33,342 research outputs found

    Fluctuations in Number of Cercospora beticola Conidia in Relationship to Environment and Disease Severity in Sugar Beet

    Get PDF
    All content of Phytopathology is open access without restriction 12 months after publicationCercospora leaf spot, caused by Cercospora beticola, is the most damaging foliar disease of sugar beet in Minnesota (MN) and North Dakota (ND). Research was conducted to characterize the temporal progression of aerial concentration of C. beticola conidia in association with the environment and disease severity in sugar beet. In 2003 and 2004, volumetric spore traps were placed within inoculated sugar beet plots to determine daily dispersal of conidia at Breckenridge, MN, and St. Thomas, ND. Plots were rated weekly for disease severity. At both locations, conidia were first collected in early July 2003 and late June in 2004. Peaks of conidia per cubic meter of air were observed with maxima in late August 2003 and in early September 2004 at both locations. Peaks of airborne conidium concentration were significantly correlated with the average temperature of daily hours when relative humidity was greater than 87%. Weekly mean hourly conidia per cubic meter of air was significantly (P <0.01) associated with disease severity during both years and across locations. This study showed that C. beticola conidial numbers may be used to estimate potential disease severity that, with further research, could be incorporated in a disease forecasting model to rationalize Cercospora leaf spot management.Peer reviewe

    Optimizing the bioenergy water footprint by selecting SRC willow canopy phenotypes: regional scenario simulations

    Get PDF
    © The Author(s) 2019. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Background and Aims: Bioenergy is central for the future energy mix to mitigate climate change impacts; however, its intricate link with the water cycle calls for an evaluation of the carbon–water nexus in biomass production. The great challenge is to optimize trade-offs between carbon harvest and water use by choosing cultivars that combine low water use with high productivity. Methods: Regional scenarios were simulated over a range of willow genotype × environment interactions for the major UK soil × climate variations with the process-based model LUCASS. Soil available water capacity (SAWC) ranged from 51 to 251 mm and weather represented the north-west (wet, cool), north-east (dry, cool), south-west (wet, warm) and south-east (dry, warm) of the UK. Scenario simulations were evaluated for small/open narrow-leaf (NL) versus large/closed broad-leaf (BL) willow canopy phenotypes using baseline (1965–89) and warmer recent (1990–2014) weather data. Key Results: The low productivity under baseline climate in the north could be compensated by choosing BL cultivars (e.g. ‘Endurance’). Recent warmer climate increased average productivity by 0.5–2.5 t ha−1, especially in the north. The modern NL cultivar ‘Resolution’ had the smallest and most efficient water use. On marginal soils (SAWC <100 mm), yields remained below an economic threshold of 9 t ha−1 more frequently under baseline than recent climate. In the drought-prone south-east, ‘Endurance’ yielded less than ‘Resolution’, which consumed on average 17 mm year−1 less water. Assuming a planting area of 10 000 ha, in droughty years between 1.3 and 4.5 × 106 m3 of water could be saved, with a small yield penalty, for ‘Resolution’. Conclusions: With an increase in air temperature and occasional water scarcities expected with climate change, high-yielding NL cultivars should be the preferred choice for sustainable use of marginal lands and reduced competition with agricultural food crops.Peer reviewedFinal Published versio

    Climate change increases risk of fusarium ear blight on wheat in central China

    Get PDF
    This is the peer reviewed version of the following article: X. Zhang, et al, 'Climate change increases risk of fusarium ear blight on wheat in central China', Annals of Applied Biology, Vol. 164 (3): 384-395, May 2014, which has been published in final form at https://doi.org/10.1111/aab.12107. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.To estimate potential impact of climate change on wheat fusarium ear blight, simulated weather for the A1B climate change scenario was imported into a model for estimating fusarium ear blight in central China. In this work, a logistic weather-based regression model for estimating incidence of wheat fusarium ear blight in central China was developed, using up to 10 years (2001-2010) of disease, anthesis date and weather data available for 10 locations in Anhui and Hubei provinces. In the model, the weather variables were defined with respect to the anthesis date for each location in each year. The model suggested that incidence of fusarium ear blight is related to number of days of rainfall in a 30-day period after anthesis and that high temperatures before anthesis increase the incidence of disease. Validation was done to test whether this relationship was satisfied for another five locations in Anhui province with fusarium ear blight data for 4 to 5 years but no nearby weather data, using weather data generated by the regional climate modelling system PRECIS. How climate change may affect wheat anthesis date and fusarium ear blight in central China was investigated for period 2020-2050 using wheat growth model Sirius and climate data generated by PRECIS. The projection suggested that wheat anthesis dates will generally be earlier and fusarium ear blight incidence will increase substantially for most locations.Peer reviewedFinal Accepted Versio

    Mapping aerial metal deposition in metropolitan areas from tree bark : a case study in Sheffield, England

    Get PDF
    We investigated the use of metals accumulated on tree bark for mapping their deposition across metropolitan Sheffield by sampling 642 trees of three common species. Mean concentrations of metals were generally an order of magnitude greater than in samples from a remote uncontaminated site. We found trivially small differences among tree species with respect to metal concentrations on bark, and in subsequent statistical analyses did not discriminate between them. We mapped the concentrations of As, Cd and Ni by lognormal universal kriging using parameters estimated by residual maximum likelihood ({\sc reml}). The concentrations of Ni and Cd were greatest close to a large steel works, their probable source, and declined markedly within 500~metres of it and from there more gradually over several kilometres. Arsenic was much more evenly distributed, probably as a result of locally mined coal burned in domestic fires for many years. Tree bark seems to integrate airborne pollution over time, and our findings show that sampling and analysing it are cost-effective means of mapping and identifying sources

    Kafirin structure and functionality

    Get PDF
    The structural and functional properties of kafirins are reviewed. Three classes of kafirin: the a, ß and ? forms have been identified at the protein level and one, the d, has been identified only at the gene and transcript levels. All forms show high homology with the equivalent zein proteins. By analogy with the zeins it is believed that the a-kafirins probably have an extended hairpin structure in solution, comprising elements of a-helix, ß-sheet and turns folded back on itself. Kafirins are the most hydrophobic of the prolamins as shown by their solubility, and calculated hydration free energies. The proteins exhibit extensive cross-linking by disulphide bonds and on cooking form indigestible aggregates which are not solubilised by reduction of disulphide bonds. In spite of continuing studies, the reasons for the low digestibility of the protein remain uncertain and there may be several factors involved. Other research has shown that kafirins may have non-food uses and may be used to form films

    Phenology of the Diamondback moth (Plutella xylostella) in the UK and provision of decision support for brassica growers

    Get PDF
    In the UK, severe infestations by Plutella xylostella occur sporadically and are due mainly to the immigration of moths. The aim of this study was to develop a more detailed understanding of the phenology of P. xylostella in the UK and investigate methods of monitoring moth activity, with the aim of providing warnings to growers. Plutella xylostella was monitored using pheromone traps, by counting immature stages on plants, and by accessing citizen science data (records of sightings of moths) from websites and Twitter. The likely origin of migrant moths was investigated by analysing historical weather data. The study confirmed that P. xylostella is a sporadic but important pest, and that very large numbers of moths can arrive suddenly, most often in early summer. Their immediate sources are countries in the western part of continental Europe. A network of pheromone traps, each containing a small camera sending images to a website, to monitor P. xylostella remotely provided accessible and timely information, but the particular system tested did not appear to catch many moths. In another approach, sightings by citizen scientists were summarised on a web page. These were accessed regularly by growers and, at present, this approach appears to be the most effective way of providing timely warnings

    A transgenic Camelina sativa seed oil effectively replaces fish oil as a dietary source of eicosapentaenoic acid in mice

    Get PDF
    Background: Fish currently supplies only 40% of the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) required to allow all individuals globally to meet the minimum intake recommendation of 500 mg/d. Therefore, alternative sustainable sources are needed. Objective: The main objective was to investigate the ability of genetically engineered Camelina sativa (20% EPA) oil (CO) to enrich tissue EPA and DHA relative to an EPA-rich fish oil (FO) in mammals. Methods: Six-week-old male C57BL/6J mice were fed for 10 wk either a palm oil–containing control (C) diet or diets supplemented with EPA-CO or FO, with the C, low-EPA CO (COL), high-EPA CO (COH), low-EPA FO (FOL), and high-EPA FO (FOH) diets providing 0, 0.4, 3.4, 0.3, and 2.9 g EPA/kg diet, respectively. Liver, muscle, and brain were collected for fatty acid analysis, and blood glucose and serum lipids were quantified. The expression of selected hepatic genes involved in EPA and DHA biosynthesis and in modulating their cellular impact was determined. Results: The oils were well tolerated, with significantly greater weight gain in the COH and FOH groups relative to the C group (P < 0.001). Significantly lower (36–38%) blood glucose concentrations were evident in the FOH and COH mice relative to C mice (P < 0.01). Hepatic EPA concentrations were higher in all EPA groups relative to the C group (P < 0.001), with concentrations of 0.0, 0.4, 2.9, 0.2, and 3.6 g/100 g liver total lipids in the C, COL, COH, FOL, and FOH groups, respectively. Comparable dose-independent enrichments of liver DHA were observed in mice fed CO and FO diets (P < 0.001). Relative to the C group, lower fatty acid desaturase 1 (Fads1) expression (P < 0.005) was observed in the COH and FOH groups. Higher fatty acid desaturase 2 (Fads2), peroxisome proliferator–activated receptor α (Ppara), and peroxisome proliferator–activated receptor γ (Pparg) (P < 0.005) expressions were induced by CO. No impact of treatment on liver X receptor α (Lxra) or sterol regulatory element-binding protein 1c (Srebp1c) was evident. Conclusions: Oil from transgenic Camelina is a bioavailable source of EPA in mice. These data provide support for the future assessment of this oil in a human feeding trial

    Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?

    Get PDF
    Migratory insects flying at high altitude at night often show a degree of common alignment, sometimes with quite small angular dispersions around the mean. The observed orientation directions are often close to the downwind direction and this would seemingly be adaptive in that large insects could add their self-propelled speed to the wind speed, thus maximising their displacement in a given time. There are increasing indications that high-altitude orientation may be maintained by some intrinsic property of the wind rather than by visual perception of relative ground movement. Therefore, we first examined whether migrating insects could deduce the mean wind direction from the turbulent fluctuations in temperature. Within the atmospheric boundary-layer, temperature records show characteristic ramp-cliff structures, and insects flying downwind would move through these ramps whilst those flying crosswind would not. However, analysis of vertical-looking radar data on the common orientations of nocturnally migrating insects in the UK produced no evidence that the migrants actually use temperature ramps as orientation cues. This suggests that insects rely on turbulent velocity and acceleration cues, and refocuses attention on how these can be detected, especially as small-scale turbulence is usually held to be directionally invariant (isotropic). In the second part of the paper we present a theoretical analysis and simulations showing that velocity fluctuations and accelerations felt by an insect are predicted to be anisotropic even when the small-scale turbulence (measured at a fixed point or along the trajectory of a fluid-particle) is isotropic. Our results thus provide further evidence that insects do indeed use turbulent velocity and acceleration cues as indicators of the mean wind direction
    corecore