19 research outputs found

    Sikkerhetslovens konsekvenser for en virksomhets styringssystem for sikkerhet

    Get PDF
    Sikkerhetsloven stiller krav til at virksomheter skal etablere et styringssystem for sikkerhet, og er i tråd med NSM (2023) sitt mål om at «Virksomhetene har systematisk sikkerhetsstyring og helthetlig sikring» (Nasjonal Sikkerhetsmyndighet, 2023, s. 14). Studiens hensikt er å se på hvilke konsekvenser sikkerhetsloven har for en virksomhets styringssystem for sikkerhet, samt hva en virksomhet bør sette søkelys på i etableringen av styringssystemet. Studien bidrar til økt kunnskap for virksomheter som blir- eller er underlagt sikkerhetsloven, og skal etablere et styringssystem for sikkerhet. Studien inneholder et teoretisk rammeverk bestående av to hovedelementer, kravene sikkerhetsloven stiller til en virksomhets styringssystem for sikkerhet, samt rammeverket for et styringssystem for sikkerhet. Det teoretiske rammeverket har blitt benyttet som grunnlag i innsamlingen av data, som er gjort gjennom kvalitative, semistrukturerte intervjuer med en virksomhet som er underlagt sikkerhetsloven og har etablert et styringssystem for sikkerhet. Det er gjennomgående konsistens mellom studiens funn og det teoretiske rammeverket. Å bli underlagt sikkerhetsloven medfører flere konsekvenser for en virksomhet. Loven stiller krav til blant annet styringssystemet for sikkerhet, risikostyring, sikkerhetsoppfølging og sikkerhetsorganisering, noe som medfører vedvarende organisatoriske endringer og økonomiske konsekvenser for virksomheten. For å ivareta at styringssystemet sikrer etterlevelse av lovverket understreker studiens funn viktigheten av å etablere gode prosesser som ivaretar risikostyring gjennom tilpassede metoder for risikovurderinger og risikohåndtering. Informantenes erfaringer støtter anbefalingene om at styringssystemet for sikkerhet bør integreres i virksomhetens styringssystem, noe som gir merverdi på flere områder. Det er avgjørende at virksomheten har tydelige ansvarslinjer, både i det daglige forebyggende arbeidet og i styringssystemets prosesser. Gjør virksomheter disse grepene i etableringen av styringssystemet for sikkerhet, bidrar dette til at styringssystemet sikrer etterlevelse av lovkravene, samt at virksomheten bidrar til måloppnåelse av NSM (2023) sitt mål i sikkerhetsfaglig råd 2023 om at virksomhetene skal ha systematisk sikkerhetsstyring (Nasjonal Sikkerhetsmyndighet, 2023, s. 14)

    Mercury isotope evidence for Arctic summertime re-emission of mercury from the cryosphere

    Get PDF
    During Arctic springtime, halogen radicals oxidize atmospheric elemental mercury (Hg-0), which deposits to the cryosphere. This is followed by a summertime atmospheric Hg-0 peak that is thought to result mostly from terrestrial Hg inputs to the Arctic Ocean, followed by photoreduction and emission to air. The large terrestrial Hg contribution to the Arctic Ocean and global atmosphere has raised concern over the potential release of permafrost Hg, via rivers and coastal erosion, with Arctic warming. Here we investigate Hg isotope variability of Arctic atmospheric, marine, and terrestrial Hg. We observe highly characteristic Hg isotope signatures during the summertime peak that reflect re-emission of Hg deposited to the cryosphere during spring. Air mass back trajectories support a cryospheric Hg emission source but no major terrestrial source. This implies that terrestrial Hg inputs to the Arctic Ocean remain in the marine ecosystem, without substantial loss to the global atmosphere, but with possible effects on food webs.Arctic warming thaws permafrost, leading to enhanced soil mercury transport to the Arctic Ocean. Mercury isotope signatures in arctic rivers, ocean and atmosphere suggest that permafrost mercury is buried in marine sediment and not emitted to the global atmospherePeer reviewe

    The fate of mercury in Arctic terrestrial and aquatic ecosystems, a review

    Full text link

    Fate of Springtime Atmospheric Reactive Mercury: Concentrations and Deposition at Zeppelin, Svalbard

    No full text
    Mid-latitude atmospheric elemental mercury (Hg) emissions undergo extensive oxidation to reactive Hg (RM) compounds during Arctic polar sunrise, resulting in enhanced atmospheric deposition that impacts Arctic marine wildlife and humans. It has been difficult to estimate RM dry deposition, because RM concentrations, compounds, and their deposition velocities are ill-defined. Here, we investigate RM concentrations sampled with membrane-based methods and find these to exceed denuder-based RM detection by 5 times at the Zeppelin Observatory on Svalbard (March 26–July 24, 2019). Measured dry deposition of gaseous oxidized Hg was about half of the modeled RM deposition, demonstrating that particulate-bound Hg was an important component of dry deposition. Using thermal membrane desorption, RM chemistry was found to be dominated by Hg–Cl/Br (51%) and Hg–N (45%) compounds. Back-trajectory analysis indicated that Hg–Br/Cl compounds were predominantly advected from within the marine boundary layer (sea ice exposure), while Hg–N originated from the free troposphere. Weekly average RM compound-specific dry deposition velocities ranged from 0.12 to 0.49 cm s–1, with a net RM dry deposition of 1.9 μg m–2 (1.5–2.5 μg m–2; 95% confidence interval) that exceeds the mean annual Hg wet deposition flux in Svalbard. Overall, we find that springtime atmospheric RM deposition has been underestimated in the Arctic marine environment.ISSN:2472-345

    Mercury isotope evidence for Arctic summertime re-emission of mercury from the cryosphere

    Get PDF
    During Arctic springtime, halogen radicals oxidize atmospheric elemental mercury (Hg-0), which deposits to the cryosphere. This is followed by a summertime atmospheric Hg-0 peak that is thought to result mostly from terrestrial Hg inputs to the Arctic Ocean, followed by photoreduction and emission to air. The large terrestrial Hg contribution to the Arctic Ocean and global atmosphere has raised concern over the potential release of permafrost Hg, via rivers and coastal erosion, with Arctic warming. Here we investigate Hg isotope variability of Arctic atmospheric, marine, and terrestrial Hg. We observe highly characteristic Hg isotope signatures during the summertime peak that reflect re-emission of Hg deposited to the cryosphere during spring. Air mass back trajectories support a cryospheric Hg emission source but no major terrestrial source. This implies that terrestrial Hg inputs to the Arctic Ocean remain in the marine ecosystem, without substantial loss to the global atmosphere, but with possible effects on food webs.Arctic warming thaws permafrost, leading to enhanced soil mercury transport to the Arctic Ocean. Mercury isotope signatures in arctic rivers, ocean and atmosphere suggest that permafrost mercury is buried in marine sediment and not emitted to the global atmospherePeer reviewe
    corecore