398 research outputs found

    Combining taxon-by-trait and taxon-by-site matrices for analysing trait patterns of macroinvertebrate communities: a rejoinder to Monaghan & Soares (2014)

    Get PDF
    In a recent paper, Heino, Schmera & Erős (2013) provided an overview of trait 58 patterns of stream communities from a macroecological perspective. In this paper , 59 reference was made to Gayraud et al . (2003) , who showed that abundance - weighted 60 traits were less powe rful than presence - absence weighted traits in discriminating 61 communities under different degrees of human impacts , and to Statzner & Beche 62 (2010) , who therefore advocated the use of the second type of weighting for practical 63 biomonitoring due to logis tic constrains ( e.g. sorting of qualitative samples makes 64 3 assessment program me s more cost effective) . H eino et al . (2013) pointed out that 65 t hese findings contradict the results of taxon - based analyses which suggest that , if 66 taxa are weighted by their abund ance , then communities are better separated in 67 relation to environmental variation than when taxa are weighted only by their 68 presence . Based on an overview of the literature, Heino et al . (2013) concluded that 69 results of presence - and abundance - based analy ses should be evaluated carefully 70 when examining traits of organisms, because differences among studies can reflect 71 both methodological (i.e. handling of data) and real ecological differences (see p. 72 1549 in H eino et al ., 2013 ) . More recently, Monaghan & S oares (2014 ) stated that (1) 73 H eino et al . (2013) identified the weak explanatory power of abundance data as a 74 major limitation of macroinvertebrat e trait analysis and that (2) the log - transformation 75 of abundance data may cause anomalies in trait - based anal yses. W e disagree with 76 both conclusions , because (1) H eino et al . (2013) did not actually state this (see 77 above) and because (2), in our view, log - transformation of abundance data in trait - 78 based analyses can also be meaningful . To reveal the causes of thes e differ ing views , 79 we go through the examples provided by M onaghan & Soares (2014) and examine 80 how traits can be weighted by the presence, abundance and log - transformed 81 abundance of the taxa . To do this, firs t we define the terminology used here , comment 82 o n the approach of M onaghan & Soares (2014) and show how this procedure should 83 be performed

    Investigating invertebrate biodiversity around large wood: taxonomic vs functional metrics

    Get PDF
    Large wood is a key component of river channels that affects numerous hydrological, physical and geomorphological processes. It promotes a diversity of benthic habitats in-channel and has shown to support more abundant and diverse benthic macroinvertebrate assemblages in previous ecological studies. However, the effects of large wood on the structural and functional diversities of hyporheic invertebrates are less well studied, and simultaneous examination of these diversity metrics on hyporheic and benthic compartments of the stream bed has not been conducted previously. Therefore, this study investigates the taxonomic and functional diversities of hyporheic and benthic invertebrate assemblages around natural accumulations of large wood in a British lowland river. Taxonomic and functional diversities were partitioned (into alpha, beta, and gamma diversities) and examined in reaches with and without large wood (control). We found that functional diversity is often decoupled from taxonomic diversity, demonstrating a functional redundancy of the macroinvertebrate assemblage for both hyporheic and benthic zones. Moreover, the highest functional variability at alpha-scale was observed in large wood habitats, which suggests that taxonomic diversity is enhanced by the small-scale environmental heterogeneity around large wood. To this end, this study contributes empirical evidence of functional and structural responses of invertebrates to large wood accumulation. Such information could be used to better understand the ecological implications of restoration works in lowland rivers and guide more effective management strategie

    Trait-based ecology at large scales: Assessing functional trait correlations, phylogenetic constraints and spatial variability using open data

    Get PDF
    The growing use of functional traits in ecological research has brought new insights into biodiversity responses to global environmental change. However, further progress depends on overcoming three major challenges involving (a) statistical correlations between traits, (b) phylogenetic constraints on the combination of traits possessed by any single species, and (c) spatial effects on trait structure and trait–environment relationships. Here, we introduce a new framework for quantifying trait correlations, phylogenetic constraints and spatial variability at large scales by combining openly available species’ trait, occurrence and phylogenetic data with gridded, high‐resolution environmental layers and computational modelling. Our approach is suitable for use among a wide range of taxonomic groups inhabiting terrestrial, marine and freshwater habitats. We demonstrate its application using freshwater macroinvertebrate data from 35 countries in Europe. We identified a subset of available macroinvertebrate traits, corresponding to a life‐history model with axes of resistance, resilience and resource use, as relatively unaffected by correlations and phylogenetic constraints. Trait structure responded more consistently to environmental variation than taxonomic structure, regardless of location. A re‐analysis of existing data on macroinvertebrate communities of European alpine streams supported this conclusion, and demonstrated that occurrence‐based functional diversity indices are highly sensitive to the traits included in their calculation. Overall, our findings suggest that the search for quantitative trait–environment relationships using single traits or simple combinations of multiple traits is unlikely to be productive. Instead, there is a need to embrace the value of conceptual frameworks linking community responses to environmental change via traits which correspond to the axes of life‐history models. Through a novel integration of tools and databases, our flexible framework can address this need

    Functional traits of hyporheic and benthic invertebrates reveal importance of wood-driven geomorphological processes to rivers

    Get PDF
    1.Large wood (LW) is a natural element of river environments and an integral component of many river restoration schemes to promote biodiversity. It is an important habitat in itself, but it also induces a wide range of hydraulic, hydrological, geomorphological, and chemical conditions that influence the ecological community. However, the effects of hydro‐geomorphological processes induced by LW on local benthic and hyporheic invertebrates have not been well characterized. 2.A functional approach was applied to invertebrate data collected in a field survey at sites with LW and without LW (control), to investigate the response of hyporheic and benthic invertebrates’ trait profiles in response to local LW‐induced processes. 3.We hypothesized LW sites to be associated with different trait modalities than control sites in relation to wood‐induced processes and conditions (i.e. hyporheic exchange flow, oxygen availability, temporal stability, organic matter, denitrification, hydraulic conductivity). Multivariate analyses and Partial Least Squares (PLS) Path Modelling were used to detect the differences in trait profiles between LW and control sites and to study the variation of traits as a function of hydrological, sedimentological, physical and chemical variables. 4.Biological (i.e. aquatic stages, reproduction), physiological (i.e. dispersal, feeding habits) and behavioural (i.e. substrate preferences) trait utilization by the hyporheic meiofauna differed between LW and control sites. At LW sites, the hyporheic meiofaunal assemblage was significantly associated with aquatic active dispersal, aquatic eggs and hard substrate preferences. This trait category selection was linked to changes in physical‐sedimentological processes at LW sites when compared to control sites. Macrofaunal benthic and hyporheic functional traits did not differ significasignificantly between wood and control sites, suggesting similar functioning of these assemblages at the surface‐subsurface interface. 5.This study found that LW affects invertebrate traits by altering fluvial processes to produce, locally, a mosaic of habitats. Hyporheic meiofauna trait responses to LW‐processes have suggested (i) the crucial role of LW in supporting river benthic zone functioning, and thus (ii) a possible benefit to river restoration by enhancing functional interactions among different ecological niches

    The generality of changes in the trait composition of fish and invertebrate communities after flow restoration in a large river (French Rhône)

    Get PDF
    1. A multiple-trait-based approach can provide predictions and interpretations of the responses of freshwater communities to river restoration that apply in different taxonomic contexts. We compared the observed and predicted effects of restoration on sets of traits in fish and invertebrate communities in four reaches of the Rhône River. Restoration included minimum flow increases in three bypassed main channels and the reconnection of eight floodplain channels. 2. Predictions (described in detail in three other articles in this Special Issue) were based on habitat models that related the density of modelled taxa to their physical habitats. We used trait information extracted from the literature to translate predicted taxonomic changes into predicted changes in traits. Observed changes in traits calculated for modelled taxa and for all taxa in the community were both compared to predictions. 3. In 10 of 12 cases, observed changes in traits correlated with predicted ones. With few exceptions, the agreement was higher for fish and invertebrates in the main channels than for invertebrates in floodplain channels. Predictions translated to the trait category level improved those at the taxonomic level in 5/6 and 4/6 cases for modelled taxa and all taxa, respectively. However, the improvement was statistically significant according to a null model for 1/6 and 3/6 cases for modelled taxa and all taxa, respectively. 4. The validation of trait predictions suggested that traits related to locomotion and attachment, as well as general biology and physiology, were particularly suited to predicting and understanding the effects of physical restoration. For example, after restoration, clingers and passive filter feeders dominated invertebrate communities in the main channels, whereas invertebrate communities in the floodplain underwent a selection of traits frequent in running water (clingers, flattened shape and gill respiration). Within fish communities, the periodic life-history strategy that characterises fish species in downstream reaches (long life span, large body, late sexual maturity) increased with restoration, whereas the opportunistic strategy decreased. 5. Our results suggest that a better understanding of how hydraulics shapes traits in riverine systems is critically needed for assessing the effects of restoration measures impacting flow. In addition, existing trait databases (especially for fish) should be expanded to better reflect the energetic trade-offs that organisms must make in various flow contexts

    Habitat filtering determines spatial variation of macroinvertebrate community traits in northern headwater streams

    Get PDF
    Although our knowledge of the spatial distribution of stream organisms has been increasing rapidly in the last decades, there is still little consensus about trait-based variability of macroinvertebrate communities within and between catchments in near-pristine systems. Our aim was to examine the taxonomic and trait based stability vs. variability of stream macroinvertebrates in three high-latitude catchments in Finland. The collected taxa were assigned to unique trait combinations (UTCs) using biological traits. We found that only a single or a highly limited number of taxa formed a single UTC, suggesting a low degree of redundancy. Our analyses revealed significant differences in the environmental conditions of the streams among the three catchments. Linear models, rarefaction curves and beta-diversity measures showed that the catchments differed in both alpha and beta diversity. Taxon- and trait-based multivariate analyses also indicated that the three catchments were significantly different in terms of macroinvertebrate communities. All these findings suggest that habitat filtering, i.e., environmental differences among catchments, determines the variability of macroinvertebrate communities, thereby contributing to the significant biological differences among the catchments. The main implications of our study is that the sensitivity of trait-based analyses to natural environmental variation should be carefully incorporated in the assessment of environmental degradation, and that further studies are needed for a deeper understanding of trait-based community patterns across near-pristine streams

    DISPERSE, a trait database to assess the dispersal potential of European aquatic macroinvertebrates

    Get PDF
    Dispersal is an essential process in population and community dynamics, but is difficult to measure in the field. In freshwater ecosystems, information on biological traits related to organisms’ morphology, life history and behaviour provides useful dispersal proxies, but information remains scattered or unpublished for many taxa. We compiled information on multiple dispersal-related biological traits of European aquatic macroinvertebrates in a unique resource, the DISPERSE database. DISPERSE includes nine dispersal-related traits subdivided into 39 trait categories for 480 taxa, including Annelida, Mollusca, Platyhelminthes, and Arthropoda such as Crustacea and Insecta, generally at the genus level. Information within DISPERSE can be used to address fundamental research questions in metapopulation ecology, metacommunity ecology, macroecology and evolutionary ecology. Information on dispersal proxies can be applied to improve predictions of ecological responses to global change, and to inform improvements to biomonitoring, conservation and management strategies. The diverse sources used in DISPERSE complement existing trait databases by providing new information on dispersal traits, most of which would not otherwise be accessible to the scientific community. Measurement(s): dispersal • movement quality • morphological feature • behavioral quality Technology Type(s): digital curation Factor Type(s): taxon Sample Characteristic - Organism: Arthropoda • Mollusca • Annelida Sample Characteristic - Environment: aquatic biome • freshwater biome Sample Characteristic - Location: Europe Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.1314833

    Toward refined environmental scenarios for ecological risk assessment of down-the-drain chemicals in freshwater environments

    Get PDF
    Current regulatory practice for chemical risk assessment suffers from the lack of realism in conventional frameworks. Despite significant advances in exposure and ecological effect modeling, the implementation of novel approaches as high-tier options for prospective regulatory risk assessment remains limited, particularly among general chemicals such as down-the-drain ingredients. While reviewing the current state of the art in environmental exposure and ecological effect modeling, we propose a scenario-based framework that enables a better integration of exposure and effect assessments in a tiered approach. Global- to catchment-scale spatially explicit exposure models can be used to identify areas of higher exposure and to generate ecologically relevant exposure information for input into effect models. Numerous examples of mechanistic ecological effect models demonstrate that it is technically feasible to extrapolate from individual-level effects to effects at higher levels of biological organization and from laboratory to environmental conditions. However, the data required to parameterize effect models that can embrace the complexity of ecosystems are large and require a targeted approach. Experimental efforts should, therefore, focus on vulnerable species and/or traits and ecological conditions of relevance. We outline key research needs to address the challenges that currently hinder the practical application of advanced model-based approaches to risk assessment of down-the-drain chemicals

    Traits and stress: keys to identify community effects of low levels of toxicants in test systems

    Get PDF
    Community effects of low toxicant concentrations are obscured by a multitude of confounding factors. To resolve this issue for community test systems, we propose a trait-based approach to detect toxic effects. An experiment with outdoor stream mesocosms was established 2-years before contamination to allow the development of biotic interactions within the community. Following pulse contamination with the insecticide thiacloprid, communities were monitored for additional 2 years to observe long-term effects. Applying a priori ecotoxicological knowledge species were aggregated into trait-based groups that reflected stressor-specific vulnerability of populations to toxicant exposure. This reduces inter-replicate variation that is not related to toxicant effects and enables to better link exposure and effect. Species with low intrinsic sensitivity showed only transient effects at the highest thiacloprid concentration of 100 μg/l. Sensitive multivoltine species showed transient effects at 3.3 μg/l. Sensitive univoltine species were affected at 0.1 μg/l and did not recover during the year after contamination. Based on these results the new indicator SPEARmesocosm was calculated as the relative abundance of sensitive univoltine taxa. Long-term community effects of thiacloprid were detected at concentrations 1,000 times below those detected by the PRC (Principal Response Curve) approach. We also found that those species, characterised by the most vulnerable trait combination, that were stressed were affected more strongly by thiacloprid than non-stressed species. We conclude that the grouping of species according to toxicant-related traits enables identification and prediction of community response to low levels of toxicants and that additionally the environmental context determines species sensitivity to toxicants
    corecore