5,280 research outputs found

    Online Ensemble Learning of Sensorimotor Contingencies

    Get PDF
    Forward models play a key role in cognitive agents by providing predictions of the sensory consequences of motor commands, also known as sensorimotor contingencies (SMCs). In continuously evolving environments, the ability to anticipate is fundamental in distinguishing cognitive from reactive agents, and it is particularly relevant for autonomous robots, that must be able to adapt their models in an online manner. Online learning skills, high accuracy of the forward models and multiple-step-ahead predictions are needed to enhance the robots’ anticipation capabilities. We propose an online heterogeneous ensemble learning method for building accurate forward models of SMCs relating motor commands to effects in robots’ sensorimotor system, in particular considering proprioception and vision. Our method achieves up to 98% higher accuracy both in short and long term predictions, compared to single predictors and other online and offline homogeneous ensembles. This method is validated on two different humanoid robots, namely the iCub and the Baxter

    Visual Analysis of Variability and Features of Climate Simulation Ensembles

    Get PDF
    This PhD thesis is concerned with the visual analysis of time-dependent scalar field ensembles as occur in climate simulations. Modern climate projections consist of multiple simulation runs (ensemble members) that vary in parameter settings and/or initial values, which leads to variations in the resulting simulation data. The goal of ensemble simulations is to sample the space of possible futures under the given climate model and provide quantitative information about uncertainty in the results. The analysis of such data is challenging because apart from the spatiotemporal data, also variability has to be analyzed and communicated. This thesis presents novel techniques to analyze climate simulation ensembles visually. A central question is how the data can be aggregated under minimized information loss. To address this question, a key technique applied in several places in this work is clustering. The first part of the thesis addresses the challenge of finding clusters in the ensemble simulation data. Various distance metrics lend themselves for the comparison of scalar fields which are explored theoretically and practically. A visual analytics interface allows the user to interactively explore and compare multiple parameter settings for the clustering and investigate the resulting clusters, i.e. prototypical climate phenomena. A central contribution here is the development of design principles for analyzing variability in decadal climate simulations, which has lead to a visualization system centered around the new Clustering Timeline. This is a variant of a Sankey diagram that utilizes clustering results to communicate climatic states over time coupled with ensemble member agreement. It can reveal several interesting properties of the dataset, such as: into how many inherently similar groups the ensemble can be divided at any given time, whether the ensemble diverges in general, whether there are different phases in the time lapse, maybe periodicity, or outliers. The Clustering Timeline is also used to compare multiple climate simulation models and assess their performance. The Hierarchical Clustering Timeline is an advanced version of the above. It introduces the concept of a cluster hierarchy that may group the whole dataset down to the individual static scalar fields into clusters of various sizes and densities recording the nesting relationship between them. One more contribution of this work in terms of visualization research is, that ways are investigated how to practically utilize a hierarchical clustering of time-dependent scalar fields to analyze the data. To this end, a system of different views is proposed which are linked through various interaction possibilities. The main advantage of the system is that a dataset can now be inspected at an arbitrary level of detail without having to recompute a clustering with different parameters. Interesting branches of the simulation can be expanded to reveal smaller differences in critical clusters or folded to show only a coarse representation of the less interesting parts of the dataset. The last building block of the suit of visual analysis methods developed for this thesis aims at a robust, (largely) automatic detection and tracking of certain features in a scalar field ensemble. Techniques are presented that I found can identify and track super- and sub-levelsets. And I derive “centers of action” from these sets which mark the location of extremal climate phenomena that govern the weather (e.g. Icelandic Low and Azores High). The thesis also presents visual and quantitative techniques to evaluate the temporal change of the positions of these centers; such a displacement would be likely to manifest in changes in weather. In a preliminary analysis with my collaborators, we indeed observed changes in the loci of the centers of action in a simulation with increased greenhouse gas concentration as compared to pre-industrial concentration levels

    A Fast and Scalable System to Visualize Contour Gradient from Spatio-temporal Data

    Get PDF
    Changes in geological processes that span over the years may often go unnoticed due to their inherent noise and variability. Natural phenomena such as riverbank erosion, and climate change in general, is invisible to humans unless appropriate measures are taken to analyze the underlying data. Visualization helps geological sciences to generate scientific insights into such long-term geological events. Commonly used approaches such as side-by-side contour plots and spaghetti plots do not provide a clear idea about the historical spatial trends. To overcome this challenge, we propose an image-gradient based approach called ContourDiff. ContourDiff overlays gradient vector over contour plots to analyze the trends of change across spatial regions and temporal domain. Our approach first aggregates for each location, its value differences from the neighboring points over the temporal domain, and then creates a vector field representing the prominent changes. Finally, it overlays the vectors (differential trends) along the contour paths, revealing the differential trends that the contour lines (isolines) experienced over time. We designed an interface, where users can interact with the generated visualization to reveal changes and trends in geospatial data. We evaluated our system using real-life datasets, consisting of millions of data points, where the visualizations were generated in less than a minute in a single-threaded execution. We show the potential of the system in detecting subtle changes from almost identical images, describe implementation challenges, speed-up techniques, and scope for improvements. Our experimental results reveal that ContourDiff can reliably visualize the differential trends, and provide a new way to explore the change pattern in spatiotemporal data. The expert evaluation of our system using real-life WRF (Weather Research and Forecasting) model output reveals the potential of our technique to generate useful insights on the spatio-temporal trends of geospatial variables

    Visual analytics methods for shape analysis of biomedical images exemplified on rodent skull morphology

    Get PDF
    In morphometrics and its application fields like medicine and biology experts are interested in causal relations of variation in organismic shape to phylogenetic, ecological, geographical, epidemiological or disease factors - or put more succinctly by Fred L. Bookstein, morphometrics is "the study of covariances of biological form". In order to reveal causes for shape variability, targeted statistical analysis correlating shape features against external and internal factors is necessary but due to the complexity of the problem often not feasible in an automated way. Therefore, a visual analytics approach is proposed in this thesis that couples interactive visualizations with automated statistical analyses in order to stimulate generation and qualitative assessment of hypotheses on relevant shape features and their potentially affecting factors. To this end long established morphometric techniques are combined with recent shape modeling approaches from geometry processing and medical imaging, leading to novel visual analytics methods for shape analysis. When used in concert these methods facilitate targeted analysis of characteristic shape differences between groups, co-variation between different structures on the same anatomy and correlation of shape to extrinsic attributes. Here a special focus is put on accurate modeling and interactive rendering of image deformations at high spatial resolution, because that allows for faithful representation and communication of diminutive shape features, large shape differences and volumetric structures. The utility of the presented methods is demonstrated in case studies conducted together with a collaborating morphometrics expert. As exemplary model structure serves the rodent skull and its mandible that are assessed via computed tomography scans

    Broad chemical transferability in structure-based coarse-graining

    Get PDF
    Compared to top-down coarse-grained (CG) models, bottom-up approaches are capable of offering higher structural fidelity. This fidelity results from the tight link to a higher-resolution reference, making the CG model chemically specific. Unfortunately, chemical specificity can be at odds with compound-screening strategies, which call for transferable parametrizations. Here we present an approach to reconcile bottom-up, structure-preserving CG models with chemical transferability. We consider the bottom-up CG parametrization of 3,441 C7_7O2_2 small-molecule isomers. Our approach combines atomic representations, unsupervised learning, and a large-scale extended-ensemble force-matching parametrization. We first identify a subset of 19 representative molecules, which maximally encode the local environment of all gas-phase conformers. Reference interactions between the 19 representative molecules were obtained from both homogeneous bulk liquids and various binary mixtures. An extended-ensemble parametrization over all 703 state points leads to a CG model that is both structure-based and chemically transferable. Remarkably, the resulting force field is on average more structurally accurate than single-state-point equivalents. Averaging over the extended ensemble acts as a mean-force regularizer, smoothing out both force and structural correlations that are overly specific to a single state point. Our approach aims at transferability through a set of CG bead types that can be used to easily construct new molecules, while retaining the benefits of a structure-based parametrization.Comment: 15 pages, 7 figure

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era
    corecore