27 research outputs found

    Meta-analysis of Genome-Wide Association Studies for Extraversion: Findings from the Genetics of Personality Consortium

    Get PDF
    Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion

    Association of Forced Vital Capacity with the Developmental Gene <i>NCOR2</i>

    Get PDF
    Background Forced Vital Capacity (FVC) is an important predictor of all-cause mortality in the absence of chronic respiratory conditions. Epidemiological evidence highlights the role of early life factors on adult FVC, pointing to environmental exposures and genes affecting lung development as risk factors for low FVC later in life. Although highly heritable, a small number of genes have been found associated with FVC, and we aimed at identifying further genetic variants by focusing on lung development genes. Methods Per-allele effects of 24,728 SNPs in 403 genes involved in lung development were tested in 7,749 adults from three studies (NFBC1966, ECRHS, EGEA). The most significant SNP for the top 25 genes was followed-up in 46,103 adults (CHARGE and SpiroMeta consortia) and 5,062 chi

    Meta-analysis of genome-wide association studies for extraversion:Findings from the Genetics of Personality Consortium

    Get PDF
    Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion

    Genome-wide association analysis identifies six new loci associated with forced vital capacity

    Get PDF
    Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10−8) with FVC in or near EFEMP1, BMP6, MIR129-2–HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease

    Sixteen new lung function signals identified through 1000 Genomes Project reference panel imputation

    Get PDF
    Lung function measures are used in the diagnosis of chronic obstructive pulmonary disease. In 38,199 European ancestry individuals, we studied genome-wide association of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC with 1000 Genomes Project (phase 1)-imputed genotypes and followed up top associations in 54,550 Europeans. We identify 14 novel loci (P <5 x 10(-8)) in or near ENSA, RNU5F-1, KCNS3, AK097794, ASTN2, LHX3, CCDC91, TBX3, TRIP11, RIN3, TEKT5, LTBP4, MN1 and AP1S2, and two novel signals at known loci NPNT and GPR126, providing a basis for new understanding of the genetic determinants of these traits and pulmonary diseases in which they are altered.Peer reviewe

    Fine mapping the CETP region reveals a common intronic insertion associated to HDL-C

    Get PDF
    Background: Individuals with exceptional longevity and their offspring have significantly larger high-density lipoprotein concentrations (HDL-C) particle sizes due to the increased homozygosity for the I405V variant in the cholesteryl ester transfer protein (CETP) gene. In this study, we investigate the association of CETP and HDL-C further to identify novel, independent CETP variants associated with HDL-C in humans. Methods: We performed a meta-analysis of HDL-C within the CETP region using 59,432 individuals imputed with 1000 Genomes data. We performed replication in an independent sample of 47,866 individuals and validation was done by Sanger sequencing. Results: The meta-analysis of HDL-C within the CETP region identified five independent variants, including an exonic variant and a common intronic insertion. We replicated these 5 variants significantly in an independent sample of 47,866 individuals. Sanger sequencing of the insertion within a single family confirmed segregation of this variant. The strongest reported association between HDL-C and CETP variants, was rs3764261; however, after conditioning on the five novel variants we identified the support for rs3764261 was highly reduced (βunadjusted=3.179 mg/dl (P value=5.25×10−509), βadjusted=0.859 mg/dl (P value=9.51×10−25)), and this finding suggests that these five novel variants may partly explain the association of CETP with HDL-C. Indeed, three of the five novel variants (rs34065661, rs5817082, rs7499892) are independent of rs3764261. Conclusions: The causal variants in CETP that account for the association with HDL-C remain unknown. We used studies imputed to the 1000 Genomes reference panel for fine mapping of the CETP region. We identified and validated five variants within this region that may partly account for the association of the known variant (rs3764261), as well as other sources of genetic contribution to HDL-C

    Multiple lines of evidence suggest the persistence of the Ivory‐billed Woodpecker (Campephilus principalis) in Louisiana

    No full text
    Abstract The history of the decline of the Ivory‐billed Woodpecker is long and complex, but the status of the species since 1944, when the last widely accepted sighting in continental North America occurred, is particularly controversial. Reports of Ivory‐billed Woodpeckers have continued, but none has reached the threshold of quality for general acceptance by ornithologists or the birdwatching public. In 2021, the U.S. Fish and Wildlife Service opened for public comment a proposal to declare the species extinct. Here, we present evidence suggesting the presence of the Ivory‐billed Woodpecker at our study site, based on a variety of data collected over a 10‐year search period, 2012–2022. These data are drawn from visual observations, ~70,000 h of recordings by 80–100 acoustic recording units, ~472,550 camera‐hours by as many as 34 trail cameras, and ~1089 h of video drawn from ~3265 drone flights. Using multiple lines of evidence, the data suggest intermittent but repeated presence of multiple individual birds with field marks and behaviors consistent with those of Ivory‐billed Woodpeckers. Data indicate repeated reuse of foraging sites and core habitat. Our findings, and the inferences drawn from them, suggest that not all is lost for the Ivory‐billed Woodpecker, and that it is clearly premature for the species to be declared extinct

    Identification of ALK as a major familial neuroblastoma predisposition gene

    No full text
    Neuroblastoma is a childhood cancer that can be inherited, but the genetic aetiology is largely unknown. Here we show that germline mutations in the anaplastic lymphoma kinase (ALK) gene explain most hereditary neuroblastomas, and that activating mutations can also be somatically acquired. We first identified a significant linkage signal at chromosome bands 2p23-24 using a whole-genome scan in neuroblastoma pedigrees. Resequencing of regional candidate genes identified three separate germline missense mutations in the tyrosine kinase domain of ALK that segregated with the disease in eight separate families. Resequencing in 194 high-risk neuroblastoma samples showed somatically acquired mutations in the tyrosine kinase domain in 12.4% of samples. Nine of the ten mutations map to critical regions of the kinase domain and were predicted, with high probability, to be oncogenic drivers. Mutations resulted in constitutive phosphorylation, and targeted knockdown of ALK messenger RNA resulted in profound inhibition of growth in all cell lines harbouring mutant or amplified ALK, as well as in two out of six wild-type cell lines for ALK. Our results demonstrate that heritable mutations of ALK are the main cause of familial neuroblastoma, and that germline or acquired activation of this cell-surface kinase is a tractable therapeutic target for this lethal paediatric malignancy
    corecore