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Abstract

The growing use of functional traits in ecological research has brought new insights

into biodiversity responses to global environmental change. However, further progress depends on 

overcoming three major challenges involving (1) statistical correlations between traits, (2) 

phylogenetic constraints on the combination of traits possessed by any single species, and (3) 

spatial effects on trait structure and trait-environment relationships. Here, we introduce a new 

framework for quantifying trait correlations, phylogenetic constraints and spatial variability at 

large scales by combining openly available species’ trait, occurrence and phylogenetic data with 

gridded, high-resolution environmental layers and computational modelling. Our approach is 

suitable for use among a wide range of taxonomic groups inhabiting terrestrial, marine and 

freshwater habitats. We demonstrate its application using freshwater macroinvertebrate data from 

35 countries in Europe. We identified a subset of available macroinvertebrate traits, corresponding 

to a life history model with axes of resistance, resilience and resource use, as relatively unaffected 

by correlations and phylogenetic constraints. Trait structure responded more consistently to 

environmental variation than taxonomic structure, regardless of location. A reanalysis of existing 

data on macroinvertebrate communities of European alpine streams supported this conclusion, and 

demonstrated that occurrence-based functional diversity indices are highly sensitive to the traits 

included in their calculation. Overall, our findings suggest that the search for quantitative trait-

environment relationships using single traits or simple combinations of multiple traits is unlikely 

to be productive. Instead there is a need to embrace the value of conceptual frameworks linking 

community responses to environmental change via traits which correspond to the axes of life 

history models. Through a novel integration of tools and databases, our flexible framework can 

address this need.

Keywords: Ecological niche modelling; Functional traits; Life history; Macroecology; 

Phylogenetics; Spatial ecology; Trait-based ecology
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Introduction

Trait-based ecology uses the phenotypic characteristics of organisms to study biodiversity 

responses to environmental change. We define ‘functional traits’ as characteristics strictly inherent 

to the organism, requiring no reference to external conditions (Violle et al., 2007), which 

contribute to fitness (Cadotte & Tucker, 2017). Via their expression within species assemblages, 

functional traits indirectly control ecosystem functioning (Moore & Olden, 2017; Wilkes et al., 

2019). Two potential advantages of trait-based ecology over traditional taxonomy-based 

approaches are improved mechanistic understanding of species-environment relationships and 

greater generality of those relationships over large (e.g. continental-global) extents (Verberk, Van 

Noordwijk, & Hildrew, 2013). There is a long history of ecological research on the role of traits in 

predicting shifts in community composition along environmental gradients (Grime, 1977; Poff, 

1997; Southwood, 1977; Townsend & Hildrew, 1994; Winemiller, Fitzgerald, Bower, & Pianka, 

2015). Several initiatives have collated trait information for different groups of organisms, and 

multiple traits are routinely measured on individual organisms or referenced from databases after 

taxonomic identification (BirdLife International, 2019; FishBase Consortium, 2018; Kattge et al., 

2011; Schmidt-Kloiber & Hering, 2015; Vieira et al., 2006).

Applications of trait-based ecology have driven important new insights into biodiversity responses 

to global environmental change (Brown et al., 2018; Díaz et al., 2016; Newbold et al., 2012; 

Stuart-Smith et al., 2013). However, to make further progress there are at least three major 

challenges that need to be overcome when working at the largest scales. These challenges involve 

(1) statistical correlations between traits, (2) phylogenetic constraints on the combination of traits 

possessed by any single species, and (3) spatial effects on trait structure (occurrence probability- 

or abundance- weighted means of traits in a community) and trait-environment relationships 

(statistical links between trait structure and environmental variables).

Statistical correlations and phylogenetic constraints

The vast majority of trait-based studies have searched for single trait-environment relationships, 

with few results supporting a priori predictions (Hamilton et al., 2019; Peres-Neto, Dray, & 

Braak, 2017). There is now ample evidence to suggest that such negative results are due to two 

related issues affecting trait independence. First, statistical correlations between traits (challenge 

1) arise because a combination of traits is more adaptive in a given environment (e.g. A
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multivoltinism and small body size) and, therefore, species possessing one trait are more likely to 

also possess the other (Resh et al., 1988; Usseglio-Polatera, Bournaud, Richoux, & Tachet, 2000). 

Second, trait non-independence arises due to phylogenetic constraints (challenge 2) whereby 

closely related species possess a similar combination of traits because of shared ancestry (de Bello 

et al., 2017; Verberk et al., 2013). Traits do not evolve independently in response to a single 

selection pressure but as specific combinations of traits linked through evolutionary processes 

such as trade-offs (investment in one trait reduces the resources available for another) and spin-

offs (investment in one trait increases fitness advantages conferred by another trait) (Verberk et 

al., 2013). Consequently, a causal mechanism by which a trait appears to influence a species’ 

persistence may be related to another, correlated trait. Spurious causal relationships may seriously 

confound trait-based applications (Moor et al., 2017; Pilière et al., 2016; Poff et al., 2006; Webb, 

Hoeting, Ames, Pyne, & Poff, 2010; Weemstra et al., 2016). This problem of disentangling cause 

and correlation can be circumvented by delineating relatively independent sets of traits that 

respond to key environmental gradients (Verberk et al., 2013). In generalised life history models 

these axes relate to resource availability and resistance and resilience to stress and disturbance 

(Van Looy et al., 2019; Winemiller et al., 2015).

Spatial effects on trait structure and trait-environment relationships

A major purported benefit of using a trait-based approach in large-scale ecology is that it offers 

additional information over taxonomy-based analyses because trait structure is less confounded by 

biogeographical processes limiting species’ distributions (Dolédec, Statzner, & Bournaud, 1999; 

Menezes, Baird, & Soares, 2010). Ideally, trait structure and trait-environment relationships would 

be consistent across whole continents, or even globally, enabling the development of generalised 

predictive frameworks (challenge 3). Implicit in the definition of this ideal scenario is a general 

use of the term ‘spatial’, which includes both the spatialized environment and ‘pure’ spatial effects 

(Clappe, Dray, & Peres-Neto, 2018). Hence, under the current paradigm, if communities are 

represented using traits, responses to a given environmental change would be similar in any 

location, regardless of the spatial structures underlying species’ distributions. 

To take an example from the freshwater realm, previous global (Brown et al., 2018), continental 

(Blanck & Lamouroux, 2006; Statzner, Bis, Dolédec, & Usseglio-Polatera, 2001; Statzner, 

Dolédec, & Hugueny, 2004) and river basin scale (Dolédec et al., 1999; Heino, Schmera, & Erős, A
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2013) meta-analyses have shown that whilst trait-environment relationships are generally 

consistent across those scales, systematic spatial effects on trait structure are often clearly evident. 

For instance, working in alpine streams, Brown et al. (2018) reported a significant contraction of 

functional richness and a shift in trait structure towards taxa with smaller body sizes and shorter 

life cycles, as well as shifts in diets, at higher latitudes. In contrast, Statzner et al. (2001) reported 

low variability in trait structure and trait response to disturbance among a collection of datasets 

from various stream types in Europe. As yet, however, there have been no explicit, spatially 

continuous assessments of the variability of trait structure at continental scales, nor of how this 

spatial variability can confound the results of trait-based studies. Our ability to deliver such a 

comprehensive analysis has traditionally been hampered by a lack of data at the relevant scales.

Integrating open data sources to test assumptions of trait-based ecology

There are now >1 billion species’ occurrence records in the Global Biodiversity Information 

Facility (GBIF), and >1.7 million sequences publicly available in the Barcode of Life Database 

(BOLD). The Open Tree of Life (OTL) now has >2.6 million tips in its synthetic phylogenetic 

tree. High-resolution climate (e.g. WorldClim) and elevation (e.g. SRTM) data are openly 

available and readily integrated into large-scale statistical models (Fick & Hijmans, 2017). This 

creates new opportunities for trait-based research at large scales that have yet to be fully realised 

(Culina, Crowther, Ramakers, Gienapp, & Visser, 2018; Violle, Reich, Pacala, Enquist, & Kattge, 

2014).

We stipulated three basic criteria for trait independence: (i) there should be minimal statistical 

correlations between traits; (ii) traits should be minimally constrained by phylogeny; and (iii) trait 

structure, and its response to environmental change, should be minimally variable with respect to 

spatial coordinates at the scale considered. These criteria correspond to the three challenges 

introduced above. Due to the confounding effects of trait correlations and phylogenetic constraints 

acting on the full set of trait data, we hypothesised that trait-environment relationships would be 

more strongly evident when trait categories violating these criteria were excluded from the 

analysis (Van Looy et al., 2019).

By combining openly available environmental data and species’ occurrence, trait and phylogenetic 

records with computational modelling, we establish a new, generalised analytical framework for A
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quantifying trait correlations, phylogenetic constraints and spatial variability at large scales. We 

demonstrate its application with a case study on freshwater macroinvertebrates and test the 

implications of our findings for trait-based applications by re-analysing published 

macroinvertebrate community data from stream sites spanning the major alpine regions of Europe. 

Subsequently, we discuss present capabilities and recommend future directions in trait-based 

ecology.

Materials and methods

Framework development

Our framework applies three separate analyses corresponding to the criteria stipulated above 

(Figure 1). The steps involved in our analyses are directly applicable to fuzzy coded traits assigned 

at mixed taxonomic levels but may be adapted for application to any trait types and taxonomic 

resolutions. Trait correlations are assessed by resampling the observed species  traits matrix a 

large number of times, respecting the rules of the fuzzy scoring system used to quantify traits 

(Figure 1a). This is necessary because the rules used to assign fuzzy scores can vary between trait 

categories and taxa, potentially introducing correlations which are artefacts of the scoring system. 

For each sample of the species  traits matrix, a correlation matrix is produced, generating null 

distributions of correlation coefficients (Spearman’s ) for each pair of traits (rnull). Observed 

pairwise correlations (robs) are then ranked among the null distributions to derive two-tailed p 

values, Bonferroni adjusted for multiple pairwise comparisons. For applications involving 

exclusively binary or continuously measured traits, this step may be simplified to a standard 

correlation test. In cases where binary or continuously measured traits are mixed with fuzzy coded 

traits then our framework may be applied directly.

To enable phylogenetic constraints to be quantified, a phylogenetic tree is constructed with tips 

corresponding to species within the taxa included in the trait database at mixed taxonomic levels 

(Figure 1b). A trait distance matrix is produced from the observed traits and the constraint 

quantified as the cumulative correlation between traits and phylogenetic distance, compared to a 

null hypothesis of no phylogenetic autocorrelation. Separate trait distance matrices may be 

produced to quantify phylogenetic constraints for different groups of traits. The analysis is 

repeated by sampling species-level branches in the phylogenetic tree a large number of times 

(represented by grey phylogenetic trees in the background of Figure 1b) to quantify the sensitivity A
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of results to the mixed taxonomic resolution of the trait database. For instance, in the simplified 

example presented in Figure 1b, taxon s2 in the trait database corresponds to three possible tips 

(species) in the phylogenetic tree (s2a, s2b, s2c), one of which would be selected in each sample. 

For studies using traits assigned at the species level, sampling from the phylogenetic tree is not 

necessary.

Spatial variability is assessed by first fitting species distribution models for each taxon in the trait 

database, then randomly sampling a large number of grid cells (x) within the study area to generate 

predicted probability occurrences (pocc) in each sampled cell (Figure 1c). Community (occurrence 

probability) weighted means of each trait (ptrait) are then calculated and gradient analysis used to 

quantify the turnover of taxonomic and trait structure in space. This procedure is repeated a large 

number of times to assess the sensitivity of results to spatial sampling. If sufficient abundance data 

exists at the requisite scale, abundance-based species distribution models (including joint species 

distribution models) and abundance weighted mean traits can be used. Further description of the 

steps involved in applying the framework is given below in the context of our case study.

Study area

For the purposes of demonstrating our framework, we defined our study area as the extent of 

European Union Member States, excluding the Outermost Regions held by France, Spain and 

Portugal (European Union, 2019). To avoid large gaps within this geopolitical region that may 

have confounded the analyses, we also included the United Kingdom, Norway, Switzerland, 

Albania, Bosnia and Herzegovina, Montenegro, Macedonia and Serbia. In total, the study area 

extended to 5,110,076 km2.

Model organism group

In Europe, trait-based freshwater ecology is set to play an increasingly important role in 

biomonitoring (Reyjol et al., 2014). All macroscopic (macro)invertebrates, including insects, 

crustaceans, molluscs and other major groups are considered within the scope of monitoring. This 

role for trait-based ecology using macroinvertebrates is supported by well-established trait 

databases (Schmidt-Kloiber & Hering, 2015). The most comprehensive of these databases, 

compiled by Tachet, Richoux, Bournaud, & Usseglio-Polatera (2010), contains a set of 63 

functional trait modalities in 11 categories, covering 484 taxa classified at mixed taxonomic levels A
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and coded using a fuzzy scoring system (Chevenet, Dolédec, & Chessel, 1994) (Supplementary 

Table 1). For clarity, we use the term ‘trait category’ (e.g. food) to refer to a group of ‘trait 

modalities’ (e.g. detritus). Despite the popularity of this reference database, to date there has been 

no comprehensive assessment of the extent of statistical correlations, phylogenetic constraints and 

spatial variability among the traits it contains. However, applications of classification and 

ordination techniques have previously indicated partial phylogenetic constraints among the traits 

and taxa included in the database (Usseglio-Polatera et al., 2000; Usseglio-Polatera, Richoux, 

Bournaud, & Tachet, 2001).

Previous work in North America found that many of the available traits for freshwater insects 

were highly collinear and tightly linked to phylogeny among the 311 taxa considered (Poff et al., 

2006). A set of traits describing feeding mode, dispersal mode, body size and voltinism (number 

of generations per year) were identified as relatively unaffected, or ‘labile’ (i.e. more readily 

altered through evolutionary processes, independently of other traits). Others have suggested that 

strong interrelationships among some macroinvertebrate traits mean that traits should not be 

analysed as independent variables but rather as linked sets or ‘syndromes’ (Verberk, Siepel, & 

Esselink, 2008b, 2008a; Verberk et al., 2013). To date, however, there is no consensus on the 

extent of non-independence among macroinvertebrate traits, despite a decade of debate (Menezes 

et al., 2010; Statzner & Bêche, 2010).

Based on the full set of data published in Tachet et al. (2010), traits encompassed categories of 

body size (maximum body length), lifespan, voltinism, aquatic stages (eggs, larva, pupa, adult), 

reproduction mode, dispersal mode, resistance forms, respiration mode, locomotion, food and 

feeding mode (Supplementary Table 1). After removing taxa with incomplete trait information, a 

total of 443 taxa in 23 orders and 152 families remained. Of these, most had traits assigned at the 

genus (52%) or species (39%) level. The remainder (mostly Diptera) were assigned at the tribe, 

subfamily or family levels (9%). This trait database was used as the basis for three sets of analyses 

designed to assess trait correlations (Table 1), phylogenetic constraints (Table 2) and spatial 

variability (Table 3). More detail on the steps involved can be found in the corresponding tables 

and the Supplementary Methods. The analyses were conducted in R version 4.0.0 (R Core Team, 

2020) unless otherwise specified. Key R scripts for estimating trait correlations, phylogenetic A
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constraints and spatial gradients in taxonomic and trait structure are available in the macroTraits 

GitHub repository (https://github.com/wilkesma/macroTraits).

Re-analysis of alpine macroinvertebrate community data

To test our hypothesis that trait correlations and phylogenetic constraints confound trait-based 

analyses, we re-analysed macroinvertebrate community (abundance) data from the European 

subset of alpine sites studied by Brown et al. (2018). The data were drawn from 261 alpine stream 

sites located across the Scandinavia Mountains, the Pyrenees and the European Alps, with varying 

proportions (0-80%) of glacial ice cover in their upstream catchments. The original paper used a 

more focused trait database which was harmonised across alpine regions globally, whereas the 

comparative analyses presented here are based upon the European database of Tachet et al., 

(2010). For all analyses, we compared the results obtained using all 11 trait categories to those 

obtained after excluding trait categories that most strongly violated our criteria for trait 

independence. We calculated commonly used functional diversity (FD) indices for each site 

(Villéger, Mason, & Mouillot, 2008) and estimated the importance of deterministic community 

assembly processes (dispersal- and niche- based) along the gradient of glacier cover using the 

same approach as the original paper (Brown et al., 2018). We also computed turnover (mean Bray-

Curtis dissimilarity) in taxonomic and trait structure within and between regions. Finally, we 

tested for relationships between linear combinations of traits and glacial ice cover using the fourth 

corner (individual trait-glacial ice cover relationships) and RLQ (overall trait-glacial ice cover 

relationship) methods (Dray et al., 2014). It should be noted that, whilst the rest of the analyses 

reported here are based upon trait occurrence probability, this analysis uses abundance-weighted 

trait structure. This difference is justified due to the lack of abundance data at the continental scale 

and the fact that we do not make direct comparisons between inferences generated using 

occurrence probability- and abundance- weighted data.

Results and discussion

Trait correlations

The maximum possible number of unique trait combinations, expressed as the product of unique 

combinations of resampled scores within each trait category (Supplementary Figure 4), was A
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>21036. Thus, if all traits were truly independent we would expect all 443 taxa to exhibit their 

own unique trait profile, yet only 408 unique trait combinations existed in the trait database. This 

finding indicates trait-non-independence, as previously found for stream insects in North America 

(Poff et al., 2006). Statistically significant correlations between trait modalities were widespread 

(Figure 2). Negative correlations were only found between trait modalities within the same trait 

categories, whereas correlations between different trait categories were always positive. This is 

because the fuzzy scoring system typically assigns each taxon nonzero values in a limited number 

of trait modalities within each trait category, damping any signal from negative trait correlations. 

Trait modalities for food (describing diet) and feeding mode (how an organism obtains food) were 

highly intercorrelated, as expected (Cummins & Klug, 1979). The mean number of significant 

correlations (padj<0.05) per trait modality within each trait category was highest for lifespan (37 

correlations), dispersal mode (34) and voltinism (32) (Supplementary Figure 5). Many of these 

highly intercorrelated traits were linked in intuitive combinations whereby, for example, 

multivoltine taxa also have ephemeral lives (≤1 year), are present in the aquatic environment at 

juvenile life stages and disperse passively. These same taxa are also more likely to have smaller 

bodies. However, body size, along with resistance forms, were the least correlated with other traits 

(24 correlations each), and also minimally correlated with one another.

Phylogenetic constraints

All trait categories were significantly constrained by phylogeny but to varying degrees (Figure 3). 

Aquatic stages was the most severely constrained category, exhibiting strong and significant 

correlations up to phylogenetic distances of >1.5 (Figure 3d). These extreme distances correspond 

approximately to the class level (Supplementary Figure 6), reflecting the fundamental difference 

between insects with non-aquatic life stages and obligate aquatic classes, as well as the presence 

or absence of a pupal (aquatic) stage distinguishing between holometabolous and hemimetabolous 

insect orders. Reproduction mode was positively correlated with phylogenetic distance for both 

closely and distantly related species (Figure 3e). This indicates convergent evolution of 

reproductive strategies among lineages, particularly the occurrence of ovoviviparity among 

diverse Annelida, Porifera, Bryozoa, Bivalvia, Gastropoda, Crustacea and Insecta taxa. Body size, 

voltinism and resistance forms were the least constrained trait categories (Figure 3a, c, g) with 

significant correlations persisting up to phylogenetic distances of <0.6 (corresponding to A
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congeneric taxa; Supplementary Figure 6). Body size and voltinism even vary within a species 

across latitudinal clines (Bonada & Dolédec, 2018; Horne, Hurst & Atkinson, 2015). Because of 

their phylogenetic independence, these trait categories could offer most additional information 

over taxonomy-based analyses. Food was marginally less constrained by phylogeny than feeding 

mode, supporting the notion that macroinvertebrates obtain a more generalist diet than expected 

based on mouthpart morphology and feeding behaviour alone (Dangles, 2002; Tomanova, Goitia, 

& Helešic, 2006). 

Spatial variability

Taxonomic and trait structure were approximately equal in terms of their total variability 

(maximum cumulative importance) along spatial gradients (Figure 4c, e, g). However, trait 

turnover along the latitudinal gradient (‘northing’ in the reprojection) was much steeper than 

taxonomic turnover, with a clearer delineation of Mediterranean regions. Across the continent, the 

environmental correlates of elevation were associated with a more consistent effect on trait 

structure regardless of location than was the case with taxonomic structure. This can be seen by 

comparing maps of taxonomic (Figure 4a) and trait (Figure 4b) turnover. With trait turnover the 

major mountain regions consistently occupy a similar part of ordination space (green colours in 

Figure 4b) regardless of location (e.g. compare the Alps and Scandinavian Mountains). This 

tendency for similar trait structure among communities from anywhere within Europe indicates 

that trait responses to environmental variation are less dependent on location than taxonomic 

responses. Northing was the single most important gradient (Figure 4c) followed by easting 

(Figure 4e). These findings reflect large-scale climatic drivers of macroinvertebrate community 

assembly acting on both taxonomic and trait structure (Brown et al., 2018). The turnover of 

individual traits along spatial gradients varied strongly by trait modality but no single trait 

category stood out as particularly invariant (Figure4d, f, h).

Implications for trait-based ecology

Whilst our findings support the notion that trait non-independence (statistical correlations and 

phylogenetic constraints) is widespread, not all traits were equally affected. Trait categories 

describing body size, resistance forms and, to a lesser extent, food were the most labile, a similar 

result to previous work on stream insects in North America (Poff et al., 2006). These three trait 

categories correspond to the typical axes of life history models, namely resilience (smaller bodies A
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are associated with r-selected species), resistance to disturbance (resistance forms), and resource 

utilisation (food), respectively (e.g. Townsend & Hildrew, 1994; Van Looy et al., 2019). Although 

these same traits were clearly associated with systematic spatial variation, the gradient forest 

analysis suggested that patterns in trait structure are more consistently related to strong 

environmental gradients, such as those associated with elevation, when compared to patterns in 

taxonomic structure. Low spatial variability in trait structure was evident for major mountain 

regions. Thus, large scale trait-based analyses across distant mountain regions are less confounded 

by spatial structure than taxonomy-based analyses, but they may still be affected by trait non-

independence. We therefore re-examined the alpine dataset from Brown et al. (2018) to test the 

hypothesis that trait non-independence confounds trait-based applications at large scales. We 

compared trait-based indicators calculated using the full set of traits to those calculated using only 

body size, resistance forms and food.

Functional richness (related to the number of traits represented in the community) and functional 

evenness (related to both the number of traits and the abundance distribution) were highly 

sensitive to the set of traits used (Figure 5a, b). In contrast, there was a close relationship between 

functional dispersion (related to the abundance distribution only) values calculated using the two 

alternative sets of traits (Figure 5c), showing that purely abundance-based FD indices are robust to 

variation in the traits included. The trait space occupied by macroinvertebrate communities using 

each set of traits was strikingly similar among the three regions (Figure 5d, e, f). Analysis of 

turnover within and between regions provided clear evidence for the benefits of working with 

traits at large scales, with drastically lower mean Bray-Curtis dissimilarities for trait structure 

compared to taxonomic structure (Figure 5g). There was little difference in trait turnover between 

the scenarios including all traits and labile traits only, although labile trait turnover was less in all 

cases (Figure 5g). Using the labile subset of traits did not result in a stronger deterministic 

community assembly response to increasing glacier cover (Figure 5h, i), a gradient of habitat 

harshness associated with decreasing channel stability, water temperature and organic matter 

(Jacobsen & Dangles, 2012). This is because the community assembly model is based on reduced 

dimensionality trait space (Brown et al., 2018), meaning that inclusion of additional, highly 

intercorrelated traits had a negligible impact on the result, and may have led to overfitting (Figure 

5h). Including region and/or stream catchment as random effects failed to improve the fit of 

generalised additive models of deterministic community assembly processes relative to the global A
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model (Supplementary Table 2). This indicates the presence of a consistent trait-environment 

relationship across the major European alpine regions (Supplementary Table 3). However, the 

fourth corner (Supplementary Table 4) and RLQ (Supplementary Table 5) analyses reported no 

significant trait-glacial ice cover relationships, re-emphasising the need to go beyond the search 

for trait-environment relationships using single traits or linear combinations of multiple traits 

(Hamilton et al., 2019; Peres-Neto et al., 2017). Overall, our reanalysis of these data suggests that 

trait-based ecologists should think carefully about which traits to include in large-scale analyses, 

especially when occurrence-based FD indices are of interest.

Conclusions

We have shown how three major challenges (statistical independence, phylogenetic independence, 

spatial variability) in large-scale trait-based ecology can be better understood using openly 

available ecological, phylogenetic and environmental data. In the case of freshwater 

macroinvertebrates, traits were strongly intercorrelated and constrained by phylogeny, although 

certain traits were less affected (body size, resistance forms, food). Our findings support the 

applicability of a life history model for this diverse group comprising axes (and corresponding 

traits) of resilience (body size), resistance (resistance forms) and resource utilisation (food). These 

traits map directly onto a generalised model for river ecosystems recently proposed by Van Looy 

et al. (2019). However, our findings suggest that whilst these traits may be useful to ecologists 

working at continental scales, the search for trait-environment relationships through simple 

combinations of trait modalities and environmental variables is unlikely to be productive. Instead, 

ecologists should embrace the heuristic value of trait-based conceptual models for understanding 

how communities respond to environmental change.

We have harnessed advances in data availability and computational analyses to establish a novel, 

generalised framework for large-scale trait-based ecology. The framework can be applied to any 

taxonomic group and habitat type, although the specific approach to assessing statistical 

correlations, phylogenetic constraints and spatial variability should be adjusted to reflect the type 

of trait data available (continuous, binary or fuzzy; taxonomic resolution), as well as the 

availability and coverage of phylogenetic and occurrence or abundance data (Figure 1). Whilst the 

framework provides quantitative information on the performance of each trait category, 

background knowledge specific to the taxonomic group and habitats of interest must be used A
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judiciously in future applications. For example, in addition to results gained by applying the 

framework, reference to existing life history models for the group of interest will be useful to 

guide the selection of traits.

Progress towards a universal framework for making robust predictions of ecological responses to 

environmental change across major habitat types and taxonomic groups depends on identifying 

traits directly related to niche dimensions (Winemiller et al., 2015). The identification of labile 

traits, such as that we have demonstrated here, may lead to better indicators of community 

resilience and resistance to disturbances (Van Looy et al., 2019). Such important work will 

improve our understanding of the role of traits in controlling ecological stability following 

disturbance (Donohue et al., 2013; Pennekamp et al., 2018; Radchuk et al., 2019), across time 

(Yang, Fowler, Jackson, & Donohue, 2019) and space (Zelnik, Arnoldi, & Loreau, 2019). 

Improved knowledge of these controls will be central to our ability to forecast future ecosystem 

dysfunction, and therefore inform efforts to prevent, mitigate and adapt to global environmental 

change. 

Data sharing and data accessibility

The R scripts implemented in this study are archived at https://github.com/wilkesma/macroTraits. 

The existing datasets that support the findings of the case study can be obtained from the original 

sources cited in the manuscript.
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Tables

Table 1. Steps involved in quantifying trait correlations.

Step Description Source data Method (package)

a1 Assess the 

fuzzy scoring 

system used 

to quantify 

traits

Tachet et al. 

(2010)

Quantify minimum and maximum possible fuzzy 

scores for trait modalities within each trait 

category (see Supplementary Figure 1). See 

function fuzzy_trait_correlations in GitHub 

repository*

a2 Generate an 

ensemble of 

possible 

species × trait 

matrices

Step a1 Resample the species × trait matrix 1106 times, 

respecting the rules of the fuzzy scoring system. 

See function fuzzy_trait_correlations in GitHub 

repository*

a3 Create null 

distributions 

of correlation 

coefficients

Step a2 Calculate Spearman’s  between each pair of trait 

modalities in the ensemble of possible species × 

trait matrices

a4 Assess the 

significance 

of observed 

correlations

Tachet et al. 

(2010); Step a1

Rank the observed correlations among the null 

distributions to obtain two-tailed, Bonferroni 

adjusted p values

* https://github.com/wilkesma/macroTraits
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Table 2. Steps involved in quantifying phylogenetic constraints.

Step Description Source data Method (package)

b1 Obtain 

genetic data

Barcode of 

Life Database 

(BOLD)

Search BOLD for cytochrome c oxidase subunit I 

(COI) sequences using taxa names from the trait 

database (bold v0.8.6 in R)

b2 Clean genetic 

data

Step b1 Retain the longest sequences with least missing 

base pairs for each species

b3 Align 

sequences

Step b2 Perform multiple sequence alignment using 

Clustal Omega (msa v1.14.0 in R) followed by 

removal of gaps and poorly aligned sequences 

using Gblocks (ips v0.0-7 in R)

b4 Retrieve 

synthetic 

phylogenetic 

tree 

Open Tree of 

Life (OTL)

Search OTL using species names from the 

multiple sequence alignment (rotl v3.0.7 in R)

b5 Select 

nucleotide 

substitution 

model

Steps b3-b4 Subset the multiple sequence alignment to retain 

only those species represented in the synthetic 

tree. Select the nucleotide substitution model 

using jModelTest (phangorn v2.4.0 in R), 

providing the settings for branch length 

estimation (step b6)

b6 Prepare final 

phylogenetic 

tree

Steps b3-b5 Estimate branch lengths using aligned sequences 

of species represented in the synthetic tree 

(MrBayes v3.2.6). Settings are generated using 

the selected nucleotide substitution model (step 

b5) and by constraining tree topology using the 

synthetic phylogenetic tree (paleotree v3.1.3 in R)

b7 Quantify 

phylogenetic 

constraints

Trait database; 

Step b6

Calculate the cumulative correlation between 

phylogenetic distance and trait distance for each 

trait category (phylosignal v1.2.1 in R). See 

function phylo_constraints in GitHub repository*

* https://github.com/wilkesma/macroTraitsA
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Table 3. Steps involved in quantifying spatial variability.

Step Description Source data Method (package)

c1 Prepare 

environmental 

data

WorldClim 

(BIO1, BIO4, 

BIO12, 

BIO15); 

Shuttle Radar 

Topography 

Mission 

(elevation); 

SoilGrids (soil 

pH)

Download climate and elevation data at 10-arc-

minute resolution (getData function, raster v2.8-

19 in R). Compute slope from elevation data 

using a 3 x 3 cell moving window. Download the 

‘PHIHOX’ variable (soil pH) manually from 

SoilGrids (isric.org/explore/soilgrids). Crop 

layers to the study area and aggregate to a 

common resolution of 2.5 km (aggregate 

function, raster v2.8-19 in R)

c2 Download 

species’ 

occurrence 

data

Global 

Biodiversity 

Information 

Facility 

(GBIF)

Search GBIF using generic names for taxa 

assigned at species or genus level in the trait 

database, retaining only georeferenced records 

within the study area with coordinate 

uncertainties ≤2.5 km (gbif function, dismo v1.1-

4 in R)

c3 Augment 

GBIF data

Réseau de 

Contrôle de 

Surveillance 

(RCS)

Fill gaps in GBIF data coverage using national or 

regional datasets (e.g. RCS monitoring data from 

France), retaining only genus and species-level 

occurrence records

c4 Fit species 

distribution 

models

Steps c1-c3 Given the environmental layers, use MaxEnt to 

predict the occurrence probability in every 2.5 

km2 grid cell for each genus represented in the 

augmented GBIF data (enmtools.maxent function, 

ENMTools v0.2 in R).

c5 Sample 

spatial 

gradients

Step c4 Generate an ensemble of 1000 random samples of 

1000 grid cells (without replacement) from within 

the study area. Retrieve the geographic 

coordinates, elevation and predicted occurrence A
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probabilities for every genus in each sampled grid 

cell. See function spatial_gradient in GitHub 

repository*

c6 Calculate 

community 

weighted 

means

Step c5 For each sampled grid cell in the ensemble, 

multiply the predicted occurrence probability by 

the corresponding trait score for each trait 

modality and genus. See function 

spatial_gradient in GitHub repository*

c7 Quantify 

spatial 

variability 

(turnover)

Steps c4-c6 For each of the 1000 spatial gradient samples, fit 

gradient forest models to occurrence probabilities 

and community weighted mean traits 

(gradientForest v0.1-17 in R) to quantify the 

turnover of taxonomic and trait structure along 

spatial gradients (northing, easting, elevation). 

See function spatial_gradient in GitHub 

repository*

* https://github.com/wilkesma/macroTraits

Figure legends

Figure 1. Overview of the framework, using a hypothetical example of four taxa (s) and four fuzzy 

coded trait modalities (t) assigned at mixed taxonomic resolutions. (a) Trait correlations are 

assessed by resampling the observed s  t matrix a large number of times, respecting the rules of 

the fuzzy scoring system used to assign traits (Supplementary Figure 1), to produce null 

distributions of correlation coefficients for each pair of traits (rnull). Observed pairwise correlations 

(robs) are then ranked among the null distributions to derive p values. (b) Phylogenetic constraints 

are quantified by constructing a phylogenetic tree with tips corresponding to species represented in 

the trait database. A trait distance matrix is produced from the observed traits and the constraint 

quantified as the cumulative correlation between traits and phylogenetic distance. The analysis is 

repeated by sampling species-level branches (e.g. s2a, s2b, s2c) in the phylogenetic tree a large 

number of times to quantify the sensitivity of results to the mixed taxonomic resolution of the trait 

database. (c) Spatial variability is assessed by first fitting species distribution models for each 

genus represented in the trait database, then randomly sampling a large number of grid cells (x) 

within the study area to generate predicted probability occurrences (pocc) in each sampled cell (x=4 A
cc

ep
te

d 
A
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shown here for demonstration purposes). Community (occurrence probability) weighted means of 

each trait (ptrait) are then calculated and gradient analysis used to quantify the turnover of 

taxonomic and trait structure in space. The analysis may be simplified where binary or 

continuously measured traits are available at the species level.

Figure 2. Statistically significant (Bonferroni adjusted p<0.05) correlations between trait 

modalities, with colour representing the sign of the correlation. See Supplementary Table 1 for full 

names of trait modalities and trait categories.

Figure 3. Phylogenetic constraints on traits. Cumulative correlation of trait modalities within 11 

trait categories (a-k) with phylogenetic distance (sum of branch lengths) sampled from the species-

level phylogenetic tree (Supplementary Figure 2). Polygons shaded to reflect the distribution of 

100 samples in data space. Dashed lines indicate the expected value of Moran’s I under the null 

hypothesis of no autocorrelation. See Supplementary Figure 6 for taxonomic interpretation of 

phylogenetic distances.

Figure 4. Spatial instability of taxonomic and trait occurrence probability structure. Summary of 

spatial turnover in taxonomic (a) and trait (b) composition based on predicted occurrence 

probabilities from multiple species distribution models, with colour bands scaled to axis scores 

from a principal components (PC) analysis of transformed data from gradient forest models 

including northings, eastings and elevation as predictors. As colour changes from one point on the 

map to another, the predicted (a) taxonomic or (b) trait composition changes proportionally. (c, e, 

g) Turnover functions (cumulative importance) from gradient forest models predicting taxonomic 

and trait structure. Dashed lines indicate the 95% confidence intervals from sampling of grid cells 

in (a) and (b). (d, f, h) Bean plots showing the mean (black horizontal line) and distribution 

(coloured by trait modality) of the importance of individual trait modalities within 11 trait 

categories in the gradient forest models. See Supplementary Table 1 for names of trait modalities.

Figure 5. Sensitivity of trait-based analyses on macroinvertebrate community data from alpine 

regions of Europe using two alternative sets of traits: all 11 available trait categories and three 

relatively labile trait categories. Comparison of (a) functional richness (FRic), (b) functional 

evenness (FEve) and (c) functional dispersion (FDis). Dashed lines in (a, b, c) show 1:1 A
cc
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relationships between FD indices calculated using each set of traits, whereas the solid lines 

indicate the best fit of general linear models with goodness-of-fit noted within each panel. First 

two axes of a principal coordinates analysis (PCoA) showing the trait space occupied by 

macroinvertebrate taxa observed in (d) the European Alps, (e) the Scandinavian Mountains and (f) 

the Pyrenees. Lighter and darker coloured polygons in (d, e, f) represent convex hulls calculated 

using all trait categories and the relatively labile trait categories respectively. Comparison of 

turnover (mean Bray-Curtis dissimilarity) in taxonomic and trait structure within and between 

regions (g). Note that the between regions scenario in (g) is based on mean abundances of taxa 

within each region. The importance of deterministic community assembly processes estimated 

using (h) all trait categories and (i) labile trait categories only. Shaded areas in (h, i) indicate 95% 

confidence intervals around the mean fit of generalised additive models. Importance values greater 

than zero indicate a significant role for deterministic community assembly processes (combined 

effect of dispersal- and niche- based processes).
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