Clustering

The goal of the k-means clustering algorithm is to find groups in the data,

with the number of groups represented by the variable k. This algorithm requires

the number of clusters to be specified when the model is defined.

Properties of the k-means Algorithm

• There are always k clusters

• There is always at least one item in each cluster

• The clusters are non-hierarchical and they do not overlap

• No approximation guarantees

k-means Algorithm and Implementation

1. Choose the number of clusters, k

2. Select k points at random as the initial centroids (cluster centers)

3. Repeat until the centroids converge (e.g. the cluster assignment has not

changed)

• Assign each sample to its nearest centroid according to the Euclidean

distance formula:

𝑑 =

√︁
(𝑥1 − 𝑥2)

2 + (𝑦1 − 𝑦2)
2 (2)

• Find new centroid by taking the mean value of all of the samples

assigned to each previous centroid
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6.6.2 Step 2: TF-IDF Ensemble

After retrieving the list of related skills using the k-means clustering

algorithm, we apply the TF-IDF keyword extraction algorithm, as described in

Chapter 4.3, to the input query. The vocabulary of the TFIDF vectorizer are the

term tokens from the job description database. The list of skills extracted from both

algorithms is combined into a set. A set, by definition, stores only unique skills and

therefore any overlap between the two lists is consolidated.

6.7 Recommendation Engine

Next Level uses content-based filtering to recommend courses containing at

least one of the relevant skills obtained from the learning engine. As described in

Chapter 3, content-based filtering algorithms focus on properties of items.

Similarity of items is determined by measuring the similarity in their properties.

The central theme of our approach is to use skills as features to represent both users

and courses. Under the vector space model, queries as well as courses are

represented as vectors in a high-dimensional space in which each vector corresponds

to a term in the vocabulary of the collection. Given a query vector and a set of

course vectors, one for each course in the collection, we rank the courses by

computing the cosine similarity between them:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦( ⃗𝑠𝑘𝑖𝑙𝑙, ⃗𝑐𝑜𝑢𝑟𝑠𝑒) =
⃗𝑠𝑘𝑖𝑙𝑙

| ⃗𝑠𝑘𝑖𝑙𝑙|
· ⃗𝑐𝑜𝑢𝑟𝑠𝑒

| ⃗𝑐𝑜𝑢𝑟𝑠𝑒|
(3)

The cosine similarity is computed as the dot product of the document and

query vectors normalized to unit length. Provided all of the components of the

vectors are nonnegative, the value of the similarity score ranges from 0 to 1, with its
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value increasing with increasing similarity.
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CHAPTER 7

Experiments and Evaluation Metrics

When we speak about the accuracy of machine learning algorithms, we

typically refer to a measure of comparing the "true" label to the predicted label.

Unsupervised learning algorithms work on "unlabeled" datasets. This means

accuracy cannot be directly applied as a measure of evaluation. In the absence of

such a metric, we evaluated the quality of our clusters on the basis of silhouette

scores and the overall effectiveness of our course recommendations using traditional

measures of information retrieval evaluation: precision, recall and F-scores.

7.1 Silhouette Analysis

Silhouette analysis is used to measure the quality of a clustering. The

silhouette score can be calculated using the following formula:

𝑏𝑖 − 𝑎𝑖

𝑚𝑎𝑥(𝑏𝑖, 𝑎𝑖))
(4)

where ai is the average distance of all data points in the same cluster and bi is the

average distance from all data points in the closest cluster. This measure has a

range of [-1, 1]. Silhouette coefficients near +1 indicate that the sample is far away

from the neighboring clusters and is the ideal value for a clustering algorithm. A

value of 0 indicates that the sample is on or very close to the decision boundary

between two neighboring clusters. Negative values indicate that samples might have

been assigned to the wrong cluster [18].

Figure 20 shows the results of our silhouette analysis on the job description

47



dataset for different values of k. This analysis was conduced to both identify an

optimal k value for our model and to evaluate the quality of our clustering

algorithm. Our experiments found that the silhouette score declines when k > 900.

Furthermore, we observed that the highest score occurs when k falls between 500

and 800. In our final model, we chose k = 500 due to diminishing returns beyond

this point.

Figure 20: Silhouette Analysis

At k = 500, we calculated a silhouette score of 0.09329283035401542. While

this score is on the lower end of the spectrum and definitively indicates the need for

further dimensionality reduction, which we will discuss in Chapter 8, the negative

impact of the suboptimal clustering is mitigated due to the fact that only the top 10

terms in each cluster are used to generate skill recommendations. Moreover, Next

Level uses the combination of k-means clustering and TF-IDF feature extraction to

determine relevant skills to the user’s query; therefore the silhouette score is just an

indicator of the quality of the k-means clustering and not the overall quality of the

recommendations. In the subsequent sections, we will describe how our overall
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recommender system performed against other keyword extraction algorithms.

7.2 Testing Recommendation Quality

To test the quality of our recommendations, we evaluated recommendations

generated by Next Level on the basis of precision, recall and F-score.

Precision is the fraction of relevant documents among the documents retrieved

by the system. It can be calculated using the formula:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|relevant documents ∩ retrieved documents|

|retrieved documents|
(5)

Recall is the fraction of relevant documents contained in the set. As an

effectiveness measure, recall quantifies how exhaustively the search results satisfy

the user’s information need. It can be calculated using the formula:

𝑅𝑒𝑐𝑎𝑙𝑙 =
|relevant documents ∩ retrieved documents|

|relevant documents|
(6)

F-score is the harmonic mean of precision and recall. It can be calculated

using the formula:

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙

(7)

All three scores will be used to benchmark recommendations generated using

our ensemble algorithm against recommendations generated using RAKE,

TextRank, TF-IDF and k-means.

7.2.1 Experiment

In our experiment, we executed 7 independent queries per method. The

queries varied in size from single keyword to full-length job descriptions. We then
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computed the precision, recall and F-scores for each query in the context of the top

1, 5 and 10 results. For each algorithm, we averaged the score for each metric across

all queries. The final scores are shown in Figure 21.

Our experiments follows the assumption that given a user’s information need

(career interests), represented as a search query, the course recommendations

returned are either relevant or irrelevant with respect to this information need. In

this case, a course was considered "relevant" if it contained the specific skill, or a

generalization of the skill in its course title or description. For example, if the user

queries for "nosql" then a course would be considered relevant if it contained terms

such as "nosql" or "sql" or "database" in its title or description. The results of the

experiment are shown in Figure 21.

Based on the results of the experiment, it would appear that our ensemble

algorithm performed better on average than TextRank, about the same as the

k-means and TF-IDF standalone algorithms, and worse than RAKE. However,

recommendations made using the ensemble and k-means models essentially take a

user’s query, transform the results into a new query based on relevant skills, and

then compute the semantic similarity between the skill and course vectors. By

virtue of being transformations of the original requests, these algorithms will always

yield a different set of course recommendations than approaches based strictly on

context. This can help explain part of the reason why the scores for the ensemble

and k-means approaches are lower than expected. Particularly in the category of

precision and F-score. Unfortunately, we could not reliably account for related skills

in this experiment as that added a layer of subjectivity to our measure that could

not be quantitively measured. In Chapter 8, we will propose possible longer-term

experiments that can be conducted to test the overall quality of the
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recommendations taking related skills into consideration.

Figure 21: Information Retrieval Evaluation

It should also be noted that because the ensemble method combines TF-IDF

and k-means, it returns the same set of documents as the standalone TF-IDF case,

but in a different order than if the related skills from the clustering algorithm were

not included in the results. This results in low recall@1 and recall@5, but as shown

in Figure 22 and in detail in the Appendix, results in high recall@10 as it allows

recommendations to include courses containing terms that were not found in the

original query but are closely related. Next Level’s ensemble approach is better able

to identify all relevant courses in the database. This demonstrates a major

advantage of using an ensemble approach, as many recommendations would not

have been returned if only top skills from the query were used to compute similarity

scores.

7.3 Non-Empirical Measures of Effectiveness

Because it is difficult to assess the effectiveness of recommender system

quantitatively, select hand-picked anecdotal cases should also be considered.
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Figure 22: Recall@10

7.3.1 Insufficient Data on Query Terms

Next Level outperforms other algorithms when the course metadata does not

match the vocabulary used in the query. To demonstrate, we issued a query for the

skills: Elasticsearch, Kafka, Apache Spark, Logstash, Hadoop/hive, Tensorflow,

Kibana, Athena/Presto/BigTable. None of the course titles or descriptions in the

course database contained these search terms and therefore context-based methods

failed to return any results for this query. The ensemble and k-means methods drew

from cluster knowledge to recommend a set of relevant skills for which there were

matching terms in the course database. The ensemble approach went one step

further to also recommended all of the context-based keywords as "relevant skills"

to keep the user informed of skills they should attempt to gain based on their

original query. In this case, ensemble was the optimal algorithm of choice.
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7.3.2 Full Job Descriptions

Both the ensemble and standalone k-means algorithms perform better on

average when the query contains a full job description. This is because the larger

the query, the less effective traditional keyword extraction becomes at filtering out

irrelevant information.

7.3.3 Queries Belonging to Zero or Multiple Clusters

One limitation of the Next Level approach is that k-means always assigns the

input query to its closest cluster; however, there are times when the query will not

belong to any cluster, or may belong to multiple clusters. In both cases, the quality

of the recommendations is adversely impacted. In the future, we could experiment

with other clustering algorithms that are better suited to these types of problem.

This point will be elaborated on further in Chapter 8.
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CHAPTER 8

Conclusion and Future Works

In this paper, we presented a course recommender system that uses

content-based filtering and an ensemble learning algorithm of k-means clustering

and TF-IDF to suggest relevant skills and courses based on students’ career

interests. As is the case with most unsupervised machine learning models,

quantitatively evaluating the overall effectiveness of the model quantitatively has

proven to be difficult. The model is better suited to evaluations that are subjective

and domain-specific in nature. Based on generalizations of empirical data, we

observed that traditional keyword extraction techniques tend to have higher

precision and recall than our ensemble method when the number of query terms is

small; however, recall tends to favor the ensemble approach when the number of

query terms is high, such as when a job description is entered as the input. The

larger the context document, the better the algorithm is at predicting the nearest

cluster. This is because the model was training on full job descriptions.

Furthermore, recall tends to favor the ensemble algorithm when larger top k results

are considered, as the algorithm uses relevant skills to expand the search scope,

whereas the other algorithms either exclusively rely on the search terms found in

the user’s query or generate results based exclusively on relevant skills and do not

take into account keywords from context. Our experiments conclude that precision

is not a good measure for determining the effectiveness of clustering-based

recommendations because clustering algorithms will always return "related skills"

and it is not possible to objectively determine if these are relevant based on the

user’s query. The low precision scores therefore also result in lower F-scores for the
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ensemble algorithm.

To answer the broader question of whether or not students’ job outcomes

improve as a result of using the Next Level recommender system, a longer-term

study must be conducted that follows the professional careers of students who built

their academic plans around Next Level recommendations. Theoretically, students

who use personalized course recommendations to inform their academic planning

would obtain employment in relevant fields faster than students who did not take

advantage of personalized recommendations.

Taking the subjectivity of the measures out of the equation, the results of our

experiments definitively indicate that our k-means is sensitive to outliers and noisy

data. Our model would benefit from improved silhouette scores as a result of a

smaller feature space. This should, in turn, yield higher precision and recall. To this

end, we may consider integrating Principal Component Analysis and Singular Value

Decomposition into our model to reduce dimensionality. Another weakness of

k-means clustering is that data will always map to one cluster, whereas in a

real-world situation, keywords may map to multiple clusters or none at all. In the

future, we could consider clustering using DBSCAN or hierarchical clustering which

are better suited to this problem, but these would need to be coupled with a

dimensionality reduction technique as neither can scale to large volumes of data.

From a functional perspective, there are many ways the Next Level application

can be optimized. We could allow users to filter their courses by career level, such as

graduate or undergraduate. Furthermore, if we tracked the courses a student has

already taken then those could be eliminated from the recommendations. It would

be worthwhile from a planning perspective to generate course sequences based on

the recommendations. We could also better organize our results so it is more
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apparent to the user which recommendations are based off skills extracted from

context, and which are based on relevant trending skills in the industry.

In the future, Next Level could be integrated with San Jose State University’s

existing self-service course planning tool, "My Planner." This tool allows students

to plan their courses for an individual term, multiple terms, or for their entire stay

at the university. This would allow students to track their progress towards meeting

the requirements associated with their career objectives, manage personalized

academic plans where requirements are directly linked to course registration, and

eliminate the need to access separate systems to track a student’s history, grades,

academic plans and other information.

In conclusion, Next Level’s approach is novel and offers several advantages

over prior course recommender systems. This approach turns a simple course

recommender into a discovery tool for both relevant skills and courses. It empowers

students to make informed decisions about their academic plans and to discover

exactly what is expected from them to get the job of their dreams. In addition,

Next Level allows educators to gain an understanding of trending skills in the

industry, which in turns empowers them with the information needed to either

update their CLOs to maximize searchability, or to tailor their course curriculum to

better cater to industry demands. Lastly, the training data can be refreshed

periodically to ensure it is relevant. Because this is an unsupervised solution, this is

a low overhead task that ensures the model maintains relevance over time. This

benefits employers as students enter the workforce knowledge of and experience in

the skills needed to make an immediate impact in the workforce.
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APPENDIX

Experiment Details

A.1 Detailed Recall@10

Recall@10 was computed for 7 queries per algorithm. Queries varied in length

from a single keyword to full job descriptions.

Figure A.23: Recall@10 Ensemble

Figure A.24: Recall@10 K-Means
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Figure A.25: Recall@10 RAKE

Figure A.26: Recall@10 TextRank

Figure A.27: Recall@10 TF-IDF
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