17,028,042 research outputs found

    Inclusive omega photoproduction off nuclei

    Full text link
    We investigate inclusive omega photoproduction off complex nuclei, concentrating on the feasibility to examine a possible in-medium change of the omega meson properties by observing the pi^0 gamma invariant mass spectrum. The simulations are performed by means of a BUU transport model including a full coupled-channel treatment of the final state interactions. In-medium changes of the omega spectral density are found to yield a moderate modification of the observables as compared to the situation in free space. Also the effects of a momentum dependence of the strong omega potential are discussed.Comment: 19 pages, 12 figures, minor corrections, accepted for publication in EPJ

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    Analysis of the Neutralino System in Three--Body Leptonic Decays of Neutralinos

    Full text link
    Neutralinos χ~0\tilde{\chi}^0 in supersymmetric theories, the spin--1/2 Majorana--type superpartners of the U(1) and SU(2) neutral electroweak gauge bosons and SU(2) neutral Higgs bosons, are expected to be among light supersymmetric particles so that they can be produced copiouslyvia direct pair production and/or from cascade decays of other sparticles such as sleptons at the planned Large Hadron Collider and the prospective International Linear Collider. Considering the prospects of having both highly polarized neutralinos and possibility of reconstructing their decay rest frames, we provide a systematic investigation of the three--body leptonic decays of the neutralinos in the minimal supersymmetric standard model and demonstrate alternative ways for probing the Majorana nature of the neutralinos and CP violation in the neutralino system.Comment: Version to appear in Eur.Phys.J.

    Determination of MSSM Parameters from LHC and ILC Observables in a Global Fit

    Full text link
    We present the results of a realistic global fit of the Lagrangian parameters of the Minimal Supersymmetric Standard Model assuming universality for the first and second generation and real parameters. No assumptions on the SUSY breaking mechanism are made. The fit is performed using the precision of future mass measurements of superpartners at the LHC and mass and polarized topological cross-section measurements at the ILC. Higher order radiative corrections are accounted for whereever possible to date. Results are obtained for a modified SPS1a MSSM benchmark scenario but they were checked not to depend critically on this assumption. Exploiting a simulated annealing algorithm, a stable result is obtained without any a priori assumptions on the values of the fit parameters. Most of the Lagrangian parameters can be extracted at the percent level or better if theoretical uncertainties are neglected. Neither LHC nor ILC measurements alone will be sufficient to obtain a stable result. The effects of theoretical uncertainties arising from unknown higher-order corrections and parametric uncertainties are examined qualitatively. They appear to be relevant and the result motivates further precision calculations. The obtained parameters at the electroweak scale are used for a fit of the parameters at high energy scales within the bottom-up approach. In this way regularities at these scales are explored and the underlying model can be determined with hardly any theoretical bias. Fits of high-scale parameters to combined LHC+ILC measurements within the mSUGRA framework reveal that even tiny distortions in the low-energy mass spectrum already lead to inacceptable chi^2 values. This does not hold for ``LHC only'' inputs.Comment: 25 pages, 5 figure

    Reconclining phi radiative decays with other data for a0(980), fo(980), pi-pi -> KK and pi-pi -> eta-eta

    Full text link
    Data for phi -> gamma (eta-pizero) are analysed using the KK loop model and compared with parameters of a0(980) derived from Crystal Barrel data. The eta-pi mass spectrum agrees closely and the absolute normalisation lies just within errors. However, BES parameters for fo(980) predict a normalisation for phi -> gamma (pizero-pizero) at least a factor 2 lower than is observed. This discrepancy may be eliminated by including constructive interference between fo(980) and sigma. The magnitude required for sigma -> KK is consistent with data on pi-pi -> KK. A dispersion relation analysis by Buttiker, Descotes-Genon and Moussallam of pi-pi -> KK leads to a similar conclusion. Data on pi-pi -> eta-eta also require decays of sigma to eta-eta. Four sets of pi-pi -> KK data all require a small but definite fo(1370) signal.Comment: 21 pages, 11 figures, Small rearrangement of reference

    Phenomenological Aspects of Heterotic Orbifold Models at One Loop

    Full text link
    We provide a detailed study of the phenomenology of orbifold compactifications of the heterotic string within the context of supergravity effective theories. Our investigation focuses on those models where the soft Lagrangian is dominated by loop contributions to the various soft supersymmetry breaking parameters. Such models typically predict non-universal soft masses and are thus significantly different from minimal supergravity and other universal models. We consider the pattern of masses that are governed by these soft terms and investigate the implications of certain indirect constraints on supersymmetric models, such as flavor-changing neutral currents, the anomalous magnetic moment of the muon and the density of thermal relic neutralinos. These string-motivated models show novel behavior that interpolates between the phenomenology of unified supergravity models and models dominated by the superconformal anomaly.Comment: 47 pages, 14 figure

    Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at sNN\sqrt{s_{_{\rm NN}}} = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in η<0.8|\eta|<0.8 and 0.3<pT<200.3 < p_T < 20 GeV/cc are compared to the expectation in pp collisions at the same sNN\sqrt{s_{\rm NN}}, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAAR_{\rm AA}. The result indicates only weak medium effects (RAAR_{\rm AA} \approx 0.7) in peripheral collisions. In central collisions, RAAR_{\rm AA} reaches a minimum of about 0.14 at pT=6p_{\rm T}=6-7GeV/cc and increases significantly at larger pTp_{\rm T}. The measured suppression of high-pTp_{\rm T} particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98

    Sneutrino Production at e+e- Linear Colliders: Addendum to Slepton Production

    Full text link
    Complementing the preceding study of charged scalar leptons, the sector of the neutral scalar leptons, sneutrinos, is investigated in a high-precision analysis for future e+e- linear colliders. The theoretical predictions for the cross-sections are calculated at the thresholds for non-zero widths and in the continuum including higher-order corrections at the one-loop level. Methods for measuring the sneutrino masses and the electron-sneutrino-gaugino Yukawa couplings are presented, addressing theoretical problems specific for the sneutrino channels.Comment: 21 pp, Addendum to Eur.Phys.J. C34 (2004) 487-512 [hep-ph/0310182], Version to appear in Eur.Phys.J.

    Updated Post-WMAP Benchmarks for Supersymmetry

    Full text link
    We update a previously-proposed set of supersymmetric benchmark scenarios, taking into account the precise constraints on the cold dark matter density obtained by combining WMAP and other cosmological data, as well as the LEP and b -> s gamma constraints. We assume that R parity is conserved and work within the constrained MSSM (CMSSM) with universal soft supersymmetry-breaking scalar and gaugino masses m_0 and m_1/2. In most cases, the relic density calculated for the previous benchmarks may be brought within the WMAP range by reducing slightly m_0, but in two cases more substantial changes in m_0 and m_1/2 are made. Since the WMAP constraint reduces the effective dimensionality of the CMSSM parameter space, one may study phenomenology along `WMAP lines' in the (m_1/2, m_0) plane that have acceptable amounts of dark matter. We discuss the production, decays and detectability of sparticles along these lines, at the LHC and at linear e+ e- colliders in the sub- and multi-TeV ranges, stressing the complementarity of hadron and lepton colliders, and with particular emphasis on the neutralino sector. Finally, we preview the accuracy with which one might be able to predict the density of supersymmetric cold dark matter using collider measurements.Comment: 43 pages LaTeX, 13 eps figure

    A new analysis of πK\pi K scattering from Roy and Steiner type equations

    Full text link
    With the aim of generating new constraints on the OZI suppressed couplings of chiral perturbation theory a set of six equations of the Roy and Steiner type for the SS- and PP-waves of the πK\pi K scattering amplitudes is derived. The range of validity and the multiplicity of the solutions are discussed. Precise numerical solutions are obtained in the range E\lapprox 1 GeV which make use as input, for the first time, of the most accurate experimental data available at E>1E > 1 GeV for both πKπK\pi K\to\pi K and ππKKˉ\pi\pi\to K\bar{K} amplitudes. Our main result is the determination of a narrow allowed region for the two S-wave scattering lengths. Present experimental data below 1 GeV are found to be in generally poor agreement with our results. A set of threshold expansion parameters, as well as sub-threshold parameters are computed. For the latter, matching with the SU(3) chiral expansion at NLO is performed.Comment: 45 pages, 17 figures. v2: New title, minor correction
    corecore