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Summary 

Object recognition has extensive applications in many areas, such as visual 

inspection, part assembly, artificial intelligence, etc. It is a major and also a 

challenging task in computer vision. Although humans perform object recognition 

effortlessly and instantaneously, implementation of this task on machines is very 

difficult. The problem is even more complicated when there is partial occlusion 

situation. Many researchers have dedicated themselves into this area and made great 

contributions in the past few decades. However, existing algorithms have various 

shortcomings and limitations, such as their limited applicability to the polygonal 

shapes, and the necessary prior knowledge of the scale.  

This research is aimed at developing a novel 2-D object recognition algorithm 

applicable for both stand-alone and partial occluded objects using wavelet techniques. 

Wavelet is a more recent mathematical tool in comparison with Fourier transform, and 

it has several exciting properties which can be well used in this research, e.g. 

multiresolution analysis, singularity detection and local analysis. A wavelet-based 

object recognition algorithm is presented in this thesis. The feature to represent the 

object is the wavelet representation of curve segments of the object boundary. To 

achieve the consistent boundary partitioning, a wavelet-based corner detection 

algorithm is proposed and verified. After partitioning, each curve segment is 

normalized, which makes it invariant to similarity transformation. An adaptive fast 

wavelets decomposition using bi-orthonormal wavelet is then applied on each 

segment to extract multiresolution representation, which facilitates hierarchical 

vii 



matching. After thresholding to eliminate the noise and quantization error, the 

resultant scaling coefficients and wavelet coefficients are the features for recognition. 

In matching process, firstly, we match the features of segments between object in the 

scene and the model in an object database to find out segment-pair candidates with 

similar geometric shape. Hierarchical matching strategy is adopted to accelerate the 

matching speed. If valid segment-pairs between object in scene and model are found, 

relative orientation and scale information are then applied for further verification to 

eliminate false matching. Experiment results show that our proposed recognition 

algorithm is invariant to similarity transform, robust to partial occlusion, and that it is 

computationally efficient.    
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Chapter 1 Introduction 

 
 
Chapter 1  
 
Introduction 

 

 

1.1 Background 

An object recognition system finds objects in the real world from an image of the 

world, using object models which are known a priori. Object recognition has 

extensive applications in many areas, such as visual inspection, part assembly, 

artificial intelligence, etc. Although humans perform object recognition effortlessly 

and instantaneously, implementation of this task on machines is very difficult. It is a 

major and also a challenging task in computer vision. Many researchers have 

dedicated themselves into this area and made great contributions in the past few 

decades.  

The object recognition problem can be defined as a labeling problem based on 

models of known objects. Stated formally, given an image containing one or more 

objects of interest and a set of labels corresponding to a set of models known to 

system, the system should assign correct labels to the regions, or a set of regions, in 

the image.  

In this research project, we restrict ourselves to two-dimensional object 

recognition. It is assumed that all the real world objects are viewed by a camera 

directly located on top of them, so that the height variation can be neglected for an 

arbitrary orientation and position of the objects. This simplification is reasonable and 
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Chapter 1 Introduction 

the 2-D recognition is indeed important in many image analysis applications, and is 

widely applied to many fields. 

An object is defined by its photometric and geometric features. Those methods 

which solely depend on photometric features may fail to identify object properly, 

since photometric features vary with circumstances such as illumination and 

environmental condition. In comparison, geometric features tend to be much more 

useful then photometric features in pattern recognition. The boundary of an object is 

one of the most important geometric features. Contour-based approaches are more 

popular than region-based approaches in literature. This is because human beings are 

thought to discriminate shapes mainly by their contour features. Another reason is 

because in many applications where recognition is based on shape, the contour is the 

only interest, whilst the content of the interior of the shape is not important. 

Moreover, contour-based approaches generally need less computational effort than 

region-based approaches. In this research project, the feature we used is also contour-

based. 

1.2 Recognition Process 

Given an image containing several objects, the pattern recognition process 

consists of three major phases as shown in Fig.1.1 The first phase is called image 

isolation, in which each object is found and its image is isolated from the rest of the 

scene. The second phase is called feature extraction. This is where the objects are 

measured. A measurement is the value of some quantifiable property of an object. A 

feature is a function of one or more measurements, computed so that it quantifies 

some significant characteristic of the object. The feature extraction process produces a 

set of features that, taken together comprise the feature vector. This drastically 
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reduces the amount of information necessary to represent all the knowledge upon 

which the subsequent classification decisions must be based. It is productive to 

conceptualize an n-dimensional space in which all possible n-element feature vectors 

reside. Thus, any particular object corresponds to a point in feature space. Feature 

extraction is the crucial phase for pattern recognition, the features extracted should be 

effective and the feature extraction process should be efficient. The third phase of 

pattern recognition is classification. Its output is merely a decision regarding the class 

to which each object belongs. 

Image 
segmentation 

Feature 
extraction 

Classification 

Input 
image Object 

image 
Feature 
vector 

Object 
type 

 

Fig. 1.1 The three phases of pattern recognition   

 

Object recognition is not a single process, but a close combination of many image 

processing techniques, such as low level process (e.g. denoising, image enhancement 

and etc.), mid level process (e.g. segmentation and feature extraction) and high level 

process (e.g. feature mapping).  In order to develop a successful object recognition 

system, each process needs to be specially designed to co-operate with the preceding 

process and subsequent process without flaw. 

 

1.3 Problem Statement and Research Objective 

Most recognition systems expect precise and complete information, which restrict 

their scope to simple application. In practice, one has to allow flexibility in the form 
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of noisy scenes and partially occluded objects in different scales and in randomly 

oriented positions. 

The object being recognized may be different from the model object in database in 

size, position and orientation (as shown in Fig. 1.2). We call these variations (scaling, 

translation and rotation) similarity transformation. Recognition of two dimensional 

objects regardless of these transformations is an important problem in pattern 

recognition. Therefore, the invariance of object representation to similarity 

transformation is an essential requirement. 

 

Fig. 1.2 Object under similarity transformation 

(a) A pliers (b) a pliers with similarity transformation 

The recognition of individual objects with complete shapes regardless of similarity 

transformation has been studied for a long time, and can be handled without much 

difficulty with many existing techniques. Problems arise when the object is occluded. 

The occlusion takes place when an object is either overlapped or touched by another 

object (as shown in Fig. 1.3 (a)). This problem has significant importance in an 

industrial environment. Supposing that parts are moving on a conveyor belt for visual 

inspection, when parts touch or overlap each other, the vision system should be able 
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to recognize correctly each of the occluded objects rather than to reject them as a 

single unidentifiable part. A similar situation arises when a robot tries to pick up a 

particular part from a bin in which different part types are jumbled together. Besides 

overlapping, when an object is not fully covered in an image or some portion of the 

object can not be seen due to some major defects of the image (as shown in Fig. 1.3 

(b)), we categorize these situations as partial occlusion. The complexity and difficulty 

of object recognition induced by partial occlusion increase tremendously. The 

problem of recognizing partially occluded objects is considered as one of the most 

difficult problems in machine vision. Researchers have developed some algorithms 

using local features to deal with this problem, some progresses have been made and 

reported (as reviewed in Chapter 2), however, these works have their limitations and 

drawbacks in one way or another. The problem of recognizing partially occluded 

objects is still an open issue till date. 

 

   (a)        (b) 

Fig. 1.3 Object with partial occlusion    

(a) A pliers is overlapped with a screwdriver (b) A pliers which two handles can not be seen 
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1.4 Object Representation- Criteria of Shape Descriptor 

Object representation is the key issue of pattern recognition. A robust and 

effective object representation algorithm generally leads to a successful object 

recognition system. Object representation generally looks for effective and 

perceptually important shape features based on either object boundary information or 

from the object region. A thorough literature review of 2-D object representation 

techniques has been done by Tsang (2001), the pros and cons of each technique have 

also been discussed. Based on the extensive literature survey on object representation 

techniques done by many researchers and us, we shall conclude that: For general 

recognition purpose, a good shape descriptor should meet the following criteria: 

a) Invariance under similarity transformations 

A recognition system should be able to effectively find perceptually similar 

shapes from a database. A perceptually similar shape usually means rotated, translated 

and scaled shapes. Therefore, the shape descriptor must be essentially invariant under 

translation, rotation and scaling, which collectively are called Similarity Transform. 

b) Stability 

 The shape descriptor should also be able to find noise corrupted shapes, distorted 

shapes and defective shapes, which are tolerated by human being when comparing 

shapes.  This is also known as the robustness requirement. 

c) Compactness 

As shown by Karp (1972), the time used to match the shape descriptor of a scene 

object to a model may increase significantly with the number of features. Therefore, 

the size of shape descriptor must be as few as possible in order to make matching 
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process easy and fast. Compact shape descriptors are highly desirable for indexing 

and online retrieval. 

d) Completeness 

The shape descriptor must contain characteristic information of the object shape 

as complete as possible. Only when the shape descriptor can describe adequately the 

object shape completely, can we then eliminate the ambiguity which may be 

encountered when we try to match the object in the scene to the model. 

e) Hierarchical Representation 

If a shape descriptor has a hierarchical coarse to fine representation 

characteristics, it can achieve a high level of matching efficiency. This is because 

shapes can be matched at coarse level to first eliminate large amount of dissimilar 

shapes, and at finer level, shape can be matched in details. 

f) Generalization 

A desirable shape descriptor should be application independent rather than only 

performing well for certain type of objects. 

g) Efficiency 

Low computational complexity is an important characteristic of a desirable shape 

descriptor. For a shape descriptor, low computational complexity means minimizing 

any uncertain or ad hoc factors that are involved in the derivation processes. The 

fewer the uncertain factors involved in the computation processes, the more robust the 

shape descriptor becomes. In essence, low computation complexity means clarity and 

stability. 
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h) Uniqueness 

For two objects with different shapes, they should have distinctive different 

representation. 

We set the above criteria as the benchmark to evaluate the object representation 

algorithms reviewed in the next chapter. We will also use it to examine the object 

representation presented in this thesis. 

1.5 Local Features Vs Global Features 

According to whether the object representation is based on the whole object or 

based on a small section/region, object representations can be largely classified into 

two types, global feature based and local feature based.  

Global features are usually some characteristics of regions in images such as area, 

perimeter, moments, Fourier descriptors, Hough transformation, etc. They can be 

obtained either for a region by considering all points within a region or only for those 

points on the boundary of a region. The advantages of global-feature-based 

approaches are:  the features are easier to determine and the number of features used 

for recognition is usually small, and the matching process is fast. However, one major 

setback of this approach is that it requires the objects being recognized to be wholly 

visible, non-overlapping, and not touching each other. Most pattern recognition 

algorithms developed for standalone object recognition do not work when partial 

occlusion takes place. The reason is that these algorithms are designed based on 

global features, which become completely useless when partial occlusion takes place.  

On the other hand, local features are usually on the boundary of an object or 

represent a distinguishable small area of a region. Some commonly used local features 

are curvatures, boundary segments, and corners. Recognition approach using local 
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features offers the advantage that if some of the descriptions are corrupted due to 

noise or occlusion, the remaining information may still be adequate for concluding the 

object identity, because the characteristics of the visible parts or intact portions of the 

object can also be obtained and used in the matching process.  

Therefore, for this research project, in order to recognize partial occluded objects, 

the object representation must not only meet the criteria mentioned in the preceding 

section (Section 1.4), but must also be based on local features. 

 

1.6 Motivation  

Recognition of shapes which are incomplete or distorted is important in many 

image analysis applications. This is especially true in situations where ideal imaging 

conditions cannot be maintained. This problem has been studied by many researchers 

for two decades, but have not been resolved entirely yet.  Existing techniques also 

have their limitations in many aspects. A thorough literature survey of related works 

is shown in Chapter Two. 

Most of the existing 2-D object recognition systems use object representations in 

spatial domain. Generally, object representations in spatial domain suffer from two 

main drawbacks: sensitivity to noise and high dimensionality (Tsang, 2001). 

Therefore, object recognition algorithms based on spatial domain features have 

limited success in recognition performance. The problems can be solved in the 

following ways: histogram, moments, scale space, spectral transforms etc. Although 

histogram and scale space methods increase robustness to noise and compactness, 

matching using these methods can be very computationally expensive. Moment is 

robust and compact, however, higher order moments are either difficult to obtain or 
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without physical meaning. Among the four solutions, spectral transform is the most 

promising. 

In spectral transform, Fourier transform is the most dominant frequency analysis tool 

in the past two centuries used to extract object features (Gorman and Mitchell, 1988). 

Shape representation using Fourier descriptor is simple to compute, robust and 

compact. Wavelet transform is another spectral transform. It is a relatively recent 

development in applied mathematics in 1980s. But unlike Fourier transform that uses 

global sinusoids as the basis function, the wavelet transform is more efficient in 

representing and detecting local features of a curve due to the spatial and frequency 

localization property of wavelet bases. Moreover, wavelet transform can readily 

represent signal in multiple resolution compactly and efficiently.  These properties 

possessed by wavelet motivated us to use wavelet transform technique to tackle 

partial occluded object recognition problem. The wavelet theory has reached a mature 

stage over the past few decades. It is a versatile tool with very rich mathematical 

content and wide applications.  It has been employed in many fields and applications 

with great success, such as signal processing, data compression, image analysis, 

communication systems, biomedical imaging, radar, air acoustics, theoretical 

mathematics, control system. We therefore observe that wavelet has several promising 

properties that make it suitable to solve this occlusion problem, such as: singularity 

detection, multiresolution representation, noise insensitivity and computational 

efficiency. Many researchers have tried to solve object recognition problems using 

wavelet technique, and many contributions have been reported (Chuang et al. 1996, 

Tieng et al. 1997, Antoine et al. 1997, Yoon et al. 1998, Bui et al. 1999, Khalil et al. 

2000, Yu et al. 2001, Tsang 2001, Khalil et al. 2002), and showed they outperformed 

traditional methods. These works have shown that wavelet is a promising tool for 
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object recognition. However, research on applying the wavelets to the recognition of 

occluded objects is still lacking, and hence very few publications on partial occluded 

object recognition problem using wavelet can be found in the existing literature. 

Among the reported methods, many of them either make assumptions to simplify the 

problem or have limitations and drawbacks in some other aspects. 

Nevertheless, the promising nature of the wavelet technique inspired us to employ it 

to solve problem on two dimensional partial-occluded object recognition. 

1.7 Objectives 

The objective of our research is to develop an object recognition system addressing 

the partial occlusion issue. The system should recognize standalone single object 

under similarity transformation, and also partial occluded object successfully and 

efficiently, by using wavelet technique. Our object recognition algorithm is designed 

with the following objectives; it should: 

1) be able to handle standalone object with similarity transform; 

2) be able to recognize object with moderate partial occlusion; 

3) be computationally efficient; 

4) be able to tolerate noise contamination; and 

5) should outperform existing algorithms. 

 

1.8 Our Scheme and Contributions 

Our recognition algorithm consists of the following processes as illustrated in Fig. 1.4. 

The recognition system developed in this thesis is a model-based system. Therefore, 
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the recognition process consists of two blocks: database construction and unknown 

object recognition.  

Image Preprocessing 

Feature Extraction 

Database Construction 

Image Preprocessing 

Feature Extraction 

Image in Database Image in Scene 

Feature Matching 

Object Identity 

O
ffline Process

O
nline Process

 

Fig. 1.4 Recognition process flow chart    

 

 

 

 

A brief summary of a general recognition process is the following: 

I. Database construction 
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We choose a set of good quality images as the candidates to construct the model 

database. Database construction is done offline to shorten the time required for 

recognition. For database construction, these images need to go through the 

following steps: 

1) Image pre-processing and segmentation 

The images first undergo image enhancement, noise removal to enhance the 

quality of the image. After that, the edges of the objects are extracted and 

followed by boundary tracking. 

2) Boundary partitioning 

The corner points on the object boundary are extracted using proposed 

wavelet-based scale-invariant corner detection methodology. Then, the object 

boundary is partitioned into curve segments in the way that each segment 

consists of two consecutive corners. We then shift the partition points away 

from the corners by a length which is proportional to the distance between 

these two consecutive corners. 

3) Feature extraction 

For each curve segment, we normalize it so that it is translation, scaling and 

rotation invariant. After that, the normalized segment is represented by 

proposed wavelet representation. The representations of all the segments of 

the object form the feature matrix of the object. 

4) Feature storing 
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We store the feature matrices of images containing objects with known 

identities together with their respective identities. Such that, if the feature 

matrix of an unknown object matches with any feature matrix in the database, 

the identity of the unknown object then can be retrieved from the database. 

The collection of feature matrices is called model database. 

II. Unknown object recognition 

After the completion of database construction, the recognition system is ready to 

recognize objects with unknown identity. Given an image of the scene which 

contains object(s) with unknown identity, the recognition system will enhance the 

image, detect the edges, track the object boundary, partition the object boundary 

and extract the features of the object(s). The pre-processing and feature extraction 

process are exactly the same for both model object and unknown object. 

Therefore, the algorithm discussed in chapter 4 & 5 for feature extraction is 

applicable for both model object and unknown object.  

To recognize the unknown object in the scene, the feature matrix of unknown 

object needs to be matched with the feature matrices of the model objects one by 

one iteratively until a satisfactory match is found. If the number of models in the 

database is large, the iterative matching will be time consuming. Therefore, we 

designed a hierarchical matching algorithm which not only increases the 

efficiency of matching but also increases the matching accuracy.  

This research project mainly addresses the three following issues which are crucial for 

the overall recognition system: 

 14



Chapter 1 Introduction 

1. The proposed recognition system partitions the boundary of the object into a 

series of curve segments. To ensure the performance of proposed recognition 

system under the conditions of similarity transforms and partial occlusion, a 

curve partition algorithm to ensure invariance should be specially developed.  

2. A compact, computational efficient, multiresolution and local object 

representation methodology must be devised to meet the stringent requirements 

of our particular recognition task. 

3. A computational efficient matching algorithm wound be necessary to achieve 

efficient matching and high accuracy. 

1.9 Thesis Outline  

 The rest of this thesis is organized as follows: 

Chapter 2 gives a literature review on related research works in the recognition 

of 2-D standalone objects, as well as partial occluded objects which employ 

traditional techniques and novel wavelet techniques. 

Chapter 3 introduces the mathematical background of wavelet which is essential 

in our object recognition process. It also highlights the superior properties of wavelet 

transforms over others, which facilitate our work. 

 Chapter 4 introduces the image preprocessing process adopted and our proposed 

boundary partition process using wavelet techniques. A specially designed wavelet-

based corner detection method which is invariant to similarity transformation and 

partial occlusion is proposed first, followed by boundary partitioning. 

 Chapter 5 presents our wavelet-based object presentation algorithm. The 

invariance, stability, compactness, completeness, generalization and efficiency of 

proposed object representation are examined. 
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 Chapter 6 describes the matching process with hierarchical matching strategy 

and decision making rule. The effectiveness and efficiency of this hierarchical 

matching process are discussed. 

 Chapter 7 demonstrates the efficiency and robustness of our proposed 

recognition system by extensive experiments in three aspects:  standalone objects 

recognition with similarity transformation, partial occluded objects recognition with 

and without similarity transformation, and recognition of objects with boundary noise.  

Chapter 8 concludes and summarizes the contributions from the research 

presented in this thesis. Some limitations of our proposed recognition approach are 

discussed. Potential future works are also presented. 
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Chapter 2  
 
Literature Review 
 
 
2.1 Introduction 

 The problem of recognizing two-dimensional object shapes has drawn much 

research attention. Many significant contributions have been made and published. In 

this chapter, we make a thorough literature review of related works. 

Based on the natures of the features used, object recognition approaches can be 

categorized into global and local feature based approaches. Global features are 

usually some characteristics of the entire region or boundary. Those methods using 

global features such as area moments (Hu 1962, Teh et al. 1980, Khotanzad et al. 

1990), curve moments (Chen 1993, Zhao et al. 1997) and Fourier descriptors (Persoon 

1977, Richard et al. 1974, Etesami et al. 1985) have been well reported. The 

advantages of global-feature-based approaches are:  the features are easily calculated 

and the number of features used for recognition is usually small, and the matching 

process is fast. However, one major setback of this approach is that it requires the 

objects being recognized to be wholly visible, non-overlapping, and not touching each 

other. Most pattern recognition algorithms developed for standalone object 

recognition fail to work when partial occlusion takes place. The reason is that these 

algorithms are designed based on global features, which are completely contaminated 

when partial occlusion takes place.  
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On the other hand, local features are usually on the boundary of an object or 

represent a distinguishable small area of a region. In order to develop a more efficient 

recognition system to handle not only the problem of isolated object recognition, but 

also the problem of partially occluded object recognition, many researchers have tried 

many approaches using various local features, such as boundary dominant points, 

curve segments, wavelet descriptors, etc. We can further categorize these local 

features into features in spatial domain and features in spectral domain. The former 

are usually the geometric primitives such as: corners, holes, curve segments (eg. Line 

and arc), etc. The features in spectral domain consist of Fourier descriptors and 

Wavelet descriptors. They are less sensitive to noise compared to the features in 

spatial domain. Among them, wavelet descriptor is the most promising one due to the 

possession of localization property in both spatial and frequency domains and 

multiresolution representation capability. In this chapter, we review several related 

works regarding partial occluded object recognition using various techniques. 

2.2 Dominant-Point Based Approaches 

Dominant points are rich in information, they are usually used as features for 

recognition. Some researchers (Ansari et al., 1990, Han et al., 1990, Lamdan et al. 

1990, Tsang et al. 1994, Kim et al. 1996, Zhang et al. 2003) used dominant-point 

based recognition methods to recognize partially occluded objects.  

Ansari and Delp (1990) used a set of landmarks, i.e., local extreme curvature 

points to represent each object. They introduced a local shape measure named 

“sphericity”, which was derived from the mapping of a set of three model landmarks 

to a set of three scene landmarks along the boundaries of the objects. A table of 

compatibility was constructed in order to store all the sphericity values. In the 
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matching process, a technique named “hopping dynamic programming” guided the 

landmark matching through the compatibility table, in order to find a sequence of 

high-valued diagonal entries. This sequence of entries corresponded to a set of 

landmark represents a match between the scene and the model. A least-square-error 

technique was used to estimate the location of the model object in the scene, and to 

verify the hypothesis. The main problem addressed in this paper is the landmark 

matching for object recognition, and did not discuss method used in landmark 

extraction. It required the landmarks to have a consistent ordering. However, it is not 

a trivial task when both noise and occlusion are involved. Noise may generate 

spurious landmarks, and partial occlusion may break the boundary into discontinuous 

segments. This method works well when object being recognized have adequate 

landmarks and more than half of its landmarks can be detected in the correct 

sequential order. If only a few landmarks matched between object in scene and model, 

the final decision on recognition is ambiguous. 

Han and Jang (1990) used the local maximum curvature points from curved 

boundary to represent object shape. The relative feature measure they used was the 

relative distance values between local maximum curvature points. An association 

graph method is adopted to identify objects, in which the nodes correspond to the 

local maximum curvature points of the occluded image. The presence of edge 

between two nodes indicates a high likelihood that the nodes belong to the same 

object. From the graph, a maximal clique was extracted. Using the minimum weight 

matching algorithm they proposed, a one-to-one correspondence was established 

between the nodes in the cliques and the local maximum curvature points in the object 

image. After estimating the location of the model object in the scene, the boundary 

consistency of the object was checked to verify the hypothesis. In order to increase 
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the matching speed, a heuristic method has also been developed. However, by only 

considering the relative distance between corner points, it is insufficient to accurately 

determine the correspondence between objects in the scene and the model.  

Zhang et al. (2003) recently proposed a shape space based approach for invariant 

object representation and recognition. They also make this approach capable of 

recognizing partial occluded objects by using partial Procrustean distance as the 

measure. In this article, the representation of the object in shape space is based on the 

landmarks, e.g. local curvature maxima. The shape space concept was introduced by 

Kendall (1977, 1984) and Bookstein (1984). By using shape space, the object can be 

represented as a point in a high-dimensional space, called shape space. In a shape 

space of 2D objects, all possible views of an object caused by translation, scaling and 

rotation are represented by a single point. Object recognition can be achieved by 

computing the Euclidean distance between the object and a model in the shape space. 

If the object is related to the model by similarity transform, the distance is 

approaching zero. The aim of using partial Procrustean distance is to ensure that we 

use only the “true” landmarks, i.e., those shared by the occluded and the model object. 

However, in practice, one may not know which landmarks are “true”, therefore a 

search would be needed. Random searching can be very computational intensive, 

therefore, they set a constraint which is all “true” marks are contiguous, i.e. an 

occlusion always cuts off a continuous curve from the object contour. This constraint 

drastically reduces the number of searches. However, it limits the application scope of 

this approach.  

As reviewed above, object recognition approaches wholly rely on dominant points 

alone suffer from two drawbacks: 
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a) Dominant points alone are insufficient to form a complete integrated 

representation of an object. Therefore, the recognition result is uncertain.  

b) Dominant point extraction is sensitive to noise contamination. Severe noise on 

boundary may generate spurious corners. Smoothing operation e.g. Gaussian 

smoothing can reduce the effect of noise, however, there is no proper guiding 

principle for choosing the proper width of a smoothing mask. 

Thus, representation based on dominant points does not meet criteria (b) and (c) 

stated in Section 1.4. Therefore, dominant points based recognition algorithms are not 

optimal especially in situations involving occlusion.  

 

2.3 Polygonal Approximation Approaches 

Polygonal approximations represent the object boundary as a string of line 

segments. They are computed by using various criteria to determine “breakpoints” 

that yield the best polygons. The polygonal approximation (Bhanu et al. 1984, Price 

1984, Ayache et al. 1986, Bhanu et al. 1987, Eric et al. 1989, Liu et al. 1990) has been 

widely used as a representation for recognizing occluded object or object with 

unknown scale.  

Ayache et al. (1986) used polygons to represent objects and regarded polygon line 

segments as local features. Their matching process was a recursive hypothesis 

prediction and evaluation procedure. A prediction is made by matching a segment in 

the model with a segment in the scene by comparing local intrinsic feature measures. 

To evaluate the hypothesis, they matched additional segments of the model with a 

segment in the scene, updated the hypothesized position, and computed a quality 
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score of the match. After a sufficient number of hypotheses had been evaluated or a 

very high quality measure was reached, they stopped the matching process. The 

hypothesis with the highest score was examined before being validated or rejected. 

Because they use the transformation information calculated from local feature 

measure of some portions to restrict the matching on other portions, they could 

guarantee match consistency not only in local portions, but also in global regions.  

Liu and Srinath (1990) presented a polygonal approach to recognize and locate 

partially distorted two-dimensional shapes without regard to their orientation, location 

and size. They first calculate the curvature function from digitized image of an object. 

The points of local maxima and minima extracted from the smooth curvature function 

are used as control points to segment the boundary and to guide the boundary 

matching procedure. The boundary matching procedure considers two shapes at a 

time, one shape from the template data bank, and the other being the object to be 

classified. The procedure tries to match the control points in the unknown shape to 

those of a shape from the template data bank, and estimates the translation, rotation, 

and scaling factors to be used to normalize the boundary of the unknown shape. The 

chamfer 3/4 distance transformation and a partial distance measurement scheme are 

used as the final step to measure the similarity between these two shapes. The 

unknown shape is assigned to the class corresponding to the minimum distance.  

Experimental results showed that this algorithm works reasonably well even with 

moderate amount of noise. As they mentioned, proper selection of the value of 

standard deviation of Gaussian function was important to the success of this 

algorithm. They chose the standard deviation tentatively so that the boundary of the 

boundary was broken into 40 segments. However, the choice of 40 segments is shape 

and occlusion dependent. An automatic method for the selection of the standard 
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deviation has not been presented. Therefore, the performance of this algorithm is 

limited. 

A new method called supersegment has been proposed by Fridtjof et al. (1992) to 

increase the reliability of the polygonal approximation approach by performing 

segmentation of a boundary at varying thresholds. This method can be applied to 

scale-invariant recognition by using the angle between the neighboring segments and 

the arc length ratio as features. It improves upon the results obtained with the 

conventional polygonal approximation technique. However, it is still unstable with 

regard to break points, especially for curved objects.  

 Recognition methods rely on polygonal presentation only work well for 

polygonal objects. For non-polygonal objects, these methods have the drawback that 

they are unstable in finding break points. Therefore, polygonal approximation does 

not fulfill the generalization criteria (f) mentioned earlier in Section 1.4. 

 

2.4 Curve Segment Approaches 

To recognize object which is not polyhedral objects, researchers tried to describe 

object by circular arcs (Turney et al. 1985, Knoll et al. 1986, Kalvin 1986, Ettinger 

1988, Grimson 1989). In order to make the representation even more complete and 

precise, some researchers used the combination of some basic geometric features, 

such as line, arc, corner and end to describe a contour (Tsang et al. 1992, Wei 1998, 

Sarkar 2003). 

Tsang et al. (1992) proposed a technique for the recognition of occluded object 

which use corners and circular arcs as the features. The set of primitive features, 
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together with their respective physical size, form a representation which contributes to 

an identity of the object concerned.  The object boundary is extracted and transformed 

into the S−θ  domain. A zero- and a first-order discontinuity detector are then 

employed to detect the corners and arc segments, respectively, on the object boundary. 

The terminals of a complete circular arc are localized with the use of regression 

analysis, and the total angular change is determined directly from the internal angle 

covered by the segment on the θ  axis. The position and angular spans of a corner are 

reflected from the location and the size of the corresponding zero-order discontinuity. 

Classification of the features of an unknown object shape is performed by a multilayer 

artificial neural network which is capable of identifying distorted and incomplete 

input patterns. From the illustrations in this article, we can see corners and circular 

arcs can not cover the entire object boundary. Therefore, representation by corners 

and circular arcs is incomplete. 

Lim et al. (1995) and Xin et al. (1995) proposed a scale-space based algorithm to 

detect line, arc, corner and end on a curve. This scale-space based geometric 

primitives detection algorithm is insensitive to noise and robust to similarity 

transform. Based on this, Wei (1998) proposed an object recognition system which 

can recognize non-occluded and partially occluded two-dimensional objects. In his 

work, methods of calculating the local feature measures and relative feature measures 

of these geometric primitives are introduced. The integration of these features and 

feature measures is applied to efficiently represent the object shape. An association 

graph method is used to match object in the scene with the objects in the model.  The 

local feature measures is compared to find possible match pairs between scene and 

model. Then, relative feature measures are employed to find mutual consistency 

among the nodes. Boundary of the model object is superimposed on to the boundary 
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of the scene object according to the translation, rotation and scaling parameters 

indicated by the maximal cliques for hypotheses verification.  

Sarkar et al. (2004) proposed a method for approximating digital planar curves 

with line segments and circular arcs. They formulate the approximation task as an 

optimization problem, in the way that seeks the desired set of optimal breakpoints 

such that when line segments and circular arcs are appropriately fitted between all 

pairs of adjacent breakpoints, the fitting error is minimized. By using Genetic 

Algorithm (GA), the optimal (or near-optimal) solution can be reached  fairly quickly. 

However, using only lines and arcs to represent object with arbitrary shapes can not 

achieve high accuracy. Therefore, the recognition algorithm based on this 

representation hardly differentiates different objects with similar shapes.   

Although the combination of these geometric primitives represents most 

geometric features of the object boundary over dominant points method and 

polygonal representation method, most man-made objects can be fully represented by 

these geometric primitives. However, some objects with irregular shape may not be 

fully represented by the above mentioned geometric primitives; some portion may not 

belong to any of the categories, such as involutes. Therefore, this representation is 

incomplete. Another drawback of this approach is its inefficiency to determine the 

end points of arcs and lines precisely due to noise and scaling, therefore the local 

measures of arcs and lines are not accurate either.  On the whole, representation using 

the combination of the geometric primitives does not meet criteria (a) and (d) 

mentioned in Section 1.4. Thus, the performance of object recognition approaches 

based on this representation is limited. 
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2.5 Other Approaches 

Lim et al. (2004) used curve moment invariants to confront partial occluded object 

recognition problem. Curve moment (Chen, 1993) is an improved moment invariants 

which are computed based only on the shape boundary, and hence they are even more 

computational efficient over traditional moment invariants (Hu, 1962). They first 

partition object boundary into a sequence of curve segments. Then the curve moments 

at different order of each curve segment are calculated. The collection of the curve 

moment invariants of all the segments on the object boundary form the representation 

of the object. A hierarchical matching strategy is adopted to speed up the matching 

process. Curve moment representation proposed in this article is invariant to similarity 

transform and compact in size. However, similar to the traditional moment invariant, 

the curve moment is a many to one correspondence. Therefore, the representation 

using curve moment is not unique. Moreover the physical meaning of curve moments 

at higher order is unknown. Therefore, this representation does not possess 

hierarchical representation capability.  

Salari and Blaji (1991) proposed an object recognition method using a B-spline 

representation of the boundary. Curve segments on the boundary are represented 

using B-splines which are piecewise polynomial curves guided by a sequence of 

points. The B-spline control points found from the boundary points are then used to 

extract local features of the curve. Then, a Hough transform like method is applied to 

detect a consistent set of scale, rotation and translation parameters. After 

normalization using the transformation parameters extracted, the match measures are 

computed to validate the match.  Despite the success of this algorithm, control points 

alone can not form a complete representation of the shape of the object.  
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2.6 Fourier Descriptors Approaches 

Gorman and Mitchell (1988) represent an object contour by Fourier coefficients of 

contour segments. The breaking points of the contour are the vertices which result 

from a polygonal approximation of the contour. Each contour segment is a portion of 

the object contour and consists of three consecutive vertices. It begins from a vertex 

which is considered as the first vertex and then ends at the third vertex along the 

object contour. The feature values of each contour segment are the Fourier 

coefficients derived from tracing along the segment from the beginning to the end and 

then back to the beginning. The shape measure between a model and a scene contour 

segment is the norm squared distance between the Fourier coefficients of the two 

segments. An inter-segment distance table measuring the norm squared distances 

between the model and the scene contour segments is constructed. The table is 

augmented by repeating the rows. A backward dynamic programming procedure is 

then used to determine the minimum distance path starting from the first column to 

the last column of the augmented table. An entry along the minimum distance path 

that results from a diagonal transition corresponds to a match between the model and 

the scene segment, indicated by the row and the column indices of the entry. However, 

a simple, automatic method for selecting a threshold value for contour splitting was 

not proposed in this paper. During the experiments, it was assumed that the scale 

factor between the sizes of the known and unknown contours was approximately 

known. This assumption is not always valid in practical applications. Therefore, the 

performance will degrade significantly when the scale information is not available. 
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2.7 Wavelet Approaches 

As mentioned by Zhang et al. (2004), object representation in spectral domain is 

the most promising one. Besides Fourier transform, wavelet transform is another 

recently developed technique which can describe object in both spectral domain and 

spatial domain. It preserves the high efficiency in computation, compactness and 

robustness as Fourier transform, and also possesses the properties of multi-resolution 

approximation, spatial description and singularity detection which are especially 

useful for this research work. Since the mathematical theory of wavelet has reached a 

mature stage, some researchers have tried to solve object recognition problem using 

wavelet techniques. Some pattern recognition approaches using wavelets have been 

reported (Chuang et al. 1996, Tieng et al. 1997, Antoine et al. 1997, Yoon et al. 1998, 

Bui et al. 1999, Khalil et al. 2000, Yu et al. 2001, Tsang 2001, Khalil et al. 2002). 

Since our algorithm also used wavelet technique, and we were enlightened by these 

works from several aspects, it is worth while to review them in detail. We do not 

restrict the review into object recognition of partially occluded object only. 

Chuang et al. (1996) proposed a hierarchical planar curve descriptor that 

decomposes a curve into components of different scales using wavelet transform so 

that the coarsest scale components carry the global approximation information while 

the finer scale components contain the local detailed information. The effect of 

scaling, translation, and rotation of a planar curve on its wavelet descriptor was 

derived. Features extracted from the wavelet approach can be normalized so that we 

can handle the effect of rotation, translation, and scaling. The performance of a class 

of wavelet bases with different vanishing moment and symmetry properties was 

studied. A deformable wavelet descriptor is also proposed by interpreting the wavelet 
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coefficients as random variables. In contrast to the scale-space filtering approach, 

which serves primarily as an analytical tool, the wavelet descriptor provides an 

effective synthesis tool as well.  And compared with Fourier descriptor that uses 

global sinusoids as the basis functions, the wavelet descriptor is more efficient in 

representing and detecting local features of a curve due to the spatial and frequency 

localization property of wavelet bases. However, the features are normalized using 

averaged magnitude and phase over the entire boundary. Thus, the features obtained 

can be easily distorted by partial occlusion. Therefore, recognition system using this 

feature can not handle recognition of partial occluded object. 

Tieng and Boles (1997) proposed an algorithm which could recognize a two-

dimensional object of arbitrary shape using the wavelet transform zero-crossing 

representation. The object boundary is first represented by a normalized Modified 

Radial Function (MRF). The MRF is a representation of r which is the distance 

between the boundary points to the centroid as a function of l which is the arc length 

of the boundary. After that, in order to match objects with different sizes, the MRF is 

sampled into standard size which is a number of power-of-two to facilitate dyadic 

wavelet transform. A dyadic wavelet transform is applied to the normalized MRF 

using the first derivative of a cubic spline as the wavelet base. The position and 

magnitude of zero crossings of the wavelet coefficients of a few low resolution levels 

are extracted as the representation of the shape of the object. Four alternative 

dissimilarity functions which compare the unknown object and candidate model are 

also proposed. Since these dissimilarity functions require the compared 

representations to have the same number of zero-crossings, a false zero-crossing 

elimination algorithm is also presented. Experimental results showed that the 

performance of the proposed algorithm is much better than the use of Fourier 
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descriptors-particularly in the presence of noise. Because construction of the MRF 

needs to shift the origin of the coordinate system to the centroid of the object, 

therefore the centroid of the object will be distorted by partial occlusion. Moreover, 

zero-crossings alone are insufficient to represent the shape of object completely. 

Yoon et al. (1998) proposed a notion of object representations using curvature 

zero-crossings of the approximation of object contour at various scales. Three 

different representations are proposed to solve different recognition problems. Among 

them, the “scale-invariant” representation can be used to handle object matching in 

the presence of noise, occlusion, and scale variation. The scaling effect of an object  is 

modeled by using the continuous wavelet transform. Then the scaled low-resolution 

boundaries are decomposed using discrete wavelet transform. The zero-crossings on 

the curvature functions over the desired scales form the “scale-invariant” 

representation of the object. However, match of the zero-crossings of the object 

contours between target and model is a necessary but insufficient condition to confirm 

that the object in the scene matches with the particular model. Further more, wavelet 

transform is used as low pass filter in this work; other than the computation 

efficiency, the authors did not show the remarkable analytical advantages of wavelet 

transform over other low-pass filter, such as Gaussian. 

Bui and Chen (1999) proposed a novel set of descriptors using wavelet and 

Fourier transforms. They first transform the pattern (image) into polar coordinate 

( θ,r ) using the centre of mass of the pattern as origin. Then, they apply the Fourier 

transform along the axis of the polar angle θ  and the wavelet transform along the axis 

of radius r . This feature combined the advantages of Fourier transform (e.g. 

translation invariant) and Wavelet transform (e.g. multiresolution analysis). The 
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features thus obtained are invariant under translation, rotation and scaling. 

Experimental results show that the proposed Fourier-Wavelet descriptor is an efficient 

representation which can provide a reliable recognition. However, this algorithm is 

only applicable for the recognition of objects which are wholly visible because of the 

transformation to polar coordinate system and the use of Fourier transform.  

Khalil and Bayoumi (2000) proposed a technique to recognize 2D objects under 

similarity transform. They first make a continuous wavelet transform of the slope 

representation of the boundary of an object. Then, they extract the position and 

regularity of each singularity of the slope representation. The singularities of the slope 

representation correspond to the corners or reflection points of the object boundary. 

The feature vector is composed by the distance between adjacent singularities and the 

regularities (represented by Lipschitz exponent) of each singularity. The classifier 

used is the multilayer feedforward neural network. Experimental results show that it 

outperforms some traditional methods, such as the Fourier descriptors method and the 

moment invariants method especially in the presence of noise. However, the authors 

did not pay attention to partial occlusion problem here. Although each individual 

element of the feature vector adopted in this method itself is a local feature, this 

method can not recognize partially occluded object with similarity transformation. 

The reason is that the number of boundary points is normalized into 256 points prior 

to the extraction of object features, thus the boundary size is affected by both scaling 

and partial occlusion. Therefore, the feature obtained is distorted when partial 

occlusion occurs. In 2002, they (Khalil et al. 2002) also derived several affine 

invariant functions using different dyadic levels. It has been shown that these 

invariant functions outperform some traditional invariant functions. These affine 
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invariant functions have the potential to be used as features in object recognition 

system. 

Yu et al. (2001) developed a feature extraction algorithm using wavelet and 

Fractal. In this paper, the notion of feature extraction with wavelet and fractal theories 

is presented as a powerful technique in pattern recognition. This novel method of 

feature extraction includes utilizing the central projection transformation (CPT) to 

describe the shape, with the wavelet transformation to help in the boundary 

identification, and the fractal dimension to enhance the discrimination power. Its 

essential advantage is that it can be used to recognize more complex patterns than the 

traditional Fourier descriptors. Although the fractal dimensions reduce the dimensions 

of the feature tremendously, the discrimination capability is also reduced since the 

fractal dimension is a many-to-one correspondence. In another word, this 

representation is not complete and not unique. Moreover, this algorithm is not suitable 

for partially occluded object recognition because of the use of CPT and fractal 

dimension over the entire pattern. 

Tsang (2001) proposed a planar curve descriptor which is invariant to translation, 

size, rotation and starting point using wavelet transform. They first extract the 

boundary of a two-dimensional object and express its coordinates as a complex 

number. After that, the boundary data is normalized so that it is invariant to the size 

and position.  Then, a wavelet transform is applied using a second-order Daubechies 

wavelet. The feature vector is composed of the number of time that the lines at the 

predefined levels cut across the magnitude response of the wavelet transform and the 

total width of the cutting stripes at different levels. Experimental results showed that 

by using the proposed feature, one can recognize standalone objects efficiently 
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regardless of similarity transformation. They also extend it to the recognition of 

occluded objects by incorporating local features which are the distance from the 

current stripe to the next stripe at the specified levels into the feature vectors. 

However, they simplified the problem by restricting the size of the objects to be 

classified fixed. The feature does not work when the size of object varies. This 

assumption makes the recognition problem much easier in comparison with ours.  

From the literature review we presented above, we could conclude that wavelet 

descriptors are more promising over those spatial descriptors because they possess 

multiresolution representation capability and are less affected by noise contamination. 

Wavelet descriptors also outperforms Fourier descriptors because of the localization 

property in both frequency domain and spatial domain. However, since wavelet is a 

relative new technique, the research of object recognition using wavelet is still weak. 

Most existing wavelet based object recognition algorithms do not pay attention to 

occluded object recognition problem. Although Yoon et al. (1998) and Tsang (2001) 

have tried to solve partial occluded object recognition problem, however they did not 

fully utilize the strength of wavelet technique. The representations of object proposed 

by them are not complete and not unique. In conlcusion, the recognition of 2-D partial 

occluded objects using wavelets is a novel idea which has good potential, but it has 

not been fully explored. 
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3.1 Introduction 

Wavelet technique plays a key row in this research project. In this thesis, a 

wavelet-based corner detection algorithm is proposed for boundary partition, followed 

by a feature extraction algorithm using wavelet multiresolution decomposition. 

Therefore, a brief introduction of wavelet transform’s mathematical background and 

its attractive properties is essential prior to introducing our proposed recognition 

algorithm. For more detailed information about wavelet transform, readers can refer 

to (Daubechies, 1992, Mallat, 1998, Chui, 1992). 

Although the Fourier transform has been the mainstay of transform-based image 

processing since the late 1950s, a more recent transformation, called the wavelet 

transform, is now making it even easier to compress, transmit, and analyze images. 

Unlike the Fourier transform, whose basis function are sinusoids, wavelet transforms 

are based on small waves, called wavelets, of varying frequency and limited duration.   

This allows wavelet transform to provide not only frequency (scale) information, but 

also the temporal information.  

Grossmann and Morlet (1984) studied the wavelet transform in its continuous 

form and initially applied it to analyze geological data. However, at that time, the 

development of wavelet theory and its application were limited due to the lack of 

“good” wavelet basis which are smooth, compactly supported and orthonormal. A few 

years later, Daubechies (Daubechies, 1988), a female mathematician, constructed a 
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class of wavelet bases which are smooth, compactly supported and orthonormal. In 

the same year, Mallat (Mallat, 1988) proposed a general method to construct wavelet 

bases. It is termed Multi-Resolution Analysis (MRA) and is intrinsically consistent 

with sub-band coding in signal analysis. The above achievements played an important 

role in the development of the wavelet theory. They made the wavelet a mature 

theory.  

3.2 Multiresolution Analysis (MRA) 

It is always desired to analyze a signal or a function in multiple resolutions, 

because the objects in an image are observed to occur at different scales, and the 

related features such as edges, for example, can be either a sharp transition from black 

to white or one that occurs gradually over a considerable distance. In general, a 

multiresolution approach to image representation or analysis seeks to exploit this idea. 

Beside pyramid algorithm (Burt and Adelson, 1983) and subband coding (Woods and 

O’neil, 1986), wavelet transform played an important role in the development of a 

unique mathematical theory called multiresolution analysis. By using wavelet 

transform, a function or signal can be viewed as composed of a smooth background 

with fluctuations or details on top of it, where the smooth background reveals the 

approximation of the function at coarse scale, while the fluctuations at finer scales 

represent the abruption details at higher resolutions. In most literature, MRA refers to 

the general method to construct wavelet bases proposed by Mallat (1988). However, 

the major concern of the research presented in this thesis is on how to represent the 

object into multiple resolutions instead of on how to construct a wavelet basis. 

Therefore, in this section, the MRA is introduced in the way to demonstrate how a 

function can be represented at multiresolution using wavelet. To avoid being bogged 
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down in mathematical rigor, some complicated portions of MRA theory have been 

omitted. Readers may refer to Mallat’s paper (Mallat, 1989b) for a complete 

understanding of MRA. 

Given a scaling function ( )xϕ that meets the MRA requirements, scaling 

function ( )xϕ  form a multiresolution analysis that must satisfy the following 

refinable property: 

 ( ) ( ) ( )02 2
n

x h n x nϕ ϕ
∈

= −∑  (3.1) 

where  is called scaling vector. ( )0h n

Its counterpart wavelet function ( )xψ  can be expressed as a weighted sum of 

shifted, double-resolution scaling functions, and can be written as: 

 ( ) ( ) ( )12 2
n

x h n x nψ ψ
∈

= −∑  (3.2) 

where  is the wavelet vector, it correlates with ( )1h n ( )0h n  as 

 ( ) ( )1 0( 1) 1nh n h n= − −  (3.3) 

The dilation and shift of scaling and wavelet function are defined as: 

 ( ) ( )/ 2
, 2 2      ,j j

j k x x k jϕ ϕ k= − ∈  (3.4) 

 ( ) ( )/ 2
, 2 2      ,j j

j k x x k j kψ ψ= − ∈  (3.5) 
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Here, determines the position of k ( ),j k xϕ and ,j kψ along axisx − , determines 

the width, and 

j

/ 22 j is used to normalize the amplitude. 

The subspace or the closed span formed by the scaling function , ( )j k xϕ  is 

denoted as 

 ,Span{ ( )}j j k
k

V ϕ= x

V  

 (3.6) 

The subspaces spanned by the scaling function at low scales are nested within 

those spanned at higher scales as shown in Fig. 3.1. That is, 

 (3.7) 0 1 2V V V V−∞ ∞⊂ ⊂ ⊂ ⊂ ⊂

0V  

0 1 2V V V⊂ ⊂  

 
Fig. 3.1 The nested function spaces spanned by a scaling function 

The subspace spanned by the  wavelet function , ( )j k xψ is 
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 ,Span{ ( )}j j k
k

W ψ= x

j

 (3.8) 

The scaling and wavelet function subspaces are related by  

 1j jV V W+ = ⊕  (3.9) 

 Where ⊕ denotes the union of space. The orthogonal complement of V  in Vj 1j+  

is W , and all members of  V  are orthogonal to the member of W . Thus  j j j

 , ,( ), ( ) 0j k j lx xϕ ψ =  (3.10) 

The relation is illustrated in Fig. 3.2. 

0V  0W  
1W  

1 0 0V V W= ⊕  
2 1 1 0 0 1V V W V W W= ⊕ = ⊕ ⊕  

 
Fig. 3.2 The relationship between scaling and wavelet function spaces 

 

Now the space of all measurable, square-integrable functions can be expressed as  

 2
0 0 1( )L R V W W= ⊕ ⊕ ⊕  (3.11) 

The wavelet series expansion of a function 2( ) ( )f x L R∈  can be expressed as 
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0 0

0

,( ) ( ) ( ) ( ) ( )j j k j j k
k j j k

,f x c k x d kϕ
∞

=

= +∑ ∑∑ xψ  (3.12) 

where 0j is an arbitrary starting scale, and and  are referred to scaling 

coefficients and wavelet coefficients, respectively. If the expansion function forms an 

orthonormal basis or tight frame, the scaling coefficients and wavelet 

coefficients  can be obtained by 

0
( )jc k ( )jd k

0
( )jc k

( )jd k

 
0 0 0,( ) ( ), ( ) ( ) ( )j j k jc k f x x f x x dxϕ ϕ= = ,k∫  (3.13) 

 ,( ) ( ), ( ) ( ) ( )j j k j kd k f x x f x x dxψ ψ= = ,∫  (3.14) 

If the expansion functions are part of a biorthogonal basis, the ϕ  and ψ  terms in 

the equations must be replaced by their dual functions ϕ  and ψ  respectively. 

3.3 Discrete wavelet transform 

If the function ( ) f t  being expanded is a sequence of numbers, e.g. ( ) f t is a 

function of discrete variables 0,1,2, , 1t n= − , the resulting coefficients are called 

the discrete wavelet transform (DWT) of ( )f t .  For this case, the series expansion 

defined in Equations, (3.12) through (3.13) become the DWT transform pair 

 
0 0 0, ,( ) ( ), ( ) ( ) ( )          j j k j k

t
c k f t t f t t k tϕ ϕ= = − ∈∑  (3.15) 

 , ,( ) ( ), ( ) ( ) ( )          j j k j k
t

d k f t t f t t k tψ ψ= = − ∈∑  (3.16) 
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Again, the two above equations are applicable for biorthogonal wavelet basis, in 

this case, the ϕ  and ψ  terms in the equations must be replaced by their dual 

functions ϕ  and ψ  respectively. 

( )f t  can be reconstructed by inverse discrete wavelet transform.  

  (3.17) ( )
0 0

0

, ,( ) ( ) ( ) ( )          
mj

j j k j j k
k j j k

f t c k t d k t tϕ ψ
=

= +∑ ∑∑ ∈

where is the maximum resolution that can be decomposed. Due to the fact 

that

mj

( )f t  has limited number of data, its resolution is also limited. 

3.4 Fast wavelet transform 

Mallat (1989a, 1989b) defined a discrete wavelet transform algorithm that is 

more efficient than computing a full set of inner product. It applies two-band subband 

coding in an iterative fashion and builds the wavelet transform from the bottom up. 

That is, computing begins with small scale coefficients and ends at the coarsest scale. 

It is also called Mallat’s herringbone algorithm [Mallat 1998]. 

Recalling the multiresolution refinement equation (3.1), and substituting it into 

equation (3.4), we can obtain 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

( 1) / 2 1
1,

( 1) / 2
0

/ 2
0

0 ,2

0 ,

2 2

           2 2 2 2

           2 2 2

           

           2

j j
j k

j j

n z

j j

n z

j k n
n z

j p
p z

x x k

h n x k n

h n x k n

h n x

h p k x

ϕ ϕ

ϕ

ϕ

ϕ

ϕ

− −
−

−

∈

∈

+
∈

∈

= −

= −

= −

=

= −

∑

∑

∑

∑

−

−  (3.18) 
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Similarly, substitute equation (3.2) into (3.5), we obtain 

 ( ) ( ) ( )1, 1 ,2j k j p
p z

x h p k xψ ϕ−
∈

= −∑  (3.19) 

By substituting equation (3.18) into equation (3.15) 

 
( ) ( )

( ) ( )

1 0

0 2

( ) 2j j
p z

j n k

c k h p k c p

h n c n

−
∈

=

= −

= − ∗

∑
 (3.20) 

Similarly, by substituting equation (3.19) into equation (3.16), we can obtain 

 
( ) ( )

( ) ( )

1 1

1 2

( ) 2j j
p z

j n k

d k h p k c p

h n c n

−
∈

=

= −

= − ∗

∑
 (3.21) 

where ∗  is the convolution operation. Equations  (3.20) and (3.21) indicate that 

 and can be easily calculated by simply convolving  with the 

low-pass filter 

1( )jc k− 1( )jd k− ( )jc k

( )0h n−  and high-pass filter ( )0h n− respectively, and down-sampling it 

by two. This decomposition can be carried out hierarchically by further decomposing 

 using the methodology shown in Fig.3.3. Note that, here the highest scale 

coefficients are the original sampled function itself, e.g. 

1( )jc k−

( ) ( )jf k c k= .  

( )jc k

( )1h n−  

( )0h n−  

 

 
1( )jc k−

1( )jd k− ( )1h n−  

( )0h n−  …

( )2jd k− 

( )2jc k−
  

 

Fig. 3.3 Fast wavelet transform 
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The number of mathematical operations involved in the computation of the FWT 

of a length 2JM = sequence is in the order of . That is to say the number of 

floating-point multiplication and additions (using filter banks) is linear with respect to 

the length of the sequence. This compares favorably with FFT algorithm, which 

requires operations. 

( )O M

( log )O M M

The inverse transform is obtained by reversing the process as shown in Fig. 3.4. 

 ( )
( )j

f k
c k=

 

( )1h n−  

( )0h n−  

( )1h n−  

( )0h n−  

 

1( )jd k−

 

 

 

 

… 

2 ( )jd k−

 

Fig. 3.4 Inverse discrete wavelet transform 

3.5 Wavelet bases selection 

Wavelet bases construction plays an important role in wavelet development. In 

the early stage of wavelet development, the roughness of wavelet made the 

mathematicians doubt about the existence of a good wavelet basis, until Daubechies 

(1988) constructed a family of orthonormal wavelets having compact support, and 

then Mallat (1989b) proposed a general method called MRA to construct wavelet 

bases. The purpose of this section is to introduce the properties of different wavelet 

bases commonly used in the areas of signal processing, image processing and pattern 

recognition, while the details on the construction of their mathematical formula is 

avoided here. The details can be found in Mallat (1998).  
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Notice that Continuous Wavelet Transform (CWT) is overcomplete. For 

overcomplete transforms, the restrictions on the basis functions are relatively mild. If 

( )xψ is a real-valued function whose Fourier spectrum ( )sΨ satisfies the admissibility 

criterion (Grossman et al. 1984, Chui 1992), then ( )xψ is called a basic wavelet. 

However, to extract object compact features, such over-complete transforms are 

inapplicable. Moreover, the fast wavelet transform algorithm is infeasible for 

overcomplete transforms using wavelet base with redundancy. 

Daubechies (1988) constructed a family of orthonormal wavelets having 

compact support. For each wavelet base of order , the set of wavelets  r

 / 2
,{ ( )} {2 (2 )}j j

r j k rx x kψ ψ= −  (3.22) 

where  and are integers, forms an orthonormal basis. Furthermore j k ( )r xψ is zero 

outside the interval [0 .  The fast wavelet transform can be applied when using 

orthonormal wavelet bases, and the scaling vectors and wavelet vectors are the same 

for both forward wavelet transform and inverse wavelet transform. However, the 

orthonormal wavelet bases lack symmetric properties which are desirable for most 

cases.  

, 2 1]r −

The biorthogonal DWT requires two scaling vectors and two wavelet vectors 

rather than one each, but this does not increase the computational burden of the 

process. The biorthogonal transform, however, affords a much wider choice of 

wavelet shape than orthonormal transform, so it is preferable in many applications. 

The choice of a basic wavelet is usually governed by the application. For 

example, for function representation, an orthonormal or biorthogonal basis is 
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desirable or required, since the objective is to represent the function faithfully and 

compactly. An overcomplete transform increases the amount of data required to 

completely represent the function. For some specific feature detection, then it is more 

important to select a wavelet that is similar to the components of interest. In this 

thesis, the reason why we use a specified wavelet base for this particular task will be 

explained separately where necessary. 

3.6 Properties of wavelet that are useful in this research project 

 Localization in both spatial and frequency domain 

The most important property of wavelet is that wavelet bases are localized in 

space domain, while the Fourier sinusoidal functions are not.  This localization 

feature of wavelet, along with wavelets localization property in frequency 

domain, makes many functions sparse in wavelet domain. This sparseness results 

into a number of uses in this research project, such as corner detection and 

efficient object representation by eliminating insignificant coefficients.  

 Multiresolution representation 

The wavelet representation also provides a coarse-to-fine matching strategy in 

pattern recognition, called multi-resolution matching. The matching starts from 

the coarsest scale and moves on to the finer scales. The costs for different scales 

are quite different. Since the coarsest scale has only a small number of 

coefficients, the cost at this scale is much less than that of finer scales. In 

practice, the majority of the patterns can be filtered out during the coarse scale 

matching, while only few patterns will need information at finer scales to be 
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identified. Therefore, the process of multi-resolution matching will be faster 

compared to the conventional matching techniques. 

 Fast computation 

Due to the existence of Fast Wavelet Transform (FWT) algorithm, the object 

representation using wavelet transform can be extracted with much lesser 

computation load than without using FWT. Thus, the overall object recognition 

algorithm can be more efficient, and online recognition can become possible. 

 Representation of  function at appropriate resolution 

Wavelet representation can adjust the resolution according to the resolution of 

the input function, while representation using Fourier transform (Gorman et al. 

1988) must be represented in designated resolution. Therefore, the wavelet 

representation is more precise and efficient. 

 Wide choice of wavelet bases 

Unlike Fourier transform, which utilizes only the sinusoidal function, wavelet 

transform have an infinite set of possible bases functions. By choosing the right 

wavelet base, we can detect and extract desired features. In addition, we are also 

able to represent a function efficiently and effectively. 
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Chapter 4  
 
Preprocessing and Boundary Partitioning 

 

4.1 Introduction 

Feature extraction is the core of an object recognition algorithm. Given an input 

image, either from template database or scene, our proposed feature extraction 

algorithm yields a compact, effective and robust feature suitable for the intended 

partial occluded object recognition task. Our proposed feature extraction algorithm 

consists of the following steps as shown in Figure. 4.1. The given input image is first 

de-noised and enhanced to improve the image quality in order to ease the later 

processes. Then the boundary of an object in the image is obtained by edge detection, 

followed by boundary tracking to serialize the object boundary pixels into a sequence 

of coordinates of points. After that, the object boundary is partitioned into curve 

segments using corner points extracted by our proposed wavelet-based corner 

detection algorithm. Subsequently, the coordinates of each segment are normalized so 

that it is invariant under translation and rotation, followed by re-sampling it into the 

nearest upper number of power of two to facilitate dyadic discrete wavelet transform. 

The normalized coordinates of curve segment are decomposed using wavelet 

transform. Only significant wavelet coefficients are kept as the object features, while 

those insignificant wavelet coefficients are discarded to make the object 

representation compact and robust to noise contamination.  
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Figure 4.1 Feature extraction process 

The feature extraction algorithm developed in our work is introduced in details in 

two chapters (Chapter 4 & 5). In this chapter, the preprocessing process procedure is 

briefly introduced first, followed by our proposed boundary partition algorithm 

including a novel wavelet based scale-invariant corner detection algorithm and 

boundary segmentation method which are the emphasis of this chapter.  

4.2 Preprocessing 

Although preprocessing tasks which include image enhancement, denoising, 

edge detection and boundary tracking are fundamental problems in machine vision, 

they are important to object recognition. They are regarded as separate problems in 

our work. Many researchers are dedicating themselves into these fundamental 

problems. Due to time constrain, the preprocessing techniques used in this research 

project are from existing methods, and they are briefly introduced here. 

Given a digitized image ( , )  ,f x y x y∈ , we assume that input images are de-

noised (Goudail, et al. 2004) and enhanced to increase the chance of success for 

further processing. Then the edges are detected using any edge detection method such 

as Canny edge detector (Canny, 1986). After edge detection, the edge pixels are 

obtained but in an unordered form. To serialize them, a tracing algorithm (Haig et al. 
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1992) is adopted to obtain an ordered list of the coordinates of points on the contour 

represented as { ( ), ( )}  1,2...x t y t t n= as shown in Figure 4.2, where n is the total 

number of points on the boundary. 
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Figure 4.2 preprocessing process (a) original image ( , )f x y  (b) the boundary of object (c) 
plot of { ( ), ( )}  1,2...x t y t t n=  as a function of curve length  t
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4.3 Boundary partitioning 

Splitting the object’s boundary into segments is one of the common approaches 

to handle recognition of object with partial occlusion (Gorman et al. 1988). The 

purpose of boundary partitioning is to segment object boundary into independent 

segments, so that the intact segments are not affected by the partial occlusion on other 

portions. Therefore, 2-D shape boundary segmentation is required as a fundamental 

and important step in the recognition of partially occlude objects (Katzir et al., 1994). 

Gorman et al. (1988) used a polygonal approximation approach to detect the 

vertices on the boundary, then partition it into curve segments such that each of them 

consists of three consecutive vertices. This approach assumes that the scale factor 

between the sizes of the known and unknown contours is approximately known. 

However, in this thesis, the scale information is assumed absolutely unknown. 

Moreover, polygonal approximation approach is unstable in finding the break points 

for non-polygonal shapes. Katzir et al. (1994) proposed a novel curve segmentation 

algorithm by transforming the curve into another one which intersects itself, then 

regard the points on the original curve corresponding to intersection points of the new 

curve as endpoints of segments. This segmentation algorithm is ideal for objects with 

smooth boundaries.  However, it results in having segments with very small length for 

objects with sharp corners, which is undesired for this research project. 

Attneave (1954) pointed out that points at which the curve bends most sharply 

are good partition points, because corner points are the most dominant points and are 

readily detected. The boundary partition algorithm proposed in this thesis resorts to 

the same approach. Since our recognition work involves similarity transform and 

partial occlusion, a corner detection algorithm which is invariant to scaling and partial 
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occlusion is essential in order to have a consistent boundary partitioning even if when 

similarity transform and partial occlusion are present. However, the combination of 

scaling and partial occlusion makes consistent corner detection extremely difficult. 

The reason is that a corner is a local feature; it largely depends on the size of the 

support region. Unfortunately, when both scaling and partial occlusion occur, the 

optimal scales for corner detection can not be determined successfully because 

occlusion disfeatures the global image.  

4.4 Literature survey of existing corner detection algorithm  

An extensive literature survey has been carried out to search for a suitable corner 

detection algorithm from existing curve corner detection techniques. The main 

shortcoming of the single-scale algorithms (Pavlidis 1974, Freeman 1977, Rosenfeld 

1973, Wuescher 1991, Fishler 1986, Rosenfeld 1975, Beus 1987, Sanka 1978, 

Anderson 1984, Cheng 1988) is that they work well only when the features of the 

object are of similar size and the size information is known a priori. However, since 

the object in question is assumed unknown, some researchers tried to obtain the size 

of the object by its area or perimeter. However, in this thesis, the object may be 

partially occluded, and therefore, we are unable to obtain the size information. In 

addition, corners on planar curves have their corresponding regions of support that 

may be quite different in size. Hence, it is not possible to define an optimal resolution 

in advance for the detection of corners. Consequently, traditional single scale corner 

detection algorithms tend to detect unwanted corners or miss the obvious corners in 

some situations. In addition, the corners detected for the same object in different 

scales (in case we cannot determine the size of object in scene due to partial occlusion 

) may not be consistent. Researchers (Asada 1986, Mokhtarian 1986, Pei 1992, 
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Rattarangsi 1992) resorted to detect corners based on the integrated information at 

multiple scales instead of the information at a single scale. Asada (1986) proposed the 

curvature primal sketch to represent the change in boundary curvature. The primal 

sketch consists of various symbolic descriptions at multiple scales, such as corners, 

knots and ends, and is generated by convolving different size Gaussian windows with 

the curvature and tracking the locations of curvature discontinuities. Boundary 

symbolic features are detected at a different scale individually based on the a priori 

knowledge for extracting features at the corresponding best scales. The resulting 

representation is a multiple-scale interpretation of the boundary. However, the 

detection of an individual symbolic feature is still based on the signal at a single scale. 

As to Rattarangsi et al.(1992) proposed a new algorithm that detects corners by 

integrating information obtained at multiple scales. In their algorithm, the scale spaces 

of isolated single and double corners are first analyzed to investigate the behavior of 

the scale space. The scale space consists of the local modulus maxima of the 

differentiation of the boundary function presented at all scales. Then, the scale space 

is transformed into a tree. Finally, the corners are detected using a coarse-to-fine tree 

parsing technique. However, since many scales are required in the algorithm, this is 

time consuming. In addition, some false corners are still detected, e.g. arcs with small 

radius. The reason is that the algorithms detects corner only based on the locations of 

the local modulus maxima while the magnitude of the maxima is neglected.  

Wavelet technique is a novel technique for corner detection. It has been an active 

research area since Mallat (1992) built a theoretical foundation for singularity 

detection. Quddus (1999) proposed a fast wavelet-based technique for corner 

detection. This boundary based techniques exploits the wavelet transform modulus 

maxima to detect corners. It is simple to implement and computationally efficient in 
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comparison with the scale-space methods because the wavelet transform modulus 

maxima are only extracted on a few dyadic levels, and it makes use of the fast discrete 

wavelet transform which is much more computational efficient than Gaussian 

convolution. However, this method still detects false corners. Quddus (2002) 

presented yet another novel technique to detect corners using a concept of determine 

the natural scale using Singular Value Decomposition (SVD) of the wavelet 

coefficients. The SVD facilitates the selection of global natural scale in discrete 

wavelet transform. They define natural scale at the level associated with most 

dominant eigenvalue. Eigenvector corresponding to dominant eigenvalue is 

considered as the optimal scale. The corners are detected at the locations 

corresponding to modulus maxima at the optimal scale. However, the eigenvalue to 

determine the natural scale is calculated based on the wavelet coefficients of the entire 

boundary. Obviously, partial occlusion will affect the result of natural scale selection. 

Hence, this algorithm will under perform when occlusion occurs. Lee (1993) 

proposed a non-parametric algorithm for detecting and locating corners of planar 

curves. The algorithm is based on the multi-scale wavelet transform of the orientation 

of the curve which can effectively utilize both the information of local modulus 

maxima positions and magnitudes of the transform results. The false corner 

elimination is based on the intrinsic ratios of true corners derived by them. In 1995, 

they (Lee 1995) proposed an improved multi-scale corner detection algorithm using 

wavelet transform. The ramp-width of contour orientation profile, which can be 

computed using the transformed modulus of two scales, reveal the difference between 

corner and arc and is utilized in the detection of true corner points. They assume that 

the ramp length of the orientation function with smoothing factor of 3 of an ideal 

corner is 7. However, in real applications dealing with discrete image, such 
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assumption is very hard to be fulfilled due to rotation, quantization and noise. 

Moreover, for our application we can not use only those perfect corners for 

segmentation, because the number of ideal corners are either too little or do not exist 

at all for some objects. We have written a computer program to simulate their 

algorithm, and the experimental result was not satisfied. Hua (2000) proposed a 

multiscale corner detection algorithm using the wavelet transform of parametric 

coordinates instead of the traditional contour orientation profile. A wavelet with 2 

vanishing moments was used to detect the local modulus maxima of the object 

boundary that corresponds to corners. However, the cooperation of the local modulus 

maxima of the wavelet transform of the x − and y −  coordinates is an ambiguity 

problem which has not been addressed by the authors. Moreover, this algorithm may 

not be rotation invariant, since no mathematical proof or evidence has been provided.   

4.5 Proposed wavelet-based corner detection algorithm 

Based on the literature review made above, we conclude that existing corner 

detection algorithms surveyed during the course of this thesis are not readily suitable 

to partition the object boundary into a consistent sequence of segments which is 

essential for this research project. Nevertheless, those wavelet based corner detection 

algorithms outperform the traditional algorithms providing better accuracy and 

computational efficiency. Therefore, we dedicated ourselves to develop a novel 

wavelet based corner detection algorithm which is capable to detection true corners 

even when similarity transform and partial occlusion occur. 

In this section, a specially designed wavelet based corner technique which is 

robust to scale and partial occlusion in favor of this research project is proposed. The 

corner candidates detection method in the proposed wavelet based corner detection 
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algorithm is adopted from Lee (1993, 1995) and Quddus (1999), but we proposed a 

novel false corners elimination method using Lipschitz exponent as a quantitative 

evaluation of the sharpness of corner candidates which is crucial for the overall 

performance of the corner detection algorithm.  

The proposed corner detection algorithm consists of the 3 steps as shown in 

Figure. 4.3. we use the similar methodologies presented in Lee (1993, 1995) and 

Quddus (1999) to calculate the orientation profile and detect the corner candidates. 

Subsequently, we use our own novel method to eliminate false corners. The false 

corner elimination plays an important role in corner detection, and makes a big 

difference on the overall performance. In the following sections, we will briefly 

describe the orientation profile calculation and corner candidate detection, and then 

present our false corner elimination method in detail. 

Orientation 
profile 
calculation 

Corner 
candidate 
detection

False corner 
elimination 

 

Figure 4.3 Corner detection process flow chart 

 

4.5.1 Orientation profile calculation 

Let { ( ), ( )}  1,2...x t y t t n=  represent the boundary of a planar object, where t  is 

the arc length. The orientation is defined as: 

 1 /( ) tan
/

dy dtt
dx dt

φ −=   (4.1) 
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If the orientation profile of a boundary in discrete form is represented as the 

Freeman chain code, the orientation resolution is only / 4π . To improve the 

orientation resolution, the orientation at point  is defined as t

 1( ) tan t q t q

t q t q

y y
t

x x
φ + −−

+ −

−
=

−
 (4.2) 

Where  is the smoothing parameter whose value is generally chosen to be 3 

(Lee 1993, Lee 1995, Mahmoud 2000).  

q

 

Figure 4.4 Orientation profile containing wrap-around error 

 

The range of equation (4.2) is bounded between / 2π−  and / 2π . As a result, the 

wrap-around error occurs when φ  exceeds / 2π and this error creates additive 
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discontinuities as shown in Figure 4.4. To eliminate this error, an offset is added to 

the φ  values to obtain the compensated true orientation profile ( )c tφ  

 ( ) ( ) ( )c t t offset kφ φ= +  (4.3) 

The  is initialized to zero, e.g. offset (0) 0offset = . It is then updated as: 

  (4.4) 
( )              if ( ) - ( 1)

( 1)
( )              if ( ) - ( 1)

offset k t t factor
offset k

offset k t t factor
π φ φ π
π φ φ π
+ − ≥⎧

+ = ⎨ − − ≤ −⎩

×
×

Theoretically, the offse  value is changed when t ( ) - ( 1)t tφ φ π− ≥ . Practically, 

the offset value has to be changed when ( ) - ( 1)t tφ φ − approachesπ . Thus, the factor  

has to be chosen to be slightly less than one. Based on our experimental simulations, a 

value of the factor at 0.85 is a good choice. The orientation profile without wrap-

around error of the bull head (Figure 4.2 a) is shown in Figure 4.5. 

 
Figure 4.5 Orientation profile after offset 
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4.5.2 Corner candidates detection. 

As illustrated in Figure 4.5, there are several ‘steps’ with sudden changes in 

amplitude which correspond to corners on the object boundary. The ‘step’ is a kind of 

singularity in mathematics. In (Mallat et al., 1992(a)), it shows that the wavelets have 

the capability to detect such singularities, it can also locate the position of the 

singularities precisely. They also proposed a quadratic wavelet as shown in Figure 4.6, 

which has compact support and such that the wavelet transform can be computed with 

a fast algorithm. 

 

Figure 4.6  Quadratic spline wavelet  

The orientation profile of the object boundary is transformed using the Quadratic 

wavelet into three dyadic scales. The local extrema on each scale are detected, both 

the location and amplitude are recorded. A point is set as local extremum if its 

modulus is greater than its nearest neighborhood. In practice, its modulus must be 

greater than a properly chosen threshold as well to eliminate some insignificant local 

modulus maxima caused by noise. Since the wavelet is the first derivative of a 

smoothing function, the wavelet transform modulus maxima are located where the 

signal has sharp transitions. Figure 4.7 is the dyadic wavelet transform of the 
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orientation profile in Figure 4.5, c omputed with the wavelet shown in Figure 4.6(a), 

where the local modulus maxima are indicated by stars ‘*’.  

 

3
rd Level w

avelet 
coefficients 

Figure 4.7  Wavelet transform of the function shown in figure 4.4, where the local modulus 

maxima is indicated by ‘*’ 

After the local modulus maxima of the wavelet transform of three dyadic scales 

are detected. A matching process is required to determine cross-scale correspondences 

of the extrema. A coarse-to-fine tracking process similar to the one in reference 

(Witkin, 1983) is adopted. Sine the scale is discrete, the correspondences can not be 

determined precisely. However, by using the three following criteria, the local 

modulus maxima can be linked with negligible probability of mis-match. 

i. The distance of the local modulus maxima at two adjacent scales is less than a 

proper chosen threshold. 

ii. The local modulus maxima at two adjacent scales have the same sign, e.g. both 

should be positive or negative. 
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iii. Only local modulus maxima that manage to propagate through the three scales 

are considered as eligible candidates. 

The linking of the extrema (indicated by “*”) is shown in Figure 4.8. The 

location of the local modulus maxima at the finest scale stands for the real locations 

of corner candidates, because the support of the finest scale wavelet function is small 

compared with the corner distance. The detected corner candidates of the “bull head” 

is shown in Figure 4.9. 

Figure 4.8 The linking of local extrema 
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Figure 4.9 Corner candidates 

4.5.3 False corner elimination using Lipschitz exponent.                                

Although only significant local modulus maxima are selected, and only which 

manage to propagate through the three scales are considered as eligible candidates, 

false corners still cannot be totally avoided. The reason is that it is impossible to set a 

hard-threshold to separate the local modulus maxima created by real corners from 

those caused by noise and arcs for objects with unknown scale and arbitrary nature. 

Quddus (1999) addressed this problem by normalizing the wavelet coefficients with 

respect to the maximum peak at the level. However, this normalization does not work 
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well when there is partial occlusion, because it may affect the maximum peaks. 

Quddus (2002) tried to solve this problem in an alternate way by detecting corners 

using a concept of determining the natural scale using Singular Value Decomposition 

(SVD) of the wavelet coefficients. Again, the natural scale determination is affected 

by the partial occlusion. Lee et al. (1993, 1995) used the ratio of the inter-scale local 

modulus maxima to eliminate the false corners. However, their algorithm intends to 

detect only ideal corners formed by two straight lines. In this thesis, a mathematical 

term called ‘Lipschitz exponent’ is used to serve as a quantity measure of the corner’s 

sharpness to eliminate false corners. In mathematics, local regularity is often 

measured with Lipschitz exponents. If a function is smooth (nonsingular) at a 

particular point, the Lipschitz exponent of this point can describe the smoothness of 

the function at this point. 

Mallat (1992(b)) provided an efficient algorithm to measure that local Lipschitz 

regularity from the wavelet transform modulus maxima over scales. A function is 

Lipschitz α  at 0x , if and only if there exists a constant A  such that at each wavelet 

coefficient modulus maxima  is ( , )Wf s x

 ( , )Wf s x Asα≤  (4.5) 

where x is within the cone of 0x  defined by 0x x Cs− ≤ , and C is a constant, s  

is the scale. 

Taking a logarithm on the both side of Equation (4.5), we obtain 

 2 2log ( , ) log ( ) log ( )Wf s x A sα≤ + 2  (4.6) 
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The Lipschitz exponent α therefore can be evaluated by the slope of 

2log ( , )Wf s x  as a function of , if we have the wavelet transform local 

maxima at two scales  and  , the Lipschitz exponent can be examined by equation 

(4.7). In practice, we have the local maxima at more than two scales, the Lipschitz 

exponent is evaluated by approximating the slope of the 

2log ( )s

1s 2s

2log ( , )Wf s x  as a function 

of by minimum square error (MSE) method. The plot of the 2log ( )s 2log ( , )cW s kΦ  

as a function of of corner candidates 1 and 5 (Figure 4.9) are shown in Figure 

4.10. 

2log ( )s

 2 2 2 1

2 2 2 1

log ( , ) log ( ,
log ( ) log ( )

Wf s x Wf s x
s s

α
−

=
−

)
 (4.7) 
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Figure 4.10 The decay of the 2log ( , )cW s kΦ  as a function of of corner candidates 

1 and 5 as shown in Figure 4.9 

2log ( )s
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The local Lipschitz exponents of the orientation profile are smaller than 1 as the 

orientation profile is continuous, therefore, it is sufficient to use a wavelet with only 

one vanishing moment to evaluate the local Lipschitz exponent. The Quadratic 

wavelet proposed by Mallat (1992b) as shown in Figure 4.6 is a good choice, because 

it has compact support and fast computational algorithm.  

The relevance of Lipschitz exponent to evaluate the corners is proven in two 

points: Firstly, the Lipschitz exponent evaluation is correspond to the human 

perception of saliency of corners; Secondly, the similarity transform invariance of the 

Lipschitz exponent is mathematically proven.   

The perceptual saliency of a corner is closely related to two geometrical terms: 

the acuteness and the sharpness. The more acute the angle is, the more salient the 

corner will be. The sharper the angle’s tip is, the more salient the corner will be. We 

evaluate the relationship of Lipschitz exponent with this two terms by performing a 

computer simulation. Supposing a sharp corner ( ) { ( ), ( )}f t x t y t=  with angle θ , is 

convoluted by a Gaussian function , where the width of the Gaussian function is 

controlled by 

( )g t

σ .  

 
2

221( )
2

t
g t e σ

σ π

−

=  (4.8) 

The Gaussian functions with 2,4,8σ =  are shown in Figure 4.11.  Figure 4.12 

illustrates the effect of two corners with angle at 40 and 140 degrees convoluted with 

Gaussian function with 2,4,8σ =  respectively. It visually demonstrates the statement 

made above: The smaller the angle is and the smaller the σ  is, the more salient the 

corner will be. Figure 4.13 shows the simulation result of how the Lipschitz exponent 
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is correlated with the angle θ  and the smooth factor σ  of a corner. The simulation 

result illustrates that the Lipschitz exponent is a monotonic increasing function of the 

angle of corner θ  and the smooth factor σ . Therefore, Lipschitz exponent is a unified 

measure of the perceptual saliency of the corner.  

  
 Figure 4.11 Gaussian Functions with 2,4,8σ =  
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(a)        (b) 
Figure 4.12 (a) Corner of angle 40 degree convoluted by Gaussian Functions with 2,4,8σ =  

(b) Corner of angle 140 degree convoluted by Gaussian Functions with 2,4,8σ =  
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Figure 4.13 Relationship of Lipschitz Exponent with the angle of corners and the width of 

Gaussian kernel for smoothing 

Since the proposed corner detection algorithm is supposed to be similarity 

transform invariant, to evaluate the corner, the Lipschitz exponent must be invariant 

to similarity transform as well. Obviously, the orientation profile ( )c tφ  of an object 

boundary is translation and rotation invariant. For an object boundary scaled by 

ratio , the coordinates of the scaled object is represented by 

, where {

r

{ ( ), ( )} { ( / ), * ( / )}   1,2...X k Y k r x k r r y k r k N= ∗ = ( ), ( )}   1,2...x t y t t n= is 

the boundary of the original object, and N rn= . Then the orientation profile of the 

scaled object can be approximated as ( ) ( / )c ck k rφΦ ≈  ( Note that it is not exactly 

equal to ( )c tφ  since a fixed step three is used to obtain the orientation profile). The 

wavelet transform of in our work is derived as follows:  ( )c kΦ
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 (4.9) 

By substituting equation (4.9) into (4.7), the local Lipschitz exponent of the  

can be derived as shown in Equation (4.10). This implies that the scaling of object 

would not change the local Lipschitz exponent.  

cΦ

 

2 2 2 1

2 2 2 1

2 2 2 1

2 2 2 1

2 2 2 1

2 2 2 1

log ( , ) log ( , )
( )

log ( ) log ( )

log ( / , ) log ( / , )
log ( ) log ( )

log ( / , ) log ( / , )
log ( / ) log ( / )

( )
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W s k W s k
s s

r W s r u r W s r u
s s

W s r u W s r u
s r s r

α

φ φ

φ φ

α φ

Φ − Φ
Φ =

−

−
=

−

−
=

−
=

 (4.10) 

From the above computer simulation and mathematical proof, the Lipschitz 

exponent has been shown to be an appropriate measure of the saliency of the corner. 

Therefore, by thresholding the corner candidates’ Lipschitz exponent with a proper 

chosen threshold, the false corners can be eliminated regardless of similarity 

transformation. The Lipschitz exponents of the corner candidates of the “bull head” 

shown in Figure 4.9 are listed in Table 4.1. We choose 0.6 as the threshold, hence, the 

false corners 5,6 and 8 are eliminated. The true corners are shown in Figure 4.14. 
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Table.4.1 The Lipschitz exponent of corner candidates and the evaluation result 

Corner 
Candidate  

Lipschitz 
Exponent 

Result 

1 0.2885 True corner 
2 0.4056 True corner 
3 0.3455 True corner 
4 0.4423 True corner 
5 0.7014 False corner 
6 0.7293 False corner 
7 0.4432 True corner 
8 0.8023 False corner 
9 0.3582 True corner 
10 0.4234 True corner 
11 0.2754 True corner 
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Figure 4.14 True corners after false corner elimination 
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Note that the Lipschitz exponent is measured by the decay of wavelet transform 

local maxima. Each wavelet transform local maximum depends only on its support 

region, therefore the occlusion on other region would not affect this wavelet 

transform. Hence, the Lipschitz exponent is robust to partial occlusion. The corner 

detection result of a bull head scaled by 1.5 times and occluded by a screwdriver is 

shown in Fig. 4.15. Extensive experiments have been done, and the results (which 

will be shown in Chapter 7) show that our proposed corner detection algorithm is 

invariant to similarity transform and robust to partial occlusion.  

 

 

    (a)       (b) 

Fig. 4.15. (a) Bull head scaled by 1.5 times occluded by screwdriver (b) Corner detection 

result 

4.6 Boundary partitioning using detected corners 

Having the corners detected by the proposed corner detection algorithm in hand, 

we have several options to partition the object boundary. Such as: 
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 The most intuitive way is to consider the portion between two consecutive 

corners as a segment. However, the segments segmented in this way do not 

contain corner information which is very important to object recognition, as 

the corners reflect important features in wavelet domain. Hence, segment 

contour in this manner will make the representation incomplete. 

 Gorman et al.(1988) partition the boundary in the way that each segment 

consists of three consecutive corners. However, a successful match of 

segment requires three consecutive intact corners. To recognize a partially-

occluded object, such requirement is too stringent to be fulfilled. Hence, 

partitioning in this way may lead to erroneous results in recognition. For 

instance, the wrench in Figure 4.16 does not have 3 consecutive corners 

when overlapped by the pliers. It wound not, therefore, be recognized as 

wrench. 

 

Figure 4.16 wrench overlapped by pliers 
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In order to overcome the drawbacks of the above two methods, we propose a 

new segmentation algorithm that can partition the object boundary into segments 

containing corner information, and each of them needing only two consecutive 

corners. We simply lengthen the curve segment between two consecutive corners 

by a length which is proportional (which we use 1/8 in the program) to the length 

between these two consecutive corners. Assume that we have two consecutive 

corners on the object boundary, represented by 
1 1

( , )t tx y  and
2 2

( , )t tx y , where  

and are the indices of the two corners. The length (number of points on the 

boundary) between these two corners is 

1t

2t

2t t1− . The segment formed using these 

two corners is defined by the following start and end point: 

 The beginning point of the segment is , where 

is to round  to the nearest integers.  

1 2 1 1 2 1( ( ) /8) ( ( ) /8)( ,round t t t round t t tx y− − − − )

8

)

round 1 2 1( ) /t t t− −

 And the end point is . 
2 2 1 2 2 1( ( ) /8) ( ( ) /8)( ,round t t t round t t tx y+ − + −

The boundary partitioning result of the bull head shown in Figure 4.2(b) is 

shown in Figure 4.17. The figure demonstrates that each segment contains two 

corners on both sides. Moreover, the proportional extension retains the size 

information of each segment so that make the later normalization process feasible. 
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Figure 4.17 Extracted partitioned segments of Figure 4.2(b) 
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Chapter 5  
 
Object Feature Extraction 

 

5.1 Introduction 

Feature extraction is the core of pattern recognition; robust and efficient features 

are essential to a successful pattern recognition algorithm. Existing object recognition 

algorithms addressing the partial occlusion problem use various kinds of object 

representation including dominant points, polygonal approximation, curve segment 

representation, local curve moment, Fourier descriptors, wavelet descriptors, etc. 

Despite the success of these existing representation methods, they all have drawbacks 

and limitations in some applications. For example, dominant points are insufficient to 

form a complete integrated representation of the object. It is not possible to 

approximate objects which have non-polygonal shape invariant to similarity transform 

using Polygonal approximation. Fourier descriptors are not localized in spatial 

domain, a local variation of the shape can affect all Fourier coefficients. A thorough 

literature survey of existing object representation techniques has been given in 

Chapter 2, the merits and drawbacks have been discussed. 

In this chapter, the proposed novel wavelet-based object representation algorithm 

is presented. The proposed object representation consists of the wavelet representation 

of every individual segments and the relative position between them. To extract the 

wavelet representation of each segment, it is first normalized to eliminate the 

similarity transformation effect. Then, it is decomposed into multiple scales using 

wavelet transform. Finally, the insignificant coefficients are removed to make the 
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representation more robust to noise and more compact. The relative scale and position 

between segments are also recorded. The proposed object representation algorithm is 

examined according to the evaluation criteria set in Section 1.4. 

5.2 Curve Segment Normalization 

The object in the scene may have different orientation, scale, and position. In 

order to make the object representation invariant to similarity transformation, each 

elemental representation of curve segment must be similarity transform invariant as 

well. Therefore, normalization is performed on each segment prior to feature 

extraction. Each segment undergoes the following normalization procedures: 

i. To make the segment translation invariant, the curve segment represented by 

0 1 0 1[ , ] { , , ... }, { , , ... }i m i mX Y X x x x x Y y y y y= = are shifted so that the start point 

0 0( , )x y of the segment is positioned on the origin, the coordinates of curve 

segment after translation is changed according to equation (5.1):  

 0[ , ] [ ,trans trans 0 ]X Y X x Y y= − −  (5.1) 

Figure 5.2 shows the plot of the translation version of a curve of the bull head 

shown in Figure 5.1. 
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Fig. 5.1 Plot of a curve segment of the bull head 

 

 
Fig. 5.2 Plot of the translated curve segment 
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ii. To make the segment rotation invariant, the curve segment is rotated by an 

angle θ  so that the line joining the start and end points is along x  axis as 

shown in equation (5.2), where θ  is the angle between the said line and x axis 

given by equation (5.3). 

 [ , ] [ cos sin , cos sinrotate rotate trans trans trans transX Y X Y Y X ]θ θ θ= + − θ  (5.2) 

 1 0

0

tan ( )m

m

y y
x x

θ − −
=

−
 (5.3) 

The plot of the rotated version of the curve segment after translation is shown 

in Figure 5.3. 

 

 Fig. 5.3 Plot of the rotated curve segment after translation 
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iii. To make the segment scale invariant, the curve segment is normalized so that 

the distance between the start point to end point of the segment is 1 by scaling 

it by equation(5.4).  

 [ , ] [ , ] /norm norm rotate rotateX Y X Y L=  (5.4) 

where 2
0( ) (m m

2
0 )L x x y y= − + − is the distance between the start point to 

the end point. 

The curve segment after size normalization is shown in Figure 5.4. 

 

Fig. 5.4 Plot of the scaled curve segment after rotation and translation 

77 



Chapter 5 Object Feature Extraction 
 
iv. As described in Chapter 3, the fast wavelet transform of a discrete signal is 

done by convolution followed by down-sampling. Therefore, to facilitate the 

dyadic wavelet decomposition in the later process, the curve segment is 

resampled into number of power-of-two integer  points by linear 

interpolation, where 

2n

12 2n m− n≤ < , and m  is the original number of points of 

this segment. The curve segment after resampling is represented as 

. [ ,resa resaX Y ]

The 0 0( , )x y , θ and  of each segment are also recorded as part of the object 

representation to retain the spatial information of the curve segment.  

L

 

5.3 Wavelet Decomposition 

Multiresolution analysis strategy has been found to be very useful in pattern 

recognition areas, it can represent signal (object) by multiple resolutions so that the 

object can be matched in hierarchical order. Scale-space approach is one such strategy 

which represents signal at multiple resolutions by convolving the signal by Gaussian 

functions with different standard deviations (Witkin 1993, Lim et al. 1995(a), Lim et 

al. 1995(b)). However, since the Gaussian function is not an orthonormal basis, the 

multi-resolution representation generated by scale-space filtering has heavy 

redundancy. Researchers try to make the representation more compact by extracting 

only local maxima and (or) zero-crossings as the representation (Mokhtarian et al. 

1986, 1992, 1995), however, such representation is still incomplete.  
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Wavelets lead to a powerful new approach to signal processing and analysis 

called Multiresolution theory (Mallat, 1989(a)). Multiresolution theory incorporates 

and unifies techniques from a variety of disciplines, including subband coding from 

signal processing, quadrature mirror filtering from digital speech recognition, and 

pyramidal image processing. A signal can be represented compactly and completely 

by wavelet transform using an orthogonal or bi-orthogonal wavelet basis. Moreover, 

the transient can be detected and represented readily using a well-chosen wavelet 

basis, the amplitude and location information can also be retained.  

The proposed object representation algorithm represents each curve segment by 

the decomposed scaling and wavelet coefficients of the normalized x  and   

coordinates of the segment. The scaling and wavelet coefficients can represent the 

original signal uniquely, compactly and faithfully. In the following section, the 

wavelet decomposition is explained in detail, and the properties of the proposed 

representation are also discussed. 

y

5.3.1  Level of decomposition 

The curve segments of an object boundary after normalization may have 

different number of points depending on their original curve length. In order to 

represent the segment at a desired resolution and facilitate feature matching, the 

normalized x  and coordinates of the segment are decomposed according to the 

number of points on the curve segment. Suppose that the number of points on the 

normalized curve segment is 2 , the normalized 

y

n x  and  functions of each segment 

are decomposed by  level discrete wavelet transform, so that the number of the 

coarse level scaling and wavelet coefficients are fixed at 16 regardless of the length of 

y

4n −
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original data as shown in Figure 5.5, where and  are the scaling 

and wavelet coefficients of the normalized 

( , )n ic X Y− ( , )n id X Y−

x  and  coordinates on th level, 

respectively, and 2  is the number of coefficients at i th level. In such a way, the 

wavelet transform provides a natural Multiresolution representation, where small 

curve segment is represented with fewer levels while larger curve segment is 

represented with more levels. This feature is highly desired in object representation. 

y i

n i−

2
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Fig. 5.5 Wavelet decomposition of the coordinates of the curve segment 

 

5.3.2 Wavelet basis selection 

As mentioned in Chapter 3, an overcomplete wavelet transform increases the 

amount of data required to represent the function. Therefore, an orthogonal or 

biorthogonal wavelet basis is desired for compact representation. Compared with 

orthogonal wavelet basis, biorthogonal wavelet basis are symmetric, hence possesses 

the linear phase property. Note that orthogonal wavelets are not symmetric except 

Haar wavelet. However, Haar wavelet lacks smoothness. The biorthogonal DWT 
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requires two scaling vectors and two wavelet vectors rather than one each, but this 

does not increase the computational burden of the process.  

Wavelet, like the quadratic spline wavelet, which is the first derivative of cubic 

spline, is suitable for detecting and representing abrupt changes as we used it for 

corner detection in chapter 4. But here the wavelet transform is applied on the x  and 

coordinates, and the change of the coordinates is continuous. Therefore, there 

would not be any sharp variation on the wavelet coefficients if we use a wavelet with 

only one vanishing moment. In order to represent the position and amplitude of the 

corners, a wavelet with vanishing moment of 2 is used.  Generally, the larger is the 

support of the wavelet, the better will be the approximation power. However, more 

computational effort will be needed and the localization property of the wavelet will 

be poorer. The converse is true for a wavelet with a smaller support. Therefore, we 

need to select a wavelet base to compromise the approximation power by the 

localization property (computational complexity). After trying many wavelet bases, 

we chose bior2.4 (Daubechies, 1992) wavelet as the analysis wavelet for feature 

detection as it is a good compromise for our application. The decomposition together 

with reconstruction scaling together with wavelet functions and their corresponded 

filters are shown in Figure 5.6. In fact, during discrete wavelet decomposition, what 

we need are only the decomposition low-pass and high-pass filters. The low-pass 

filter  and high-pass filter  of bior2.4 are 

y

0 ( )h n 1( )h n

 
0

1

3 3 1 19 45 19 1 3 3( ) ( , , , , , , , , )
128 64 8 64 64 64 8 64 128
1 1 1( ) ( , , )
4 2 4

h n

h n

= − − − −

= −
 (5.5) 
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Fig. 5.6 Decomposition and reconstruction scaling and wavelet functions and their 
corresponded filters of Bior2.4 wavelet 

 

5.4 Implementation consideration 

Since Fast Wavelet Transform is implemented by convolution with the high- and 

low-pass filters followed by down-sampling, the discrete wavelet transform of a 

signal with limited length suffers from the border distortion. The simple way to deal 

with border distortion is to extend the signal on both sides, such as by zero-padding, 

smooth padding, periodic extension, or boundary value replication methods (Matlab 

Wavelet Toolbox, 2000). Normally, the signal can be extended by zero padding, 

symmetric extension, and periodic extension. However, zero padding and periodic 

extensions generate spurious singularities on both sides of the signal, which result in 
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spurious significant wavelet coefficients on both sides as shown in Figure 5.7, the  

information of which is useless for recognition.   

 

(a) 
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(b) 

Fig. 5.7 (a) plot of the x and coordinates of a curve segment after periodical extension y

 (b)Spurious wavelet coefficients caused by improper extension (periodical extension) 

 

This undesirable side effect can be dramatically reduced by using symmetric 

extension method as shown in Figure 5.8 (b). The border of the signal is much 

smoother (as shown in Figure 5.8 (a)) by using symmetric extension than using other 

extension methods, e.g. zero padding and periodic extension.   
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 (a) 

 Number of wavelet coefficients 

V
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avelet coefficients 

 (b) 

Fig. 5.8 (a) plot of the x and coordinates of a curve segment after symmetrical extension y

(b) Plot of the coarsest level wavelet coefficients of the x  coordinates of the first segment 
using symmetric extension 
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5.5 Wavelet coefficients thresholding 

The x and coordinates of the curve segment are close to piece-wise linear 

signals as shown in Figure 5.8 (a). For piece-wise linear signal, wavelet transform 

creates a sparse representation of the signal. The signal energy is concentrated into a 

few wavelet coefficients, while most coefficients of the signal are zero or close to 

zero. On the other hand, the 

y

x and coordinates of the curve segment contain noise 

and quantization error, since the coordinates are digitized and sampled. After wavelet 

transform of the signal representing the transformed coordinates of the extract curve 

segments, the noise and quantization error are spread widely and equally over all 

coefficients in wavelet domain. Hence, the coefficients with smaller amplitude are 

dominated by noise, while those with large amplitude are dominated by signal 

information (such as corner or deflection) rather than noise. Further-more, the signal 

can be reconstructed with only these notable coefficients using wavelet reconstruction 

without losing the essential signal characteristics. The above mentioned amazing 

properties of wavelet make it possible to eliminate the noise and quantization error by 

thresholding the wavelet coefficients. Donoho (1995) proposed a wavelet-base 

denoising algorithm which thresholds the wavelet coefficients called soft threshold. 

The idea of universal threshold is given by Donoho and Johnstone (1994). 

y

In Donoho’s paper (Donoho 1995), the objective is to remove noise from the 

signal, while the objective in this research is to extract only significant wavelet 

coefficients and set, as many as possible, insignificant wavelet coefficients to zero to 

make the representation compact. Therefore, the threshold used here borrows the idea 

from Donoho and Johnstone (1994), but is greater than the one proposed by them. 

After extensive experiments and computer simulation, the threshold  is chosen as: T
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 3 2 logeT σ= n  (5.6) 

 

where is the number of samples on the signal, and the variance n 2σ  is estimated 

from the median of the finest scale wavelet coefficients by the following formula 

 1 ( )  
0.6745

med x x Xσ = ∈  (5.7) 

Here denotes the set of the wavelet coefficients at the finest scale, and 

denotes the median function, which is defined as follows: if we have a set of 

numbers, and the numbers are sorted into either ascending or descending order, the 

middle term is the median. 

X

med

A thresholding operation is performed on the wavelet coefficients over all the 

resolutions in the following way: retain the coefficients which are greater than the 

threshold and set the rest to zero. An example of the wavelet coefficients before and 

after thresholding is shown in Figure 5.9. The plots of wavelet coefficients before 

thresholding are on the left hand side, while the plots of wavelet coefficients after 

thresholding are on the right hand side for comparison. From the graphs, we see that 

most of the wavelet coefficients have been set to zero after thresholding. We only 

retain the scaling coefficients and the non-zero wavelet coefficients as the 

representation of the curve segment. Hence, the representation of the curve segment is 

compact since the number of non-zero coefficients is much lesser in comparison with 

the original data. 
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(a)       (b) 

Fig. 5.9 (a) plot of the wavelet coefficients before thresholding (the threshold is 0.007 
represented by dash line)(b) plot of the wavelet coefficients after thresholding 

By using the scaling coefficients and wavelet coefficients after thresholding, a 

close approximation of the original curve segment can be reconstructed using the 

thresholded wavelet coefficients as shown on the right of Figure 5.10, we can hardly 
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see any difference from the original which is on the left (same with Figure 5.4). The 

energy difference between the original signal and the reconstructed signal which can 

be obtained by Equation (5.8) is very small, in the order of 1610−  when there is no 

noise contamination. Therefore, seting the threshold value according to equation (5.6) 

is an appropriate compromise between the compactness and the faithfulness of the 

wavelet representation. 

 
2 2

2 2

( ) (resa recons resa recons

resa resa

X X Y Y
X Y

− + −
+

)  (5.8) 

 

(a)     (b) 

Fig. 5.10 (a) Original curve segment (b) Reconstructed curve segment using wavelet 
coefficients after thresholding 
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5.6 Object representation 

The proposed object representation contains two portions, one is the wavelet 

representation of the curve segments on the object boundary, and the other one is 

the similarity transformation information of each segment. 

F

S

The wavelet representation of an object consists of  segments is defined as: m
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 (5.9) 

where jF is the feature vector of  curve segment j , which consists of  the 

coarsest level scaling coefficients  and the wavelet coefficients from the 

coarsest level  to level . According to the wavelet theory 

mentioned in Chapter 3, the scaling coefficients  carry the approximation 

information, while the wavelet coefficients  to  carry the 

details from coarse level to finest level. An example is shown in Figure 5.11 to 

illustrate the representation of a curve segment using the scaling and wavelet 

coefficients. Note that the level of decomposition 

4 ( , )jc X Y

4 ( , )jd X Y
1
( , )j

j
n

d X
−

Y

Y

4 ( , )jc X Y

4 ( , )jd X Y
1
( , )j

j
n

d X
−

4jn −  depends on the original 

curve segment length.  
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   (a)        (b) 

 

   (c)       (d) 

Fig. 5.11 Wavelet representation of the x coordinates of the segment of bull head as 
shown in figure 5.4. (a) scaling coefficients (b)-(d) wavelet coefficients at multiple scales 

The similarity transformation information matrix  is defined as: S
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 (5.10) 

Where 0 0( , )x y , θ  and  are the start points coordinate, rotation angle and distance 
between start point to end point respectively mentioned earlier in section 5.2. 

L
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5.7 Evaluation of proposed object representation 

In this section, the proposed object representation is evaluated according to the 

criteria of a good shape descriptor set in Section 1.4. 

a) Invariance 

The proposed object representation consists of the wavelet descriptors of isolated 

curve segments of the object boundary. Each curve segment undergoes normalization 

process including translation, rotation and scaling to standardize its position, 

orientation and scale as described in Section 5.2. Therefore, the proposed object 

representation is inherently invariant to similarity transform. 

b) Stability 

The proposed object representation algorithm includes a wavelet coefficients 

thresholding process. As mentioned in Section 5.5, the thresholding process removes 

the noise on the object boundary, if any. Therefore, the proposed object representation 

is robust to boundary noise contamination. 

c) Compactness 

Most of the wavelet coefficients have been set to zero after thresholding as shown 

in Figure 5.9. The number of scaling coefficients and non-zero wavelet coefficients is 

only 12-20% (depending on the length and the nature of object boundary) of the 

number of points on the object boundary (See chapter 6 and 7 for the details of the 

experimental results). Therefore, the proposed object representation is compact.  

d) Completeness 

Most of the existing object representation algorithms use some specific extracted 

features as the object representation, such as the geometrical primitives including 
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corners, arcs, lines and holes and some abstract features e.g. curvature zero-crossings, 

wavelet transform zero-crossings, intersections of the predefined levels with the 

wavelet transforms as reviewed in Chapter 2. These features are unable to form a 

complete integrated object representation (Discussed in chapter 2). The proposed 

object representation can be used to reconstruct a good approximation of the object 

boundary as shown in Section 5.5. Therefore, the proposed object representation is 

more complete. 

e) Hierarchical Representation 

The proposed object representation consists of scaling coefficients and wavelet 

coefficients at multiple scales. The scaling coefficients carry the information on the 

approximation of the object, while the wavelet coefficients at multiple resolutions 

carry the information of the details of the object at multiple scales as described in 

Section 5.3. The proposed representation thus possesses the hierarchical 

representation property.  

f) Generalization 

Some object representations are only applicable for a particular category of 

objects, such as the polygonal approximation which is only applicable to objects with 

polygonal shape. The proposed object representation is applicable to any arbitrary 

shape, because wavelet transform can be applied on any arbitrary square integrable 

functions.  

g) Efficiency 

The main computational effort needed during feature extraction is the computing 

of the wavelet coefficients. Due to the use of fast wavelet transform algorithm which 
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is computationally efficient, as reviewed in Section 3.4, the object feature can be 

extracted efficiently.  

h) Uniqueness 

The wavelet transform and inverse wavelet transform are one-to-one correspondence 

transformations as mentioned in Section 3.3. Therefore, for two objects with different 

shapes, the wavelet representations of these two objects are different. A proper 

designed classifier can readily distinguish two objects with different shape using our 

proposed representation. 

i) Handling partial occlusion capability 

The proposed feature extraction algorithm partitions the object boundary into 

independent curve segments. Therefore partial occlusion only affects the features of 

the segment(s) being occluded. The partially occluded object can still be recognized 

using the features from the intact portion. 
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Chapter 6  
 
Hierarchical Matching 

 

6.1 Introduction 

Our pattern recognition system is model based. It is to recognize an object in the 

scene among the many model objects whose representations are known and stored in 

a database. Having the hierarchical wavelet representations of the object in the scene 

and the models in database, object recognition is equivalent to a pattern recognition 

(feature matching) problem.  

There are several approaches for pattern recognition, including statistical pattern 

recognition, syntactic pattern recognition and neural network pattern recognition 

(Richard et al. 2000). Statistical pattern recognition assumes, as its name implies, a 

statistical-based classification algorithm. A set of characteristic measurements are 

extracted from the input data and are used to assign each feature vector (matrix) to 

one of the known classes. Features are assumed to be generated by a state of nature, 

and therefore the underlying model is of a state of nature or class-conditioned set of 

probabilities and probability density functions. Syntactic pattern recognition, also 

called structural pattern recognition, relies more on the interrelationships or 

interconnections of features. Neural network is a relatively newly emerged approach 

that attempts to draw on knowledge of how biological neural systems store and 

manipulate information. This leads to a class of artificial neural systems termed neural 

networks. This study involves an amalgamation of research in many diverse fields 

such as psychology, neuroscience, cognitive science, and systems theory. However, 
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generally speaking, neural network systems need to be trained using large amount of 

training examples with known identities to represent the variation and distribution of 

the representation of each class in the feature space. Obtaining the training examples 

and the training process are inconvenient, computational expensive and sometimes 

impossible in practice. In this research, when constructing the model database, we 

only take one standard image of a model object. Therefore, neural network method is 

not applicable here. 

As we have described in Chapter 5, the proposed object representation consists 

of the wavelet representations of the curve segments and the similarity transformation 

information which generate the interrelationship between segments. The wavelet 

representation of the curve segments F  contains the shape information of constituent 

segments, while the similarity transformation information matrix S retains the 

interrelationships between constituent segments. Therefore, the matching process in 

this thesis is a combination of statistical and structural pattern recognition methods. 

The wavelet representation of each segment of the object in the scene is matched with 

the wavelet representation of the segments of the models in the database iteratively 

first using statistical approach as illustrated in Figure 6.1.  
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F1 

F2 

F’m

F’3

F’2

F’1

F3 

Fn 

Object in scene Object in database 

… …

Matching

 
 

Fig. 6.1 Feature matching of object in scene with model object ( m is the number of 
segments of the object in scene, n is the number of segments of the object in database) 

If two or more separated segments between object in the scene and the model are 

matched, the relative position between the segments is used for further matching.  

The matching process carries on iteratively between the object in the scene and 

the models in the database until the identity of the object in the scene is confirmed (as 

illustrated in Figure 6.2). Such iteratively matching is very computational intensive 

when the number of models in the database is large. We proposed a hierarchical 

matching algorithm to match the segments between object in the scene and the model 

objects which can tremendously reduce the computational load.  
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Model 1

Representation 
of object in scene 

Model database 

…

Matching

Model 2

Model 3

Model n

 

Fig. 6.2 Iteratively matching between object in scene with models in database 

 

In the following sections, our proposed hierarchical segment matching algorithm 

and segment relative position matching method are described. 

6.2 Hierarchical Matching of Segments 

Firstly, we try to match the wavelet representations of segments between objects 

in the scene and the model objects to look for matched segment-pairs candidates. 

Matching in such an iterative manner can be very computational intensive, especially 

when the number of models in the database is large. To speed up the recognition 

process, a hierarchical matching algorithm which can increase the matching speed is 

proposed. The reason why a hierarchical matching strategy can be adopted is due to 

the multiscale representation structure of our proposed wavelet representation of 

object. From wavelet reconstruction theory, we can use in equation (5.9) to 4c
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reconstruct an approximation of the original segment, and better and better 

approximation can be obtained by adding ,   one by one using wavelet 

reconstruction. Hence, our feature matrix forms a multiresolution representation, with 

 represents the approximation, and , ... represent the details in increasingly  

finer scale. This facilitates the use of the hierarchical coarse–to-fine matching strategy 

as illustrated in Fig.6.3. We match the manipulated scaling coefficients first, if the 

dissimilarity function ( Equation 6.4) of  is less than a proper chosen threshold 

value , the matching proceed to the next finer level wavelet coefficients , ... 

till the finest possible scale. If the dissimilarity value is greater than the properly 

chosen threshold at any level, the matching process between these two segments is 

terminated, and is considered as fails. 

4d 5d L

4c 4d 5d

4c

4c

4Tc 4d 5d
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…
 

||c4-c4
’|| 

<Tc4

No
Reject 

|| d4-d4
’|| 

<Td4

No 
Reject 

|| d5-d5
’|| 

<Td5

No 

Reject 

|| dn-2-d n-2
’|| or 

|| dn’-2-d n’-2
’|| 

<Tdn-2

Or <Tdn’-2

No 

Reject 

Matched 

 

Fig. 6.3 Hierarchical matching flow chat 

 

Using this hierarchical matching algorithm, most of the matching processes 

between two different segments are terminated at the first or the first few levels. Note 

that, the numbers of coefficients at the first few levels are less. In addition, most of 

the wavelet coefficients of the wavelet representation of the object have been set to 

zero after thresholding, and during matching process only non-zero wavelet 

coefficients need to be tested for matching. Therefore, the computational requirement 

for matching is greatly reduced in comparison with a thorough direct matching. 
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6.3 Matching of segments with different number of samples 

As discussed in the previous chapter, the curve segments may have different 

number of samples after resampling in order to retain the original scale. As a result, 

the levels of wavelet decomposition for curve segments with different number of 

samples may also be different. To match the wavelet features of two segments with 

different level of decomposition, the highest possible scale of matching is taken to be 

the one with the lesser number of samples (lesser level of wavelet decomposition). As 

illustrated in Figure 6.3, the highest level of matching can be either  or , 

which ever is smaller. Using such wavelet representation and matching strategy, the 

curve segments can be matched at their natural scales instead of a pre-designated 

scale, such as the Fourier descriptor (Gorman et al. 1988). Therefore, the matching 

accuracy is higher. 

2n − ' 2n −

When we wish to match a segment with 2 points with another one with 

points, the scaling and wavelet coefficients need to be multiplied by a factor 

n

'2n

'2n n−  during matching to compensate the scale difference.  

If we represent a segment with 2 points by , then its 

scaled version with  points would be represented by  in 

relation to {  by Equation (6.1). 

n { ( ), ( )}   1, 2...2nx t y t t =

'2n '{ ( ), ( )}  1,2...2nX k Y k k =

( ), ( )}   1, 2...2nx t y t t =

 '  (6.1) ' ' ' '{ ( ), ( )} {2 ( / 2 ), 2 * ( / 2 )}   1, 2...2n n n n n n n n nX k Y k x k y k k− − − −= ∗ =

 

By substituting equations (6.1), (3.4) and (3.5) into equations (3.14) and (3.15), 

we obtain: 
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Therefore, the dissimilarity function of the scaling and wavelet coefficients is 

shown in equation (6.4 and 6.5). 
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where  is the number of coefficients, h j  is its index, subscripts x  and  denote the 

scaling coefficients wavelet representation of 

y

x  and  coordinates, and y  is the 

Absolute value operation. Using Absolute operation instead of the conventional 

Euclidean distance which is the square root of the sum of square of the difference of 

each element is more computationally efficient.  
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6.4 Matching process 

To summarize the steps of the segment hierarchical matching using its wavelet 

representation, an example of matching a image of bullhead with its scaled and 

rotated version (as illustrated in Figure 6.4) is shown below to demonstrate the 

hierarchical matching procedure: 

    

   (a)       (b) 

Fig. 6.4 (a) Original bull head (b) scaled and rotated bull head 

Step1: Scaling wavelet coefficients matching 

Table 6.1 shows the dissimilarity value of scaling coefficients '
4 4c c− of the 

eight segments between the original bull head and it’s scaled and rotated version. S1, 

S2 … S8 denote the segments of the original bull head, while S1’, S2’ … S8’ denote the 

segments of the scaled and rotated bull head. The threshold for the scaling coefficients 

is set at 1 (decided experimentally). Therefore only the cells on the diagonal line 

marked with grey are eligible candidates to proceed to the next level matching, while 

the else are filtered out.  
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Table 6.1 dissimilarity value of scaling coefficients ||c4-c4
’|| 

 
||c4-c4

’|| S1 S2 S3 S4 S5 S6 S7 S8
S1’ 0.3246 8.6424 7.2334 24.034 10.567 7.0365 5.0535 30.754 
S2’ 6.1133 0.5647 3.4635 25.963 2.4563 4.5256 6.9843 32.832 
S3’ 5.1152 3.4245 0.3822 25.835 3.6767 2.3875 8.4433 33.337 
S4’ 33.922 51.852 51.635 0.4348 51.676 53.734 31.763 32.744 
S5’ 7.4624 2.4652 3.6764 25.634 0.4583 4.7344 8.3456 33.664 
S6’ 4.9625 4.5244 2.3835 26.836 4.7867 0.3456 9.1645 32.836 
S7’ 5.0784 9.8246 11.735 22.476 11.766 12.634 0.3874 30.475 
S8’ 61.484 92.886 93.545 46.397 95.267 92.654 60.654 0.3837 

 

Step2: Coarsest level wavelet coefficients matching 

Table 6.2 shows the dissimilarity value of the manipulated coarsest level wavelet 

coefficients '
4 4d d− of the eight segments between the original bull head and its 

scaled and rotated version. Since all other cells except those on the diagonal line have 

been filtered out during last step, the calculation of the dissimilarity value of the 

coarsest level wavelet coefficients is only performed on a few eligible cells on the 

diagonal line. The threshold for the matching on this coarsest level wavelet 

coefficients is set as 0.2 (decided experimentally).  

Table 6.2 dissimilarity value of the coarsest level wavelet coefficients ||d4-d4
’|| 

 
||d4-d4

’|| S1 S2 S3 S4 S5 S6 S7 S8
S1’ 0.0687        
S2’  0.0764       
S3’   0.0556      
S4’    0.0753     
S5’     0.0578    
S6’      0.0875   
S7’       0.0446  
S8’        0.0466 

 
 

Step3: Finer level wavelet coefficients matching till the finest 

Table 6.3 shows the dissimilarity value of the threshoded wavelet coefficients d5, 

d6…d9 of the eight segments between the original bull head and its the scaled and 
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rotated version. The thresholds for these finer levels wavelet coefficients are set as 

0.4, 0.3, 0.2, 0.15, 0.1, 0.08…respectively. Note that these values were obtained 

experimentally. To match the wavelet coefficients at finer levels is to confirm the 

shape of the curve segment at higher resolution. Therefore, the matching precision can 

be adjusted by fine tuning the threshold at each level or omit the matching above 

certain higher resolution if the precision requirement is low, noise level is high or to 

recognize some object with none-rigid shape. As shown in Table 6.3, the maximum 

level of matching is different among segments, from level d7 some segments has 

reached their finest resolution, e.g. those marked with a tick “√”.  The maximum level 

of matching is on their original resolution, therefore the matching is precise and 

controllable. 

  
Table 6.3 dissimilarity value of the finer level wavelet coefficients 

 
||d5-d5

’|| S1 S2 S3 S4 S5 S6 S7 S8
S1’ 0.0234        
S2’  0.0274       
S3’   0.0124      
S4’    0.0083     
S5’     0.0129    
S6’      0.0087   
S7’       0.0192  
S8’        0.0095 

 
||d6-d6

’|| S1 S2 S3 S4 S5 S6 S7 S8
S1’ 0.0093        
S2’  0.0000       
S3’   0.0000      
S4’    0.0082     
S5’     0.0000    
S6’      0.0000   
S7’       0.0032  
S8’        0.0042 

 
||d7-d7

’|| S1 S2 S3 S4 S5 S6 S7 S8
S1’ 0.0000        
S2’  √       
S3’   √      
S4’    0.0018     
S5’     √    
S6’      √   
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S7’       0.0000  
S8’        0.0023 

 
||d8-d8

’|| S1 S2 S3 S4 S5 S6 S7 S8
S1’ √        
S2’  √       
S3’   √      
S4’    0.0000     
S5’     √    
S6’      √   
S7’       √  
S8’        0.0002 

 
||d9-d9

’|| S1 S2 S3 S4 S5 S6 S7 S8
S1’ √        
S2’  √       
S3’   √      
S4’    √     
S5’     √    
S6’      √   
S7’       √  
S8’        0.0000 

 

6.5 Interrelationship verification 

If two or more segments between the object in the scene and a model in the 

database match, the relative position information is used for verification. This is due 

to the fact that in some cases, the local shape information alone is insufficient to 

confirm the object identity. For example, the proposed wavelet representation (local 

shape information) is the same for a square and a rectangle as shown in figure 6.5, 

since it has lost its scale information during normalization process. Therefore, the 

position, scaling and orientation information can be added to confirm their 

interrelationship. For square and rectangle, the ratio between neighboring segments is 

different.  

106 



Chapter 6 Hierarchical Matching 
 

 

(a)      (b) 

Fig. 6.5 (a) Square (b) Rectangle 

Consider an object with curve segments  and i j  in the scene, which is the 

similarity transformed of a model, with curve segments h  and , in the database. In 

addition, segments i  and 

k

j  correspond to segments  and , respectively. Let h k δ  be 

the distance between the starting points of segment i 0 0( , )i ix y  and that of segment j  

0 0( , )j jx y  given by 2
0 0 0 0( ) (i j i j 2)x x y yδ = − + −

)

; then, that between the starting point of 

segment  h ' '
0 0( ,h hx y  and that of segment k  ' '

0 0( , )k kx y  is given by 

' ' ' 2 ' '
0 0 0 0( ) (h k h kx x y yδ = − + − 2) . Furthermore, let the length of segment i , j  ,  and  

be  

h k

iL jL 'hL and , respectively. Based on the Similarity Transform geometry 

(Scale), the ration 

'kL

'

δ
δ

, '

i

h

L
L

and '

j

k

L
L

must be equal as shown in equation (6.6). 

. ' ' '

i j

h

L L
L L

δ
δ

= = k  (6.6) 

For the orientation, let us denote iθ , jθ  , 'hθ  and 'kθ to represent the angle defined 

by equation (5.3) for segments i , j  ,  and , respectively. On the same similarity 

transform basis, equation (6.7) must be true. 

h k
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 'i h j 'kθ θ θ θ− = −  (6.7) 

The relative relationship including angle difference, length ratio and distance 

ratio of the scaled and rotated bull head shown in figure 6.4(b) with the original bull 

head shown in figure 6.4(a) are listed in table 6.4, 6.5 and 6.6 respectively. From the 

result shown in these tables, we can confirm the identity of the similarity transformed 

bull head, as the results obey equations (6.6) and (6.7). 

Table 6.4 Angle difference 
 

'i hθ θ−  S1 S2 S3 S4 S5 S6 S7 S8

S1’ 46.10        
S2’  47.63       
S3’   46.18      
S4’    46.65     
S5’     45.32    
S6’      45.43   
S7’       45.08  
S8’        45.63 

 
Table 6.5 length ratio 

 
'/L L  S1 S2 S3 S4 S5 S6 S7 S8

S1’ 1.1572        
S2’  1.1541       
S3’   1.1558          
S4’    1.1598     
S5’     1.1588    
S6’      1.1566    
S7’       1.1577  
S8’        1.1599 

 
Table 6.6 distance ratio 

 
2

0 0 0 0

' ' 2 ' ' 2
0 0 0 0

( ) ( )

( ) ( )

i j i j

h k h k

x x y y

x x y y

− + −

− + −

2

 

S1, S1’ S2, S2’ S3, S3’ S4, S4’ S5, S5’ S6, S6’ S7, S7’ S8, S8’ 

S1, S1’         
S2, S2’ 1.155        
S3, S3’ 1.1607 1.1541       
S4, S4’ 1.1522 1.1584 1.1613      
S5, S5’ 1.1597 1.1552 1.1588 1.1557     
S6, S6’ 1.1617 1.1616 1.1541 1.1578 1.1529    
S7, S7’ 1.1619 1.1593 1.1604 1.1565 1.1524 1.1557   
S8, S8’ 1.1599 1.1561 1.1583 1.1524 1.1581 1.1583 1.1588  
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6.6 Matching criteria 

The task we are dealing with includes not only standalone object recognition, but 

also partially occluded object recognition. Partial occlusion causes part of the object 

to be invisible, and also may introduce new object contour from another overlapping 

object. Moreover, the degree of occlusion and place of occlusion are different from 

one case to another. Therefore, to judge whether a model object is present in the scene 

, we need to take all the possibilities mentioned above into consideration. Listed 

below are the possible matching result and our matching criteria: 

i. All segments of an object in the scene match with all the segments of a model in 

sequence, and their relative position, scale and orientation are the same. For this 

case, the presence of the model object in the scene is definitive and is without 

occlusion. 

ii. Some curve segments (two or more, but not all) of an object in the scene match 

some curve segments of a model, and their relative position, scale and orientation 

are the same. In this case, the model object is present in the scene but with partial 

occlusion. Those unmatched segments of model are occluded. 

iii. Only one matched segment-pair is found between an object in the scene and a 

model object. In this case, the model object may be present in the scene; however, 

the evidence is weak. The model object is not considered present in the scene. 

iv. Several segments of an object in the scene match with some segments of a model, 

but some of their relative scale and orientation differ. In this case, false matching 

should be eliminated. The largest cluster of segment-pair candidates which have the 

same relative position, scale and orientation implies true match. 
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6.7 Scale, position and orientation of the object in the scene 

If the model object is found present in the scene, the position, scale and 

orientation of the object in the scene relative to the model object can be obtained 

using the following three equations (6.8), (6.9) and (6.10), respectively. 

 '

i

h

LScale
L

=  (6.8) 

 '
0 0 0( , ) ( / , / )i h i '

0
hx y x Scale x y Scale yΔ Δ = − −  (6.9) 

 'i hθ θ θΔ = −  (6.10) 
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Chapter 7  
 
Experimental Results and Discussion 

 

7.1 Introduction 

In this chapter, we present the experimental results to illustrate the performance 

of the proposed recognition system in the following aspects, followed by discussion to 

highlight its advantages and limitations. 

i. Invariance to similarity transformation. 

Standalone objects with different position, scaling and rotation have been used to 

examine the proposed recognition system’s performance under these conditions.  

ii. Robustness to partial occlusion 

Occlusion is the major concern of this research project, therefore extensive 

experiments have been done to verify the performance of the proposed algorithm 

under partial occlusion. During the testing, two model objects are randomly 

positioned in a selected region so that they overlapped with each other and with 

arbitrary relatively position. 

iii. Robustness to the combination of the similarity transform and partial 

occlusion 

The object recognition of object with both scaling and partial occlusion is 

considered as the most difficult problem in 2-D object recognition.  We use this 

as the critical test of our recognition system. 
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7.2 Design of Experiment 

i. System Configuration 

The image acquisition system is composed of a CCD (Charge-Coupled Device) 

camera, a PCI image capture card, which acts as a frame grabber and an IBM-

compatible PC. The CCD camera is used to capture the object images. The PCI image 

capture card can be used to convert the captured image to a static image file in the 

format of TIFF (Tag Image File Format), a widely used format for storing image 

data. Then the IBM-compatible PC is used to implement our algorithms, and finally 

produces the results.  

 The proposed recognition algorithm, which consists of preprocessing, feature 

extraction and feature matching, is implemented and coded in Matlab 6.5 with the use 

of library functions from image processing toolbox, wavelet toolbox and statistics 

toolbox.  

ii. Model images and testing images 

The images of model objects to construct the model database are captured by the 

CCD camera or downloaded from internet. The model objects are not restricted to 

polygonal shape, in fact, the shape of model object can be arbitrary. However, since 

the proposed recognition system requires dominant points for boundary partitioning, 

the model objects are expected to have two or more dominants points. Some model 

objects in our database are shown in Figure 7.1. 

For testing, the images are expected to have various variations in several aspects, 

e.g. scale, orientation, noise ratio and partial occlusion. In order to have large number 
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of images to test the performance of the proposed recognition system under certain 

variation, the test images are mostly synthetic images generated by manipulating the 

images existing in the model database. 

 
 (a)   (b)   (c)   (d)  

 
  (e)  (f)   (g)   (h) 

 
  (i)   (k) 

Fig. 7.1 Images to construct database 

7.3 Database construction 

To perform on-line recognition, a model database needs to be constructed first. 

For each image with known identity, an image is captured by placing the object in a 

specific known orientation. For example, the image shown in Fig 7.1(a) is captured by 

having the axis which bisects the bull head in the vertical position, we then extract its 

feature first using our proposed feature extraction algorithm, and then store its feature 

matrix together with its identity into the database as shown in Table 7.1. The 

construction of database is done offline in order to save time for later recognition. 
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Table 7.1 Model database 
 

Index Identity Wavelet representation Similarity transformation info 
1 Bull head F1 S1
2 Club F2 S2
3 Flower F3 S3
4 Plane F4 S4
5 Pliers F5 S5
6 Saw F6 S6
7 Scissors F7 S7
8 Screw driver F8 S8
9 Wrench F9 S9

10 Egg F10 S10

… … … … 

 

7.4 Standalone object recognition with similarity transformation 

Invariant to translation, rotation and scaling (known collectively as Similarity 

Transform) is the basic requirement of a object recognition system. In this section, we 

present the experimental results of the proposed recognition system with the scene 

object under the said Similarity Transform 

i. Translation invariance 

The object in the scene may be at a location different from the model object to 

construct the database. The feature extracted by the proposed recognition system are 

invariant to translation, because the coordinates of the points on each curve segment 

are subtracted by the coordinates of it’s starting points during normalization stage as 

described in chapter 5. To test the invariance to the translation of the proposed 

recognition system, the model objects are artificially shifted to a random new 

location. (The program for doing so is given in Appendix 1.)  
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Experiment 1. 

An example is shown in Figure 7.2. The bull head is shifted by a certain distance 

towards upper-right with respect to the standard position of the model image in the 

database. The corner detection result is shown in Figure 7.3.  

 

   (a)       (b)  

Fig. 7.2 (a) model object-bull head (b) program generated bull head which is shifted 

by a distance towards upper right 

115 



Chapter 7 Experimental Results and Discussion 
 

0 50 100 150 200 250

0

50

100

150

200

250

 

Fig. 7.3 Corner detection result 

 

The dissimilarity values of the scaling coefficients between shifted bullhead and 

the original (Note: hereafter, “original” refers to the image of the model object in the 

database) one are shown in Table 7.2. The dissimilarity values of the wavelet 

coefficients are all zero. This is because translation does not change the proposed 

wavelet-based features at all. Extensive experiments to test the translation invariance 

have been done, the recognition rate are 100%. From the experimental result, we are 

confident that the proposed recognition algorithm is strictly translation invariant. 

Translation does not even change the feature values of the synthetically shifted 

images, because the amount of translation is integer number of pixels, it can be 

removed entirely by normalization.  
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Table 7.2 dissimilarity value of scaling coefficients ||c4-c4

’|| 
 

||c4-c4
’|| S1 S2 S3 S4 S5 S6 S7 S8 

S1’ 0 8.6537  7.2327 24.018 10.569 7.0350 5.0793 30.702
S2’  6.1191 0 3.4904 25.931  2.4513 4.5239 6.9872 32.842
S3’ 5.1143 3.4904 0 25.843 3.6784 2.3875 8.4008 33.000
S4’ 33.967 51.863 51.685 0 51.294 53.765 31.737 32.799
S5’ 7.4736 2.4513 3.6784 25.647 0  4.7827 8.2892 33.687
S6’ 4.9745  4.5239 2.3875 26.882 4.7827 0 9.1177 32.820
S7’ 5.0793 9.8813 11.880 22.442 11.722 12.894 0 30.443
S8’ 61.405 92.891 93.338 46.385 95.283 92.830 60.886 0

  

ii. Rotation invariance 

Objects placed in different orientations have been tested to verify the 

performance of  our proposed recognition system under rotation. The proposed 

recognition algorithm is rotation invariant, since every curve segment is normalized 

prior to feature extraction so that the direction from its starting point to end point is 

along the x -axis as described in Chapter 5. To generate rotated images for testing, a 

program to rotate the images to a random orientation has been written which is given 

in appendix B. 

Experiment 2. 

In Figure 7.4, the image of a club is rotated at an unknown angle which is shown 

on the right, and the original one is on the left. The corner detection result is shown in 

Figure 7.5. Based on the corner detection result, we use our proposed boundary 

partition algorithm (described in Chapter 4) to partition the object boundary into 6 

curve segments as shown in Figure 7.6. The dissimilarity value of the scaling 

coefficients and wavelet coefficients at each level are shown in Tables 7.3, 7.4 and 

7.5. Finally, we can find the matched segment-pairs shown in Table 7.6, and the 
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rotated club is  found to be in an orientation of around 45 degree (from Table 7.7) 

rotated clockwise with respect to the original club in the database. Large number of 

rotated images have been tested, the recognition rate is always 100%. Note that the 

angle difference is calculated with θ  values defined in equation (5.3). The 

experimental result shows that rotation only changes the wavelet representation by a 

small amount which is within the pre-defined threshold. The changes are due to the 

quantization error caused by the digitization of pixels’ coordinates during rotation. 

From the experimental results, we can be confident that the proposed wavelet 

representation of the object is rotation invariant. Hence, the proposed recognition 

system is rotation invariant too. 

 

 

(a) (b) 

Fig. 7.4 (a) model object (b) program generated image which is rotated by a random 

angle 
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Fig. 7.5 Corner detection result of club 

 

Fig. 7.6 Boundary partition result of club 
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Table 7.3 dissimilarity value of scaling coefficients ||c4-c4
’|| 

 
||c4-c4

’|| S1 S2 S3 S4 S5 S6 
S1’ 0.7053  54.901 50.75 31.547 2.0605 1.5711 
S2’ 28.371 0.2279 5.0674 11.311 25.363 28.95 
S3’ 27.208 4.9134  0.2101  11.638 24.378 27.581 
S4’ 24.649 13.522 12.227 0.8515 21.819 25.022 
S5’ 1.6492 51.501 47.127 29.893 0.7324 1.9334 
S6’ 1.4574 59.789 54.468 34.734 1.8637 0.6227 

 
 

Table 7.4 dissimilarity value of the coarsest level wavelet coefficients ||d4-d4
’|| 

 
||d4-d4

’|| S1 S2 S3 S4 S5 S6 
S1’ 0.0446      
S2’  0.0252     
S3’   0.0311    
S4’    0.0273   
S5’     0.0482  
S6’      0.0382 

 
 

Table 7.5 dissimilarity value of the finer level wavelet coefficients 
 

||d5-d5
’|| S1 S2 S3 S4 S5 S6 

S1’ 0.0288      
S2’  0.0480     
S3’   0.0224    
S4’    0.0264   
S5’     0.0175  
S6’      0.0326 

 

||d6-d6
’|| S1 S2 S3 S4 S5 S6 

S1’ 0.0266      
S2’  0.0254     
S3’   0.0088    
S4’    0.0300   
S5’     0.0016  
S6’      0.0266 

 

||d7-d7
’|| S1 S2 S3 S4 S5 S6 

S1’ 0.0126       
S2’  √     
S3’   √    
S4’    0.0137   
S5’     0.0121  
S6’      0.0152 
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||d8-d8
’|| S1 S2 S3 S4 S5 S6 

S1’ 0.0074      
S2’  √     
S3’   √    
S4’    √   
S5’     0.0047  
S6’      0.0146 

 
 

Table 7.6 Final Matching result 
 

Result S1 S2 S3 S4 S5 S6 
S1’ √      
S2’  √     
S3’   √    
S4’    √   
S5’     √  
S6’      √ 

 
 

Table 7.7 Angle difference 
 

'i hθ θ−  S1 S2 S3 S4 S5 S6 
S1’ 44.54      
S2’  44.73     
S3’   45.34    
S4’    45.23   
S5’     45.93  
S6’      45.04 

 

iii. Scale invariance 

Scaling is one of the most critical problems in object recognition. For standalone 

object recognition, scale information can be obtained by the area or perimeter of the 

object, and then it can be normalized. However, in our work, both scaling and partial 

occlusion may happen simultaneously. It is impossible to obtain the scaling 

information by the area or perimeter anymore. The reason why scale is very critical in 

the recognition system is that it plays an important role in corner detection, like using 

curvature function to detection the corner, a proper size of Gaussian window must be 

applied according to the scale information. The proposed wavelet-based corner 

detection algorithm has been mathematically proven (Section 4.5) to be scale 
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invariant (within a moderate range between 0.6 to 2.5). A program has been written to 

generate resized images which is shown in the Appendix. The original images are 

resized to scales between 0.4 to 4 to test the performance of the proposed recognition 

system.  

Experiment 3. 

Figure 7.7 shows a flower which has been magnified by 1.5 times from its original 

size. The corners are successfully detected as shown in Figure 7.8, and the flower are 

successful recognized subsequently as shown in Figure 7.9 and Tables 7.8-7.11. The 

scale information is also measured as shown in Table 7.12.  

 

(a)     (b) 

Fig. 7.7 (a) model object-flower (b) program generated image which is resized by a 

random scale 
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Fig. 7.8 Corner detection result of flower 

 

Fig. 7.9 Boundary partition result of flower 

Table 7.8 dissimilarity value of scaling coefficients ||c4-c4
’|| 

 
||c4-c4

’|| S1 S2 S3 S4 S5 
S1’ 0.4407 30.488 5.14 2.1907 3.2006 
S2’ 31.006 0.5947 30.44 29.628 30.232 
S3’ 5.3644 29.882 0.8952 6.0281 3.011 
S4’ 2.7321 29.001 5.4586 0.1517  3.7889 
S5’ 3.2393 29.966 2.3317 4.2542 0.5951 
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Table 7.9 dissimilarity value of the coarsest level wavelet coefficients ||d4-d4
’|| 

 
 

||d4-d4
’|| S1 S2 S3 S4 S5 

S1’ 0.2033     
S2’  0.0092    
S3’   0.1767   
S4’    0. 1710  
S5’     0.1882 

 
 

Table 710 dissimilarity value of the finer level wavelet coefficients 
 

||d5-d5
’|| S1 S2 S3 S4 S5 

S1’ 0.1477     
S2’  0.1525    
S3’   0.1477   
S4’    0.1551  
S5’     0.1931 

 
 
 

||d6-d6
’|| S1 S2 S3 S4 S5 

S1’ 0.1492     
S2’  0.1482    
S3’   0.1741   
S4’    0.1579  
S5’     0.1889 

 

||d7d7
’|| S1 S2 S3 S4 S5 

S1’ 0.1758     
S2’  0.1735    
S3’   0.1689   
S4’    0.1680  
S5’     0.1578 

 

||d8-d8
’|| S1 S2 S3 S4 S5 

S1’ 0.1805     
S2’  0.0283    
S3’   0.1576   
S4’    0.0096  
S5’     0.1828 
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Table 7.11 Final segment matching result between resize flower and its original 
 

Result S1 S2 S3 S4 S5 
S1’ √     
S2’  √    
S3’   √   
S4’    √  
S5’     √ 

 
 

Table 7.12 Scale difference between resize flower and its original 
 

'/L L  S1 S2 S3 S4 S5 
S1’ 1.5102     
S2’  1.5128    
S3’   1.4923   
S4’    1.5102  
S5’     1.4987 

 

The proposed corner detection algorithm still tends to detect false corners when the 

image is excessively downsized.  For instance, as shown in Figure 7.10, the size of the 

flower is reduced by a scale of 0.4 of its original size, a so call ‘false’ corner is 

detected at the end of the stem. On another extreme, when the image is overly upsized, 

some dull corners will not be detected. Such as the bull head shown in Figure 7.11 is 

enlarged 4 times of its original size. The two corners on its ears are not detected. 

Beside the extreme conditions, extensive experimental results show that our proposed 

corner detection algorithm detects consistent corners for scale within 0.6 to 2.5. The 

reason is because equation (4.5) is only applicable for small scale range of (Mallat, 

1992(b)), so all equations derived based on it will be subjected to this restriction. 

s

Other than the corner detection, the proposed wavelet representation of the curve 

segment is strictly scale invariant. Large number of experimental results show that the 

proposed object recognition system performs well under moderate scaling between 

0.6~2.5. 

125 



Chapter 7 Experimental Results and Discussion 
 

10 20

20

30 40 50 60 70 80 90

30

40

50

60

70

80

90

 

Fig. 7.10 Corner detection of flower which is downsized by 0.4 
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Fig. 7.11 Corner detection of bull head which is enlarged by 4 
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7.5 Partial occluded object recognition 

Recognizing partially occluded objects is one of the main objectives of this research 

project, and it is also the most challenging task. Partial occlusion can be classified into 

two classes, one is part of the object is not visible such as the images shown in Figure 

7.12, the other class is the object is overlapped by another object as shown in Figure 

7.13. We have written two programs to generate these two classes of partially 

occluded object for testing. One for generating the images with part of the object is 

missing. It simply set a certain portion of the image to blank. And the other program 

puts two objects into one image randomly so that they are overlapped with random 

relative position. 

 

 
  (a)     (b)    (c) 
 

Fig. 7.12 partial occluded objects which part of the object is unseen 
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  (a)    (b)    (c) 

 
  (d)    (e)    (f) 
 

Fig. 7.13 partial occluded objects which are overlapped by each other 

Experiment 4. 

This experiment illustrates the performance of the recognition system on objects 

with part of them not visible. Figure 7.14 and 7.15 first show the corner detection and 

boundary partition result of model object-pliers. Figure 7.16 shows the corner 

detection result of the partially occluded pliers using proposed our wavelet-based 

corner detection algorithm. Figure 7.17 shows the boundary partition result based on 

the corners detected in Figure 7.16 using our proposed boundary partition algorithm.. 

Table 7.13 shows the dissimilarity values of the scaling coefficients between the 

model object-pliers and occluded pliers. All ineligible candidates are filtered out after 

only one stage. For space saving, the dissimilarity values of the wavelet coefficients 

are omitted. From Table 7.13, we can see that all intact segments are successfully 
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matched with the model, while segment 3 and 4 are not matched because they are 

being occluded. 
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Fig. 7.14 Corner detection result of pliers 
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Fig. 7.15 Boundary partitioning result of pliers 
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Fig. 7.16 Corner detection result of partial occluded pliers 
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Fig. 7.17 Boundary partitioning result of partial occluded pliers 

 

Table 7.13 dissimilarity value of scaling coefficients ||c4-c4’|| between pliers and occluded 
pliers 

 
||c4-c4

’|| S1 S2 S3 S4 S5 S6 S7 S8 
S1’ 0 159.43 23.462 9.9398 75.83 159.64 74.514 11.473 
S2’ 28.184 0 21.193 30.551 6.4202 6.9373 7.9531 32.124 
S3’ 24.5 34.481 14.349 26.027 14.328 35.184 9.8125 26.99 
S4’ 18.109 76.259 9.058 19.152 32.825 76.72 33.22 22.965 
S5’ 26.81 12.84 20.031 28.827 0 13.548 5.8332 30.446 
S6’ 28.221 6.9373 21.195 30.695 6.7742 0 8.0593 32.275 
S7’ 26.345 15.906 17.688 28.413 5.8332 16.119 0 29.895 
S8’ 11.473 181.72 30.071 8.4901 86.115 182.58 84.555 0 

 

Similar experiments have been done extensively, but we are unable to give a 

quantitive figure of recognition rate verses the percentage of occlusion. The reason is 

that the recognition rate does not only relying on the percentage of the boundary or 

area been occluded, but also more on how many consecutive corners pairs are intact. 

This is because the recognition system requires two consecutive corners to form a 

curve segment. For instance, the wrench shown below in Figure 7.18 only has two 

intact corners, which can only form one intact curve segment. According to the 
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matching criteria set in Chapter 6, only one matched segment-pair can not confirm the 

presence of a model object in a scene. The proposed recognition system requires at 

least two intact segments to confirm the identity of the object in a scene. 
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Fig. 7.18 Corner detection result of partial occluded wrench 

Experiment 5. 

To test the performance of the recognition system under arbitrary overlapping 

conditions, two model objects are randomly placed one on top of the other. We take 

Figure 7.13 (e) as an example which is a pliers overlapping a wrench. The corner 

detection result and boundary partitioning result are shown in Figures 7.19 and 7.20, 

respectively.  The matching result between the overlapping objects with pliers and 

wrench are shown in Tables 7.14 and 7.15, matched segment pairs are found between 
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overlapping objects with both pliers and wrench. Therefore, the recognition system 

can identify the objects in the scene which is a pair of pliers overlapping a wrench. 

 

Fig. 7.19 Corner detection result of pliers overlapped with wrench 

 

Fig. 7.20 Boundary partition result of pliers overlapped with wrench 
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Table 7.14 dissimilarity value of scaling coefficients ||c4-c4’|| between pliers and overlapping 

object 
 

||c4-c4
’|| S1 S2 S3 S4 S5 S6 S7 S8 

S1’ 27.345 17.624 20.823 28.512 2.9447 18.287 7.389 30.115 
S2’ 18.033 106.41 9.3922 18.144 49.613 106.6 46.287 17.803 
S3’ 23.194 42.951 13.37 27.495 19.592 42.953 14.085 29.399 
S4’ 7.3825 192.7 30.987 13.801 92.453 192.94 90.837 12.414 
S5’ 28.184 0 21.193 30.551 6.4202 0.9373 7.9531 32.124 
S6’ 16.59 84.773 0 19.144 40.063 84.781 35.375 21.263 
S7’ 9.9398 172.82 27.073 0 81.534 173.64 80.363 8.4901 
S8’ 26.81 12.84 20.031 28.827 0 13.548 5.8332 30.446 
S9’ 28.221 0.9373 21.195 30.695 6.7742 0 8.0593 32.275 
S10’ 26.345 15.906 17.688 28.413 5.8332 16.119 0 29.895 
S11’ 13.407 92.294 7.9989 21.083 41.887 92.503 41.116 22.717 
S12’ 17.188 102.43 7.1449 18.067 48.052 102.82 43.846 17.263 
S13’ 22.706 109.94 15.611 29.459 52.233 109.93 48.676 28.951 
S14’ 6.7199 157.99 23.543 5.1213 74.617 158.46 73.09 8.3588 

  

Table 7.15 dissimilarity value of scaling coefficients ||c4-c4’|| between wrench and 
overlapping object 

 
||c4-c4

’|| S1 S2 S3 S4 
S1’ 108.34 84.344 95.858 90.719 
S2’ 91.538 89.014 96.963 47.179 
S3’ 0 85.488 95.768 51.864 
S4’ 62.41 81.35 103.46 48.47 
S5’ 79.954 37.656 91.75 84.881 
S6’ 60.24 60.461 93.711 101.75 
S7’ 93.617 78.582 35.491 66.39 
S8’ 70.633 25.832 60.414 19.058 
S9’ 49.933 47.11 89.786 67.761 
S10’ 108.3 19.794 44.789 75.858 
S11’ 99.878 92.367 91.181 73.869 
S12’ 36.768 39.968 85.072 94.259 
S13’ 81.025 24.309 0 62.724 
S14’ 63.449 20.762 18.572 87.649 

 
 

We write a computer program to place one model object on top of another model 

object at random position. Using this program, we generate large number of partially 

occluded images to test the performance of  our object recognition system. Table 7.16 

shows the recognition rate of the object being occluded by another object at random 

position. We observe that, in general, the recognition rate is higher for objects with 

more number of corner points, e.g. pliers and plane. While objects with less number 
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of corner points, in another word, less number of segments tend to be more difficult to 

identify. 

 
Table 7.16 Recognition rate of object being overlapped by another object at random position 

 
Occluded object Overlapped by Recognition rate 
Bull head Pliers 86.4 
Pliers Wrench 90.3 
Wrench Saw 51.8 
Saw Egg 78.9 
Egg Screwdriver 65.6 
Screwdriver Scissors 43.5 
Scissors Plane 68.3 
Plane Flower 86.9 
Flower Club 76.5 
Club Bull head 75.8 

 

7.6 Partial occluded and scaled object recognition 

Experiment 6. 

Lastly, we use an experiment to demonstrate the performance of our proposed 

recognition system on an object which is partially occluded and also scaled. The 

combination of partial occlusion and scaling situation is difficult to solve in practice, 

and can be used to critically test our recognition system. 

As our proposed corner detection algorithm is scaling and partial occlusion 

invariant, the corners on the intact portion of the bull head and screw driver can still 

be successfully detected as shown in Figure 7.21. There are also some corners 

generated by the intersection of the two objects detected. In addition, the boundary is 

partitioned using our proposed boundary partitioning method, and the result is shown 

in Figure 7.22. From this figure, we can see that only some intact complete segments 

are from the bull head. Table 7.17 shows the matching result between the bull head 
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and the scaled and partially occluded bull head, 5 segment pairs between them are 

successfully found, their relative angle, position and length ratio are also confirmed as 

shown in Table 7.18, where the scaling factor of the bull head in the scene is about 1.3 

times of the original one in the database. Therefore, we can conclude that the bull 

head is present in the scene, but with scaling and partial occlusion. However, the 

recognition system could not recognize the screwdriver due to insufficient 

consecutive corners belonging to the screwdriver can be detected. 
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Fig. 7.21 Corner detection result of scaled bull head overlapped with screwdriver 
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Fig. 7.22 Boundary partitioning result of scaled bull head overlapped with 
screwdriver 

Table 7.17 dissimilarity value of scaling coefficients ||c4-c4’|| between model object-bull head   
and scaled and occluded bull head 

 
||c4-c4

’|| S1 S2 S3 S4 S5 S6 S7 S8 
S1’ 8.3395 6.0882 7.4976 28.869 6.7607 5.7597 10.305 33.584 
S2’ 60.93 92.203 92.65 45.925 94.595 92.142 60.4 0.5916 
S3’ 0.3684 8.4597 7.0756 24.201 10.111 7.1857 5.6266 31.059 
S4’ 6.6344 0.4028  4.2946 26.824 2.8006 3.8692 7.439 33.042 
S5’ 5.693 4.2676 0.8092  25.966 3.3519 2.3674 9.3457 33.258 
S6’ 9.0172 7.5243 8.4146 29.521 8.2003 6.9622 11.323 34.47 
S7’ 37.839 56.621 56.658 14.155 56.052 58.877 35.102 23.584 
S8’ 3.0497 12.148 10.123 22.591 13.562 9.6718 3.772 30.024 
S9’ 19.888 33.854 31.872 11.565 33.462 33.569 18.148 27.688 
S10’ 6.9636 2.5904 3.0439 25.887 2.2599 4.156 7.5615 33.415 
S11’ 5.3896 5.415 2.9929 26.974 5.1377 0.7489  9.7087 33.235 
S12’ 23.103 34.335 37.618 18.156 36.4 38.291 18.654 22.501 
S13’ 2.7864 11.16 8.8338 23.638 11.798 9.3932 6.309 31.491 

 
Table 7.18 length ratio between the segments of the object in scene and the bull head in 

database 
 

'/L L  S1 S2 S3 S4 S5 S6 S7 S8 
S1’         
S2’        1.334 
S3’ 1.315        
S4’  1.305       
S5’   1.317      
S6’         
S7’         
S8’         
S9’         
S10’         
S11’      1.298   
S12’         
S13’         
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7.7 Conclusion and discussion 

The following conclusions can be derived from our experimental results: 

1. The recognition algorithm is translation and rotation invariant.  

The recognition rate for translated and rotated images is 100%. This is due to: 

 Our proposed corner detection algorithm is invariant to translation and 

scaling. 

 Normalization process helps in the process. 

2. The recognition algorithm is scaling invariant within the scale ranging from 0.6 to 

2.5. 

The recognition algorithm can recognize scaled objects within the said range 

because: 

  Our proposed corner detection algorithm can tolerate scaling within a 

moderate range (0.6~2.5). 

 Normalization standardizes the curve length, and then re-samples it 

according to its original length. 

 Levels of wavelet decomposition of curve segments is determined by the size 

of the segment. 

 Dissimilarity function of curve segments with different lengths has been 

derived, and the scaling factor has been compensated. 

Our proposed corner detection algorithm may detect false corners and mis-detect 

corners when the scale is too small or too big. The reason is because equation 
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(4.5) only holds for small scale range of s , therefore our false corner elimination 

algorithm which relies on it only applicable for range between 0.6 to 2.5. 

3. The recognition algorithm is computational efficient. 

Our recognition system takes about 0.7 seconds to recognize an object in a 

640x480 resolution image from a model database containing 20 model objects. 

(The program runs in Matlab 6.5 on a PentiumIV 1.6GHz PC). The reasons are: 

 Fast wavelet transform algorithm is implemented. 

 Hierarchical matching is adopted to eliminate most of the ineligible 

candidates at the early stage.  

4. The recognition algorithm is robust to partial occlusion. 

Our recognition algorithm is capable of recognizing both objects with missing 

portion and overlapping objects; it can also recognize partially occluded objects 

with similarity transformation due largely of the process we have adopted in work. 

We partition the object boundary into independent curve segments, and represent 

them separately. Partial occlusion only affects the feature of occluded segments, 

while the feature of intact segments remains the same. 

5. The confidence level of our proposed recognition system is high. 

As we use not only local features (wavelet descriptor) for recognition, but also the 

interrelationship between segments for verification, these two steps make sure that 

both local shape and relative position are the same for the object in the scene and 

the model object. Nevertheless, our algorithm fails in some cases involving 
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occlusion (as the screw driver in experiment 7) since the recognition algorithm 

requires at least two intact segments from the object. 
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Chapter 8 
 
Conclusion and Future Works 

 

In this thesis, a complete wavelet based object recognition algorithm is presented 

and implemented. It can recognize not only standalone but also partially occluded 

two-dimensional objects. The algorithm consists of several components: 

• A novel wavelet-based corner detection algorithm which is scaling invariant is 

proposed to facilitate boundary partitioning in order to the extract local 

features of standalone and partially occluded objects;  

• A refined boundary segmentation method which is able to retain the corner 

information is specially designed;  

• An adaptive normalization method is derived and implemented to make the 

curve segment similarity transformation invariant and to retain the original 

scale of the curve segment for precise matching.  

• A multi-resolution wavelet-based feature extraction algorithm is proposed, 

which is also the core of our algorithm. We have shown that it is effective and 

the features extracted are compact in size.  

• A hierarchical matching strategy is presented, in which the dissimilarity 

function is designed. This strategy enables the matching of segments at 

different size possible. The relative information between curve segments is 

used for verification, and the matching criteria are also defined.  
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From our experimental works, we have found that our algorithm exhibits several 

advantages over the existing systems. They include:  

1) Fuller use of the localized shape information of the object, including the trend 

of the curve segment, dominant points information and the relative position 

information; 

2) More consistent boundary partitioning results by using the proposed wavelet- 

based corner detection algorithm which uses the Lipschitz exponent as a 

measure to eliminate false corners.  

3) Fast feature extraction due to the adoption of Fast Wavelet Transform which 

is very computational efficient. 

4) Better accuracy because the object is represented and matched at its natural 

scale instead of a pre-defined scale; 

5) More efficient matching, since most of the candidates are eliminated at early 

stage by our hierarchical matching method. 

8.1 Contributions 

The above advantages allow us to summarize our contribution from the work 

presented in this thesis: 

1) We have developed a novel wavelet based similarity transformation 

invariant corner detection algorithm, which is applicable to both standalone 

and partial occluded objects. 

2) We have specially designed a new boundary partitioning method requiring 

only two corners to form a segment, and hence resulting in smaller and 

hence more robust in occlusion situation. 
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3) A wavelet-based feature extraction algorithm is proposed to extract feature 

in multi-resolution, the coarse resolution carries more global information, 

and finer resolution feature retains the local details. These features are more 

robust to noise, and also facilitate the subsequent matching process, which is 

important in our work. 

4) Making use of the multi-resolution nature of the features extracted, we have 

designed a Hierarchical Matching algorithm to match the curve segments of 

the object in a coarse to fine hierarchical strategy. Most of the ineligible 

curve segment candidates are filtered out at the coarse resolutions thereby 

reducing the computational load of our object recognition algorithm. 

8.2 Future works 

We see the following possible improvements to our algorithms, that we believe, 

if they could be realized, would further enhance the understanding and hence and 

applicability of our work. 

1) Based on the current work, design an algorithm to handle object 

recognition problem in 3-dimension. The result would be very useful in industry 

such as sorting of parts stored in a bin, where large degree of object occlusion is 

present. In this regards, the new algorithm must take perspective transform into 

consideration.  

2) We believe that we had not unleashed the potential of wavelet transform 

in solving the object recognition problem with occlusion. The ability of wavelets 

to handle image signal or representation with multi-resolution is extremely useful 
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in feature detection, followed by recognition. This thesis has only explored a 

small part this excellent property of wavelets.  

3) To evaluate the performance of a partial occluded object recognition 

system, it is essential to have a quantitive measure of the degree of partial 

occlusion. The degree of the partial occlusion is a complicated term, it is not only 

related to the area of length of boundary been occluded, but also depends on the 

important features been occluded, such as corners. Therefore, developing a 

proper way to describe the degree of the partial occlusion is an important and 

challenging task in the future works priori to have a fair comparison with other 

algorithms. 
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Appendix 
 

(a) Image Random Translation 
 
%%This function translate a image to a random position deviate 0-100 pixels 
%% on its x and y corrdinates relative to its original position 
 
function I_trans=translation(image); 
I=imread(image); 
rand_x=ceil(rand(1)*100); 
rand_y=ceil(rand(1)*100); 
[size_I_x,size_I_y]=size(I); 
I_trans=255*ones(size_I_x+rand_x,size_I_y+rand_y) 
for i=1:size_I_x 
    for j=1:size_I_y 
        I_trans(i+rand_x,j+rand_y)=I(i,j); 
     
    end 
end 
imshow(I_trans); 
 

(b) Image Rotation 
 
function  rotate( imagename,interval,name); 
% Rotate(imagename,number,interval,name) 
% imagename:    the image which are going to be rotated 
% number:       number of images which are going be generated 
% interval:     the rotate angle interval 
% name          prefix of the name of rotated images  
I = imread(imagename); 
[s_x,s_y]=size(I); 
 
for i=1:s_x 
    for j=1:s_y 
         
        I(i,j)=255-double(I(i,j));          
         
    end 
end 
 
number = floor(360/interval); 
 
for angle=1:number 
    angle 
    J = imrotate(I,angle*interval,'bilinear'); 
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    [s_x_J,s_y_J]=size(J); 
    for i=1:s_x_J 
        for j=1:s_y_J 
             
            J(i,j)=255-double(J(i,j)); 
        end 
    end 
     
     
     
    imname=strcat(char(name),'_',num2str(angle),'.tif'); 
    imwrite (J, imname,'tif'); 
end 

(c) Image scaling 
 
%%This function resize a image at a given scale with respect 
%%to its original size 
function I_resize=resize(image,scale); 
I=imread(image); 
I_resize = imresize(I,scale); 
imshow(I_resize); 
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