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Abstract1

We investigated the use of metals accumulated on tree bark for mapping their2

deposition across metropolitan Sheffield by sampling 642 trees of three common species.3

Mean concentrations of metals were generally an order of magnitude greater than4

in samples from a remote uncontaminated site. We found trivially small differences5

among tree species with respect to metal concentrations on bark, and in subsequent6

statistical analyses did not discriminate between them. We mapped the concentrations7

of As, Cd and Ni by lognormal universal kriging using parameters estimated by residual8

maximum likelihood (reml). The concentrations of Ni and Cd were greatest close to9

a large steel works, their probable source, and declined markedly within 500 metres10

of it and from there more gradually over several kilometres. Arsenic was much more11

evenly distributed, probably as a result of locally mined coal burned in domestic fires12

for many years. Tree bark seems to integrate airborne pollution over time, and our13

findings show that sampling and analysing it are cost-effective means of mapping and14

identifying sources.15

Capsule: Multi-element analysis of tree bark can be effective for mapping the deposition16

of metals from air and relating it to sources of emission.17

Keywords: Multi-element analysis; Arsenic; Cadmium; Nickel; Geostatistics; REML;18

Universal kriging19

20
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1. Introduction21

22

Inhalation of atmospheric aerosols, particularly of the fine size-fraction, can cause23

lung diseases, and regulatory standards exist to ensure that air quality meets interna-24

tionally defined standards. Airborne particulate matter (APM) for PM2.5 and PM10 is25

now widely monitored, particularly in urban environments. Nevertheless, government26

agencies and local authorities rarely have the resources to install equipment at the27

many sites that would be needed to map the spatial distribution of airborne particles.28

Normal practice for monitoring metals in APM is to establish installations at a few29

fixed locations, as in the Heavy Metals Monitoring Networks in the United Kingdom30

(Brown et al., 2007).31

Typical of this approach is the study of Moreno et al. (2004) who analysed APM32

at five sites in England and Wales. They showed that the air in Sheffield contained33

many metal-bearing particles in the <PM2.5 size-fraction. Those containing Cd and34

Ni are likely to derive from large steel works (Buse et al., 2003) and to impair health35

when inhaled. Attempts to apportion the particles to particular sources of metals in36

APM include chemical mass balance (Wang et al., 2006; Samara et al., 2003) and37

multivariate statistical analyses (Kim et al., 2006; Shah et al., 2006). Thomaidis et38

al. (2003) incorporated meteorological variables in their multivariate analysis because39

they found these influenced the concentrations of Cd, Ni and As in the APM in Athens.40

Sweet and Vermette (1993) studied anthropogenic emissions in urban Illinois based41

on trace metal data from three sites; they reported much temporal variation in the42

quantity of metal in the APM. They attributed this to variations in wind strength43

and direction, and the degree of atmospheric mixing. Atmospheric particulate matter44

in towns and cities is readily resuspended, and this process contributes significantly45

to temporal (Vermette et al., 1991) and spatial variation in the contents of metals46

(Kuang et al., 2004). So mapping the spatial distribution from direct measurements47

would require many permanent sampling installations to integrate concentrations over48
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time.49

An attractive approach for mapping the long-term spatial distribution of elements50

in APM is by biomonitoring. The underlying idea is to let plants accumulate atmo-51

spheric depositions over time and then to analyse chemically the plant tissue. The52

scope for exploiting plants in this way is diverse and includes plant leaves, lichens,53

mosses and tree bark (Markert et al, 1993; Walkenhorst et al. 1993). The outer layer54

of tree bark, in particular, has been found to be an effective passive accumulator of55

airborne particles in both rural (Bohm et al., 1998) and urban (Tanaka and Ichikuni,56

1982) environments. The particles in question settle on the outer bark by wet and57

dry deposition, and they remain there until the tree sheds its bark, or are leached or58

washed away by rain, or a combination of the two.59

Smooth-barked trees in the northern temperate zone begin to shed their bark60

only when mature (after about 50 years); trees with rougher bark tend to shed theirs61

somewhat earlier. The metal species deposited in the outer bark are separated physi-62

cally from trace elements taken up in solution from the soil in the trees and their xylem63

by a layer of phloem and cambium (Martin and Coughtrey, 1982). Further, extraneous64

contamination from the soil itself is limited to lowest 1.5 m of the trunk. So pollutants65

in the bark above this height are almost entirely derived from the air (Wolterbeek and66

Bode, 1995).67

Determination of the metal contents of tree bark cannot lead to a direct as-68

sessment of air quality because such measurements are retrospective and integrate as69

averages over long times. Nevertheless, because trees are widespread in most towns70

and cities, sampling their bark for subsequent chemical analysis and then noting pre-71

cise locations mean that the elemental concentrations in the barks can be mapped.72

Such maps, whether simple displays of measured concentrations or ones made by more73

elaborate interpolation could point to the emitter(s) of the metals, and identify regions74

where much (and little) metal is deposited. To date there have been few published75

attempts to map the distributions of metals from the analysis of tree bark. One was by76
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Lotschert and Kohm (1978) who drew isarithmic (‘contour’) maps of Pb and Cd based77

on samples from 34 ash trees (Fraxinus excelsior) throughout Frankfurt. A similar78

approach, adopted by Bellis et al. (2001) to map airborne emissions in the vicinity of79

a lead smelter, was based on plotting data on the enrichment in Pb. On a national80

scale Lippo et al. (1995) drew a ‘pollution’ map of Finland detailing anthropogenic81

emissions for cities and industrial regions.82

We have investigated the potential of tree bark for mapping the accumulated83

deposition of airborne metals across metropolitan Sheffield, a city which has more trees84

per unit of population than any other in Europe. We measured the concentrations of85

18 metal and metalloid elements in bark at 642 locations in the region and compared86

them with those at a virtually uncontaminated site (Mace Head, western Ireland) to87

determine the magnitude of contamination in the former. We collected bark samples88

from three tree species to determine whether there were any substantial differences in89

metal contents between them. We did a principal component analysis on the elements90

to establish the relationships between the elements and to discover whether there were91

particular groups of them that might behave differently from one another. We then92

chose three potentially toxic elements, namely Cd, As and Ni, as representatives and93

analysed their data spatially (a) to determine regional trends, (b) to estimate their94

spatial covariances, and (c) to interpolate and map their distributions by kriging. We95

have used these maps to identify likely local sources of atmospheric pollution. We96

discuss the wider implications of our findings for the use of tree bark in environmental97

monitoring.98

2. Materials and methods99

2.1 Study region, tree bark survey and analysis.100

Sheffield has a long tradition of iron smelting and the production of steel. The invention101

of the crucible process in 1740 sparked a massive expansion of the industry in the city,102

relying in part on coal from local mines, which continues to this day. This in turn led to103
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severe air pollution before measures to combat it were introduced under the Clean Air104

Act of 1956. In 1963 the company British Steel opened a large works at Tinsley in the105

north east of the city (Figure 1) to make special steels. Its production, including that106

of stainless steel (ferrochrome), continues and emits significant quantities of Cr and Ni107

into the atmosphere. Gilbertson et al. (1997) reported on the long-term significance108

of metal emissions from steel manufacturing from their study of concentrations of Co,109

Cu, Fe, Ni, Pb, and Zn in a peat monolith from close to the works. They found110

extraordinarily large concentrations (in mg kg−1) of Cu (472), Ni (320), Pb (827) and111

Zn (613) compared to concentrations in soil from an urban survey of the city for which112

Rawlins et al. (2005) presented data for Pb and Ni. The study of Gilbertson et al.113

attributed the greatest enrichment of Cu and Zn in the uppermost layers to the works.114

The Environment Agency of the UK had compiled an inventory of pollution115

(Environment Agency, 2003) in which it registered the locations and quantities of116

atmospheric particulate metal emissions from static sources. The inventory included117

emissions exceeding the reporting thresholds of 100 g for Cd, 1 kg for As and 10 kg118

for Ni, each per year. It did not include sources of smaller amounts for which no119

information is available on metal composition. We collated the data for the Sheffield120

region and to 3 km beyond its boundary for the years for which data were available121

prior to our collection of the bark samples (1998–2002). We calculated the sum of122

emissions for the five years so that they could be presented as total emission figures123

(in kg) for each particular source.124

Below we discuss the significance of these sources in relation to the distributions125

of the metals in bark.126

In establishing the region for our current study we wished to encompass the127

major sources of metal emissions, including industry to the north and east of the City,128

whilst also estimating the spatial extent of metal deposition. We therefore surveyed129

an area extending across the city from the suburbs of Whirlow and Greenhill south130

and west of the centre and from which the prevailing wind blows (see wind rose inset131
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in Figure 1) to industrial Brinsworth and Ecclesfield to the north-east of the city132

centre (see Figure 1). The number of people living in the region, estimated from133

the 1991 census, is approximately 271 500. This figure was calculated from the UK134

EDINA database of population-weighted centroids defined for all the 1991 enumeration135

districts (Bracken and Martin, 1989.). The total population of greater Sheffield is136

around 550 000.137

Samples of bark were collected from 642 trees of the three species (with pro-138

portions of each shown in parentheses): sycamore (Acer pseudoplatanus — 68%), oak139

(Quercus robur — 22%) and cherry (Prunus serrula — 10%); their locations are shown140

in Figure 1. Both sycamore and cherry have fairly smooth bark, whereas the bark of141

oak is rougher. The samples were collected between April and November, 2003. In142

a series of local neighbourhoods, trees belonging to the three species occurring in a143

public space were identified. From these a subset was sampled to provide, as far as144

possible, an even spatial distribution.145

Approximately 10 g of the external outer bark (1–2 mm depth) was removed from146

each target tree with a clean scraping tool at 1.5 m above the ground. Sample sites147

spanned an altitude range of 271 m, from 33 to 301 m above mean sea level. The mean148

altitude was 106 m.149

Trees in the temperate zone of the UK enlarge their diameters by approximately150

1 cm per year, so a tree’s circumference in cm divided by π gives an approximate age151

of the tree (P. Casey, personal communication). The ages of the trees from which bark152

was sampled ranged from 25 to 45 years (circumferences of 78 to 141 cm). Bark with153

moss, lichen or paint was excluded from the sample. The orientation of the location for154

sampling was random. The samplers wore polythene gloves to avoid contaminating the155

samples, which were stored in sealed brown paper envelopes at 4 ◦C. The geographic156

co-ordinates and altitude of each site were obtained by GPS (Garmin International,157

Inc., USA). A further nine bark samples were collected from sycamore trees at Mace158

Head on the west coast of Ireland (53◦ 20’ N, 9◦ 54’ W) so that we could estimate159
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background concentrations where there is negligible pollution.160

Each bark sample was crushed into a fine powder in a Tema mill. The bark161

powder was then passed through a sieve (0.5 mm mesh) to remove any large lumps.162

Thereafter all the equipment was cleaned thoroughly to prevent cross-contamination of163

the following sample. Tree bark powder (4.0 g) was thoroughly mixed with polystyrene164

co-polymer binder (0.9 g) (Hoechst Wax, Spectro Analytical, UK) and pressed for 1165

minute to produce powder pellets. The powder pellets were analysed by EDXRF166

spectrometry (X-LAB, Spectro Analytical, UK). The instrument was calibrated for 18167

elements (Ag, Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Se, Sn, Ti, V, Zn) for168

a wide range of standard biological reference materials which included poplar leaves,169

lichen, human hair and tea leaves. Typical analytical performance has been published170

previously (Schelle et al., 2002). The concentrations of Cd were less than the detection171

limit for 19% of the samples, and so we set their values to half that limit for subsequent172

statistical analysis. Fifty two percent of the samples contained less than the detection173

limit of Ag, and so we do not consider it further.174

2.2 Summary statistics175

Table 1 summarizes the data for all 17 elements. The distribution of most was posi-176

tively skewed, some strongly, and so to stabilize variances for subsequent analyses we177

transformed the values to logarithms. The table lists the transformations we made.178

As expected, there is a huge range in the mean values. Aluminium, which is the179

most abundant metal in the rocks and soil, is most abundant in the bark also. Iron180

appears in large amounts, and given Sheffield’s history we might expect such results181

too. The concentrations of the other elements do not immediately stand out. With the182

exception of Al, the mean concentrations in Sheffield were much larger than those those183

at Mace Head (Table 2); for Cr, Mn, Ni and Ti they were an order of magnitude larger.184

Anthropogenic sources are almost certainly the reason for the greater concentrations185

of metal in the tree bark in Sheffield.186

What is highly significant is that the distributions of all the elements are strongly187
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positively skewed, with skewness coefficients ranging from 1.7 to almost 10. We found188

that all could be described well by a three-parameter log-normal distribution, which189

has the probability density function:190

g(z) =
1

σ(z − α)
√

2π
exp

[
− 1

2σ2
{ln(z − α)− µ}2

]
, (1)

where z is the variable of interest, µ and σ are the mean and standard deviation191

of the transformed variable, and α is the shift in the original scale to maximize the192

goodness of fit. The shift and the mean and standard deviations in natural logarithms193

are listed in Table 1. In the final column of Table 1 are the skewness coefficients194

of the logarithms from which it is evident that the transformations have made the195

distributions symmetric. This is important for stabilizing the variances, and we have196

done all our further analyses on these transformed scales.197

Analysis of variance revealed little differences among species; they accounted for198

less than 5% of the variance for any of 16 metals and for only 8.5% for As. We have199

therefore disregarded differences between species in our subsequent multivariate and200

spatial analysis.201

2.3 Selection of variables; principal component analysis.202

For the purpose of this paper we wanted to select a few elements from the 17 listed203

above that would illustrate both the feasibility of analysing APM in bark and mapping204

the distribution of elements in it and produce maps interesting in their own right.205

To help in the selection we did a principal component analysis on the correlation206

matrix of the logarithms. We hoped thereby to see any clusters of strongly correlated207

elements from which we could choose representatives and any other elements that were208

clearly uncorrelated with others and should be treated in their own right. Table 3 lists209

the leading eigenvalues of the correlation matrix. The first component accounts for210

almost half the variance, and second and third together account for more than half211

the remainder. Pursuing the analysis, we computed the correlation coefficients, rij,212
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between the principal component scores and the (logarithms of the) original variables213

as214

rij = νij

√
λj/σ2

i , (2)

where νij is the ith entry in the jth eigenvector, λj is the jth eigenvalue, and σ2
i is the215

variance of the ith original variable. We then plotted the results in the unit circles for216

pairs of the leading components. We show two such circles in Figure 2 in which we217

have plotted the correlation coefficients (a) for component 2 against component 1 and218

(b) for component 3 against component 1. In general, the closer the points lie to the219

circumference of one of these circles the better are they represented in that projection.220

We note first that all of the plotted points fall in the right hand halves of the221

graphs: component 1 is essentially one of size. Component 2 discriminates, separating222

the siderophile (Fe, Mn, Co, Ni) and lithophile (Cr and V) elements from the calcophile223

group (Pb and Zn) and their associates. Arsenic appears nearest the centre in circle224

(a) and the least correlated with the other elements. This is confirmed in circle (b)225

in which the point for As lies close to the circumference and away from the other226

elements. Somewhat surprisingly Zn lies near the bottom of axis 3. The siderophiles227

remain clustered in this projection.228

From this examination of the data we have chosen three elements for our spatial229

analysis. We have chosen Ni as representative of the siderophiles and because it is a230

key element in steel production. We chose Cd because of its potential toxicity and231

again used in manufacturing. Third, we chose As, another poison, but from Figure232

2(b) clearly dissociated from the other elements.233

2.4 Spatial modelling by REML234

Our objective is to display the spatial variation of the three selected elements on235

tree bark across Sheffield as isarithmic (‘contour’) maps having first estimated the236

concentrations at the nodes of a fine grid. We used kriging for the estimation, following237

closely the technique we used to map the distribution of metals emitted from a smelter238
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and described recently in this Journal (Rawlins et al., 2006).239

Ordinary kriging is based on two assumptions.240

1. A variable of interest, y, at locations xi, i = 1, 2, . . . , is a realization of an241

intrinsically stationary correlated random function Y (x) such that242

E [Y (x)− Y (x + h)] = 0 for all x, h , (3)

where E [·] denotes the statistical expectation of the term in brackets, and h is a243

lag vector, a displacement in space from the location x.244

2. The expected squared difference between Y (x) and Y (x + h) depends only on h:245

E
[
{Y (x)− Y (x + h)}2

]
= 2γ(h) . (4)

The quantity γ(h) is the variance perpoint at lag h and as a function of h is the246

variogram.247

A preliminary display of the data for Ni and Cd at least suggested that the248

assumption in Equation (3) was not tenable; there were evident trends from small249

concentrations far from the steel works in the south west of the city to large ones close250

to the works in the north east, as we expected. This situation requires more complex251

geostatistical analysis in which the trend is separated from the random component252

and the estimates are made by universal kriging (Matheron, 1969), or ‘kriging with253

trend’ as it is now more generally known. Saito and Goovaerts (2001) encountered254

a similar problem in a study on the distribution of metal pollutants in two urban255

areas in the United States. In each case there were clear trends in the distribution256

of these contaminants, which could be accounted for by the wind direction and the257

location of sources (one smelter in one of the areas, and two adjacent smelters in the258

second). They used this information to produce simple trend models, based on physical259

principles, which predict the amount of metal that has been deposited from the sources260

at any location. This constituted the trend in their universal kriging. In order to model261

the spatial dependence of the random component, the residual from the trend, they262
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estimated variograms of the pollutant from paired comparisons between sites at which263

the trend was deemed to be similar. This crudely filters the trend from the variogram264

that is obtained. It also discards the information about the random component of265

variation that could be obtained from comparisons between points where the trend is266

very different. To do this requires a more sophisticated analysis.267

Recent developments in numerical analysis linked to modern computing power268

enable us to use Residual Maximum Likelihood (reml) for the purpose, and we must269

now regard this as best practice. We described the procedure fully in Rawlins et al.270

(2006), and we shall not repeat the detail here. In this respect, then, our analysis271

was more sophisticated than that of Saito and Goovaerts (2001). In another respect272

it was more primitive, because we did not attempt to use a physically-based model273

for the trend in metal content of the bark. This was because, by contrast to the two274

regions studied by Saito and Goovaerts (2001), Sheffield has multiple sources of metal275

pollutants, and not only current or recent ones, but also many others from the distant276

past about which we have no detailed information. For our trend models therefore we277

considered only simple functions of the spatial coordinates.278

We treat the transformed data as the outcome from a mixed model:279

Y (x) =
K∑

k=0

βkfk(x) + ε(x) . (5)

It consists of K + 1 fixed effects (which explain the trend in terms of known functions280

of the spatial co-ordinates) and a spatially dependent random variable ε(x) with mean281

zero and variogram γ(h). In order to apply reml to estimate the variance of the282

random variable and its spatial dependence we make stronger assumptions of station-283

arity than the intrinsic hypothesis stated in Equations (3) and (4) above. We require284

that the random variable is second-order stationary, which means that the variogram285

is bounded by the a priori variance of the process. This is not a serious constraint in286

practice once we have separated out the fixed effects, and is met by most of the popular287

variogram models used in geostatistics. Our task is to estimate the contributions of288

the fixed and random components simultaneously, minimizing the estimation variance.289
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The separate contributions need not be explicitly computed when we use universal290

kriging, but they should be inspected to assess the weight of evidence for a trend in291

the variable.292

We first chose a few plausible models for the trend in Equation (5) by inspection293

of the data. We then separated these trends from the data and computed experimental294

variograms of the residuals by the usual method of moments:295

γ̂(h) =
1

2m(h)

m(h)∑
j=1

{y(xj)− y(xj + h)}2 , (6)

where y(xj) and y(xj +h) are the values of y at sampling points xj and xj +h separated296

by the lag h andm(h) is the number of paired comparisons at that lag. We fitted several297

of the standard simple models to these variograms by weighted least squares and chose298

the ones that fitted best in the least squares sense.299

This estimation of the trend ignores the spatial correlation of the residuals, but300

is acceptable for exploratory purposes. We found that we could describe the trend in301

the transformed data simply by the distance from a reference site in the north-east of302

the region, so that our full model for the variation was303

Y (x) = β0 + β1||x− xR||+ ε(x) , (7)

where || · || denotes the Euclidean norm of the enclosed vector. The vector xR is304

the reference site close to the steel works in the north-east of the region with British305

National Grid co-ordinates (441945.8, 390339.4). We chose this model in preference to306

a more conventional linear function of the co-ordinates because it achieved at least as307

good an ordinary least-squares fit to the data with one fewer terms.308

We then computed the experimental variograms of the ordinary least-squares309

residuals and found that an isotropic exponential model with nugget gave a satisfactory310

fit. Its equation is311

γ(h) = c0 + c

{
1− exp

(
−h
a

)}
, (8)

in which c0 is the nugget variance, c is the sill of the correlated variance, a is a distance312

parameter and h = ||h|| is now a scalar in distance only. This model, which is widely313
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used in geostatistics, increases asymptotically to its maximum, with an effective range314

of 3× a.315

We then used the ASreml program (Gilmour et al., 2002) to fit the model in316

Equation (7) to each variable. We specified an exponential correlation function, which317

corresponds to the exponential variogram in Equation (8). The program provides reml318

estimates of the parameters c0, c and a, and generalized least-squares estimates of the319

fixed effects. We tested the null hypothesis that the true value of the fixed effect for the320

trend, β1, is zero by computing the Wald statistic. This statistic is equivalent to the321

variance ratio for the predictor in an analysis of variance for an ordinary least-squares322

regression. However, we used the method of Kenward and Roger (1997) to compute an323

adjusted Wald statistic, and adjusted degrees of freedom in the denominator for the F324

test to allow for the spatial dependence of the residuals.325

2.5 Lognormal universal kriging326

For reasons described above we transformed the raw data, z(x), to approximately327

normally distributed variables, which we have denoted by y(x). These values were328

used to obtain predictions at points on a fine grid over the region by universal kriging.329

The universal kriging (UK) uses the specified fixed effects in the prediction and the330

covariance parameters estimated by reml. Note that for arsenic, for which the trend331

was effectively constant, the universal kriging predictions are the same as those from332

ordinary kriging since we estimate one fixed effect, β0, which is the mean.333

Universal kriging returns an estimate of the transformed random variable Y (x);334

but we require estimates on the scale of the original data z(x). As with any estimate335

derived from log-transformed data, we cannot simply back transform the estimates on336

the logarithmic scale; we must also correct for bias. Cressie (2006) has shown that the337

UK estimate of a log-normal variable Z̃ ′(x0), based on the UK estimate Ỹ (x0) of the338

corresponding Y , is339

Z̃ ′(x0) = exp

{
Ỹ (x0) +

1

2
σ2

UK − ψ0 −
K∑

i=1

ψifi(x0)

}
, (9)
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where the ψ0, ψ1, . . . are Lagrange parameters from the UK system (see Rawlins et al.,340

2006). We therefore back-transformed our kriged estimates in this way.341

We kriged the log-transformed variables at the nodes of a 200-m square grid.342

For each variable we specified the fixed effects selected after the reml analysis, and343

the covariance parameters obtained from that analysis. All observations were used344

for kriging at all target sites because we wanted the trend model at all target sites345

to be the same as the overall trend model to which our variogram refers. Since the346

number of data is large, this could lead to difficulties with the inversion of a large347

matrix. Our program for obtaining the lognormal UK estimates uses a subroutine348

for matrix inversion (LINRG, from IMSL, Visual Numerics, 1997) that reports any349

conditioning problems. It did not do so. We then used Equation (9) to transform350

the estimates back to the original scale, and corrected for the shift constant, α, in351

the original log-transformation. A particular advantage of kriging, relative to other352

methods for spatial prediction such as arbitrarily weighted local averaging, is that353

the error variances of the predictions are minimized and also (generally) is known.354

Unfortunately, back-transformations of the variances in the logarithms to the original355

scale can be calculated only for the simple kriging case (Webster and Oliver, 2007).356

Nevertheless, because we know the prediction variances on the transformed scale we357

can compute confidence limits and transform them. This therefore is what we did; we358

computed the local 95% upper limits in the logarithms and transformed them to the359

original scale of measurement.360

3. Results and their interpretation361

3.1 Trend and variance models based on REML362

As above, we analysed the data for the three elements Ni, Cd and As. Their histograms363

appear in the top row of Figure 3 and are evidently strongly positively skewed. The364

middle row of histograms in the figure are of their logarithms; the transformation has365

conferred symmetry (see also Table 1) and left no outliers. Finally, in the bottom row366
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of the figure are the histograms of the residuals of the transformed data of Ni and Cd367

from their trends. Again the residuals for Ni and Cd are symmetrically distributed with368

small coefficients of skewness (-0.17 and 0.03 respectively). This gives us confidence369

that the assumption of normality of the random process, implicit in our use of reml for370

estimation of the variance model, is plausible. They show that, under the logarithmic371

transform, our data contain no obvious marginal outliers that might distort the variance372

model or local estimates. Finally, they show that the residual variation has been373

diminished—the standard deviation of the residuals of Ni is 0.794 compared with 1.202374

in the logarithms and that of Cd is 0.796 compared with 1.091.375

The trend models fitted for each element, after log-transformation, are listed376

in Table 4. Note that for both nickel and cadmium the estimated coefficient β1 is377

negative, and that the null hypothesis that there is no trend can be rejected decisively378

because of the very small value of P in the Wald test. The negative coefficient implies379

that the larger concentrations of metals are near the reference site in the north-east380

of the region. All the registered sources of Ni and Cd emissions occur in the north-381

east of the region also. The source with the largest emission of Ni (having emitted382

a total of 10 800 kg from 1998 to 2002) by almost one order of magnitude is 2.6 km383

to the west of the reference site (Figure 4a). The same emitter was also the largest384

source of Cd (having emitted 227 kg over the same period; Figure 4b). When the385

wind blows from the north and east these metals are dispersed towards the south and386

west, accounting for the observed trend. We do not observe the same degree of trend387

in the pattern to the north and east because when the wind blows from the south388

and west — the dominant prevailaing direction — significant quantities of metals are389

deposited towards the northern and eastern boundaries of the study region, where the390

concentrations remain substantially greater than the near background values observed391

elsewhere.392

The analysis reveals that the random effect for both Cd and Ni has marked393

spatial dependence; more than half of their variances is spatially correlated to distances394
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between 2 and 2.5 km. This suggests that there are factors causing this variation395

unexplained by the trend model and that it might be worth attempting to identify396

them. The largest concentrations of Ni and Cd occur close to their dominant sources,397

accounting for the spatial dependence at short distances (Figure 4a and b).398

In contrast, there was no evident spatial trend in the concentrations of arsenic,399

which is confirmed in the formal Wald test of the null hypothesis that β1 is zero. For400

this reason we computed a variance model for log-transformed arsenic with only one401

fixed effect, namely the mean. The variogram parameters for this model were used for402

the kriging prediction. Note that little more than a fifth of the variance is spatially403

correlated, and that to distances of approximately only 1.5 km.404

3.2 Maps of metal concentration in bark.405

Figure 4a shows much short-range variation of Ni in the north-east of the region, which406

we presume to result from emissions and deposition from both current steel works and407

ones now defunct over many years. This pattern and the mechanism accord with what408

we know of total soil Ni concentrations across the city from a recent geochemical survey409

(Rawlins et al., 2005). The Ni is most concentrated immediately to the west of the big410

steel works at Tinsley (440 km east, 390 km north; Figure 4a). Another smaller source411

(437 km east, 389 km north) might account for the large concentrations (400 mg kg−1)412

in its vicinity and to the north and east in the direction of the prevailing wind. There413

are two small areas with large Ni values (440 km east, 388 km north; 438 km east,414

387.5 km north) which, according to our database, do not have significant sources415

nearby. Nevertheless, there are within 500 m of these two locations industries that416

might emit Ni-bearing particles. Concentrations of Ni are generally small in the north417

and south-west the region where there are no recorded sources of pollution. This418

suggests that there is little long-range dispersal, resuspension and deposition of the419

metal.420

Let us now turn to Cd. Figure 4b shows the largest concentrations around two421

sources (437 km east, 388 km north), one where metal is produced and processed422
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(having emitted a total of 69 kg from 1998 to 2002), the other an incinerator (having423

emitted 52 kg over the same period). Somewhat surprisingly, the concentrations are424

smaller near to the source of the largest emission (total emission 227 kg from 1998 to425

2002). As with Ni, the concentrations of Cd diminish rapidly within 500 m of these426

sources, with the larger values extending northeastwards. The spatial patterns of Cd427

concentrations alone do not appear to reflect the magnitude of local sources, but the428

temporally varying dispersal mechanisms which depend on the strength and direction429

of the wind and the height of the emissions. A single spatial outlier with a large430

concentration of Cd (21.1 mg kg−1) occurs to the south-west of the region (432 km431

east, 384 km north) in an entirely residential area, and we cannot explain it.432

The spatial distribution of arsenic (As) is considerably more complex than that433

of Ni and Cd. The largest As concentrations do not occur around the steelworks at434

Tinsley — the largest static emitter (Figure 4c) — but where there are no registered435

emissions of As (438 km east, 390 km north). This part of the region contains a mixture436

of residential housing, industry and recreation grounds. Fugitive emissions from the437

industrial sites could acccount for some of the arsenic. The concentrations diminish438

rapidly in their immediate vicinity, but more slowly at greater distances. A similar439

pattern is observed around another area of large concentrations (434 km east, 385 km440

north), where once again there are no registered sources of emissions and land use is441

dominantly residential. Arsenic is richer in coal from Sheffield (Yorkshire) than in coal442

from most other parts of Great Britain. From an analysis of 24 samples of coal from443

across the country, those from the two Yorkshire seams had As concentrations of 8.7444

and 37 mg kg−1, which equate to the 65th and 97th percentile of the As distribution445

(Spears and Zheng, 1999). Coal was mined and burnt in the City for at least 200 years446

before the last coal mine was closed and the Clean Air acts were implemented in the447

1960s. There would have been many local emitters of As, and the APM from those448

days might still be being resuspended and redistributed.449

4. Discussion450
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The substantially larger mean concentrations of metals in tree bark across Sheffield451

than those at Mace Head indicate that most of the metal in Sheffield is of anthro-452

pogenic origin. We have also shown that differences between tree species, and any453

differences in the roughness of their bark, are unlikely to be significant in determining454

the concentrations of most metals. It should therefore be possible to use tree bark455

from other species in similar environmental biomonitoring studies without introducing456

significant error. This is likely to be advantageous where trees of any one species are457

sparse.458

The concentrations of Ni and Cd in the bark of trees in Sheffield show that aerial459

deposition of metal, and any subsequent resuspension, diminishes markedly within460

500 metres of the emitters, though there appears to be significant dispersal over sev-461

eral kilometres. This strengthens the case for biomonitoring of long-term atmospheric462

pollution via the analysis of tree bark in a cost-effective way and for identifying where463

the sources of pollution are.464

The marked autocorrelation observed in the spatial distributions of Cd and Ni465

(and also Cr, Co and Cu which we have not described here) indicates that measure-466

ments of metals in tree bark in industrial environments can be used to map long-term467

deposition of those metals from the atmosphere. By contrast, elements such as lead468

with widespread and even mobile sources, as from motor vehicles before lead was for-469

bidden in fuel in the year 2000, are not spatially correlated; their variograms are wholly470

nugget at the working scale and so interpolation by any means should not be attempted.471

The method we describe and have applied is entirely statistical, though underlain472

by general knowledge and understanding. We did not attempt to use a source-oriented473

chemical transport model. We recognize that incorporation of such a model could im-474

prove spatial predictions and aid our interpretation of the spatial patterns observed.475

That is the next logical step in our investigation of these data, and we plan to incorpo-476

rate such in formation into the linear mixed model that we have used here (see Stacey477

et al., 2007).478
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List of Figures and Captions

Figure 1. Location and species of trees in the region surveyed from which bark was

sampled (n = 642). Inset: windrose (source: British Meteological Office) showing

direction and strength for 84 662 observations at 146 m above mean sea level in

Sheffield.

Figure 2. Projections of the correlation between the 17 elements and principal com-

ponent scores into unit circles for (a) the first and second components, and (b)

the first and third components.

Figure 3. Histograms of raw data (top row), of data transformed to their natural

logarithms (centre row) and residuals from the trend for log-transformed data for

Ni and Cd (bottom row).

Figure 4. Isarithmic maps of (left) concentrations in bark (back-transformed estimate

of the conditional expectation) (right) backtransformed upper 95% confidence

limit for the conditional expectation. Also shown are the sources of cumulative

emissions from 1998 to 2002 in kg for each of the metals: (a) Ni – A(81), B(10800),

C(37), D(519), (b) Cd – A(1), B(227), C(0.4), D(0.5), E(69), F(52) and (c) As –

A(40), B(1), C(2.7), D(3.4).
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Table 1 Means and standard deviations (Std dev.) in mg kg−1 of the amounts of

17 elements in the bark dust, and the means and standard deviations of their natural

logarithms after a shift of origin—see text.

Original measurements Log transforms

Element Mean Std dev. Skewness Shift Mean Std dev. Skewness

Al 9484 46461 7.77 45 7.902 1.103 1.18
Ti 421 465 6.24 29.8 5.812 0.760 0.08
V 24.9 17.2 3.60 5.3 5.701 0.861 −0.39

Cr 265 593 9.14 1.1 4.704 1.283 0.15
Mn 280 360 9.01 11.25 5.349 0.767 0.14
Fe 5712 5669 2.44 264.5 8.354 0.827 0.04
Co 2.93 2.467 2.88 0.198 0.916 0.661 0.12
Ni 65.0 141 12.0 0 3.412 1.202 0.06
Cu 47.3 32.5 1.96 4.3 3.779 0.571 0.06
Zn 152 185 8.38 3.4 4.771 0.781 0.24
As 3.65 2.390 1.77 1.130 1.494 0.451 0.02
Se 1.56 0.955 3.32 0.8 0.801 0.359 0.08
Cd 1.401 3.621 9.97 0.02 −0.368 1.091 0.04
Sn 3.19 3.973 3.18 0.12 0.732 0.942 0.14
Sb 23.9 18.47 1.95 6.6 3.270 0.550 0.03
Ba 245 241 4.39 12.6 5.273 0.721 0.14
Pb 226 153 1.69 45 5.457 0.525 0.02
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Table 2 Mean concentrations of 17 elements in nine samples of bark dust from Mace

Head (Ireland) in mg kg−1. Analyses reported below the limit of detection (LoD) were

set to half this value to calculate the mean. Where the calculated mean was less than

the LoD we report the mean as less than the LoD.

Element Al Ti V Cr Mn Fe Co Ni

Mean 12702 32.5 <5 4.7 31.5 218 0.8 1.0

Element Cu Zn As Se Cd Sn Sb Ba Pb

Mean 8.3 37.2 < 0.2 0.8 <0.3 < 0.6 <0.6 38.2 5.1

28



Table 3 Eigenvalues of the correlation matrix of the 17 elements, and the percentages

of the variance and their cumulants.

Percentage Accumulated
Order Eigenvalue of variance percentage

1 8.142 47.89 47.89

2 3.353 19.72 67.61

3 1.303 7.66 75.27

4 0.821 4.83 80.10

5 0.687 4.04 84.14

6 0.554 3.26 87.40
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Table 4 Results of the reml estimation of trend models for each element (log-

transformed), and reml variance model parameters for the model for arsenic with

no spatial trend.

Element Fixed effects Walda P valueb Estimated covariance
statistic parameters

β0 β1 a/metres c0 c

Ni 5.40 −0.277 106.1 0.55×10−6 705 0.348 0.296

Cd 0.500 −0.135 18.9 2.22×10−3 835 0.531 0.298

As 1.54 −0.003 0.11 0.75 558 0.156 0.047

As - - - 502 0.156 0.046

a Wald statistic for the fixed effect β1.

b Null hypothesis that β1 = 0.
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