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Abstract

Large wood is a key component of river channels that affects numerous hydrological, physical and geomorphological pro-

cesses. It promotes a diversity of benthic habitats in-channel and has shown to support more abundant and diverse benthic 

macroinvertebrate assemblages in previous ecological studies. However, the effects of large wood on the structural and 

functional diversities of hyporheic invertebrates are less well studied, and simultaneous examination of these diversity 

metrics on hyporheic and benthic compartments of the stream bed has not been conducted previously. Therefore, this study 

investigates the taxonomic and functional diversities of hyporheic and benthic invertebrate assemblages around natural accu-

mulations of large wood in a British lowland river. Taxonomic and functional diversities were partitioned (into alpha, beta, 

and gamma diversities) and examined in reaches with and without large wood (control). We found that functional diversity 

is often decoupled from taxonomic diversity, demonstrating a functional redundancy of the macroinvertebrate assemblage 

for both hyporheic and benthic zones. Moreover, the highest functional variability at alpha-scale was observed in large wood 

habitats, which suggests that taxonomic diversity is enhanced by the small-scale environmental heterogeneity around large 

wood. To this end, this study contributes empirical evidence of functional and structural responses of invertebrates to large 

wood accumulation. Such information could be used to better understand the ecological implications of restoration works 

in lowland rivers and guide more effective management strategies.
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Introduction

Large wood (LW) has a profound impact on fluvial processes 

and ecosystems (Grabowski et al. 2019). LW drives river 

hydrological, physical and ecological processes, as a result 

of its interactions with water, sediment and biological com-

munities (Wohl 2013). Previous ecological studies of benthic 

macroinvertebrate assemblages have focused on taxonomic 

diversity (TD) and found that LW promotes alpha and beta 

diversities through its effects on habitat complexity (Thomp-

son et al. 2018), but evidence of the ecological effects of LW 

on the hyporheic zone (HZ) and on functional diversity (FD) 

have received less attention (Magliozzi et al. 2019).

Large wood is delivered naturally to rivers by upland and 

riparian forests, through landslides and successional or dis-

turbance pulse processes (i.e. floods, fires, windfall, erosion) 

from adjacent hillslopes (Boyer et al. 2003). It is defined 

as living or dead wood in simple or complex structures, 

in which individual pieces are > 1 m length and > 10 cm 

diameter (Thevenet et al. 1998; Wohl et al. 2010). In the 
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channel, LW interacts with river flows and sediment trans-

port to influence sediment sorting and deposition (Gurnell 

et al. 2005). It generates a mosaic of benthic habitat patches, 

where spatially-varying flow, physicochemical conditions 

(nutrient, organic matter) and sediment grain size create the 

conditions for invertebrate colonization at different stages of 

their life cycle, e.g. for reproduction (oviposition site) and 

refugia from high flows and predators (Hoffmann and Hering 

2000; Robertson 2000). Moreover, LW itself is a direct food 

source for xylophagous species, a firm substrate for biofilms 

and the organisms that feed upon them (i.e. scrapers), and is 

associated with the accumulation of organic material (Flo-

res et al. 2011, 2013; Osei et al. 2015; Suftin et al. 2016), 

which provides food resources to shredders, gatherers, and 

filter feeders (Díez et al. 2000; De Castro-Català et al. 2015). 

Several studies have suggested that assemblage composition 

differs significantly between sites with and without wood, 

with higher benthic macroinvertebrate diversity observed 

around wood because of the increased habitat heterogeneity 

at these sites (Pilotto et al. 2014). In addition to the effects 

on taxonomic structure, LW-induced hydro-geomorpholog-

ical processes act as selective forces on functional traits of 

invertebrates (i.e. habitat filtering; Diaz et al. 1998). Recent 

research has demonstrated that LW-processes favour the 

occurrence of specific behavioural, biological, and physi-

ological traits within species assemblages that are dissimilar 

to assemblages living in sites without wood (Magliozzi et al. 

2019). To this end, invertebrate assemblages that co-exist in 

LW might be more taxonomically and functionally diverse 

than assemblages in places where in-channel LW is absent. 

Despite extensive research on benthic macroinvertebrates, 

few studies have considered the impacts of LW on hypor-

heic assemblages (Smock et al. 1992; Wagenhoff and Olsen 

2014; Magliozzi et al. 2019) or simultaneously looked at 

taxonomic and functional diversities of invertebrates in the 

benthic and hyporheic zones in relation to LW.

The hyporheic zone (HZ, Orghidan 1959) is an area of 

interactions between surface and ground waters in riverbeds, 

which is characterized by a diverse fauna (hyporheos) and 

a bidirectional flow of water, i.e. hyporheic exchange flow 

(HEF). Field and experimental studies have demonstrated the 

importance of wood-driven HEF in structuring the physical 

and the ecological compartments of river systems (Mutz and 

Rohde 2003; Lautz et al. 2006; Mutz et al. 2007; Fanelli and 

Lautz 2008). LW affects nutrient retention (Bernot and Dodds 

2005), sediment hydraulic conductivity (Hess et al. 1992), 

oxygen concentration (Naegeli and Uehlinger 1997; Kaller 

and Kelso 2007) and water temperature (Sawyer et al. 2012). 

However, substantial gaps remain in our understanding and 

ability to quantify the relationship among multiple compo-

nents of biodiversity for benthic and hyporheic assemblages 

around LW. As the HZ plays a key role in the life cycle of 

many benthic invertebrates (Marmonier et al. 1993; Robertson 

and Wood 2010; Durkota et al. 2019), a better understanding 

of the role of LW on the taxonomic and functional structure of 

the hyporheos is necessary to identify the processes controlling 

the functioning of the HZ.

Combining taxonomic and functional diversities approaches 

could deepen our understanding of biodiversity responses of 

invertebrate assemblages at LW sites. Functional diversity is 

a component of community biodiversity that represents the 

diversity of functional traits in a community (Mason and de 

Bello 2013), which has been used to infer processes govern-

ing community assembly (Mouchet et al. 2010). Coupled with 

taxonomic diversity, functional diversity provides informa-

tion on the functional redundancy within a community (de 

Bello et al. 2007, 2009), that is when different species have 

similar functional traits. This is an important insight into the 

potential effects of natural and anthropogenic disturbance on 

the stability of the invertebrate assemblages (Gallardo et al. 

2011). An increase in taxonomic diversity does not necessar-

ily correspond to an increase in functional diversity (Petchey 

et al. 2007). It is currently unknown if changes in taxonomic 

diversity are reflected by changes in functional diversity within 

(alpha) and among (beta) invertebrate communities around 

LW. Results of recent research have suggested that functional 

diversity is greater in LW than no-LW sites, as hydro-geomor-

phological factors at LW can modulate the taxonomic-func-

tional diversity relationship by selecting for divergent types of 

traits (Magliozzi et al. 2019).

Therefore, this study investigated taxonomic and functional 

diversities of benthic and hyporheic invertebrates at LW and 

control (no LW) habitats. In particular, we partitioned the 

diversity of the study system (gamma) into its alpha (within 

habitats) and beta (between habitats) components to investi-

gate if LW affects the spatial partitioning of TD and FD of 

hyporheic and benthic assemblages. We hypothesized that: (i) 

taxonomic and functional diversities would be lower in con-

trol than LW habitats because LW creates a diverse mosaic 

of microhabitats that enhances the diversity of available eco-

logical niches; (ii) for both taxonomic and functional metrics, 

between habitats differences would be higher in LW than con-

trol habitats because LW selects for divergent types of traits 

and highly diverse assemblages; and (iii) gamma diversity, 

and the proportion of diversity explained by the variability 

between habitats, would be higher in LW than in control 

habitats because LW provides more diverse and temporally 

variable resources (e.g. trapped organic matter, epixylon) than 

control habitats.



Investigating invertebrate biodiversity around large wood: taxonomic vs functional metrics  

1 3

Page 3 of 13    69 

Material and methods

Survey design

The study was conducted in the woodland Hammer stream, 

a major tributary of the River Rother (West Sussex, UK). 

The site has been used in earlier studies to investigate how 

river processes are affected by LW, because LW occurs 

naturally in the channel, and drives local HEF (Shelley 

et al. 2017; Magliozzi et al. 2019). Under baseflow con-

ditions, the Hammer stream has generally slow surface 

water velocities, little variability in height and slope of 

stream water surface, average wetted width of ca. 4.5 m, 

and increased fining of the riverbed. HEF is primarily 

hydrostatically-driven, shorter in length and with a shorter 

residence time than upland systems (Krause et al. 2014; 

Shelley et al. 2017). The shorter the residence time, the 

smaller the impact of LW on nutrient attenuation (i.e. 

nitrate; Shelley et al. 2017) and oxygen availability into 

the streambed. Still, LW in lowland streams significantly 

influences total residence time by creating low velocity 

zones within the channel and allowing biogeochemical 

transformation to occur (Stofleth et al. 2008; Shelley et al. 

2017; Blaen et al. 2018), and by increasing the channel 

blockage ratio, Froude number and sediment permeability 

(Mutz 2000). Therefore, geomorphological surveys were 

carried out to assess (i) the extent of the impounding effect 

of LW, (ii) the stability of the LW over time, and (iii) flow 

velocities upstream and downstream of LWs to calculate 

the distance at which the effect of LW was still significant 

(Table 1). The study area was separated into two sections 

based on substrate type: a river section upstream of an 

in-line static water body (Hammer Pond) with a predomi-

nantly sandy substrate, and a section downstream with pre-

dominantly gravel substrate. Four reaches were studied 

section, each reach containing one in-channel LW habitat 

and a control habitat without wood (Fig. 1). Therefore, a 

total of 16 habitats, eight in-channel LW and eight control 

habitats were sampled (Fig. 1). LW were stable during 

the study period and were located in reaches more than 

150 m apart (i.e. > 20 times the channel width) to avoid 

Table 1  Description of sampled 

LW: length, diameter, blockage 

ratio (B), bankfull width and 

wetted width

The blockage ratio was estimated as the partial cross-sectional area occupied by each piece of LW and 

computed as B = L d/A, where A is the cross-sectional area, d is the diameter of the LW piece, and L is the 

projected length of the LW against the flow (Gippel et al. 1996)

# refers to the LW in Fig. 1

Section SAND Section GRAVEL

LW #1 LW #2 LW #3 LW #4 LW #5 LW #6 LW #7 LW #8

Bankfull Width (m) 4.00 3.00 5.60 6.00 5.10 8.60 9.00 6.00

Wetted Width (m) 3.50 2.20 3.40 5.90 5.00 5.00 5.60 4.70

Length (m) 3.50 2.00 5.50 5.50 4.50 5.00 8.00 4.00

Diameter (m) 0.15 0.30 0.30 0.60 0.25 0.50 1.00 1.00

Blockage Ratio 0.94 0.90 0.24 0.73 0.75 0.92 0.60 0.80
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Fig. 1  Study area. Invertebrate samples were collected at LW (LW1-

8) and control habitats (stars symbol) in sand (upstream Hammer 

pond) and gravel (downstream Hammer pond) substrates. Three rep-

licates were taken in control and around LW habitats (b) using col-

onization pots and a Surber net. Upper section of insert b sampling 

design around the wood (W) and control (c) and the colonization pot 

equipped with wood stakes (*) and minipiezometer (**). (b1) Pot is 

positioned into the river bed. (b2) Pot is extracted. Illustration modi-

fied from Magliozzi et al. (2019)
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spatial dependencies. Control habitats were selected for 

each reach upstream of LW (distance of ca 10 times the 

channel width) in an area of the riverbed without woody 

material (bare or without accumulated woody fragments). 

These habitats were unaffected by LW-induced hydro-

logical and geomorphological processes as confirmed by 

cross-sections, total station, and velocity measurements. 

Also, this distance is sufficiently long for studies on meso-

habitat scale variations in benthic (or hyporheic) inverte-

brates (Beisel et al. 1998, 2000).

Invertebrate sampling and functional traits

Hyporheic and benthic invertebrates were sampled three 

times over 2016–2017 (October–November, March–April, 

July–August) using colonization pots and a Surber sampler 

(0.05  m2, mesh size = 500 µm), respectively. Three replicates 

were taken at each habitat (LW and control), for each sam-

pling campaign and sampling method (3 replicates x 16 hab-

itats x 3 sampling campaigns x 2 sampling methods = 288 

samples, in total). At LW, invertebrates were sampled 

upstream, downstream and lateral to the structure (Fig. 1). 

Hyporheic samples were collected using colonization pots 

(Fig. 1b; 15 cm high, 8 cm diam., mesh size 1  cm2), follow-

ing a procedure described in Crossman et al. (2013). Holes 

were excavated by shovel to ca. 25 cm deep, and coloniza-

tion pots were packed with sediment in stratigraphic order 

and left in-situ for 6 weeks (Coleman and Hynes 1970). Each 

colonization pot was equipped with a tarpaulin bag with 

reinforced top and cable which was pulled up around the 

pot at the time of collection to minimize water loss during 

its extraction. After 6 weeks, hyporheic and benthic samples 

were collected on the same day. Immediately after collec-

tion, the samples were preserved in 90% ethanol. Samples 

were returned to the laboratory, where they were rinsed and 

filtered through a set of sieves. For the colonization pot sam-

ples, a 500 µm sieve was used to retain larger individuals, 

herein considered the hyporheic macrofauna. The rest of the 

sample was filtered through a 45 µm sieve and the retained 

invertebrates constituted the hyporheic meiofauna (Fenchel 

1978). Meiofaunal samples were preserved in 100% ethanol, 

stained with Rose Bengal, and sorted within a few days of 

collection. Surber samples were collected after the coloniza-

tion samples, sieved with a 500 µm sieve and the retained 

individuals formed the benthic macrofauna. After sorting, 

macrofaunal samples were preserved in 80% ethanol.

The trait dataset used in this study is based on Magliozzi 

et al. (2019) and consists of behavioural, biological, mor-

phological and physiological features reflecting organismal 

performance and adaptations to environmental pressures. 

At genus or family level, the macrofauna and meiofauna 

functional traits were fuzzy-coded using the trait informa-

tion from Tachet et al. (2010). Taxon affinities for the trait 

modalities were expressed as relative abundance distribu-

tions so that the sum of trait modality scores for an indi-

vidual trait and taxon equals one. Some taxa were described 

as mean trait profiles of their potential families in the cor-

responding biogeographic area (i.e. Nematoda, Oligochaeta, 

Cyclopoida, Acari, Anomopoda, Copepoda, Ctenopoda and 

Ostracoda—Descloux et al. 2014).

Calculation of taxonomic and functional diversities

In this study, taxonomic and functional diversities were cal-

culated for both benthic and hyporheic invertebrates at three 

spatial scales: α- (within habitats), β- (between habitats) and 

γ-diversity (within reaches and river sections). We computed 

taxonomic and functional diversities across spatial scales by 

using Rao’s quadratic entropy index (1982), calculated with 

the R function “Rao” by de Bello et al. (2010) that expresses 

taxonomic and functional diversities in a comparable format. 

The Rao index provides the most standard approach to esti-

mate and compare measures of species dissimilarity (e.g. α, 

β and γ) and facets of diversity (e.g. taxonomic, phylogenetic 

and functional), while accounting for species relative abun-

dances (de Bello et al. 2010; Botta-Dukat 2018). Moreover, 

this index provides a measure of species redundancy within 

and among ecological communities (de Bello et al. 2007, 

2009). For calculations of the different diversity indices, the 

taxon abundances of the three replicates were accordingly 

summed per habitat, reach, campaign and/or section. The 

abundance data were log-transformed (x + 1) to improve data 

homoscedasticity.

α-diversity

α-diversity expresses the dissimilarity between two ran-

domly chosen individuals from a sampled community. α-TD 

and α-FD were calculated for both benthic and hyporheic 

invertebrates using Rao’s index (1982) (Eq. 1):

where  dij is the dissimilarity in either presence/absence or 

trait values, respectively for taxonomic diversity and func-

tional diversity, between each pair of species i and j,  pic and 

 pjc are respectively the proportions of species i and species 

j in community c (e.g. in a given sampling unit or habitat), 

and s is the number of species in the community (Lepš et al. 

2006; Pavoine et al. 2005). The Rao index equals the Simp-

son index of diversity when all the dissimilarities between 

species/taxa are equal to 1 (Leps et al. 2006).

For functional diversity, trait data of both benthic and 

hyporheic invertebrates were used to calculate a matrix of 

pairwise functional dissimilarities  (dij) between taxa using 

(1)� = Rao�s index =

s
∑

i=1

s
∑

j=1

dijpicpjc
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Gower distance (Gower 1971). For this calculation, the R 

function “trova” was first used to account for multiple fuzzy-

coded traits (de Bello et al. 2013). The function accounts for 

intraspecific variability in trait values by estimating the pro-

portion of the individuals of each species that belong to each 

of the categories in that trait. It allows the computation of 

pairwise functional distances between taxa of a given assem-

blage from a matrix or data frame, in which taxa (“objects” 

in rows) are described by their affinities for a series of trait 

categories (“descriptors” in columns) (de Bello et al. 2013). 

The functional dissimilarity between any two taxa varies 

between 0 (trait profiles of the two taxa are identical) and 

1 (two taxa are completely dissimilar; i.e. used no common 

trait categories).

β‑diversity

β-diversity represents the diversity that is found due to dif-

ferences between communities in a given region. β-TD and 

β-FD were calculated as multivariate dispersions (Ander-

son et al. 2006). The calculated Rao matrices of TD- and 

FD-dissimilarities between each pair of samples at habitat 

scale (LW and control samples aggregated by substrate type 

and sampling campaign) (Eq. 1) were used to compute the 

distance of each sample to the centre of its group centroid 

(i.e. habitats) and to calculate the homogeneity of samples 

within LW and controls (betadisper function in “vegan” R 

package; Oksanen et al. 2018). We expect that the higher 

the dispersion among samples in each reach, the higher beta 

diversity will be in that group.

γ‑diversity and diversity partitioning

γ-diversity indicates the diversity of a pooled set of samples, 

and it was obtained by pooling habitat samples of all reaches 

and river sections (Eq. 2; de Bello et al. 2010):

where S is the total number of species in the region and  Pi 

the regional species relative abundance for species i.  Pi is 

calculated as the average of  pic (Eq. 1).

For diversity partitioning, β-diversity was calculated as 

the difference between γ-diversity and mean α (Eq. 3), and 

expressed as a percentage of the diversity of the whole study 

region (Eq. 4) (de Bello et al. 2010):

(2)� = Rao�s index =

S
∑

i=1

S
∑

j=1

dijPiPj

(3)� = (� − mean �)

(4)� (%) = (� − mean �) ∗ 100∕ �

where, γ expresses the number of equivalent species at the 

regional scale, and mean α the average number of equivalent 

species at the sample scale (de Bello et al. 2010).

The Jost (2007) correction was applied to compute the 

Rao indices at α- and β-scales (de Bello et al. 2010).

Statistical analyses

The potential effects of habitat (LW vs. control samples 

merged across reaches and sampling campaigns), river sub-

strates (gravel and sand sections), and their interaction, on 

α-TD and α-FD were investigated by two-way ANOVA (aov 

function from the “stats” R- package (R Core Team 2013)). 

The dispersion within habitat and river substrates on β-TD 

and β-FD was tested by two-way ANOVA (aov function 

from the “stats” R- package (R Core Team 2013)), using the 

multivariate distance to the centroid as the response variable.

Results

Habitat (LW and control) and river substrates (gravel and 

sand sections) had different effects on α-TD and α-FD across 

invertebrate assemblages (Table 2). Taxonomic diversity 

showed significant differences between habitats for hypor-

heic meiofauna (Table 2), with greater α-TD in LW than 

in control habitat, and in the gravel than in the sand river 

substrate (Fig. 3a). Taxonomic diversity of the macrofauna 

assemblages exhibited significant differences between river 

substrates (Table 2), with α-TD being greater in gravel for 

both benthic and hyporheic assemblages (Fig. 3b, c). α-FD 

had a similar response to α-TD for the hyporheic meiofauna 

by habitats and river substrates (Table 2, Fig. 3a). Hypor-

heic assemblages (macrofauna and meiofauna) showed dif-

ferent functional diversity between gravel and sandy river 

substrates, but only the functional diversity of the hypor-

heic meiofauna was significantly different between LW 

and control habitats (Fig. 3a, Table 2). In contrast, benthic 

macroinvertebrates were functionally similar between river 

substrates and habitats (Table 2). The interaction “habitat x 

river substrates” at α scale was not significant for any of the 

biodiversity metrics (Table 2).

For β-diversity, the effect of habitats and river substrates 

on taxonomic and functional dissimilarities of hyporheic 

meiofauna showed similar patterns to α- diversity (Table 2, 

Fig. 4a). β-TD and β-FD differed significantly by habitats 

and river substrates (Table 2), with greater β-TD and lower 

β-FD in LW than control, in both river substrates (Fig. 4a). 

Benthic macrofauna was characterized by significantly dif-

ferent β-TD in LW habitat, especially on sand river sub-

strates (Table 2; Fig. 4c). Habitat types did not affect β-TD of 

hyporheic macrofauna (Table 2). β-FD was not significantly 
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different between LW and control habitats for either benthic 

or hyporheic macrofaunal assemblages (Table 2).

γ-diversity showed large variation in taxonomic diver-

sity across habitats and river substrates, while it was rela-

tively constant for functional diversity (Fig. 5). γ-diversity 

for taxonomic diversity was generally lower in the sandy 

substrates; controls had lower diversity for hyporheic mei-

ofauna and benthic macrofauna, but LW had lower diversity 

for hyporheic macrofauna (Fig. 5, 6). Interestingly, the rela-

tive contribution of α- and β-diversity to γ-diversity differed 

substantially between taxonomic and functional diversities 

(Fig. 5, 6). Most of the γ-diversity in TD was represented by 

β-diversity but it was α-diversity for FD (Fig. 6).

Discussion

This study assessed the effect of LW on taxonomic and func-

tional diversities of invertebrate assemblages in a lowland 

river. It provides new empirical evidence on the structural or 

functional diversity of hyporheic and benthic assemblages 

at LW and across spatial scales.

At within-habitat scale (α-diversity), hyporheic mei-

ofauna had significantly higher α-TD and α-FD in LW than 

in control habitat and was higher in gravel than in sand 

substrates. To our knowledge, only one other study has 

investigated hyporheic richness around LW (Wagenhoff 

and Olsen 2014). They observed higher density and lower 

diversity of hyporheic invertebrates in streams with LW and 

detected species-level preferences for wood. In our study, 

the meiofaunal assemblage in LW habitat was character-

ized by detritivores (Tanytarsini, Diamesinae), suggesting 

an increase of fine particulate food supplies and slow flow 

velocities around LW (Munn and Brusven 1991; Collier 

1993) (Fig. 2a). This assemblage was also characterized 

by microcrustacean Cyclopoida that inhabit hard substrata 

covered by a thin layer of mud and detritus in slow flow-

ing waters (Robertson et al. 1995; Dole-Olivier et al. 2000; 

Robertson 2000) (Fig. 2a). In support of our first hypothesis, 

i.e. taxonomic and functional diversities would be lower in 

control than LW habitat, α-FD and α-TD showed similar 

patterns indicating divergence in trait values within hypor-

heic meiofaunal assemblages, and suggesting greater within-

sample variations in LW due to higher spatial heterogeneity 

(Vellend 2001). At within-habitat scale, LW may act as a 

filter for hyporheic trait values by increasing functional strat-

egies of invertebrate assemblages (Magliozzi et al. 2019). 

Sand substrates supported lower α-diversity than gravel at 

both LW and control habitats (Fig. 3a). This result has been 

previously observed in other studies (Larsen and Ormerod 

2010; Demars et al. 2012; White et al. 2017).

For macrofaunal assemblages, α-TD and α-FD did not 

show significant differences between LW and control habi-

tats for either hyporheic or benthic zones. This result con-

trasts with previous studies on benthic macroinvertebrates 

in lowland rivers that found a greater diversity in wood 

reaches (Smock et al. 1989; Benke and Wallace 2003; 

Pilotto et al. 2016). Higher α-TD in LW than in mineral 

habitats (i.e. bare gravel substrate) has been explained by 

the fact that organic biotopes like LW provide refuge from 

Table 2  Results of the two-way 

ANOVAs for the invertebrate 

communities

α, β-taxonomical and α, β-functional diversities were the response variables. Significant results (P < 0.05) 

are in bold. “habitats” refers to LW vs. control samples merged across reaches and sampling campaigns, 

“river substrates” indicates gravel and sand substrates

α-TD α-FD β-TD β-FD

df F Pr(> F) F Pr(> F) F Pr(> F F Pr(> F)

Hyporheic meiofauna

 River substrates 1 16.65  < 0.001 5.11 0.029 6.01 0.029 6.95 0.011

 Habitats 1 15.01  < 0.001 7.02 0.011 6.36 0.011 8.67 0.005

 River substrates X habitats 1 0.17 0.682 0.40 0.533 0.13 0.533 0.21 0.645

 Residuals 44

Hyporheic macrofauna

 River substrates 1 15.87  < 0.001 6.20 0.017 11.88 0.001 2.23 0.143

 Habitats 1 0.09 0. 762 0.14 0.708 1.30 0.260 0.45 0.506

 River substrates X habitats 1 2.20 0.145 2.07 0.156 0.32 0.573 0.07 0.786

 Residuals 44

Benthic macrofauna

 River substrates 1 5.75 0.021 3.83 0.057 6.79 0.012 5.91 0.019

 Habitats 1 2.89 0.096 0.65 0.425 5.63 0.022 0.75 0.390

 River substrates X habitats 1 2.86 0.098 0.70 0.408 6.20 0.017 1.72 0.196

 Residuals 44
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rofauna in the Hammer stream on sampling occasions from Octo-
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Fig. 3  Mean alpha diversity, represented as taxonomic (α-TD) and 
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LW) and river substrates (gravel and sand) for a hyporheic mei-

ofauna, b hyporheic macrofauna, and c benthic macrofauna. Error 

bars are standard errors. Significant codes: ‘***’ ≤ 0.001, ‘**’ ≤ 0.01, 

‘*’ ≤ 0.05, ‘ns’ > 0.05. Statistical significance between levels of river 

substrates and habitats is reported as ‘significance code river sub-

strates/significance code habitat’. Note that y-axes differ between pan-
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predators and a platform from which macroinvertebrates 

can consume detritus (Wharton et al. 2006). However, 

those previous studies used different analyses from ours 

to calculate α-TD. In our study, both hyporheic and benthic 

macrofaunal assemblages in LW habitat were character-

ized by taxa such as Gammarus pulex, Ephemera danica, 

Diamesinae, Tanytarsini and Oligochaeta, which are typi-

cal of habitats with high detritus content, and which likely 

feed on settled seston in low flow areas around LW (Collier 

1993; Spänhoff and Meyer 2004; Pilotto et al. 2014; Cash-

man et al. 2016) (Table S1 in Online Resource 1, Fig. 2b, 

c). In the benthic zone, control habitat were also character-

ized by high abundances of Hydropsyche spp. and Limnius 

spp.. Some species of the Hydropsychidae (Trichoptera) 

are known to require stable substrates for attaching nets 

and maximizing food capture (Schröder et al. 2013; Pilotto 

et al. 2014). Regardless of river substrates, we observed 

similarity in functional traits of macroinvertebrate taxa 

between habitats (Fig. 3b, c), suggesting that LW supports 

taxa capable of performing similar functions (Larsen and 

Ormerod 2010). Such patterns may indicate that LW does 

not represent a limiting factor promoting trait divergence 

of macroinvertebrate assemblages in the Hammer Stream 

(Poff 1997).

At between-habitat scale (β-diversity), hyporheic mei-

ofauna and benthic macrofauna assemblages showed sig-

nificant functional and taxonomic dissimilarities between 

habitats (Table 2). Contrary to our second hypothesis, i.e. 

β-TD and β-FD differences would be higher at LW than 

control habitat, LW habitat showed greater taxonomic than 

functional dissimilarity (Fig. 4). The high dissimilarity in 

β-TD at LW may suggest that the presence of LW increases 

the heterogeneity of meiofaunal and benthic macrofaunal 

assemblages. In both gravel and sand, β-FD is far lower in 

LW than in control habitat, for the hyporheic meiofauna and 

macrofauna, and for the benthic macrofauna in the sandy 

substrate. A reduction in functional diversity can be linked 

to a reduction of specialist taxa exhibiting specialization for 

different trait categories, and to an increase in generalist taxa 

exhibiting affinity for various categories within traits. At 

this scale, the increased functional dissimilarity in control 

habitat indicates that LW might not behave as a driver of 

disturbance (Magliozzi et al. 2019), supporting divergence 

in trait values (Grime 2006), but as a filter causing trait 

control LW

TD FD
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Fig. 4  Results of betadisper function (“vegan” R package; Oksanen 

et  al. 2018). Y axis reports the distance of each habitat to the cen-

tre of its group centroid (combination of LW and control, and gravel 

and sand) for a hyporheic meiofauna, b hyporheic macrofauna, and c 

benthic macrofauna. Error bars are standard error. Significant codes: 

‘***’ ≤ 0.001, ‘**’ ≤ 0.01, ‘*’ ≤ 0.05, ‘ns’ > 0.05. Statistical signifi-

cance between levels of river substrates and habitats is reported as 

‘significance code river substrates/significance code habitat’. Note 

that y-axes differ between panels



Investigating invertebrate biodiversity around large wood: taxonomic vs functional metrics  

1 3

Page 9 of 13    69 

Fig. 5  Gamma diversity, as rep-

resented as taxonomic (TD) and 

functional (FD) diversity, with 

partitioning into alpha (α) and 

beta (β) diversity, by habitats 

and river substrates (gravel and 

sand) for a hyporheic meio-

fauna, b hyporheic macrofauna, 

and c benthic macrofauna
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convergence within invertebrate assemblages (Fig. 4a, c). 

This result broadly concurs with the fact that LW is not the 

only in-channel structure driving hyporheic exchange (e.g. 

in-channel vegetation, in-channel bedforms, riparian vegeta-

tion—Sawyer et al. 2012; Magliozzi et al. 2018). Therefore, 

in this study, the increase of β-TD at LW compartment (e.g. 

hyporheic and benthic) may be due to differences in small-

scale environmental heterogeneity that provided local habitat 

benefits (Heino et al. 2012).

γ-diversity revealed important differences between TD 

and FD (Fig. 5, 6). The proportion of γ-TD diversity was 

higher in LW than control habitat for meiofaunal and mac-

rofaunal assemblages of the hyporheic and benthic zones 

(in the sand substrate). Therefore, our third hypothesis, 

i.e. the proportion of diversity explained by the variabil-

ity between habitats would be higher in LW, was not sup-

ported for hyporheic macroinvertebrates. γ-FD and its spatial 

partitioning varied marginally between LW and control habi-

tat suggesting high functional redundancy and independence 

from taxonomic diversity. Most of the functional variability 

was found to be at the within-habitat level, higher in LW 

than in control habitat, especially for hyporheic meiofauna, 

but this difference was very small for taxonomic diversity. 

This result is consistent with previous studies (White et al. 

2017), and with the hypothesis that LW, acting as distur-

bance, is a strong driver of trait differentiation and spe-

cies co-existence at the local habitat scale (MacArthur and 

Levins 1967; Grime 2006). In contrast to the diversifying 

effects of local LW disturbances, the taxonomic and func-

tional diversities of invertebrates appear to be less variable 

on the gravel and sand dominant substrates. The convergence 

of traits may reflect the lowland environment of the Ham-

mer Stream. The stream, as for many low-energy rivers, has 

limited geomorphic diversity, which might provide limited 

Fig.6  Proportion of alpha and beta diversities (in equivalent numbers) for TD and FD, across LW and control habitats, gravel and sandy river 

substrates and different invertebrate communities: a hyporheic meiofauna, b hyporheic macrofauna, c benthic macrofauna
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opportunities for the recruitment, establishment, growth and/

or reproduction of a variety of species.

In conclusion, our study on a UK lowland river has shown 

that LW increases taxonomic and functional diversity mainly 

at the within-habitat scale and more widely for meiofauna. 

These results indicate a functional diversity that is decoupled 

from species diversity, showing a functional redundancy of 

macroinvertebrate assemblages in the Hammer Stream. The 

study also shows a functional variability at LW habitats, 

suggesting that species diversity is due to a great variability 

in environmental conditions proximal to LW. The conse-

quences of trait diversification, as a result of LW distur-

bance, extend beyond minor adaptive shifts of phenological 

and behavioural traits linked with the capacity to exploit 

productive habitats (Magliozzi et al. 2019). Future research 

should move forward with improving the understanding of 

hydro-geomorphological impacts of LW on invertebrate 

assemblages, considering inter and intra annual variation of 

hyporheic and benthic invertebrates at wood sites.
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