1,124 research outputs found

    Representing and retrieving regions using binary partition trees

    Get PDF
    This paper discusses the interest of Binary Partition Trees for image and region representation in the context of indexing and similarity based retrieval. Binary Partition Trees concentrate in a compact and structured way the set of regions that compose an image. Since the tree is able to represent images in a multiresolution way, only simple descriptors need to be attached to the nodes. Moreover, this representation is used for similarity based region retrieval.Peer ReviewedPostprint (published version

    Non-rigid registration of 2-D/3-D dynamic data with feature alignment

    Get PDF
    In this work, we are computing the matching between 2D manifolds and 3D manifolds with temporal constraints, that is we are computing the matching among a time sequence of 2D/3D manifolds. It is solved by mapping all the manifolds to a common domain, then build their matching by composing the forward mapping and the inverse mapping. At first, we solve the matching problem between 2D manifolds with temporal constraints by using mesh-based registration method. We propose a surface parameterization method to compute the mapping between the 2D manifold and the common 2D planar domain. We can compute the matching among the time sequence of deforming geometry data through this common domain. Compared with previous work, our method is independent of the quality of mesh elements and more efficient for the time sequence data. Then we develop a global intensity-based registration method to solve the matching problem between 3D manifolds with temporal constraints. Our method is based on a 4D(3D+T) free-from B-spline deformation model which has both spatial and temporal smoothness. Compared with previous 4D image registration techniques, our method avoids some local minimum. Thus it can be solved faster and achieve better accuracy of landmark point predication. We demonstrate the efficiency of these works on the real applications. The first one is applied to the dynamic face registering and texture mapping. The second one is applied to lung tumor motion tracking in the medical image analysis. In our future work, we are developing more efficient mesh-based 4D registration method. It can be applied to tumor motion estimation and tracking, which can be used to calculate the read dose delivered to the lung and surrounding tissues. Thus this can support the online treatment of lung cancer radiotherapy

    Recognition of Occluded Object Using Wavelets

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Variational shape matching for shape classification and retrieval

    No full text
    International audienceIn this paper we define a multi-scale distance between shapes based on geodesics in the shape space. The proposed distance, robust to outliers, uses shape matching to compare shapes locally. The multi-scale analysis is introduced in order to address local and global variabilities. The resulting similarity measure is invariant to translation, rotation and scaling independently of constraints or landmarks, but constraints can be added to the approach formulation when needed. An evaluation of the proposed approach is reported for shape classification and shape retrieval on the part B of the MPEG-7 shape database. The proposed approach is shown to significantly outperform previous works and reaches 89.05% of retrieval accuracy and 98.86% of correct classification rate

    MinMax Radon Barcodes for Medical Image Retrieval

    Full text link
    Content-based medical image retrieval can support diagnostic decisions by clinical experts. Examining similar images may provide clues to the expert to remove uncertainties in his/her final diagnosis. Beyond conventional feature descriptors, binary features in different ways have been recently proposed to encode the image content. A recent proposal is "Radon barcodes" that employ binarized Radon projections to tag/annotate medical images with content-based binary vectors, called barcodes. In this paper, MinMax Radon barcodes are introduced which are superior to "local thresholding" scheme suggested in the literature. Using IRMA dataset with 14,410 x-ray images from 193 different classes, the advantage of using MinMax Radon barcodes over \emph{thresholded} Radon barcodes are demonstrated. The retrieval error for direct search drops by more than 15\%. As well, SURF, as a well-established non-binary approach, and BRISK, as a recent binary method are examined to compare their results with MinMax Radon barcodes when retrieving images from IRMA dataset. The results demonstrate that MinMax Radon barcodes are faster and more accurate when applied on IRMA images.Comment: To appear in proceedings of the 12th International Symposium on Visual Computing, December 12-14, 2016, Las Vegas, Nevada, US

    Perceptually Motivated Shape Context Which Uses Shape Interiors

    Full text link
    In this paper, we identify some of the limitations of current-day shape matching techniques. We provide examples of how contour-based shape matching techniques cannot provide a good match for certain visually similar shapes. To overcome this limitation, we propose a perceptually motivated variant of the well-known shape context descriptor. We identify that the interior properties of the shape play an important role in object recognition and develop a descriptor that captures these interior properties. We show that our method can easily be augmented with any other shape matching algorithm. We also show from our experiments that the use of our descriptor can significantly improve the retrieval rates

    A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity

    Full text link
    The richness of natural images makes the quest for optimal representations in image processing and computer vision challenging. The latter observation has not prevented the design of image representations, which trade off between efficiency and complexity, while achieving accurate rendering of smooth regions as well as reproducing faithful contours and textures. The most recent ones, proposed in the past decade, share an hybrid heritage highlighting the multiscale and oriented nature of edges and patterns in images. This paper presents a panorama of the aforementioned literature on decompositions in multiscale, multi-orientation bases or dictionaries. They typically exhibit redundancy to improve sparsity in the transformed domain and sometimes its invariance with respect to simple geometric deformations (translation, rotation). Oriented multiscale dictionaries extend traditional wavelet processing and may offer rotation invariance. Highly redundant dictionaries require specific algorithms to simplify the search for an efficient (sparse) representation. We also discuss the extension of multiscale geometric decompositions to non-Euclidean domains such as the sphere or arbitrary meshed surfaces. The etymology of panorama suggests an overview, based on a choice of partially overlapping "pictures". We hope that this paper will contribute to the appreciation and apprehension of a stream of current research directions in image understanding.Comment: 65 pages, 33 figures, 303 reference

    Retrieval of 3D polygonal objects based on multiresolution signatures

    Get PDF
    In this paper we present a method for retrieving 3D polygonal objects by using two sets of multiresolution signatures. Both sets are based on the progressive elimination of object's details by iterative processing of the 3D meshes. The first set, with five parameters, is based on mesh smoothing. This mainly affects an object's surface. The second set, with three parameters, is based on difference volumes after successive mesh erosions and dilations. Characteristic feature vectors are constructed by combining the features at three mesh resolutions of each object. In addition to being invariant to mesh resolution, the feature vectors are invariant to translation, rotation and size of the objects. The method was tested on a set of 40 complex objects with mesh resolutions different from those used in constructing the feature vectors. By using all eight features, the average ranking rate obtained was 1.075: 37 objects were ranked first and only 3 objects were ranked second. Additional tests were carried out to determine the significance of individual features and all combinations. The same ranking rate of 1.075 can be obtained by using some combinations of only three features. © 2011 Springer-Verlag
    corecore