9 research outputs found

    Observational needs for improving ocean and coupled reanalysis, S2S prediction, and decadal prediction

    Get PDF
    Developments in observing system technologies and ocean data assimilation (DA) are symbiotic. New observation types lead to new DA methods and new DA methods, such as coupled DA, can change the value of existing observations or indicate where new observations can have greater utility for monitoring and prediction. Practitioners of DA are encouraged to make better use of observations that are already available, for example, taking advantage of strongly coupled DA so that ocean observations can be used to improve atmospheric analyses and vice versa. Ocean reanalyses are useful for the analysis of climate as well as the initialization of operational long-range prediction models. There are many remaining challenges for ocean reanalyses due to biases and abrupt changes in the ocean-observing system throughout its history, the presence of biases and drifts in models, and the simplifying assumptions made in DA solution methods. From a governance point of view, more support is needed to bring the ocean-observing and DA communities together. For prediction applications, there is wide agreement that protocols are needed for rapid communication of ocean-observing data on numerical weather prediction (NWP) timescales. There is potential for new observation types to enhance the observing system by supporting prediction on multiple timescales, ranging from the typical timescale of NWP, covering hours to weeks, out to multiple decades. Better communication between DA and observation communities is encouraged in order to allow operational prediction centers the ability to provide guidance for the design of a sustained and adaptive observing network

    CIRA annual report FY 2015/2016

    Get PDF
    Reporting period April 1, 2015-March 31, 2016

    Global in situ observations of essential climate and ocean variables at the air–sea interface

    Get PDF
    The air–sea interface is a key gateway in the Earth system. It is where the atmosphere sets the ocean in motion, climate/weather-relevant air–sea processes occur, and pollutants (i.e., plastic, anthropogenic carbon dioxide, radioactive/chemical waste) enter the sea. Hence, accurate estimates and forecasts of physical and biogeochemical processes at this interface are critical for sustainable blue economy planning, growth, and disaster mitigation. Such estimates and forecasts rely on accurate and integrated in situ and satellite surface observations. High-impact uses of ocean surface observations of essential ocean/climate variables (EOVs/ECVs) include (1) assimilation into/validation of weather, ocean, and climate forecast models to improve their skill, impact, and value; (2) ocean physics studies (i.e., heat, momentum, freshwater, and biogeochemical air–sea fluxes) to further our understanding and parameterization of air–sea processes; and (3) calibration and validation of satellite ocean products (i.e., currents, temperature, salinity, sea level, ocean color, wind, and waves). We review strengths and limitations, impacts, and sustainability of in situ ocean surface observations of several ECVs and EOVs. We draw a 10-year vision of the global ocean surface observing network for improved synergy and integration with other observing systems (e.g., satellites), for modeling/forecast efforts, and for a better ocean observing governance. The context is both the applications listed above and the guidelines of frameworks such as the Global Ocean Observing System (GOOS) and Global Climate Observing System (GCOS) (both co-sponsored by the Intergovernmental Oceanographic Commission of UNESCO, IOC–UNESCO; the World Meteorological Organization, WMO; the United Nations Environment Programme, UNEP; and the International Science Council, ISC). Networks of multiparametric platforms, such as the global drifter array, offer opportunities for new and improved in situ observations. Advances in sensor technology (e.g., low-cost wave sensors), high-throughput communications, evolving cyberinfrastructures, and data information systems with potential to improve the scope, efficiency, integration, and sustainability of the ocean surface observing system are explored

    Strongly Coupled Ocean-Atmosphere Data Assimilation with the Local Ensemble Transform Kalman Filter

    Get PDF
    Current state-of-the-art coupled data assimilation systems handle the ocean and atmosphere separately when generating an analysis, even though ocean atmosphere models are subsequently run as a coupled system for forecasting. Previous research using simple 1-dimensional coupled models has shown that strongly coupled data assimilation (SCDA), whereby a coupled system is treated as a single entity when creating the analysis, reduces errors for both domains when using an ensemble Kalman filter. A prototype method for SCDA is developed with the local ensemble transform Kalman filter (LETKF). This system is able to use the cross-domain background error covariance from the coupled model ensemble to enable assimilation of atmospheric observations directly into the ocean. This system is tested first with the intermediate complexity SPEEDYNEMO model in an observing system simulation experiment (OSSE), and then with real observations and an operational coupled model, the Climate Forecasting System v2 (CFSv2). Finally, the development of a major upgrade to ocean data assimilation used at NCEP (the Hybrid-GODAS) is presented, and shown how this new system could help present a path forward to operational strongly coupled DA

    CIRA annual report FY 2013/2014

    Get PDF

    CIRA annual report FY 2016/2017

    Get PDF
    Reporting period April 1, 2016-March 31, 2017

    CIRA annual report FY 2017/2018

    Get PDF
    Reporting period April 1, 2017-March 31, 2018
    corecore