934 research outputs found

    Remote sensing in the coastal and marine environment. Proceedings of the US North Atlantic Regional Workshop

    Get PDF
    Presentations were grouped in the following categories: (1) a technical orientation of Earth resources remote sensing including data sources and processing; (2) a review of the present status of remote sensing technology applicable to the coastal and marine environment; (3) a description of data and information needs of selected coastal and marine activities; and (4) an outline of plans for marine monitoring systems for the east coast and a concept for an east coast remote sensing facility. Also discussed were user needs and remote sensing potentials in the areas of coastal processes and management, commercial and recreational fisheries, and marine physical processes

    Bragging about Bragging

    Full text link
    One of the most important functions of women\u27s studies is to establish an understanding of the crippling effects on our egos and self-esteem of our second-class status. I have developed a technique that I use in my women\u27s studies classes that offers one approach to this task. My course, called The Problems and Potential of Women, meets once a week for a three hour session and is limited to fifteen people. The first night we go around the room and each woman talks a little about herself and about why she\u27s taking the course. We try to begin knowing each other. I talk about how we women don\u27t really think very much of ourselves, how we settle for less because we don\u27t think we deserve more; how it is that we measure ourselves against Them instead of Them against us. I describe the traits that Gordon Allport discusses in The Nature of Prejudice in the chapter Traits Due to Victimization

    A comparison of satellite-derived sea surface temperature fronts using two edge detection algorithms

    Get PDF
    Satellite-derived sea surface temperature (SST) fronts provide a valuable resource for the study of oceanic fronts. Two edge detection algorithms designed specifically to detect fronts in satellite-derived SST fields are compared: the histogram-based algorithm of Cayula and Cornillon, 1992, Cayula and Cornillon, 1995 and the entropy-based algorithm of Shimada et al. (2005). The algorithms were applied to 4 months (July and August for both 1995 and 1996) of SST fields and the results are compared with SST data taken by the M.V. Oleander, a container ship that makes weekly transits between New York and Bermuda. There is no significant difference in front pixels found with the Cayula-Cornillon algorithm and those found in the in situ (Oleander) data. Furthermore, for strong fronts, with gradients greater than 0.2 K/km, the distribution of fronts found with the Shimada et al. algorithm is quite similar to that of fronts found with the Cayula-Cornillon algorithm. However, there are significant differences in the number of weak fronts found. This is seen clearly in waters south of the Gulf Stream where the gradient magnitude of fronts found is less than 0.1 K/km. In this region, the probability that the Shimada et al. algorithm detects a front rarely falls below 4% while neither the Cayula-Cornillon algorithm applied to the satellite-derived SST fields nor the gradient-based algorithm applied to the Oleander temperature time series find fronts more than 1% of the time. These results raise the question of exactly what qualifies as an SST front, a classic problem in edge detection

    Remote Sensing, A Tool for Managing the Marine Environment: Eight Case Studies

    Get PDF
    Case studies suggest the variety of ways in which remote sensing can be useful in studying the coastal and marine environment. It is hoped that the diversity of applications described, of data sources and platforms used (satellite/aircraft), as well as the high- quality photographs that resulted, may identify potential applications. -from STAR, 21(1), 198

    Properties of Rossby Waves in the North Atlantic Estimated from Satellite Data

    Get PDF
    This study uses satellite observations of sea surface height (SSH) to detect westward-propagating anomalies, presumably baroclinic Rossby waves, in the North Atlantic and to estimate their period, wavelength, amplitude, and phase speed. Detection involved a nonlinear fit of the theoretical dispersion relation for Rossby waves to the time–longitude spectrum at a given latitude. Estimates of period, wavelength, and phase speed resulted directly from the detection process. Based on these, a filter was designed and applied to extract the Rossby wave signal from the data. This allowed a mapping of the spatial variability of the Rossby wave amplitude for the North Atlantic. Results showed the familiar larger speed of observed Rossby waves relative to that expected from theory, with the largest differences occurring at shorter periods. The data also show that the dominant Rossby waves, those with periods that are less than annual, propagated with almost uniform speed in the western part of the North Atlantic between 30° and 40°N. In agreement with previous studies, the amplitude of the Rossby wave field was higher in the western part of the North Atlantic than in the eastern part. This is often attributed to the influence of the Mid-Atlantic Ridge. By contrast, this study, through an analysis of the wave spatial structure, suggests that the source of the baroclinic Rossby waves at midlatitudes in the western North Atlantic is located southeast of the Grand Banks where the Gulf Stream and the deep western boundary current interact with the Newfoundland Ridge. The spatial structure of the waves in the eastern North Atlantic is consistent with the formation of these waves along the basin\u27s eastern boundary

    Effects of Geographic Variation in Vertical Mode Structure on the Sea Surface Topography, Energy, and Wind Forcing of Baroclinic Rossby Waves

    Get PDF
    Interpretation of sea surface height anomaly (SSHA) and wind forcing of first baroclinic mode Rossby waves is considered using linear inviscid long-wave dynamics for both the standard and surface-intensified vertical mode in a continuously stratified rest-state ocean. The ratio between SSHA variance and vertically integrated energy of waves is proportional to 1) a dimensionless ratio characterizing the surface intensification of the pressure eigenfunction, 2) the squared internal gravity wave speed, and 3) the inverse of the water depth. Geographic variations in stratification and bathymetry can therefore cause geographically varying SSHA variance even for spatially uniform wave energy. The ratio between SSHA variance and wave energy across the North Atlantic shows important spatial variations based on eigensolutions for the standard vertical mode determined numerically using climatological hydrography. The surface-intensified mode result is similar, though the ratio is generally slightly larger and less sensitive to depth variations. Results are applied to the propagating annual-frequency portion of TOPEX altimeter SSHA in the North Atlantic. SSHA variance at 35° in the western half of the basin increases by ∼63% over that in the east, but the associated change in inferred first-mode baroclinic Rossby wave energy is a substantially smaller increase of ∼26% (∼34%) for the standard (surface intensified) mode. This is mainly associated with increases to vertical mode surface intensification and squared internal gravity wave speed in the west due to stronger stratification above the pycnocline. The wind-forced wave equation for SSHA has a dimensionless coefficient of Ekman pumping that is proportional to the ratio between SSHA variance and wave energy, implying similar geographic variation in efficiency of wind excitation of Rossby wave SSHA
    • …
    corecore